Skip to content
86 changes: 43 additions & 43 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ Welcome to PyHealth!
.. image:: https://readthedocs.org/projects/pyhealth/badge/?version=latest
:target: https://pyhealth.readthedocs.io/en/latest/
:alt: Documentation status


.. image:: https://img.shields.io/github/stars/sunlabuiuc/pyhealth.svg
:target: https://github.com/sunlabuiuc/pyhealth/stargazers
Expand Down Expand Up @@ -121,7 +121,7 @@ PyHealth is a comprehensive deep learning toolkit for supporting clinical predic
You can use the following functions independently:

- **Dataset**: ``MIMIC-III``, ``MIMIC-IV``, ``eICU``, ``OMOP-CDM``, ``customized EHR datasets``, etc.
- **Tasks**: ``diagnosis-based drug recommendation``, ``patient hospitalization and mortality prediction``, ``length stay forecasting``, etc.
- **Tasks**: ``diagnosis-based drug recommendation``, ``patient hospitalization and mortality prediction``, ``length stay forecasting``, etc.
- **ML models**: ``CNN``, ``LSTM``, ``GRU``, ``LSTM``, ``RETAIN``, ``SafeDrug``, ``Deepr``, etc.

*Building a healthcare AI pipeline can be as short as 10 lines of code in PyHealth*.
Expand All @@ -130,7 +130,7 @@ You can use the following functions independently:
3. Build ML Pipelines :trophy:
---------------------------------

All healthcare tasks in our package follow a **five-stage pipeline**:
All healthcare tasks in our package follow a **five-stage pipeline**:

.. image:: figure/five-stage-pipeline.png
:width: 640
Expand All @@ -150,7 +150,7 @@ Module 1: <pyhealth.datasets>

mimic3base = MIMIC3Dataset(
# root directory of the dataset
root="https://storage.googleapis.com/pyhealth/Synthetic_MIMIC-III/",
root="https://storage.googleapis.com/pyhealth/Synthetic_MIMIC-III/",
# raw CSV table name
tables=["DIAGNOSES_ICD", "PROCEDURES_ICD", "PRESCRIPTIONS"],
# map all NDC codes to CCS codes in these tables
Expand All @@ -169,9 +169,9 @@ Module 2: <pyhealth.tasks>

.. code-block:: python

from pyhealth.tasks import readmission_prediction_mimic3_fn
from pyhealth.tasks import ReadmissionPredictionMIMIC3

mimic3sample = mimic3base.set_task(task_fn=readmission_prediction_mimic3_fn) # use default task
mimic3sample = mimic3base.set_task(ReadmissionPredictionMIMIC3())
mimic3sample.samples[0] # show the information of the first sample
"""
{
Expand All @@ -180,7 +180,7 @@ Module 2: <pyhealth.tasks>
'conditions': ['5990', '4280', '2851', '4240', '2749', '9982', 'E8499', '42831', '34600'],
'procedures': ['0040', '3931', '7769'],
'drugs': ['N06DA02', 'V06DC01', 'B01AB01', 'A06AA02', 'R03AC02', 'H03AA01', 'J01FA09'],
'label': 0
'readmission': 0
}
"""

Expand Down Expand Up @@ -213,7 +213,7 @@ Module 4: <pyhealth.trainer>
``pyhealth.trainer`` can specify training arguments, such as epochs, optimizer, learning rate, etc. The trainer will automatically save the best model and output the path in the end.

.. code-block:: python

from pyhealth.trainer import Trainer

trainer = Trainer(model=model)
Expand All @@ -233,19 +233,19 @@ Module 5: <pyhealth.metrics>

# method 1
trainer.evaluate(test_loader)

# method 2
from pyhealth.metrics.binary import binary_metrics_fn

y_true, y_prob, loss = trainer.inference(test_loader)
binary_metrics_fn(y_true, y_prob, metrics=["pr_auc", "roc_auc"])

4. Medical Code Map :hospital:
4. Medical Code Map :hospital:
---------------------------------

``pyhealth.codemap`` provides two core functionalities. **This module can be used independently.**

* For code ontology lookup within one medical coding system (e.g., name, category, sub-concept);
* For code ontology lookup within one medical coding system (e.g., name, category, sub-concept);

.. code-block:: python

Expand All @@ -256,7 +256,7 @@ Module 5: <pyhealth.metrics>
# `Congestive heart failure, unspecified`
icd9cm.get_ancestors("428.0")
# ['428', '420-429.99', '390-459.99', '001-999.99']

atc = InnerMap.load("ATC")
atc.lookup("M01AE51")
# `ibuprofen, combinations`
Expand All @@ -267,7 +267,7 @@ Module 5: <pyhealth.metrics>
atc.lookup("M01AE51", "indication")
# Ibuprofen is the most commonly used and prescribed NSAID. It is very common over the ...

* For code mapping between two coding systems (e.g., ICD9CM to CCSCM).
* For code mapping between two coding systems (e.g., ICD9CM to CCSCM).

.. code-block:: python

Expand Down Expand Up @@ -300,12 +300,12 @@ Module 5: <pyhealth.metrics>
'A12B', 'A12C', 'A13A', 'A14A', 'A14B', 'A16A']
tokenizer = Tokenizer(tokens=token_space, special_tokens=["<pad>", "<unk>"])

# 2d encode
# 2d encode
tokens = [['A03C', 'A03D', 'A03E', 'A03F'], ['A04A', 'B035', 'C129']]
indices = tokenizer.batch_encode_2d(tokens)
indices = tokenizer.batch_encode_2d(tokens)
# [[8, 9, 10, 11], [12, 1, 1, 0]]

# 2d decode
# 2d decode
indices = [[8, 9, 10, 11], [12, 1, 1, 0]]
tokens = tokenizer.batch_decode_2d(indices)
# [['A03C', 'A03D', 'A03E', 'A03F'], ['A04A', '<unk>', '<unk>']]
Expand All @@ -331,69 +331,69 @@ Module 5: <pyhealth.metrics>

..

We provide the following tutorials to help users get started with our pyhealth.
We provide the following tutorials to help users get started with our pyhealth.

`Tutorial 0: Introduction to pyhealth.data <https://colab.research.google.com/drive/1y9PawgSbyMbSSMw1dpfwtooH7qzOEYdN?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=Nk1itBoLOX8&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=2>`__
`Tutorial 0: Introduction to pyhealth.data <https://colab.research.google.com/drive/1y9PawgSbyMbSSMw1dpfwtooH7qzOEYdN?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=Nk1itBoLOX8&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=2>`__

`Tutorial 1: Introduction to pyhealth.datasets <https://colab.research.google.com/drive/18kbzEQAj1FMs_J9rTGX8eCoxnWdx4Ltn?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=c1InKqFJbsI&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=3>`__
`Tutorial 1: Introduction to pyhealth.datasets <https://colab.research.google.com/drive/18kbzEQAj1FMs_J9rTGX8eCoxnWdx4Ltn?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=c1InKqFJbsI&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=3>`__

`Tutorial 2: Introduction to pyhealth.tasks <https://colab.research.google.com/drive/1r7MYQR_5yCJGpK_9I9-A10HmpupZuIN-?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=CxESe1gYWU4&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=4>`__
`Tutorial 2: Introduction to pyhealth.tasks <https://colab.research.google.com/drive/1r7MYQR_5yCJGpK_9I9-A10HmpupZuIN-?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=CxESe1gYWU4&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=4>`__

`Tutorial 3: Introduction to pyhealth.models <https://colab.research.google.com/drive/1LcXZlu7ZUuqepf269X3FhXuhHeRvaJX5?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=fRc0ncbTgZA&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=6>`__
`Tutorial 3: Introduction to pyhealth.models <https://colab.research.google.com/drive/1LcXZlu7ZUuqepf269X3FhXuhHeRvaJX5?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=fRc0ncbTgZA&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=6>`__

`Tutorial 4: Introduction to pyhealth.trainer <https://colab.research.google.com/drive/1L1Nz76cRNB7wTp5Pz_4Vp4N2eRZ9R6xl?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=5Hyw3of5pO4&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=7>`__
`Tutorial 4: Introduction to pyhealth.trainer <https://colab.research.google.com/drive/1L1Nz76cRNB7wTp5Pz_4Vp4N2eRZ9R6xl?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=5Hyw3of5pO4&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=7>`__

`Tutorial 5: Introduction to pyhealth.metrics <https://colab.research.google.com/drive/1Mrs77EJ92HwMgDaElJ_CBXbi4iABZBeo?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=d-Kx_xCwre4&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=8>`__
`Tutorial 5: Introduction to pyhealth.metrics <https://colab.research.google.com/drive/1Mrs77EJ92HwMgDaElJ_CBXbi4iABZBeo?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=d-Kx_xCwre4&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=8>`__


`Tutorial 6: Introduction to pyhealth.tokenizer <https://colab.research.google.com/drive/1bDOb0A5g0umBjtz8NIp4wqye7taJ03D0?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=CeXJtf0lfs0&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=10>`__
`Tutorial 6: Introduction to pyhealth.tokenizer <https://colab.research.google.com/drive/1bDOb0A5g0umBjtz8NIp4wqye7taJ03D0?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=CeXJtf0lfs0&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=10>`__


`Tutorial 7: Introduction to pyhealth.medcode <https://colab.research.google.com/drive/1xrp_ACM2_Hg5Wxzj0SKKKgZfMY0WwEj3?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=MmmfU6_xkYg&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=9>`__
`Tutorial 7: Introduction to pyhealth.medcode <https://colab.research.google.com/drive/1xrp_ACM2_Hg5Wxzj0SKKKgZfMY0WwEj3?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=MmmfU6_xkYg&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=9>`__


The following tutorials will help users build their own task pipelines.

`Pipeline 1: Drug Recommendation <https://colab.research.google.com/drive/10CSb4F4llYJvv42yTUiRmvSZdoEsbmFF?usp=sharing>`_ `[Video] <https://
www.youtube.com/watch?v=GGP3Dhfyisc&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=12>`__
www.youtube.com/watch?v=GGP3Dhfyisc&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=12>`__

`Pipeline 2: Length of Stay Prediction <https://colab.research.google.com/drive/1JoPpXqqB1_lGF1XscBOsDHMLtgvlOYI1?usp=sharing>`_ `[Video] <https://
www.youtube.com/watch?v=GGP3Dhfyisc&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=12>`__
www.youtube.com/watch?v=GGP3Dhfyisc&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=12>`__

`Pipeline 3: Readmission Prediction <https://colab.research.google.com/drive/1bhCwbXce1YFtVaQLsOt4FcyZJ1_my7Cs?usp=sharing>`_ `[Video] <https://
www.youtube.com/watch?v=GGP3Dhfyisc&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=12>`__
www.youtube.com/watch?v=GGP3Dhfyisc&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=12>`__

`Pipeline 4: Mortality Prediction <https://colab.research.google.com/drive/1Qblpcv4NWjrnADT66TjBcNwOe8x6wU4c?usp=sharing>`_ `[Video] <https://
www.youtube.com/watch?v=GGP3Dhfyisc&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=12>`__
www.youtube.com/watch?v=GGP3Dhfyisc&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=12>`__

`Pipeline 5: Sleep Staging <https://colab.research.google.com/drive/1mpSeNCAthXG3cqROkdUcUdozIPIMTCuo?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=ySAIU-rO6so&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=16>`__
`Pipeline 5: Sleep Staging <https://colab.research.google.com/drive/1mpSeNCAthXG3cqROkdUcUdozIPIMTCuo?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=ySAIU-rO6so&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=16>`__


We provided the advanced tutorials for supporting various needs.
We provided the advanced tutorials for supporting various needs.

`Advanced Tutorial 1: Fit your dataset into our pipeline <https://colab.research.google.com/drive/1UurxwAAov1bL_5OO3gQJ4gAa_paeJwJp?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=xw2hGLEQ4Y0&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=13>`__
`Advanced Tutorial 1: Fit your dataset into our pipeline <https://colab.research.google.com/drive/1UurxwAAov1bL_5OO3gQJ4gAa_paeJwJp?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=xw2hGLEQ4Y0&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=13>`__

`Advanced Tutorial 2: Define your own healthcare task <https://colab.research.google.com/drive/1gK6zPXvfFGBM1uNaLP32BOKrnnJdqRq2?usp=sharing>`_
`Advanced Tutorial 2: Define your own healthcare task <https://colab.research.google.com/drive/1gK6zPXvfFGBM1uNaLP32BOKrnnJdqRq2?usp=sharing>`_

`Advanced Tutorial 3: Adopt customized model into pyhealth <https://colab.research.google.com/drive/1F_NJ90GC8_Eq-vKTf7Tyziew4gWjjKoH?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=lADFlcmLtdE&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=14>`__
`Advanced Tutorial 3: Adopt customized model into pyhealth <https://colab.research.google.com/drive/1F_NJ90GC8_Eq-vKTf7Tyziew4gWjjKoH?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=lADFlcmLtdE&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=14>`__

`Advanced Tutorial 4: Load your own processed data into pyhealth and try out our ML models <https://colab.research.google.com/drive/1ZRnKch2EyJLrI3G5AvDXVpeE2wwgBWfw?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=xw2hGLEQ4Y0&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=13>`__
`Advanced Tutorial 4: Load your own processed data into pyhealth and try out our ML models <https://colab.research.google.com/drive/1ZRnKch2EyJLrI3G5AvDXVpeE2wwgBWfw?usp=sharing>`_ `[Video] <https://www.youtube.com/watch?v=xw2hGLEQ4Y0&list=PLR3CNIF8DDHJUl8RLhyOVpX_kT4bxulEV&index=13>`__


7. Datasets :mountain_snow:
-----------------------------
We provide the processing files for the following open EHR datasets:

=================== ======================================= ======================================== ========================================================================================================
Dataset Module Year Information
=================== ======================================= ======================================== ========================================================================================================
MIMIC-III ``pyhealth.datasets.MIMIC3Dataset`` 2016 `MIMIC-III Clinical Database <https://physionet.org/content/mimiciii/1.4//>`_
MIMIC-IV ``pyhealth.datasets.MIMIC4Dataset`` 2020 `MIMIC-IV Clinical Database <https://physionet.org/content/mimiciv/0.4/>`_
eICU ``pyhealth.datasets.eICUDataset`` 2018 `eICU Collaborative Research Database <https://eicu-crd.mit.edu//>`_
OMOP ``pyhealth.datasets.OMOPDataset`` `OMOP-CDM schema based dataset <https://www.ohdsi.org/data-standardization/the-common-data-model/>`_
Dataset Module Year Information
=================== ======================================= ======================================== ========================================================================================================
MIMIC-III ``pyhealth.datasets.MIMIC3Dataset`` 2016 `MIMIC-III Clinical Database <https://physionet.org/content/mimiciii/1.4//>`_
MIMIC-IV ``pyhealth.datasets.MIMIC4Dataset`` 2020 `MIMIC-IV Clinical Database <https://physionet.org/content/mimiciv/0.4/>`_
eICU ``pyhealth.datasets.eICUDataset`` 2018 `eICU Collaborative Research Database <https://eicu-crd.mit.edu//>`_
OMOP ``pyhealth.datasets.OMOPDataset`` `OMOP-CDM schema based dataset <https://www.ohdsi.org/data-standardization/the-common-data-model/>`_
SleepEDF ``pyhealth.datasets.SleepEDFDataset`` 2018 `Sleep-EDF dataset <https://physionet.org/content/sleep-edfx/1.0.0/>`_
SHHS ``pyhealth.datasets.SHHSDataset`` 2016 `Sleep Heart Health Study dataset <https://sleepdata.org/datasets/shhs>`_
ISRUC ``pyhealth.datasets.ISRUCDataset`` 2016 `ISRUC-SLEEP dataset <https://sleeptight.isr.uc.pt/?page_id=48>`_
SHHS ``pyhealth.datasets.SHHSDataset`` 2016 `Sleep Heart Health Study dataset <https://sleepdata.org/datasets/shhs>`_
ISRUC ``pyhealth.datasets.ISRUCDataset`` 2016 `ISRUC-SLEEP dataset <https://sleeptight.isr.uc.pt/?page_id=48>`_
=================== ======================================= ======================================== ========================================================================================================


Expand Down
2 changes: 1 addition & 1 deletion docs/api/tasks/pyhealth.tasks.readmission_prediction.rst
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
pyhealth.tasks.readmission_prediction
=======================================

.. autofunction:: pyhealth.tasks.readmission_prediction.readmission_prediction_mimic3_fn
.. autofunction:: pyhealth.tasks.readmission_prediction.ReadmissionPredictionMIMIC3
.. autofunction:: pyhealth.tasks.readmission_prediction.readmission_prediction_mimic4_fn
.. autofunction:: pyhealth.tasks.readmission_prediction.readmission_prediction_eicu_fn
.. autofunction:: pyhealth.tasks.readmission_prediction.readmission_prediction_eicu_fn2
Expand Down
7 changes: 3 additions & 4 deletions examples/readmission_mimic3_fairness.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
from pyhealth.datasets import MIMIC3Dataset
from pyhealth.tasks import readmission_prediction_mimic3_fn
from pyhealth.tasks import ReadmissionPredictionMIMIC3
from pyhealth.datasets import split_by_patient, get_dataloader
from pyhealth.metrics import fairness_metrics_fn
from pyhealth.models import Transformer
Expand All @@ -11,11 +11,10 @@
root="https://storage.googleapis.com/pyhealth/Synthetic_MIMIC-III/",
tables=["DIAGNOSES_ICD", "PROCEDURES_ICD", "PRESCRIPTIONS"],
)
base_dataset.stat()
base_dataset.stats()

# STEP 2: set task
sample_dataset = base_dataset.set_task(readmission_prediction_mimic3_fn)
sample_dataset.stat()
sample_dataset = base_dataset.set_task(ReadmissionPredictionMIMIC3(exclude_minors=False)) # Must include minors to get any readmission samples on the synthetic dataset

train_dataset, val_dataset, test_dataset = split_by_patient(sample_dataset, [0.8, 0.1, 0.1])
train_dataloader = get_dataloader(train_dataset, batch_size=32, shuffle=True)
Expand Down
17 changes: 5 additions & 12 deletions examples/readmission_mimic3_rnn.py
Original file line number Diff line number Diff line change
@@ -1,22 +1,18 @@
from pyhealth.datasets import MIMIC3Dataset
from pyhealth.datasets import split_by_patient, get_dataloader
from pyhealth.models import RNN
from pyhealth.tasks import readmission_prediction_mimic3_fn
from pyhealth.tasks import ReadmissionPredictionMIMIC3
from pyhealth.trainer import Trainer

# STEP 1: load data
base_dataset = MIMIC3Dataset(
root="/srv/local/data/physionet.org/files/mimiciii/1.4",
root="https://storage.googleapis.com/pyhealth/Synthetic_MIMIC-III",
tables=["DIAGNOSES_ICD", "PROCEDURES_ICD", "PRESCRIPTIONS"],
code_mapping={"ICD9CM": "CCSCM", "ICD9PROC": "CCSPROC", "NDC": "ATC"},
dev=False,
refresh_cache=True,
)
base_dataset.stat()
base_dataset.stats()

# STEP 2: set task
sample_dataset = base_dataset.set_task(readmission_prediction_mimic3_fn)
sample_dataset.stat()
sample_dataset = base_dataset.set_task(ReadmissionPredictionMIMIC3(exclude_minors=False)) # Must include minors to get any readmission samples on the synthetic dataset

train_dataset, val_dataset, test_dataset = split_by_patient(
sample_dataset, [0.8, 0.1, 0.1]
Expand All @@ -28,17 +24,14 @@
# STEP 3: define model
model = RNN(
dataset=sample_dataset,
feature_keys=["conditions", "procedures", "drugs"],
label_key="label",
mode="binary",
)

# STEP 4: define trainer
trainer = Trainer(model=model)
trainer.train(
train_dataloader=train_dataloader,
val_dataloader=val_dataloader,
epochs=50,
epochs=1,
monitor="roc_auc",
)

Expand Down
2 changes: 1 addition & 1 deletion pyhealth/tasks/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,9 +49,9 @@
from .patient_linkage import patient_linkage_mimic3_fn
from .readmission_30days_mimic4 import Readmission30DaysMIMIC4
from .readmission_prediction import (
ReadmissionPredictionMIMIC3,
readmission_prediction_eicu_fn,
readmission_prediction_eicu_fn2,
readmission_prediction_mimic3_fn,
readmission_prediction_mimic4_fn,
readmission_prediction_omop_fn,
)
Expand Down
Loading
Loading