Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Cargo.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[package]
name = "ntt"
version = "0.1.2"
version = "0.1.3"
edition = "2021"
description = "Implements the fast NTT (number theoretic transform) for polynomial multiplcation."
license = "MIT"
Expand Down
9 changes: 6 additions & 3 deletions src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,11 @@ fn mod_inv(a: i64, p: i64) -> i64 {
mod_exp(a, p - 2, p) // Using Fermat's Little Theorem
}

// Compute n-th root of unity (omega = root^((p - 1) / n) % p)
pub fn omega(root: i64, p: i64, n: usize) -> i64{
mod_exp(root, (p - 1) / n as i64, p)
}

// Forward transform using NTT, output bit-reversed
pub fn ntt(a: &[i64], omega: i64, n: usize, p: i64) -> Vec<i64> {
let mut result = a.to_vec();
Expand Down Expand Up @@ -94,9 +99,7 @@ pub fn polymul(a: &Vec<i64>, b: &Vec<i64>, n: i64, p: i64) -> Vec<i64> {
///
/// # Returns
/// A vector representing the polynomial product modulo `p`.
pub fn polymul_ntt(a: &[i64], b: &[i64], n: usize, p: i64, root: i64) -> Vec<i64> {
// Compute n-th root of unity (omega = root^((p - 1) / n) % p)
let omega = mod_exp(root, (p - 1) / n as i64, p);
pub fn polymul_ntt(a: &[i64], b: &[i64], n: usize, p: i64, omega: i64) -> Vec<i64> {

// Step 1: Perform the NTT (forward transform) on both polynomials
let a_ntt = ntt(a, omega, n, p);
Expand Down
8 changes: 3 additions & 5 deletions src/main.rs
Original file line number Diff line number Diff line change
@@ -1,14 +1,12 @@
mod test;

use ntt::{ntt, intt, mod_exp, polymul, polymul_ntt};
use ntt::{omega, ntt, intt , polymul, polymul_ntt};

fn main() {
let p: i64 = 17; // Prime modulus
let root: i64 = 3; // Primitive root of unity for the modulus
let n: usize = 8; // Length of the NTT (must be a power of 2)

// Compute n-th root of unity: ω = g^((p - 1) / n) % p
let omega = mod_exp(root, (p - 1) / n as i64, p);
let omega = omega(root, p, n); // n-th root of unity: root^((p - 1) / n) % p

// Input polynomials (padded to length `n`)
let mut a = vec![1, 2, 3, 4];
Expand All @@ -34,7 +32,7 @@ fn main() {
let c = intt(&c_ntt, omega, n, p);

let c_std = polymul(&a, &b, n as i64, p);
let c_fast = polymul_ntt(&a, &b, n, p, root);
let c_fast = polymul_ntt(&a, &b, n, p, omega);

// Output the results
println!("Polynomial A: {:?}", a);
Expand Down
5 changes: 3 additions & 2 deletions src/test.rs
Original file line number Diff line number Diff line change
@@ -1,12 +1,13 @@
#[cfg(test)]
mod tests {
use ntt::{polymul, polymul_ntt};
use ntt::{omega, polymul, polymul_ntt};

#[test]
fn test_polymul_ntt() {
let p: i64 = 17; // Prime modulus
let root: i64 = 3; // Primitive root of unity
let n: usize = 8; // Length of the NTT (must be a power of 2)
let omega = omega(root, p, n); // n-th root of unity

// Input polynomials (padded to length `n`)
let mut a = vec![1, 2, 3, 4];
Expand All @@ -18,7 +19,7 @@ mod tests {
let c_std = polymul(&a, &b, n as i64, p);

// Perform the NTT-based polynomial multiplication
let c_fast = polymul_ntt(&a, &b, n, p, root);
let c_fast = polymul_ntt(&a, &b, n, p, omega);

// Ensure both methods produce the same result
assert_eq!(c_std, c_fast, "The results of polymul and polymul_ntt do not match");
Expand Down