Skip to content

Commit 643c08e

Browse files
committed
fix generation errors
1 parent ab61446 commit 643c08e

File tree

2 files changed

+6
-6
lines changed

2 files changed

+6
-6
lines changed

chp06/subsections/6.1.html

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -740,12 +740,12 @@ <h4>习题3:物理应用 <span class="difficulty very-hard">很难</span></h4>
740740
<div class="solution-header">详细解答:</div>
741741
<p>建立坐标系:以半圆的直径为 $x$ 轴,圆心为原点</p>
742742
<p>半圆方程:$y = \sqrt{R^2 - x^2}$,$x \in [-R, R]$</p>
743-
<p>在 $[x, x+dx]$ 处,微元的面积:$dS = 2y \, dx = 2\sqrt{R^2 - x^2} \, dx$</p>
744-
<p>微元的质量:$dm = \rho(x) \cdot dS = k(R - |x|) \cdot 2\sqrt{R^2 - x^2} \, dx$</p>
743+
<p>在 $[x, x+dx]$ 处,微元的面积:$dS = y \, dx = \sqrt{R^2 - x^2} \, dx$</p>
744+
<p>微元的质量:$dm = \rho(x) \cdot dS = k(R - |x|) \cdot \sqrt{R^2 - x^2} \, dx$</p>
745745
<p>由对称性,只需计算 $x \geq 0$ 的部分再乘以2:</p>
746-
<p>$M = 2 \int_0^R k(R - x) \cdot 2\sqrt{R^2 - x^2} \, dx = 4k \int_0^R (R - x)\sqrt{R^2 - x^2} \, dx$</p>
747-
<p>$= 4k[R \int_0^R \sqrt{R^2 - x^2} \, dx - \int_0^R x\sqrt{R^2 - x^2} \, dx]$</p>
748-
<p>$= 4k[R \cdot \frac{\pi R^2}{4} - \frac{R^3}{3}] = \pi kR^3 - \frac{4kR^3}{3}$</p>
746+
<p>$M = 2 \int_0^R k(R - x) \cdot \sqrt{R^2 - x^2} \, dx = 2k \int_0^R (R - x)\sqrt{R^2 - x^2} \, dx$</p>
747+
<p>$= 2k[R \int_0^R \sqrt{R^2 - x^2} \, dx - \int_0^R x\sqrt{R^2 - x^2} \, dx]$</p>
748+
<p>$= 2k[R \cdot \frac{\pi R^2}{4} - \frac{R^3}{3}] = \frac{\pi kR^3}{2} - \frac{2kR^3}{3}$</p>
749749
</div>
750750
</div>
751751
</div>

chp06/subsections/6.3.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -619,7 +619,7 @@ <h4>习题2 <span class="difficulty hard">较难</span></h4>
619619
<p>总引力:</p>
620620
$$F = \int_0^L G \frac{Mm}{L(a + x)^2} dx = \frac{GMm}{L} \int_0^L \frac{1}{(a + x)^2} dx$$
621621
$$= \frac{GMm}{L} \left[-\frac{1}{a + x}\right]_0^L = \frac{GMm}{L} \left(-\frac{1}{a + L} + \frac{1}{a}\right)$$
622-
$$= \frac{GMm}{L} \cdot \frac{a - (a + L)}{a(a + L)} = \frac{GMm}{L} \cdot \frac{-L}{a(a + L)} = \frac{GMm}{a(a + L)}$$
622+
$$= \frac{GMm}{L} \cdot \frac{(a + L) - a}{a(a + L)} = \frac{GMm}{L} \cdot \frac{L}{a(a + L)} = \frac{GMm}{a(a + L)}$$
623623
</div>
624624
</div>
625625

0 commit comments

Comments
 (0)