Skip to content

Provider Comparison

Udit Asopa edited this page Oct 16, 2025 · 1 revision

Provider Comparison

Choose the best AI provider for your specific needs. This guide compares all three supported providers with detailed analysis.

πŸ“Š Quick Comparison Table

Feature SmolVLM (HuggingFace) LLaVA (Ollama) GPT-4o (OpenAI)
Privacy 🟒 Fully Local 🟒 Fully Local πŸ”΄ Cloud-based
Cost 🟒 Free 🟒 Free πŸ”΄ Pay-per-use
Accuracy 🟑 Good 🟑 Good 🟒 Excellent
Speed 🟑 Medium 🟒 Fast 🟒 Fast
Setup 🟑 Moderate 🟑 Moderate 🟒 Easy
Memory Usage πŸ”΄ High (4-8GB) 🟑 Medium (2-4GB) 🟒 None
Internet Required 🟑 Initial only 🟑 Initial only πŸ”΄ Always
API Key Required 🟒 No 🟒 No πŸ”΄ Yes

πŸ€– Detailed Provider Analysis

1. Hugging Face SmolVLM (Default)

Best for: Privacy-conscious users, businesses with sensitive data, research

# Usage
python main.py image.jpg --provider huggingface
pixi run demo-ocr-huggingface

Strengths:

  • βœ… Complete Privacy: Data never leaves your machine
  • βœ… No API Costs: Free unlimited usage
  • βœ… Offline Capable: Works without internet after setup
  • βœ… Latest Technology: Idefics3 architecture from 2024
  • βœ… Good Accuracy: Competitive with commercial models

Weaknesses:

  • ❌ Memory Intensive: Requires 4-8GB RAM
  • ❌ Initial Download: ~2GB model download
  • ❌ GPU Benefits: Faster with CUDA GPU but not required

Use Cases:

  • Medical documents (HIPAA compliance)
  • Legal documents (confidentiality)
  • Financial records (privacy)
  • Research data (academic integrity)
  • Any sensitive content

Performance Examples:

# Excellent for structured documents
python main.py invoice.pdf --provider huggingface \
  --prompt "Extract invoice details in JSON format"

# Good for handwriting
python main.py handwritten-notes.jpg --provider huggingface \
  --prompt "Transcribe this handwritten text carefully"

2. Ollama LLaVA

Best for: Users wanting local processing with lower memory usage

# Usage
python main.py image.jpg --provider ollama --model llava:7b
pixi run demo-ocr-ollama

Strengths:

  • βœ… Lower Memory: More efficient than SmolVLM
  • βœ… Fast Processing: Optimized inference
  • βœ… No API Costs: Free unlimited usage
  • βœ… Privacy Focused: Completely local
  • βœ… Easy Management: Ollama handles model lifecycle

Weaknesses:

  • ❌ Separate Installation: Requires Ollama setup
  • ❌ Different Architecture: May have different strengths/weaknesses
  • ❌ Less Documentation: Smaller community than HuggingFace

Use Cases:

  • Resource-constrained environments
  • Real-time processing needs
  • Alternative when SmolVLM doesn't work well
  • Development and testing

Performance Examples:

# Fast document processing
python main.py receipt.jpg --provider ollama \
  --prompt "Extract receipt items and total quickly"

# Good for simple text extraction
python main.py sign.jpg --provider ollama \
  --prompt "What does this sign say?"

3. OpenAI GPT-4o

Best for: Maximum accuracy, production applications, complex documents

# Usage (requires API key)
python main.py image.jpg --provider openai --model gpt-4o
pixi run demo-ocr-openai

Strengths:

  • βœ… Highest Accuracy: State-of-the-art performance
  • βœ… Complex Understanding: Handles difficult layouts, handwriting
  • βœ… No Local Resources: No memory/storage requirements
  • βœ… Always Updated: Benefits from continuous improvements
  • βœ… Reliable Performance: Consistent results

Weaknesses:

  • ❌ Cost: ~$0.01-$0.03 per image (varies by size)
  • ❌ Privacy Concerns: Data sent to OpenAI
  • ❌ Internet Required: Cannot work offline
  • ❌ Rate Limits: Usage restrictions apply
  • ❌ API Key Management: Requires account setup

Use Cases:

  • Critical business documents
  • Complex layouts (multi-column, tables)
  • Poor quality images
  • Production applications
  • When accuracy is paramount

Performance Examples:

# Excellent for complex documents
python main.py complex-table.pdf --provider openai \
  --prompt "Extract this complex table preserving structure"

# Best for poor quality images
python main.py blurry-scan.jpg --provider openai \
  --prompt "Extract text from this low-quality scan"

🎯 Choosing the Right Provider

Decision Tree

Do you need maximum privacy?
β”œβ”€ YES β†’ Use SmolVLM or LLaVA
β”‚  β”œβ”€ Have 8GB+ RAM? β†’ SmolVLM (HuggingFace)
β”‚  └─ Limited RAM? β†’ LLaVA (Ollama)
└─ NO β†’ Consider accuracy needs
   β”œβ”€ Need highest accuracy? β†’ GPT-4o (OpenAI)
   β”œβ”€ Good accuracy is fine? β†’ SmolVLM or LLaVA
   └─ Cost sensitive? β†’ SmolVLM or LLaVA

By Use Case

Healthcare/Legal/Finance:

  • Recommended: SmolVLM (privacy compliance)
  • Alternative: LLaVA (if memory constrained)

General Business:

  • Recommended: GPT-4o (best accuracy)
  • Budget Alternative: SmolVLM

Personal Use/Hobbyist:

  • Recommended: SmolVLM (free, good quality)
  • Quick Tasks: LLaVA

Research/Academic:

  • Recommended: SmolVLM (reproducible, local)
  • Comparison Studies: All three providers

Production Applications:

  • High Volume: SmolVLM/LLaVA (no per-request costs)
  • High Accuracy Needs: GPT-4o
  • Hybrid: SmolVLM for sensitive data, GPT-4o for complex cases

πŸ“ˆ Performance Benchmarks

Accuracy Comparison (Subjective assessment)

Document Type SmolVLM LLaVA GPT-4o
Printed Text 85% 82% 95%
Handwriting 75% 70% 90%
Tables 80% 75% 92%
Poor Quality 70% 68% 88%
Multi-language 78% 75% 90%
Complex Layout 75% 72% 92%

Speed Comparison (Typical processing times)

Image Size SmolVLM LLaVA GPT-4o
Small (< 1MB) 3-5 sec 2-3 sec 2-4 sec
Medium (1-5MB) 5-10 sec 3-6 sec 3-6 sec
Large (> 5MB) 10-20 sec 6-12 sec 5-10 sec

Note: Times vary by hardware (CPU/GPU) and network speed

Cost Analysis (Monthly estimates)

Usage Level SmolVLM LLaVA GPT-4o
Light (< 100 images) $0 $0 $1-3
Medium (< 1000 images) $0 $0 $10-30
Heavy (< 10k images) $0 $0 $100-300
Enterprise (> 10k) $0 $0 $500+

πŸ”„ Switching Between Providers

Easy Migration

# Same image, different providers
python main.py document.jpg --provider huggingface
python main.py document.jpg --provider ollama  
python main.py document.jpg --provider openai

# Compare results
python main.py receipt.jpg --provider huggingface > hf_result.txt
python main.py receipt.jpg --provider ollama > ollama_result.txt
python main.py receipt.jpg --provider openai > openai_result.txt

Fallback Strategy

# Try local first, fallback to cloud if needed
python main.py difficult-image.jpg --provider huggingface || \
python main.py difficult-image.jpg --provider openai

πŸ’‘ Recommendations by Scenario

πŸ₯ Healthcare Organization

  • Primary: SmolVLM (HIPAA compliance)
  • Backup: LLaVA (if memory issues)
  • Never: GPT-4o (privacy violations)

πŸ’Ό Small Business

  • Primary: SmolVLM (cost-effective)
  • Accuracy-critical: GPT-4o (important documents)
  • High-volume: LLaVA (efficiency)

🏒 Enterprise

  • Sensitive Data: SmolVLM (compliance)
  • General Use: GPT-4o (accuracy + reliability)
  • Hybrid Approach: Both based on document type

πŸŽ“ Educational/Research

  • Primary: SmolVLM (reproducible, free)
  • Comparison: All three (research completeness)
  • Teaching: Start with SmolVLM (no API keys needed)

πŸ‘€ Personal Use

  • Start with: SmolVLM (free, privacy)
  • Upgrade to: GPT-4o (if accuracy critical)
  • Try: LLaVA (different perspective)

Choose the provider that best fits your privacy, accuracy, and cost requirements. You can always switch or use multiple providers for different tasks!

Clone this wiki locally