README.md
This is a repository of test codes for YOLO11n object detection and tracking code.
The code optimize is done only for object detection part. ByteTrack algorithm are used as is without any optimization.
| File Name | Using Ultralytics framework | Device | Description | FPS(reference) |
|---|---|---|---|---|
yolo11n_ultralytics_cpu.py |
✓ | CPU | Run original Ultralytics YOLO11n with CPU | 4 |
yolo11n_ultralytics_openvino.py |
✓ | CPU/iGPU/NPU(/dGPU?) | Used OpenVINO to optimize. Still using Ultralytics framework | CPU 13 iGPU 30 |
yolo11_ultralytics_cuda.py |
✓ | NV GPU | Used TensorRT to optimize. Still using Ultralytics framework | 60 |
yolo11_ov_bytetracker.py |
CPU/iGPU/NPU/dGPU | Use OpenVINO (without Ultralytics framework) to run object detection, and pass the result to ByteTrack to track the detected objects | CPU 28 iGPU 60 dGPU 72 |
|
yolo11_hailo_bytetrack.py |
Hailo-8 | Use Hailo-8 and HailoRT for object detection without Ultralytics framework | 120 |
-
Benchmark HW1: Note PC, Dynabook SZ/LVL W6SZLV5FAL, Core i5-1235U + Hailo-8
-
Benchmark HW2: Desktop PC, Core i7-10700K + RTX-3050 / Arc A380
-
OS: Windows 11
-
OpenVINO: 2025.2.0
- Install required Python modules
python -m venv venv
venv\Scripts\activate
python -m pip install -U pip
pip install -U setuptools wheel
pip install -r requirements.txtpython3 -m venv venv
. venv/bin/activate
python3 -m pip install -U pip
pip install -U setuptools wheel
pip install -r requirements.txtNote:
-
You need to install TensorRT for CUDA/TRT version, and HailoRT for Hailo-8 version. Please go and refer to the vendor's web documents for the details.
-
You need to download yolo11 model from Hailo Model Zoo ('
yolov11n.hef')
- Hailo-8 is installed in a m.2-Thunderbolt4 box, and connected to the notebook PC via USB-C cable (Thunderbolt) in my test

