Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
117 changes: 78 additions & 39 deletions src/diffusers/schedulers/scheduling_deis_multistep.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,33 +84,35 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
methods the library implements for all schedulers such as loading and saving.

Args:
num_train_timesteps (`int`, defaults to 1000):
num_train_timesteps (`int`, defaults to `1000`):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
beta_start (`float`, defaults to `0.0001`):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
beta_end (`float`, defaults to `0.02`):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
beta_schedule (`"linear"`, `"scaled_linear"`, or `"squaredcos_cap_v2"`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, *optional*):
trained_betas (`np.ndarray` or `List[float]`, *optional*):
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
solver_order (`int`, defaults to 2):
solver_order (`int`, defaults to `2`):
The DEIS order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
sampling, and `solver_order=3` for unconditional sampling.
prediction_type (`str`, defaults to `epsilon`):
prediction_type (`"epsilon"`, `"sample"`, `"v_prediction"`, or `"flow_prediction"`, defaults to `"epsilon"`):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://huggingface.co/papers/2210.02303) paper).
`sample` (directly predicts the noisy sample`), `v_prediction` (see section 2.4 of [Imagen
Video](https://huggingface.co/papers/2210.02303) paper), or `flow_prediction`.
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
dynamic_thresholding_ratio (`float`, defaults to 0.995):
dynamic_thresholding_ratio (`float`, defaults to `0.995`):
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
sample_max_value (`float`, defaults to 1.0):
sample_max_value (`float`, defaults to `1.0`):
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
algorithm_type (`str`, defaults to `deis`):
algorithm_type (`"deis"`, defaults to `"deis"`):
The algorithm type for the solver.
solver_type (`"logrho"`, defaults to `"logrho"`):
Solver type for DEIS.
lower_order_final (`bool`, defaults to `True`):
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps.
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
Expand All @@ -121,11 +123,19 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
timestep_spacing (`str`, defaults to `"linspace"`):
use_flow_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use flow sigmas for step sizes in the noise schedule during the sampling process.
flow_shift (`float`, *optional*, defaults to `1.0`):
The flow shift parameter for flow-based models.
timestep_spacing (`"linspace"`, `"leading"`, or `"trailing"`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
steps_offset (`int`, defaults to 0):
steps_offset (`int`, defaults to `0`):
An offset added to the inference steps, as required by some model families.
use_dynamic_shifting (`bool`, defaults to `False`):
Whether to use dynamic shifting for the noise schedule.
time_shift_type (`"exponential"`, defaults to `"exponential"`):
The type of time shifting to apply.
"""

_compatibles = [e.name for e in KarrasDiffusionSchedulers]
Expand All @@ -137,29 +147,38 @@ def __init__(
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[np.ndarray] = None,
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
solver_order: int = 2,
prediction_type: str = "epsilon",
prediction_type: Literal["epsilon", "sample", "v_prediction", "flow_prediction"] = "epsilon",
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
sample_max_value: float = 1.0,
algorithm_type: str = "deis",
solver_type: str = "logrho",
algorithm_type: Literal["deis"] = "deis",
solver_type: Literal["logrho"] = "logrho",
lower_order_final: bool = True,
use_karras_sigmas: Optional[bool] = False,
use_exponential_sigmas: Optional[bool] = False,
use_beta_sigmas: Optional[bool] = False,
use_flow_sigmas: Optional[bool] = False,
flow_shift: Optional[float] = 1.0,
timestep_spacing: str = "linspace",
timestep_spacing: Literal["linspace", "leading", "trailing"] = "linspace",
steps_offset: int = 0,
use_dynamic_shifting: bool = False,
time_shift_type: str = "exponential",
):
time_shift_type: Literal["exponential"] = "exponential",
) -> None:
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
if (
sum(
[
self.config.use_beta_sigmas,
self.config.use_exponential_sigmas,
self.config.use_karras_sigmas,
]
)
> 1
):
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
Expand All @@ -169,7 +188,15 @@ def __init__(
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
self.betas = (
torch.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float32,
)
** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
Expand Down Expand Up @@ -211,21 +238,21 @@ def __init__(
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

@property
def step_index(self):
def step_index(self) -> Optional[int]:
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index

@property
def begin_index(self):
def begin_index(self) -> Optional[int]:
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index

# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
def set_begin_index(self, begin_index: int = 0) -> None:
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

Expand All @@ -236,8 +263,11 @@ def set_begin_index(self, begin_index: int = 0):
self._begin_index = begin_index

def set_timesteps(
self, num_inference_steps: int, device: Union[str, torch.device] = None, mu: Optional[float] = None
):
self,
num_inference_steps: int,
device: Union[str, torch.device] = None,
mu: Optional[float] = None,
) -> None:
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).

Expand All @@ -246,6 +276,9 @@ def set_timesteps(
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
mu (`float`, *optional*):
The mu parameter for dynamic shifting. Only used when `use_dynamic_shifting=True` and
`time_shift_type="exponential"`.
"""
if mu is not None:
assert self.config.use_dynamic_shifting and self.config.time_shift_type == "exponential"
Expand Down Expand Up @@ -363,7 +396,7 @@ def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
return sample

# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
def _sigma_to_t(self, sigma: np.ndarray, log_sigmas: np.ndarray) -> np.ndarray:
"""
Convert sigma values to corresponding timestep values through interpolation.

Expand Down Expand Up @@ -400,7 +433,7 @@ def _sigma_to_t(self, sigma, log_sigmas):
return t

# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
def _sigma_to_alpha_sigma_t(self, sigma):
def _sigma_to_alpha_sigma_t(self, sigma: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Convert sigma values to alpha_t and sigma_t values.

Expand All @@ -422,7 +455,7 @@ def _sigma_to_alpha_sigma_t(self, sigma):
return alpha_t, sigma_t

# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
"""
Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
Models](https://huggingface.co/papers/2206.00364).
Expand Down Expand Up @@ -648,7 +681,10 @@ def deis_first_order_update(
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)

sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
sigma_t, sigma_s = (
self.sigmas[self.step_index + 1],
self.sigmas[self.step_index],
)
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
Expand Down Expand Up @@ -714,7 +750,11 @@ def multistep_deis_second_order_update(

m0, m1 = model_output_list[-1], model_output_list[-2]

rho_t, rho_s0, rho_s1 = sigma_t / alpha_t, sigma_s0 / alpha_s0, sigma_s1 / alpha_s1
rho_t, rho_s0, rho_s1 = (
sigma_t / alpha_t,
sigma_s0 / alpha_s0,
sigma_s1 / alpha_s1,
)

if self.config.algorithm_type == "deis":

Expand Down Expand Up @@ -854,7 +894,7 @@ def index_for_timestep(
return step_index

# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
def _init_step_index(self, timestep):
def _init_step_index(self, timestep: Union[int, torch.Tensor]) -> None:
"""
Initialize the step_index counter for the scheduler.

Expand Down Expand Up @@ -884,18 +924,17 @@ def step(
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`int`):
timestep (`int` or `torch.Tensor`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
return_dict (`bool`):
return_dict (`bool`, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.

Returns:
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.

"""
if self.num_inference_steps is None:
raise ValueError(
Expand Down Expand Up @@ -1000,5 +1039,5 @@ def add_noise(
noisy_samples = alpha_t * original_samples + sigma_t * noise
return noisy_samples

def __len__(self):
def __len__(self) -> int:
return self.config.num_train_timesteps
Loading