Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 18 additions & 18 deletions src/diffusers/schedulers/scheduling_heun_discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,12 +107,12 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
beta_schedule (`"linear"`, `"scaled_linear"`, `"squaredcos_cap_v2"`, or `"exp"`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear` or `scaled_linear`.
`linear`, `scaled_linear`, `squaredcos_cap_v2`, or `exp`.
trained_betas (`np.ndarray`, *optional*):
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
prediction_type (`str`, defaults to `epsilon`, *optional*):
prediction_type (`"epsilon"`, `"sample"`, or `"v_prediction"`, defaults to `"epsilon"`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
Expand All @@ -128,7 +128,7 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
timestep_spacing (`str`, defaults to `"linspace"`):
timestep_spacing (`"linspace"`, `"leading"`, or `"trailing"`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
steps_offset (`int`, defaults to 0):
Expand All @@ -144,17 +144,17 @@ def __init__(
num_train_timesteps: int = 1000,
beta_start: float = 0.00085, # sensible defaults
beta_end: float = 0.012,
beta_schedule: str = "linear",
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2", "exp"] = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
prediction_type: str = "epsilon",
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
use_karras_sigmas: Optional[bool] = False,
use_exponential_sigmas: Optional[bool] = False,
use_beta_sigmas: Optional[bool] = False,
clip_sample: Optional[bool] = False,
clip_sample_range: float = 1.0,
timestep_spacing: str = "linspace",
timestep_spacing: Literal["linspace", "leading", "trailing"] = "linspace",
steps_offset: int = 0,
):
) -> None:
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
Expand Down Expand Up @@ -241,7 +241,7 @@ def begin_index(self):
return self._begin_index

# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
def set_begin_index(self, begin_index: int = 0) -> None:
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

Expand All @@ -263,7 +263,7 @@ def scale_model_input(
Args:
sample (`torch.Tensor`):
The input sample.
timestep (`int`, *optional*):
timestep (`float` or `torch.Tensor`):
The current timestep in the diffusion chain.

Returns:
Expand All @@ -283,19 +283,19 @@ def set_timesteps(
device: Union[str, torch.device] = None,
num_train_timesteps: Optional[int] = None,
timesteps: Optional[List[int]] = None,
):
) -> None:
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).

Args:
num_inference_steps (`int`):
num_inference_steps (`int`, *optional*, defaults to `None`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
device (`str`, `torch.device`, *optional*, defaults to `None`):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
num_train_timesteps (`int`, *optional*):
num_train_timesteps (`int`, *optional*, defaults to `None`):
The number of diffusion steps used when training the model. If `None`, the default
`num_train_timesteps` attribute is used.
timesteps (`List[int]`, *optional*):
timesteps (`List[int]`, *optional*, defaults to `None`):
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, timesteps will be
generated based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps`
must be `None`, and `timestep_spacing` attribute will be ignored.
Expand Down Expand Up @@ -370,7 +370,7 @@ def set_timesteps(
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication

# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
def _sigma_to_t(self, sigma: np.ndarray, log_sigmas: np.ndarray) -> np.ndarray:
"""
Convert sigma values to corresponding timestep values through interpolation.

Expand Down Expand Up @@ -407,7 +407,7 @@ def _sigma_to_t(self, sigma, log_sigmas):
return t

# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
"""
Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
Models](https://huggingface.co/papers/2206.00364).
Expand Down Expand Up @@ -700,5 +700,5 @@ def add_noise(
noisy_samples = original_samples + noise * sigma
return noisy_samples

def __len__(self):
def __len__(self) -> int:
return self.config.num_train_timesteps