File tree Expand file tree Collapse file tree 2 files changed +6
-6
lines changed
Expand file tree Collapse file tree 2 files changed +6
-6
lines changed Original file line number Diff line number Diff line change @@ -740,12 +740,12 @@ <h4>习题3:物理应用 <span class="difficulty very-hard">很难</span></h4>
740740 < div class ="solution-header "> 详细解答:</ div >
741741 < p > 建立坐标系:以半圆的直径为 $x$ 轴,圆心为原点</ p >
742742 < p > 半圆方程:$y = \sqrt{R^2 - x^2}$,$x \in [-R, R]$</ p >
743- < p > 在 $[x, x+dx]$ 处,微元的面积:$dS = 2y \, dx = 2 \sqrt{R^2 - x^2} \, dx$</ p >
744- < p > 微元的质量:$dm = \rho(x) \cdot dS = k(R - |x|) \cdot 2 \sqrt{R^2 - x^2} \, dx$</ p >
743+ < p > 在 $[x, x+dx]$ 处,微元的面积:$dS = y \, dx = \sqrt{R^2 - x^2} \, dx$</ p >
744+ < p > 微元的质量:$dm = \rho(x) \cdot dS = k(R - |x|) \cdot \sqrt{R^2 - x^2} \, dx$</ p >
745745 < p > 由对称性,只需计算 $x \geq 0$ 的部分再乘以2:</ p >
746- < p > $M = 2 \int_0^R k(R - x) \cdot 2 \sqrt{R^2 - x^2} \, dx = 4k \int_0^R (R - x)\sqrt{R^2 - x^2} \, dx$</ p >
747- < p > $= 4k [R \int_0^R \sqrt{R^2 - x^2} \, dx - \int_0^R x\sqrt{R^2 - x^2} \, dx]$</ p >
748- < p > $= 4k [R \cdot \frac{\pi R^2}{4} - \frac{R^3}{3}] = \pi kR^3 - \frac{4kR ^3}{3}$</ p >
746+ < p > $M = 2 \int_0^R k(R - x) \cdot \sqrt{R^2 - x^2} \, dx = 2k \int_0^R (R - x)\sqrt{R^2 - x^2} \, dx$</ p >
747+ < p > $= 2k [R \int_0^R \sqrt{R^2 - x^2} \, dx - \int_0^R x\sqrt{R^2 - x^2} \, dx]$</ p >
748+ < p > $= 2k [R \cdot \frac{\pi R^2}{4} - \frac{R^3}{3}] = \frac{\ pi kR^3}{2} - \frac{2kR ^3}{3}$</ p >
749749 </ div >
750750 </ div >
751751 </ div >
Original file line number Diff line number Diff line change @@ -619,7 +619,7 @@ <h4>习题2 <span class="difficulty hard">较难</span></h4>
619619 < p > 总引力:</ p >
620620 $$F = \int_0^L G \frac{Mm}{L(a + x)^2} dx = \frac{GMm}{L} \int_0^L \frac{1}{(a + x)^2} dx$$
621621 $$= \frac{GMm}{L} \left[-\frac{1}{a + x}\right]_0^L = \frac{GMm}{L} \left(-\frac{1}{a + L} + \frac{1}{a}\right)$$
622- $$= \frac{GMm}{L} \cdot \frac{a - (a + L)}{a(a + L)} = \frac{GMm}{L} \cdot \frac{- L}{a(a + L)} = \frac{GMm}{a(a + L)}$$
622+ $$= \frac{GMm}{L} \cdot \frac{(a + L) - a }{a(a + L)} = \frac{GMm}{L} \cdot \frac{L}{a(a + L)} = \frac{GMm}{a(a + L)}$$
623623 </ div >
624624 </ div >
625625
You can’t perform that action at this time.
0 commit comments