|
| 1 | +import scipy.io |
| 2 | +import math |
| 3 | +import tensorflow as tf |
| 4 | +import tensordiffeq as tdq |
| 5 | +from tensordiffeq.models import CollocationSolverND |
| 6 | +from tensordiffeq.boundaries import * |
| 7 | + |
| 8 | +Domain = DomainND(["x", "t"], time_var='t') |
| 9 | + |
| 10 | +Domain.add("x", [-1.0, 1.0], 512) |
| 11 | +Domain.add("t", [0.0, 1.0], 201) |
| 12 | + |
| 13 | +N_f = 50000 |
| 14 | +Domain.generate_collocation_points(N_f) |
| 15 | + |
| 16 | + |
| 17 | +def func_ic(x): |
| 18 | + return x ** 2 * np.cos(math.pi * x) |
| 19 | + |
| 20 | + |
| 21 | +# Conditions to be considered at the boundaries for the periodic BC |
| 22 | +def deriv_model(u_model, x, t): |
| 23 | + u = u_model(tf.concat([x, t], 1)) |
| 24 | + u_x = tf.gradients(u, x)[0] |
| 25 | + # u_xx = tf.gradients(u_x, x)[0] |
| 26 | + # u_xxx = tf.gradients(u_xx, x)[0] |
| 27 | + # u_xxxx = tf.gradients(u_xxx, x)[0] |
| 28 | + return u, u_x |
| 29 | + |
| 30 | + |
| 31 | +init = IC(Domain, [func_ic], var=[['x']]) |
| 32 | +x_periodic = periodicBC(Domain, ['x'], [deriv_model]) |
| 33 | + |
| 34 | +BCs = [init, x_periodic] |
| 35 | + |
| 36 | + |
| 37 | +def f_model(u_model, x, t): |
| 38 | + u = u_model(tf.concat([x, t], 1)) |
| 39 | + u_x = tf.gradients(u, x) |
| 40 | + u_xx = tf.gradients(u_x, x) |
| 41 | + u_t = tf.gradients(u, t) |
| 42 | + c1 = tdq.utils.constant(.0001) |
| 43 | + c2 = tdq.utils.constant(5.0) |
| 44 | + f_u = u_t - c1 * u_xx + c2 * u * u * u - c2 * u |
| 45 | + return f_u |
| 46 | + |
| 47 | + |
| 48 | +col_weights = tf.Variable(tf.random.uniform([N_f, 1]), trainable=True, dtype=tf.float32) |
| 49 | +u_weights = tf.Variable(100 * tf.random.uniform([512, 1]), trainable=True, dtype=tf.float32) |
| 50 | + |
| 51 | +layer_sizes = [2, 128, 128, 128, 128, 1] |
| 52 | + |
| 53 | +model = CollocationSolverND() |
| 54 | +model.compile(layer_sizes, f_model, Domain, BCs, isAdaptive=True, col_weights=col_weights, u_weights=u_weights) |
| 55 | +model.fit(tf_iter=5000) |
| 56 | +model.save("test_model") |
| 57 | + |
| 58 | +# Must re-initialize the model class in order to effectively transfer learn or resume training |
| 59 | +model = CollocationSolverND() |
| 60 | +model.compile(layer_sizes, f_model, Domain, BCs, isAdaptive=True, col_weights=col_weights, u_weights=u_weights) |
| 61 | +model.tf_optimizer = tf.keras.optimizers.Adam(.0001) |
| 62 | +model.tf_optimizer_weights= tf.keras.optimizers.Adam(.0001) |
| 63 | +model.load_model("test_model") |
| 64 | +model.fit(tf_iter=5000) |
| 65 | + |
| 66 | +# Must re-initialize the model class in order to effectively transfer learn or resume training |
| 67 | +model = CollocationSolverND() |
| 68 | +model.compile(layer_sizes, f_model, Domain, BCs, isAdaptive=True, col_weights=col_weights, u_weights=u_weights) |
| 69 | +model.tf_optimizer = tf.keras.optimizers.Adam(.00001) |
| 70 | +model.tf_optimizer_weights= tf.keras.optimizers.Adam(.00001) |
| 71 | +model.load_model("test_model") |
| 72 | +model.fit(tf_iter=5000) |
| 73 | + |
| 74 | +# Load high-fidelity data for error calculation |
| 75 | +data = scipy.io.loadmat('AC.mat') |
| 76 | + |
| 77 | +Exact = data['uu'] |
| 78 | +Exact_u = np.real(Exact) |
| 79 | + |
| 80 | + |
| 81 | + |
| 82 | +x = Domain.domaindict[0]['xlinspace'] |
| 83 | +t = Domain.domaindict[1]["tlinspace"] |
| 84 | + |
| 85 | +# create mesh for plotting |
| 86 | + |
| 87 | +X, T = np.meshgrid(x, t) |
| 88 | + |
| 89 | +X_star = np.hstack((X.flatten()[:, None], T.flatten()[:, None])) |
| 90 | +u_star = Exact_u.T.flatten()[:, None] |
| 91 | + |
| 92 | +# forward pass through model |
| 93 | +u_pred, f_u_pred = model.predict(X_star) |
| 94 | + |
| 95 | +error_u = tdq.helpers.find_L2_error(u_pred, u_star) |
| 96 | +print('Error u: %e' % (error_u)) |
| 97 | + |
| 98 | +U_pred = tdq.plotting.get_griddata(X_star, u_pred.flatten(), (X, T)) |
| 99 | +FU_pred = tdq.plotting.get_griddata(X_star, f_u_pred.flatten(), (X, T)) |
| 100 | + |
| 101 | +lb = np.array([-1.0, 0.0]) |
| 102 | +ub = np.array([1.0, 1]) |
| 103 | + |
| 104 | +tdq.plotting.plot_solution_domain1D(model, [x, t], ub=ub, lb=lb, Exact_u=Exact_u) |
0 commit comments