Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
29 commits
Select commit Hold shift + click to select a range
d771bce
feat: add stats/base/ndarray/dmeanstdev
Nov 13, 2025
c6afb79
fix: lint-error
Nov 13, 2025
5bd2d80
fix: lint
Nov 13, 2025
b0a39ec
fix: repl.txt
Nov 13, 2025
cf3109c
fix: benchmark.js
Nov 13, 2025
23bac11
fix: lint
Nov 13, 2025
76d09aa
Update: README.md
Nov 13, 2025
23203ea
fix: README.md
Nov 13, 2025
0a92629
Update lib/node_modules/@stdlib/stats/base/ndarray/dmeanstdev/README.md
Orthodox-64 Nov 14, 2025
568f24b
Update lib/node_modules/@stdlib/stats/base/ndarray/dmeanstdev/README.md
Orthodox-64 Nov 14, 2025
731eb3a
Update lib/node_modules/@stdlib/stats/base/ndarray/dmeanstdev/README.md
Orthodox-64 Nov 14, 2025
7039c2a
fix: requested-changes
Nov 14, 2025
d1ca3f6
fix: lint
Nov 14, 2025
b4d78e5
feat: changs
Nov 22, 2025
a302b0b
docs: update intro
kgryte Nov 29, 2025
9ab2a9d
Update lib/node_modules/@stdlib/stats/base/ndarray/dmeanstdev/README.md
Orthodox-64 Dec 1, 2025
5733af7
Update lib/node_modules/@stdlib/stats/base/ndarray/dmeanstdev/README.md
Orthodox-64 Dec 1, 2025
37fa0cd
Update lib/node_modules/@stdlib/stats/base/ndarray/dmeanstdev/README.md
Orthodox-64 Dec 1, 2025
7cd518b
Update lib/node_modules/@stdlib/stats/base/ndarray/dmeanstdev/docs/re…
Orthodox-64 Dec 1, 2025
e72a52b
Update lib/node_modules/@stdlib/stats/base/ndarray/dmeanstdev/README.md
Orthodox-64 Dec 1, 2025
3e78b8b
Update lib/node_modules/@stdlib/stats/base/ndarray/dmeanstdev/docs/ty…
Orthodox-64 Dec 1, 2025
e575526
Update lib/node_modules/@stdlib/stats/base/ndarray/dmeanstdev/docs/ty…
Orthodox-64 Dec 1, 2025
6b3fe7a
Update lib/node_modules/@stdlib/stats/base/ndarray/dmeanstdev/test/te…
Orthodox-64 Dec 1, 2025
2319ba2
Update lib/node_modules/@stdlib/stats/base/ndarray/dmeanstdev/docs/ty…
Orthodox-64 Dec 1, 2025
44b75ce
Update lib/node_modules/@stdlib/stats/base/ndarray/dmeanstdev/example…
Orthodox-64 Dec 1, 2025
44eec09
Update lib/node_modules/@stdlib/stats/base/ndarray/dmeanstdev/README.md
Orthodox-64 Dec 1, 2025
9251a4b
Update lib/node_modules/@stdlib/stats/base/ndarray/dmeanstdev/test/te…
Orthodox-64 Dec 1, 2025
8fa8477
Update lib/node_modules/@stdlib/stats/base/ndarray/dmeanstdev/test/te…
Orthodox-64 Dec 1, 2025
2c0f2bd
fix: Suggested-Changes
Orthodox-64 Dec 1, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
202 changes: 202 additions & 0 deletions lib/node_modules/@stdlib/stats/base/ndarray/dmeanstdev/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,202 @@
<!--

@license Apache-2.0

Copyright (c) 2025 The Stdlib Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

# dmeanstdev

> Compute the [arithmetic mean][arithmetic-mean] and [standard deviation][standard-deviation] of a one-dimensional double-precision floating-point ndarray.

<section class="intro">

The population [standard deviation][standard-deviation] of a finite size population of size `N` is given by

<!-- <equation class="equation" label="eq:population_standard_deviation" align="center" raw="\sigma = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2}" alt="Equation for the population standard deviation."> -->

```math
\sigma = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2}
```

<!-- <div class="equation" align="center" data-raw-text="\sigma = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2}" data-equation="eq:population_standard_deviation">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@fc1d35912f15aaa6bfb58aadc07a842b1239c98c/lib/node_modules/@stdlib/stats/strided/dmeanstdev/docs/img/equation_population_standard_deviation.svg" alt="Equation for the population standard deviation.">
<br>
</div> -->

<!-- </equation> -->

where the population mean is given by

<!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> -->

```math
\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i
```

<!-- <div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@fc1d35912f15aaa6bfb58aadc07a842b1239c98c/lib/node_modules/@stdlib/stats/strided/dmeanstdev/docs/img/equation_population_mean.svg" alt="Equation for the population mean.">
<br>
</div> -->

<!-- </equation> -->

Often in the analysis of data, the true population [standard deviation][standard-deviation] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population [standard deviation][standard-deviation], the result is biased and yields an **uncorrected sample standard deviation**. To compute a **corrected sample standard deviation** for a sample of size `n`,

<!-- <equation class="equation" label="eq:corrected_sample_standard_deviation" align="center" raw="s = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2}" alt="Equation for computing a corrected sample standard deviation."> -->

```math
s = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2}
```

<!-- <div class="equation" align="center" data-raw-text="s = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2}" data-equation="eq:corrected_sample_standard_deviation">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@fc1d35912f15aaa6bfb58aadc07a842b1239c98c/lib/node_modules/@stdlib/stats/strided/dmeanstdev/docs/img/equation_corrected_sample_standard_deviation.svg" alt="Equation for computing a corrected sample standard deviation.">
<br>
</div> -->

<!-- </equation> -->

where the sample mean is given by

<!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> -->

```math
\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i
```

<!-- <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@fc1d35912f15aaa6bfb58aadc07a842b1239c98c/lib/node_modules/@stdlib/stats/strided/dmeanstdev/docs/img/equation_sample_mean.svg" alt="Equation for the sample mean.">
<br>
</div> -->

<!-- </equation> -->

The use of the term `n-1` is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample standard deviation and population standard deviation. Depending on the characteristics of the population distribution, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators.

</section>

<!-- /.intro -->

<section class="usage">

## Usage

```javascript
var dmeanstdev = require( '@stdlib/stats/base/ndarray/dmeanstdev' );
```

#### dmeanstdev( arrays )

Computes the [arithmetic mean][arithmetic-mean] and [standard deviation][standard-deviation] of a one-dimensional double-precision floating-point ndarray.

```javascript
var Float64Array = require( '@stdlib/array/float64' );
var scalar2ndarray = require( '@stdlib/ndarray/from-scalar' );
var ndarray = require( '@stdlib/ndarray/base/ctor' );
var ndarray2array = require( '@stdlib/ndarray/to-array' );

var opts = {
'dtype': 'float64'
};

var xbuf = new Float64Array( [ 1.0, 3.0, 4.0, 2.0 ] );
var x = new ndarray( opts.dtype, xbuf, [ 4 ], [ 1 ], 0, 'row-major' );
var out = new ndarray( opts.dtype, new Float64Array( 2 ), [ 2 ], [ 1 ], 0, 'row-major' );

var correction = scalar2ndarray( 1.0, opts );

var v = dmeanstdev( [ x, out, correction ] );
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You should be able to use ndarray2array to display the (approximate) results.

// returns <ndarray>

var arr = ndarray2array( v );
// returns <Float64Array>[ 2.5, ~1.2910 ]
```

The function has the following parameters:

- **arrays**: array-like object containing the following ndarrays in order:

1. a one-dimensional input ndarray.
2. a one-dimensional output ndarray to store the [mean][arithmetic-mean] and [standard deviation][standard-deviation].
3. a zero-dimensional ndarray specifying the degrees of freedom adjustment. Setting this to a value other than `0` has the effect of adjusting the divisor during the calculation of the [standard deviation][standard-deviation] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [standard deviation][standard-deviation] of a population, setting this to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample [standard deviation][standard-deviation], setting this to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).

</section>

<!-- /.usage -->

<section class="notes">

## Notes

- If provided an empty one-dimensional ndarray, the computed [arithmetic mean][arithmetic-mean] and [standard deviation][standard-deviation] are equal to `NaN`.
- If `N - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment), the computed [arithmetic mean][arithmetic-mean] and [standard deviation][standard-deviation] are equal to `NaN`.

</section>

<!-- /.notes -->

<section class="examples">

## Examples

<!-- eslint no-undef: "error" -->

```javascript
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var Float64Array = require( '@stdlib/array/float64' );
var scalar2ndarray = require( '@stdlib/ndarray/from-scalar' );
var ndarray = require( '@stdlib/ndarray/base/ctor' );
var ndarray2array = require( '@stdlib/ndarray/to-array' );
var dmeanstdev = require( '@stdlib/stats/base/ndarray/dmeanstdev' );

var opts = {
'dtype': 'float64'
};

var xbuf = discreteUniform( 10, -50, 50, opts );
var x = new ndarray( opts.dtype, xbuf, [ xbuf.length ], [ 1 ], 0, 'row-major' );
var out = new ndarray( opts.dtype, new Float64Array( 2 ), [ 2 ], [ 1 ], 0, 'row-major' );
var correction = scalar2ndarray( 1.0, opts );

console.log( ndarray2array( x ) );

var v = dmeanstdev( [ x, out, correction ] );
console.log( v );
```

</section>

<!-- /.examples -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">

</section>

<!-- /.related -->

<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="links">

[arithmetic-mean]: https://en.wikipedia.org/wiki/Arithmetic_mean

[standard-deviation]: https://en.wikipedia.org/wiki/Standard_deviation

</section>

<!-- /.links -->
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

// MODULES //

var bench = require( '@stdlib/bench' );
var uniform = require( '@stdlib/random/array/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var scalar2ndarray = require( '@stdlib/ndarray/from-scalar' );
var zeros = require( '@stdlib/ndarray/base/zeros' );
var ndarray = require( '@stdlib/ndarray/base/ctor' );
var pkg = require( './../package.json' ).name;
var dmeanstdev = require( './../lib' );


// VARIABLES //

var options = {
'dtype': 'float64'
};


// FUNCTIONS //

/**
* Creates a benchmark function.
*
* @private
* @param {PositiveInteger} len - array length
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var correction;
var xbuf;
var out;
var x;

xbuf = uniform( len, -10.0, 10.0, options );
x = new ndarray( options.dtype, xbuf, [ len ], [ 1 ], 0, 'row-major' );
out = zeros( options.dtype, [ 2 ], 'row-major' );
correction = scalar2ndarray( 1.0, options );

return benchmark;

function benchmark( b ) {
var v;
var i;

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
v = dmeanstdev( [ x, out, correction ] );
if ( isnan( v.get( i % 2 ) ) ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( isnan( v.get( i % 2 ) ) ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
}
}


// MAIN //

/**
* Main execution sequence.
*
* @private
*/
function main() {
var len;
var min;
var max;
var f;
var i;

min = 1; // 10^min
max = 6; // 10^max

for ( i = min; i <= max; i++ ) {
len = pow( 10, i );
f = createBenchmark( len );
bench( pkg+':len='+len, f );
}
}
main();
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading