Skip to content

Architecture

Prakash Tiwari edited this page Aug 11, 2025 · 1 revision

OSA Architecture

πŸ—οΈ System Overview

OSA (OmniMind Super Agent) is built on a modular, event-driven architecture that mimics human cognitive processes.

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                     User Interface                       β”‚
β”‚              (CLI / Web Monitor / API)                   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                      β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              OSA Complete Final                          β”‚
β”‚         (Main Orchestration Layer)                       β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚  Thinking    β”‚  β”‚  Learning    β”‚  β”‚  Leadership  β”‚  β”‚
β”‚  β”‚   Engine     β”‚  β”‚   System     β”‚  β”‚    Mode      β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚   Blocker    β”‚  β”‚  Alternative β”‚  β”‚   Pattern    β”‚  β”‚
β”‚  β”‚  Detection   β”‚  β”‚  Generation  β”‚  β”‚ Recognition  β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                      β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                  Claude Instances                        β”‚
β”‚            (Parallel Processing Layer)                   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                      β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                  Data Layer                              β”‚
β”‚        (Memories / Patterns / Solutions)                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

🧠 Core Components

1. Continuous Thinking Engine

The heart of OSA's human-like cognition:

class ContinuousThinkingEngine:
    def __init__(self):
        self.thoughts = {}           # 10,000+ simultaneous thoughts
        self.contexts = {}           # Multi-context awareness
        self.reasoning_chains = {}   # Nested reasoning up to 10 levels
        self.connections = {}        # Thought connections graph

Key Features:

  • Maintains working memory of 10,000+ thoughts
  • Processes thoughts in parallel across multiple contexts
  • Discovers connections between disparate thoughts
  • Implements 5 reasoning patterns:
    • Divide & Conquer
    • Reverse Engineering
    • Lateral Thinking
    • First Principles
    • Analogical Reasoning

2. Adaptive Problem-Solving System

Ensures OSA never gets stuck:

class AdaptiveProblemSolver:
    async def solve_with_alternatives(self, problem):
        blockers = await self.detect_blockers(problem)
        alternatives = await self.generate_alternatives(blockers)
        return await self.select_best_path(alternatives)

Capabilities:

  • Blocker detection in <1 second
  • Generates 3+ alternative solutions per blocker
  • Confidence scoring for each path
  • Automatic fallback mechanisms

3. Continuous Learning System

Improves with every task:

class ContinuousLearningSystem:
    def __init__(self):
        self.pattern_memory = PatternMemory()
        self.solution_cache = SolutionCache()
        self.performance_tracker = PerformanceTracker()

Features:

  • Pattern recognition across tasks (92% accuracy)
  • Solution caching for 70% time savings
  • Internal debates for decision optimization
  • Reinforcement learning from outcomes

4. Leadership & Delegation System

Manages complex multi-agent tasks:

class LeadershipSystem:
    async def lead_project(self, project):
        breakdown = await self.break_down_requirements(project)
        delegation = await self.delegate_to_instances(breakdown)
        return await self.monitor_and_coordinate(delegation)

Capabilities:

  • Task breakdown and prioritization
  • Parallel instance management
  • Progress monitoring and coordination
  • Resource optimization

πŸ”„ Data Flow

Request Processing Pipeline

  1. Input Reception β†’ User provides task/goal
  2. Context Analysis β†’ Understand requirements and constraints
  3. Thinking Initiation β†’ Spawn 10,000+ thought threads
  4. Reasoning Chains β†’ Build nested reasoning up to 10 levels
  5. Blocker Detection β†’ Identify obstacles in real-time
  6. Alternative Generation β†’ Create multiple solution paths
  7. Solution Selection β†’ Choose optimal path with confidence scoring
  8. Execution β†’ Implement solution with parallel instances
  9. Learning β†’ Extract patterns and cache solutions
  10. Response β†’ Return results with insights

πŸ’Ύ Data Persistence

Memory Types

  1. Working Memory (In-memory)

    • Active thoughts and reasoning chains
    • Current context and state
    • Temporary calculations
  2. Pattern Memory (ChromaDB)

    • Recognized patterns across tasks
    • Success/failure patterns
    • Optimization strategies
  3. Solution Cache (SQLite)

    • Successful solutions
    • Execution plans
    • Performance metrics
  4. Long-term Memory (File System)

    • Architectural improvements
    • Tool evaluations
    • Historical performance data

πŸ”Œ Integration Points

External Systems

  • LLM Providers: OpenAI, Anthropic, Ollama
  • Vector Database: ChromaDB for pattern matching
  • WebSocket Server: Real-time monitoring
  • File System: Code generation and persistence
  • Git: Version control integration

Extension Mechanisms

  1. Custom Reasoning Patterns

    osa.add_reasoning_pattern("quantum_thinking", quantum_pattern)
  2. Additional Problem Solvers

    osa.register_solver("genetic_algorithm", GeneticSolver())
  3. Learning Strategies

    osa.add_learning_strategy("transfer_learning", TransferLearning())

πŸš€ Performance Optimization

Parallel Processing

  • Multiple Claude instances (default: 10)
  • Async/await throughout the stack
  • Thread pool for CPU-intensive tasks
  • Connection pooling for external services

Caching Strategy

  • LRU cache for recent thoughts
  • Solution cache with similarity matching
  • Pattern cache with vector similarity
  • Response cache for repeated queries

Resource Management

  • Automatic instance scaling
  • Memory pressure monitoring
  • Graceful degradation under load
  • Circuit breakers for external services

πŸ”’ Security Considerations

  • Input sanitization and validation
  • Secure storage of API keys
  • Rate limiting and quota management
  • Audit logging for all operations
  • Sandboxed code execution

πŸ“Š Monitoring & Observability

Metrics Tracked

  • Thoughts per second
  • Reasoning chain depth
  • Blocker resolution time
  • Pattern recognition accuracy
  • Solution reuse rate
  • Learning improvement rate

Logging Levels

  • DEBUG: Detailed thought processes
  • INFO: Major decisions and milestones
  • WARNING: Blockers and fallbacks
  • ERROR: System failures
  • CRITICAL: Unrecoverable errors

For implementation details, see the API Reference. For usage examples, check out Examples.