Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 22 additions & 11 deletions probabilistic_word_embeddings/estimation.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,10 @@ def map_estimate(embedding, data=None, ns_data=None, data_generator=None, N=None
ns_data = data

opt = tf.keras.optimizers.Adam(learning_rate=0.001)
opt_theta = opt.add_variable_from_reference(embedding.theta, "theta")#, initial_value=embedding.theta)
opt.build([opt_theta])
opt_theta.assign(embedding.theta)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

THis is the same as setting "initial_value=embedding.theta)" above?

Copy link
Owner Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes, the new API just doesn't support that anymore


e = embedding
if valid_data is not None:
if not isinstance(valid_data, tf.Tensor):
Expand Down Expand Up @@ -107,13 +111,17 @@ def map_estimate(embedding, data=None, ns_data=None, data_generator=None, N=None
i,j,x = next(data_generator)
else:
i,j,x = generate_batch(data, model=model, ws=ws, ns=ns, batch_size=batch_size, start_ix=start_ix, ns_data=ns_data)
if model == "sgns":
objective = lambda: - tf.reduce_sum(sgns_likelihood(e, i, j, x=x)) - e.log_prob(batch_size, N)
elif model == "cbow":
objective = lambda: - tf.reduce_sum(cbow_likelihood(e, i, j, x=x)) - e.log_prob(batch_size, N)
_ = opt.minimize(objective, [embedding.theta])
with tf.GradientTape() as tape:
if model == "sgns":
objective = - tf.reduce_sum(sgns_likelihood(e, i, j, x=x)) - e.log_prob(batch_size, N)
elif model == "cbow":
objective = - tf.reduce_sum(cbow_likelihood(e, i, j, x=x)) - e.log_prob(batch_size, N)
d_l_d_theta = - tape.gradient(objective, e.theta)

opt.update_step(d_l_d_theta, opt_theta, 0.001)
embedding.theta.assign(opt_theta)
if training_loss:
epoch_training_loss.append(objective() / len(i))
epoch_training_loss.append(objective / len(i))
batch_no = len(epoch_training_loss)
if batch_no % 250 == 0:
logger.log(logging.TRAIN, f"Epoch {epoch} mean training loss after {batch_no} batches: {np.mean(epoch_training_loss)}")
Expand Down Expand Up @@ -155,7 +163,7 @@ def mean_field_vi(embedding, data=None, data_generator=None, N=None, model="cbow
if model not in ["sgns", "cbow"]:
raise ValueError("model must be 'sgns' or 'cbow'")

optimizer = tf.keras.optimizers.experimental.Adam(learning_rate=0.001)
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
e = embedding

if words_to_fix_rotation:
Expand All @@ -177,10 +185,13 @@ def mean_field_vi(embedding, data=None, data_generator=None, N=None, model="cbow
logger.info(f"Init std: {init_std}")
q_std_log = tf.Variable(init_std)

opt_mean_var = optimizer.add_variable_from_reference(q_mean, "q_mean", initial_value=q_mean)
opt_std_var = optimizer.add_variable_from_reference(q_std_log, "q_std_log", initial_value=q_std_log)
opt_mean_var = optimizer.add_variable_from_reference(q_mean, "q_mean")
opt_std_var = optimizer.add_variable_from_reference(q_std_log, "q_std_log")
optimizer.build([opt_mean_var, opt_std_var])

opt_mean_var.assign(q_mean)
opt_std_var.assign(q_std_log)

elbos = []
for epoch in range(epochs):
logger.log(logging.TRAIN, f"Epoch {epoch}")
Expand Down Expand Up @@ -216,8 +227,8 @@ def mean_field_vi(embedding, data=None, data_generator=None, N=None, model="cbow
# Add the entropy term
d_l_q_std_log = d_l_q_std_log - tf.ones(d_l_q_std_log.shape, dtype=tf.float64)

optimizer.update_step(d_l_d_q_mean, opt_mean_var)
optimizer.update_step(d_l_q_std_log, opt_std_var)
optimizer.update_step(d_l_d_q_mean, opt_mean_var, 0.001)
optimizer.update_step(d_l_q_std_log, opt_std_var, 0.001)


std_numerical_stability_constant = 10.0
Expand Down
16 changes: 16 additions & 0 deletions probabilistic_word_embeddings/evaluation.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
import tensorflow as tf
import copy
from .embeddings import Embedding
from .utils import align
import warnings

###################
Expand Down Expand Up @@ -292,3 +293,18 @@ def bli(pairs, e, precision=[1,5,15], reverse=False):

columns = ["source", "target"] + [f"p@{p}" for p in precision] + [f"guess-{g}" for g in range(max(precision))]
return pd.DataFrame(rows, columns=columns)

def posterior_mean(paths):
emb_paths = sorted(paths)
e_ref = Embedding(saved_model_path=emb_paths[-1])
words_reference = [f"{wd}_c" for wd in list(e_ref.vocabulary) if "_c" not in wd]

e_mean = Embedding(saved_model_path=emb_paths[-1])
e_mean.theta = e_mean.theta * 0.0

for emb_path in progressbar.progressbar(emb_paths):
e = Embedding(saved_model_path=emb_path)
e_aligned = align(e_ref, e, words_reference)
e_mean.theta += e_aligned.theta / len(emb_paths)

return e_mean
14 changes: 0 additions & 14 deletions probabilistic_word_embeddings/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -131,18 +131,4 @@ def normalize_rotation(e, words):
e_new[vocabulary] = (Q.T @ e[vocabulary].numpy().T).T
return e_new

def posterior_mean(paths):
emb_paths = sorted(paths)
e_ref = Embedding(saved_model_path=emb_paths[-1])
words_reference = [f"{wd}_c" for wd in list(e_ref.vocabulary) if "_c" not in wd]

e_mean = Embedding(saved_model_path=emb_paths[-1])
e_mean.theta = e_mean.theta * 0.0

for emb_path in emb_paths:
e = Embedding(saved_model_path=emb_path)
e_aligned = align(e_ref, e, words_reference)
e_mean.theta += e_aligned.theta / len(emb_paths)

return e_mean

7 changes: 4 additions & 3 deletions pyproject.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[tool.poetry]
name = "probabilistic-word-embeddings"
version = "1.17.0"
version = "2.0.0rc2"
description = "Probabilistic Word Embeddings for Python"
authors = ["Your Name <you@example.com>"]
license = "MIT"
Expand All @@ -9,8 +9,9 @@ documentation = "https://ninpnin.github.io/probabilistic-word-embeddings/"

[tool.poetry.dependencies]
python = "^3.7"
tensorflow = "<= 2.15.1"
tensorflow-probability = "<= 0.23"
tensorflow = "~=2.16"
tensorflow-probability = "*"
tf-keras = "*"
progressbar2 = "*"
networkx = "*"
pandas = "*"
Expand Down