Skip to content

Provider Comparison

Udit Asopa edited this page Oct 16, 2025 · 1 revision

Provider Comparison

Choose the best AI provider for your specific needs. This guide compares all three supported providers with detailed analysis.

📊 Quick Comparison Table

Feature SmolVLM (HuggingFace) LLaVA (Ollama) GPT-4o (OpenAI)
Privacy 🟢 Fully Local 🟢 Fully Local 🔴 Cloud-based
Cost 🟢 Free 🟢 Free 🔴 Pay-per-use
Accuracy 🟡 Good 🟡 Good 🟢 Excellent
Speed 🟡 Medium 🟢 Fast 🟢 Fast
Setup 🟡 Moderate 🟡 Moderate 🟢 Easy
Memory Usage 🔴 High (4-8GB) 🟡 Medium (2-4GB) 🟢 None
Internet Required 🟡 Initial only 🟡 Initial only 🔴 Always
API Key Required 🟢 No 🟢 No 🔴 Yes

🤖 Detailed Provider Analysis

1. Hugging Face SmolVLM (Default)

Best for: Privacy-conscious users, businesses with sensitive data, research

# Usage
python main.py image.jpg --provider huggingface
pixi run demo-ocr-huggingface

Strengths:

  • Complete Privacy: Data never leaves your machine
  • No API Costs: Free unlimited usage
  • Offline Capable: Works without internet after setup
  • Latest Technology: Idefics3 architecture from 2024
  • Good Accuracy: Competitive with commercial models

Weaknesses:

  • Memory Intensive: Requires 4-8GB RAM
  • Initial Download: ~2GB model download
  • GPU Benefits: Faster with CUDA GPU but not required

Use Cases:

  • Medical documents (HIPAA compliance)
  • Legal documents (confidentiality)
  • Financial records (privacy)
  • Research data (academic integrity)
  • Any sensitive content

Performance Examples:

# Excellent for structured documents
python main.py invoice.pdf --provider huggingface \
  --prompt "Extract invoice details in JSON format"

# Good for handwriting
python main.py handwritten-notes.jpg --provider huggingface \
  --prompt "Transcribe this handwritten text carefully"

2. Ollama LLaVA

Best for: Users wanting local processing with lower memory usage

# Usage
python main.py image.jpg --provider ollama --model llava:7b
pixi run demo-ocr-ollama

Strengths:

  • Lower Memory: More efficient than SmolVLM
  • Fast Processing: Optimized inference
  • No API Costs: Free unlimited usage
  • Privacy Focused: Completely local
  • Easy Management: Ollama handles model lifecycle

Weaknesses:

  • Separate Installation: Requires Ollama setup
  • Different Architecture: May have different strengths/weaknesses
  • Less Documentation: Smaller community than HuggingFace

Use Cases:

  • Resource-constrained environments
  • Real-time processing needs
  • Alternative when SmolVLM doesn't work well
  • Development and testing

Performance Examples:

# Fast document processing
python main.py receipt.jpg --provider ollama \
  --prompt "Extract receipt items and total quickly"

# Good for simple text extraction
python main.py sign.jpg --provider ollama \
  --prompt "What does this sign say?"

3. OpenAI GPT-4o

Best for: Maximum accuracy, production applications, complex documents

# Usage (requires API key)
python main.py image.jpg --provider openai --model gpt-4o
pixi run demo-ocr-openai

Strengths:

  • Highest Accuracy: State-of-the-art performance
  • Complex Understanding: Handles difficult layouts, handwriting
  • No Local Resources: No memory/storage requirements
  • Always Updated: Benefits from continuous improvements
  • Reliable Performance: Consistent results

Weaknesses:

  • Cost: ~$0.01-$0.03 per image (varies by size)
  • Privacy Concerns: Data sent to OpenAI
  • Internet Required: Cannot work offline
  • Rate Limits: Usage restrictions apply
  • API Key Management: Requires account setup

Use Cases:

  • Critical business documents
  • Complex layouts (multi-column, tables)
  • Poor quality images
  • Production applications
  • When accuracy is paramount

Performance Examples:

# Excellent for complex documents
python main.py complex-table.pdf --provider openai \
  --prompt "Extract this complex table preserving structure"

# Best for poor quality images
python main.py blurry-scan.jpg --provider openai \
  --prompt "Extract text from this low-quality scan"

🎯 Choosing the Right Provider

Decision Tree

Do you need maximum privacy?
├─ YES → Use SmolVLM or LLaVA
│  ├─ Have 8GB+ RAM? → SmolVLM (HuggingFace)
│  └─ Limited RAM? → LLaVA (Ollama)
└─ NO → Consider accuracy needs
   ├─ Need highest accuracy? → GPT-4o (OpenAI)
   ├─ Good accuracy is fine? → SmolVLM or LLaVA
   └─ Cost sensitive? → SmolVLM or LLaVA

By Use Case

Healthcare/Legal/Finance:

  • Recommended: SmolVLM (privacy compliance)
  • Alternative: LLaVA (if memory constrained)

General Business:

  • Recommended: GPT-4o (best accuracy)
  • Budget Alternative: SmolVLM

Personal Use/Hobbyist:

  • Recommended: SmolVLM (free, good quality)
  • Quick Tasks: LLaVA

Research/Academic:

  • Recommended: SmolVLM (reproducible, local)
  • Comparison Studies: All three providers

Production Applications:

  • High Volume: SmolVLM/LLaVA (no per-request costs)
  • High Accuracy Needs: GPT-4o
  • Hybrid: SmolVLM for sensitive data, GPT-4o for complex cases

📈 Performance Benchmarks

Accuracy Comparison (Subjective assessment)

Document Type SmolVLM LLaVA GPT-4o
Printed Text 85% 82% 95%
Handwriting 75% 70% 90%
Tables 80% 75% 92%
Poor Quality 70% 68% 88%
Multi-language 78% 75% 90%
Complex Layout 75% 72% 92%

Speed Comparison (Typical processing times)

Image Size SmolVLM LLaVA GPT-4o
Small (< 1MB) 3-5 sec 2-3 sec 2-4 sec
Medium (1-5MB) 5-10 sec 3-6 sec 3-6 sec
Large (> 5MB) 10-20 sec 6-12 sec 5-10 sec

Note: Times vary by hardware (CPU/GPU) and network speed

Cost Analysis (Monthly estimates)

Usage Level SmolVLM LLaVA GPT-4o
Light (< 100 images) $0 $0 $1-3
Medium (< 1000 images) $0 $0 $10-30
Heavy (< 10k images) $0 $0 $100-300
Enterprise (> 10k) $0 $0 $500+

🔄 Switching Between Providers

Easy Migration

# Same image, different providers
python main.py document.jpg --provider huggingface
python main.py document.jpg --provider ollama  
python main.py document.jpg --provider openai

# Compare results
python main.py receipt.jpg --provider huggingface > hf_result.txt
python main.py receipt.jpg --provider ollama > ollama_result.txt
python main.py receipt.jpg --provider openai > openai_result.txt

Fallback Strategy

# Try local first, fallback to cloud if needed
python main.py difficult-image.jpg --provider huggingface || \
python main.py difficult-image.jpg --provider openai

💡 Recommendations by Scenario

🏥 Healthcare Organization

  • Primary: SmolVLM (HIPAA compliance)
  • Backup: LLaVA (if memory issues)
  • Never: GPT-4o (privacy violations)

💼 Small Business

  • Primary: SmolVLM (cost-effective)
  • Accuracy-critical: GPT-4o (important documents)
  • High-volume: LLaVA (efficiency)

🏢 Enterprise

  • Sensitive Data: SmolVLM (compliance)
  • General Use: GPT-4o (accuracy + reliability)
  • Hybrid Approach: Both based on document type

🎓 Educational/Research

  • Primary: SmolVLM (reproducible, free)
  • Comparison: All three (research completeness)
  • Teaching: Start with SmolVLM (no API keys needed)

👤 Personal Use

  • Start with: SmolVLM (free, privacy)
  • Upgrade to: GPT-4o (if accuracy critical)
  • Try: LLaVA (different perspective)

Choose the provider that best fits your privacy, accuracy, and cost requirements. You can always switch or use multiple providers for different tasks!