Skip to content

Commit c70025a

Browse files
authored
Merge pull request #9 from levimcclenny/main
add conda environment for CI
2 parents f458987 + 5b65df4 commit c70025a

File tree

2 files changed

+111
-0
lines changed

2 files changed

+111
-0
lines changed

environment.yml

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,10 @@
1+
name: tdq-env
2+
dependencies:
3+
- matplotlib
4+
- numpy
5+
- scipy
6+
- tensorflow
7+
- tensorflow_probability
8+
- pyDOE2
9+
- pyfiglet
10+
- tqdm

examples/steady-state-poisson.py

Lines changed: 101 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,101 @@
1+
import math
2+
import matplotlib.pyplot as plt
3+
import tensorflow as tf
4+
import tensordiffeq as tdq
5+
from tensordiffeq.boundaries import *
6+
from tensordiffeq.models import CollocationSolverND
7+
from tensorflow.math import sin
8+
from tensordiffeq.utils import constant
9+
10+
Domain = DomainND(["x", "y"])
11+
12+
Domain.add("x", [0, 1.0], 11)
13+
Domain.add("y", [0, 1.0], 11)
14+
15+
N_f = 100
16+
Domain.generate_collocation_points(N_f)
17+
18+
19+
def f_model(u_model, x, y):
20+
u = u_model(tf.concat([x, y], 1))
21+
u_x = tf.gradients(u, x)[0]
22+
u_y = tf.gradients(u, y)[0]
23+
u_xx = tf.gradients(u_x, x)[0]
24+
u_yy = tf.gradients(u_y, y)[0]
25+
26+
a1 = constant(1.0)
27+
a2 = constant(1.0)
28+
pi = constant(math.pi)
29+
30+
# we use this specific forcing term because we have an exact analytical solution for this case
31+
# to compare the results of the PINN solution
32+
# note that we must use tensorflow math primitives such as sin, cos, etc!
33+
forcing = - sin(a1 * pi * x) * sin(a2 * pi * y)
34+
35+
f_u = u_xx + u_yy - forcing # = 0
36+
37+
return f_u
38+
39+
40+
def func_upper_x(y):
41+
return -sin(constant(math.pi) * y) * sin(constant(math.pi))
42+
43+
44+
def func_upper_y(x):
45+
return -sin(constant(math.pi) * x) * sin(constant(math.pi))
46+
47+
48+
lower_x = dirichletBC(Domain, val=0.0, var='x', target="upper")
49+
upper_x = FunctionDirichletBC(Domain, fun=[func_upper_x], var='x', target="upper", func_inputs=["y"], n_values=10)
50+
upper_y = FunctionDirichletBC(Domain, fun=[func_upper_y], var='y', target="upper", func_inputs=["x"], n_values=10)
51+
lower_y = dirichletBC(Domain, val=0.0, var='y', target="lower")
52+
53+
BCs = [upper_x, lower_x, upper_y, lower_y]
54+
55+
layer_sizes = [2, 16, 16, 1]
56+
57+
model = CollocationSolverND()
58+
model.compile(layer_sizes, f_model, Domain, BCs)
59+
model.tf_optimizer = tf.keras.optimizers.Adam(lr=.005)
60+
model.fit(tf_iter=4000)
61+
62+
# get exact solution
63+
nx, ny = (11, 11)
64+
x = np.linspace(0, 1, nx)
65+
y = np.linspace(0, 1, ny)
66+
67+
xv, yv = np.meshgrid(x, y)
68+
69+
x = np.reshape(x, (-1, 1))
70+
y = np.reshape(y, (-1, 1))
71+
72+
# Exact analytical soln is available:
73+
Exact_u = (np.sin(math.pi * xv) * np.sin(math.pi * yv)) / (2*math.pi**2)
74+
75+
# Flatten for use
76+
u_star = Exact_u.flatten()[:, None]
77+
78+
# Plotting
79+
x = Domain.domaindict[0]['xlinspace']
80+
y = Domain.domaindict[1]["ylinspace"]
81+
82+
X, Y = np.meshgrid(x, y)
83+
84+
# print(np.shape((X,Y))) # 2, 256, 256
85+
X_star = np.hstack((X.flatten()[:, None], Y.flatten()[:, None]))
86+
87+
lb = np.array([0.0, 0.0])
88+
ub = np.array([1.0, 1])
89+
90+
u_pred, f_u_pred = model.predict(X_star)
91+
92+
#error_u = tdq.helpers.find_L2_error(u_pred, u_star)
93+
#print('Error u: %e' % (error_u))
94+
95+
U_pred = tdq.plotting.get_griddata(X_star, u_pred.flatten(), (X, Y))
96+
FU_pred = tdq.plotting.get_griddata(X_star, f_u_pred.flatten(), (X, Y))
97+
98+
lb = np.array([0.0, 0.0])
99+
ub = np.array([1.0, 1.0])
100+
101+
tdq.plotting.plot_solution_domain1D(model, [x, y], ub=ub, lb=lb, Exact_u=Exact_u)

0 commit comments

Comments
 (0)