Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
381 changes: 381 additions & 0 deletions components/skills/data-analysis-polars-dev/SKILL.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,381 @@
---
name: polars
description: "Fast DataFrame library (Apache Arrow). Select, filter, group_by, joins, lazy evaluation, CSV/Parquet I/O, expression API, for high-performance data analysis workflows."
---

# Polars

## Overview

Polars is a lightning-fast DataFrame library for Python and Rust built on Apache Arrow. Work with Polars' expression-based API, lazy evaluation framework, and high-performance data manipulation capabilities for efficient data processing, pandas migration, and data pipeline optimization.

## Quick Start

### Installation and Basic Usage

Install Polars:
```python
uv pip install polars
```

Basic DataFrame creation and operations:
```python
import polars as pl

# Create DataFrame
df = pl.DataFrame({
"name": ["Alice", "Bob", "Charlie"],
"age": [25, 30, 35],
"city": ["NY", "LA", "SF"]
})

# Select columns
df.select("name", "age")

# Filter rows
df.filter(pl.col("age") > 25)

# Add computed columns
df.with_columns(
age_plus_10=pl.col("age") + 10
)
```

## Core Concepts

### Expressions

Expressions are the fundamental building blocks of Polars operations. They describe transformations on data and can be composed, reused, and optimized.

**Key principles:**
- Use `pl.col("column_name")` to reference columns
- Chain methods to build complex transformations
- Expressions are lazy and only execute within contexts (select, with_columns, filter, group_by)

**Example:**
```python
# Expression-based computation
df.select(
pl.col("name"),
(pl.col("age") * 12).alias("age_in_months")
)
```

### Lazy vs Eager Evaluation

**Eager (DataFrame):** Operations execute immediately
```python
df = pl.read_csv("file.csv") # Reads immediately
result = df.filter(pl.col("age") > 25) # Executes immediately
```

**Lazy (LazyFrame):** Operations build a query plan, optimized before execution
```python
lf = pl.scan_csv("file.csv") # Doesn't read yet
result = lf.filter(pl.col("age") > 25).select("name", "age")
df = result.collect() # Now executes optimized query
```

**When to use lazy:**
- Working with large datasets
- Complex query pipelines
- When only some columns/rows are needed
- Performance is critical

**Benefits of lazy evaluation:**
- Automatic query optimization
- Predicate pushdown
- Projection pushdown
- Parallel execution

For detailed concepts, load `references/core_concepts.md`.

## Common Operations

### Select
Select and manipulate columns:
```python
# Select specific columns
df.select("name", "age")

# Select with expressions
df.select(
pl.col("name"),
(pl.col("age") * 2).alias("double_age")
)

# Select all columns matching a pattern
df.select(pl.col("^.*_id$"))
```

### Filter
Filter rows by conditions:
```python
# Single condition
df.filter(pl.col("age") > 25)

# Multiple conditions (cleaner than using &)
df.filter(
pl.col("age") > 25,
pl.col("city") == "NY"
)

# Complex conditions
df.filter(
(pl.col("age") > 25) | (pl.col("city") == "LA")
)
```

### With Columns
Add or modify columns while preserving existing ones:
```python
# Add new columns
df.with_columns(
age_plus_10=pl.col("age") + 10,
name_upper=pl.col("name").str.to_uppercase()
)

# Parallel computation (all columns computed in parallel)
df.with_columns(
pl.col("value") * 10,
pl.col("value") * 100,
)
```

### Group By and Aggregations
Group data and compute aggregations:
```python
# Basic grouping
df.group_by("city").agg(
pl.col("age").mean().alias("avg_age"),
pl.len().alias("count")
)

# Multiple group keys
df.group_by("city", "department").agg(
pl.col("salary").sum()
)

# Conditional aggregations
df.group_by("city").agg(
(pl.col("age") > 30).sum().alias("over_30")
)
```

For detailed operation patterns, load `references/operations.md`.

## Aggregations and Window Functions

### Aggregation Functions
Common aggregations within `group_by` context:
- `pl.len()` - count rows
- `pl.col("x").sum()` - sum values
- `pl.col("x").mean()` - average
- `pl.col("x").min()` / `pl.col("x").max()` - extremes
- `pl.first()` / `pl.last()` - first/last values

### Window Functions with `over()`
Apply aggregations while preserving row count:
```python
# Add group statistics to each row
df.with_columns(
avg_age_by_city=pl.col("age").mean().over("city"),
rank_in_city=pl.col("salary").rank().over("city")
)

# Multiple grouping columns
df.with_columns(
group_avg=pl.col("value").mean().over("category", "region")
)
```

**Mapping strategies:**
- `group_to_rows` (default): Preserves original row order
- `explode`: Faster but groups rows together
- `join`: Creates list columns

## Data I/O

### Supported Formats
Polars supports reading and writing:
- CSV, Parquet, JSON, Excel
- Databases (via connectors)
- Cloud storage (S3, Azure, GCS)
- Google BigQuery
- Multiple/partitioned files

### Common I/O Operations

**CSV:**
```python
# Eager
df = pl.read_csv("file.csv")
df.write_csv("output.csv")

# Lazy (preferred for large files)
lf = pl.scan_csv("file.csv")
result = lf.filter(...).select(...).collect()
```

**Parquet (recommended for performance):**
```python
df = pl.read_parquet("file.parquet")
df.write_parquet("output.parquet")
```

**JSON:**
```python
df = pl.read_json("file.json")
df.write_json("output.json")
```

For comprehensive I/O documentation, load `references/io_guide.md`.

## Transformations

### Joins
Combine DataFrames:
```python
# Inner join
df1.join(df2, on="id", how="inner")

# Left join
df1.join(df2, on="id", how="left")

# Join on different column names
df1.join(df2, left_on="user_id", right_on="id")
```

### Concatenation
Stack DataFrames:
```python
# Vertical (stack rows)
pl.concat([df1, df2], how="vertical")

# Horizontal (add columns)
pl.concat([df1, df2], how="horizontal")

# Diagonal (union with different schemas)
pl.concat([df1, df2], how="diagonal")
```

### Pivot and Unpivot
Reshape data:
```python
# Pivot (wide format)
df.pivot(values="sales", index="date", columns="product")

# Unpivot (long format)
df.unpivot(index="id", on=["col1", "col2"])
```

For detailed transformation examples, load `references/transformations.md`.

## Pandas Migration

Polars offers significant performance improvements over pandas with a cleaner API. Key differences:

### Conceptual Differences
- **No index**: Polars uses integer positions only
- **Strict typing**: No silent type conversions
- **Lazy evaluation**: Available via LazyFrame
- **Parallel by default**: Operations parallelized automatically

### Common Operation Mappings

| Operation | Pandas | Polars |
|-----------|--------|--------|
| Select column | `df["col"]` | `df.select("col")` |
| Filter | `df[df["col"] > 10]` | `df.filter(pl.col("col") > 10)` |
| Add column | `df.assign(x=...)` | `df.with_columns(x=...)` |
| Group by | `df.groupby("col").agg(...)` | `df.group_by("col").agg(...)` |
| Window | `df.groupby("col").transform(...)` | `df.with_columns(...).over("col")` |

### Key Syntax Patterns

**Pandas sequential (slow):**
```python
df.assign(
col_a=lambda df_: df_.value * 10,
col_b=lambda df_: df_.value * 100
)
```

**Polars parallel (fast):**
```python
df.with_columns(
col_a=pl.col("value") * 10,
col_b=pl.col("value") * 100,
)
```

For comprehensive migration guide, load `references/pandas_migration.md`.

## Best Practices

### Performance Optimization

1. **Use lazy evaluation for large datasets:**
```python
lf = pl.scan_csv("large.csv") # Don't use read_csv
result = lf.filter(...).select(...).collect()
```

2. **Avoid Python functions in hot paths:**
- Stay within expression API for parallelization
- Use `.map_elements()` only when necessary
- Prefer native Polars operations

3. **Use streaming for very large data:**
```python
lf.collect(streaming=True)
```

4. **Select only needed columns early:**
```python
# Good: Select columns early
lf.select("col1", "col2").filter(...)

# Bad: Filter on all columns first
lf.filter(...).select("col1", "col2")
```

5. **Use appropriate data types:**
- Categorical for low-cardinality strings
- Appropriate integer sizes (i32 vs i64)
- Date types for temporal data

### Expression Patterns

**Conditional operations:**
```python
pl.when(condition).then(value).otherwise(other_value)
```

**Column operations across multiple columns:**
```python
df.select(pl.col("^.*_value$") * 2) # Regex pattern
```

**Null handling:**
```python
pl.col("x").fill_null(0)
pl.col("x").is_null()
pl.col("x").drop_nulls()
```

For additional best practices and patterns, load `references/best_practices.md`.

## Resources

This skill includes comprehensive reference documentation:

### references/
- `core_concepts.md` - Detailed explanations of expressions, lazy evaluation, and type system
- `operations.md` - Comprehensive guide to all common operations with examples
- `pandas_migration.md` - Complete migration guide from pandas to Polars
- `io_guide.md` - Data I/O operations for all supported formats
- `transformations.md` - Joins, concatenation, pivots, and reshaping operations
- `best_practices.md` - Performance optimization tips and common patterns

Load these references as needed when users require detailed information about specific topics.
Loading