Skip to content

Commit 24fb3fd

Browse files
committed
fix generation errors for chp07
1 parent 643c08e commit 24fb3fd

File tree

6 files changed

+25
-25
lines changed

6 files changed

+25
-25
lines changed

chp07/subsections/7.1.html

Lines changed: 9 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -721,20 +721,19 @@ <h4>习题1 <span class="difficulty medium">中等难度</span></h4>
721721

722722
<div class="practice-problem">
723723
<h4>习题2 <span class="difficulty hard">较难</span></h4>
724-
<p>验证 $y = \frac{1}{2}x^2 + Cx$ 是微分方程 $x\frac{d^2y}{dx^2} - \frac{dy}{dx} = -1$ 的通解,并求满足初始条件 $y(1) = 2$,$y'(1) = 3$ 的特解。</p>
724+
<p>验证 $y = C_1 x^2 + x + C_2$ 是微分方程 $x\frac{d^2y}{dx^2} - \frac{dy}{dx} = -1$ 的通解,并求满足初始条件 $y(1) = 2$,$y'(1) = 3$ 的特解。</p>
725725

726726
<div class="solution">
727727
<div class="solution-header">解:</div>
728728
<p><strong>验证过程:</strong></p>
729-
<p>$y = \frac{1}{2}x^2 + Cx$</p>
730-
<p>$\frac{dy}{dx} = x + C$</p>
731-
<p>$\frac{d^2y}{dx^2} = 1$</p>
732-
<p>代入微分方程:$x \cdot 1 - (x + C) = x - x - C = -C$</p>
733-
<p>但这不等于$-1$,所以需要重新检查...</p>
734-
<p><strong>正确的验证:</strong>设$y = \frac{1}{2}x^2 + C$</p>
735-
<p>$\frac{dy}{dx} = x$,$\frac{d^2y}{dx^2} = 1$</p>
736-
<p>代入:$x \cdot 1 - x = 0 \neq -1$</p>
737-
<p><strong>实际通解:</strong>$y = \frac{x^2}{2} - x + Cx$</p>
729+
<p>$y = C_1 x^2 + x + C_2$</p>
730+
<p>$\frac{dy}{dx} = 2C_1 x + 1$</p>
731+
<p>$\frac{d^2y}{dx^2} = 2C_1$</p>
732+
<p>代入微分方程:$x \cdot (2C_1) - (2C_1 x + 1) = -1$</p>
733+
<p>代入初值,当 $y(1)=2$ 时,得 $C_1 + 1 + C_2 = 2$</p>
734+
<p>当 $y'(1)=3$ 时,得 $2C_1 + 1 = 3$</p>
735+
<p>得,$C_1 = 1, C_2 = 0$</p>
736+
<p>即,$y = x^2 + x$</p>
738737
</div>
739738
</div>
740739

chp07/subsections/7.10.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -598,7 +598,7 @@ <h4>一阶常系数线性微分方程组</h4>
598598
\vdots \\
599599
\frac{dx_n}{dt} = a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n + f_n(t)
600600
\end{cases}$$
601-
<p>的方程组称为<strong>$n$ 阶一阶常系数线性微分方程组</strong>,其中 $a_{ij}$ 是常数。</p>
601+
<p>的方程组称为<strong>一阶常系数线性微分方程组</strong>,其中 $a_{ij}$ 是常数。</p>
602602
</div>
603603

604604
<div class="matrix-form">
@@ -1063,7 +1063,7 @@ <h4>习题3:二阶微分方程组求解 <span class="difficulty very-hard">很
10631063
$$y = C_1 e^{\alpha t} + C_2 e^{-\alpha t} + C_3 \cos \beta t + C_4 \sin \beta t + e^t$$
10641064

10651065
<p>进而解得:</p>
1066-
$$x = -\alpha^3 C_1 e^{\alpha t} + \alpha^3 C_2 e^{-\alpha t} + \beta^3 C_3 \cos \beta t -\beta^3 C_4 \sin \beta t - 2e^t$$
1066+
$$x = -\frac{\alpha^2+1}{\alpha} C_1 e^{\alpha t} + \frac{\alpha^2+1}{\alpha} C_2 e^{-\alpha t} - \frac{1-\beta^2}{\beta} C_3 \sin \beta t + \frac{1-\beta^2}{\beta} C_4 \cos \beta t - 2e^t$$
10671067

10681068
<div style="background: linear-gradient(135deg, #e8f5e8, #d4edda); padding: 15px; border-radius: 8px; margin: 15px 0;">
10691069
<p><strong>解题要点:</strong></p>

chp07/subsections/7.3.html

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -791,7 +791,7 @@ <h4>例4:比例系数相等的情况</h4>
791791
<div class="solution-step">
792792
<div class="step-title">步骤1:检查比例关系</div>
793793
<p>$\frac{2}{4} = \frac{3}{6} = \frac{1}{2}$,所以 $a_1 : a_2 = b_1 : b_2$</p>
794-
<p>方程可写成:$(2x + 3y + 1)dx + 2(2x + 3y) + 5)dy = 0$</p>
794+
<p>方程可写成:$(2x + 3y + 1)dx + (2(2x + 3y) + 5)dy = 0$</p>
795795
</div>
796796

797797
<div class="solution-step">
@@ -817,9 +817,11 @@ <h4>例4:比例系数相等的情况</h4>
817817

818818
<div class="solution-step">
819819
<div class="step-title">步骤5:求解并回代</div>
820-
<p>这仍然不是直接可分离的。重新考虑,用 $y$ 作为独立变量:</p>
821-
<p>从 $u = 2x + 3y$ 得 $x = \frac{u - 3y}{2}$</p>
822-
<p>原方程最终可化简求解得到隐式解。</p>
820+
<p>上式可进一步分离变量:$\frac{u+1}{u+7}du = -dy$</p>
821+
<p>对左边进行积分得:$\int \frac{u+1}{u+7}du = u - 6 \ln|u+7| + C_1$</p>
822+
<p>对右边进行积分得:$-\int dy = -y + C_2$</p>
823+
<p>所以,$u - 6 \ln|u+7| = -y + C$</p>
824+
<p>代入 $u = 2x + 3y$ 得:x + 2y - 3 \ln|2x + 3y +7| = C</p>
823825
</div>
824826
</div>
825827
</div>
@@ -856,8 +858,7 @@ <h4>习题2 <span class="difficulty hard">较难</span></h4>
856858
<p><strong>步骤3:</strong>这是齐次方程,用 $v = \frac{Y}{X}$ 求解</p>
857859
<p>$\frac{dY}{dX} = \frac{Y - X}{X + Y} = \frac{v - 1}{1 + v}$</p>
858860

859-
<p><strong>步骤4:</strong>分离变量并积分得到解</p>
860-
<p><strong>最终解:</strong>$(x-1)^2 + (y-2)^2 = C(x-1)$</p>
861+
<p><strong>步骤4:</strong>剩下的步骤可以参考上面的例3</p>
861862
</div>
862863
</div>
863864

@@ -884,7 +885,7 @@ <h4>习题3 <span class="difficulty very-hard">很难</span></h4>
884885
</div>
885886

886887
<div class="solution-step">
887-
<div class="step-title">步骤3:建立关于v的微分方程</div>
888+
<div class="step-title">步骤3:建立关于 $v$ 的微分方程</div>
888889
<p>代入得:$v + x\frac{dv}{dx} = \frac{1}{v} + 2v$</p>
889890
<p>简化:$x\frac{dv}{dx} = \frac{1}{v} + 2v - v = \frac{1}{v} + v$</p>
890891
<p>进一步简化:$x\frac{dv}{dx} = \frac{1 + v^2}{v}$</p>

chp07/subsections/7.5.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -865,7 +865,7 @@ <h4>习题2 <span class="difficulty hard">较难</span></h4>
865865
$$2\sqrt{y} = C_1x + C_2$$
866866
$$y = \frac{(C_1x + C_2)^2}{4}$$
867867

868-
<p><strong>答案:</strong>$y = \frac{(C_1x + C_2)^2}{4}$ 及 $y = 0$</p>
868+
<p><strong>答案:</strong>$y = \frac{(C_1x + C_2)^2}{4}$ 及 $y = C$</p>
869869
</div>
870870
</div>
871871

@@ -896,7 +896,7 @@ <h4>习题3 <span class="difficulty very-hard">很难</span></h4>
896896
$$y = \int (x + C_1\sqrt{x}) dx = \frac{x^2}{2} + C_1 \cdot \frac{2x^{3/2}}{3} + C_2$$
897897
$$= \frac{x^2}{2} + \frac{2C_1x^{3/2}}{3} + C_2$$
898898

899-
<p><strong>答案:</strong>$y = \frac{x^2}{2} + \frac{2C_1x^{3/2}}{3} + C_2$</p>
899+
<p><strong>答案:</strong>$y = \frac{x^2}{2} + C_1 x^{3/2} + C_2$</p>
900900
</div>
901901
</div>
902902
</div>

chp07/subsections/7.8.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -916,7 +916,7 @@ <h4>习题3 <span class="difficulty very-hard">很难</span></h4>
916916

917917
<p><strong>步骤3:</strong>求导</p>
918918
<p>$y_p' = (ax^3 + bx^2) e^x + (3ax^2 + 2bx) e^x = [ax^3 + (b+3a)x^2 + 2bx] e^x$</p>
919-
<p>$y_p'' = [ax^3 + (b+6a)x^2 + (2b+6a)x + 2b] e^x$</p>
919+
<p>$y_p'' = [ax^3 + (b+6a)x^2 + (4b+6a)x + 2b] e^x$</p>
920920

921921
<p><strong>步骤4:</strong>代入方程并化简</p>
922922
<p>经计算后得到:$6ax + 2b = x$</p>

chp07/subsections/7.9.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -912,11 +912,11 @@ <h4>习题3 <span class="difficulty very-hard">很难</span></h4>
912912

913913
<p><strong>步骤3:</strong>求特解</p>
914914
<p>由于 $1$ 是单重特征根,设特解:$y_p = t(at + b)e^t$</p>
915-
<p>代入方程求得:$a = \frac{1}{2}$,$b = 0$</p>
916-
<p>特解:$y_p = \frac{t^2}{2}e^t = \frac{(\ln x)^2}{2} \cdot x$</p>
915+
<p>代入方程求得:$a = \frac{1}{4}$,$b = -\frac{1}{4}$</p>
916+
<p>特解:$y_p = \frac{t^2 - t}{4}e^t = \frac{(\ln x)^2 - \ln x}{4} \cdot x$</p>
917917

918918
<p><strong>步骤4:</strong>通解</p>
919-
$$y = C_1 x + \frac{C_2}{x} + \frac{x(\ln x)^2}{2}$$
919+
$$y = C_1 x + \frac{C_2}{x} + \frac{(\ln x)^2 - \ln x}{4} \cdot x$$
920920
</div>
921921
</div>
922922
</div>

0 commit comments

Comments
 (0)