Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,9 @@
v.2.8.1
=======

* Fix: Support and test string targets and `pd.Categorical` targets.
* Fix: Docs typo.

v.2.8.0
=======

Expand Down
4 changes: 2 additions & 2 deletions category_encoders/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -457,7 +457,7 @@ def fit(self, X: X_type, y: y_type | None = None, **kwargs):
if self.__sklearn_tags__().target_tags.required:
if not is_numeric_dtype(y):
self.lab_encoder_ = LabelEncoder()
y = self.lab_encoder_.fit_transform(y)
y = pd.Series(self.lab_encoder_.fit_transform(y), index=y.index)
else:
self.lab_encoder_ = None

Expand Down Expand Up @@ -621,7 +621,7 @@ def transform(self, X: X_type, y: y_type | None = None, override_return_df: bool
X, y = convert_inputs(X, y, deep=True)
self._check_transform_inputs(X)
if y is not None and self.lab_encoder_ is not None:
y = self.lab_encoder_.transform(y)
y = pd.Series(self.lab_encoder_.transform(y), index=y.index)

if not list(self.cols):
return X
Expand Down
30 changes: 30 additions & 0 deletions tests/test_encoders.py
Original file line number Diff line number Diff line change
Expand Up @@ -436,6 +436,36 @@ def test_types(self):
encoder = getattr(encoders, encoder_name)()
encoder.fit_transform(X, y)

def test_string_targets(self):
"""Test encoders with targets of type pd.Categorical or string."""
X = pd.DataFrame({'feature': ['A', 'B', 'A', 'C']})
y_string = pd.Series(['yes', 'no', 'yes', 'no'])

for encoder_name in encoders.__all__:
with self.subTest(encoder_name=encoder_name):
enc = getattr(encoders, encoder_name)()

# Test with string target
enc.fit(X, y_string)
transformed = enc.transform(X)
th.verify_numeric(transformed)
self.assertEqual(len(transformed), 4)
def test_categorical_targets(self):
"""Test encoders with targets of type pd.Categorical or string."""
X = pd.DataFrame({'feature': ['A', 'B', 'A', 'C']})
y_categorical = pd.Categorical([1, 0, 1, 0])

for encoder_name in encoders.__all__:
with self.subTest(encoder_name=encoder_name):
enc = getattr(encoders, encoder_name)()

# Test with pd.Categorical target
enc.fit(X, y_categorical)
transformed = enc.transform(X)
th.verify_numeric(transformed)
self.assertEqual(len(transformed), 4)


def test_preserve_column_order(self):
"""Test that the encoder preserves the column order."""
binary_cat_example = pd.DataFrame(
Expand Down