-
Notifications
You must be signed in to change notification settings - Fork 102
🆕 Define DeepFeatureExtractor
#963
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
shaneahmed
wants to merge
18
commits into
dev-define-engines-abc
Choose a base branch
from
dev-define-DeepFeatureExtractor
base: dev-define-engines-abc
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
18 commits
Select commit
Hold shift + click to select a range
cd368bd
:new: Define `DeepFeatureExtractor`
shaneahmed f14fdaa
:fire: Remove incorrect docstring
shaneahmed 3fa9136
Merge branch 'dev-define-engines-abc' into dev-define-DeepFeatureExtr…
shaneahmed d3d0650
Merge remote-tracking branch 'origin/dev-define-DeepFeatureExtractor'…
shaneahmed aa4c812
:test_tube: Initial implementation
shaneahmed 4df8ea4
:test_tube: Initial implementation
shaneahmed 8460a2d
:white_check_mark: Add tests for `DeepFeatuureExtractor`
shaneahmed c9f0e59
:bug: Fix error due to inconsistent results
shaneahmed 35c964b
:white_check_mark: Add tests for coverage and update docstrings.
shaneahmed 4b6df14
:white_check_mark: Add cache support for large WSIs.
shaneahmed 998ddcb
:white_check_mark: Add support for `dict` output.
shaneahmed 38f84fb
[skip ci] :memo: Update docstring
shaneahmed 3ab5f68
:sparkles: Add command line interface to deep feature extractor
shaneahmed 227e317
:white_check_mark: Improve coverage
shaneahmed 62cfe01
:bug: Address Co-Pilot suggestions.
shaneahmed 4e62d4a
:bug: Fix test assertion
shaneahmed 6c3b821
:memo: Use features instead of probabilities in the ouptut.
shaneahmed 5c07200
Merge branch 'dev-define-engines-abc' into dev-define-DeepFeatureExtr…
shaneahmed File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,232 @@ | ||
| """Test for feature extractor.""" | ||
|
|
||
| import shutil | ||
| from collections.abc import Callable | ||
| from pathlib import Path | ||
|
|
||
| import numpy as np | ||
| import pytest | ||
| import torch | ||
| import zarr | ||
| from click.testing import CliRunner | ||
|
|
||
| from tiatoolbox import cli | ||
| from tiatoolbox.models import IOSegmentorConfig | ||
| from tiatoolbox.models.architecture.vanilla import CNNBackbone, TimmBackbone | ||
| from tiatoolbox.models.engine.deep_feature_extractor import DeepFeatureExtractor | ||
| from tiatoolbox.utils import env_detection as toolbox_env | ||
| from tiatoolbox.utils.misc import select_device | ||
| from tiatoolbox.wsicore.wsireader import WSIReader | ||
|
|
||
| ON_GPU = not toolbox_env.running_on_ci() and toolbox_env.has_gpu() | ||
|
|
||
| # ------------------------------------------------------------------------------------- | ||
| # Engine | ||
| # ------------------------------------------------------------------------------------- | ||
|
|
||
| device = "cuda" if toolbox_env.has_gpu() else "cpu" | ||
|
|
||
|
|
||
| def test_feature_extractor_patches( | ||
| remote_sample: Callable, | ||
| ) -> None: | ||
| """Tests DeepFeatureExtractor on image patches.""" | ||
| extractor = DeepFeatureExtractor( | ||
| model="fcn-tissue_mask", batch_size=32, verbose=False, device=device | ||
| ) | ||
|
|
||
| sample_image = remote_sample("thumbnail-1k-1k") | ||
|
|
||
| inputs = [sample_image, sample_image] | ||
|
|
||
| assert not extractor.patch_mode | ||
| output = extractor.run( | ||
| images=inputs, | ||
| return_probabilities=True, | ||
| return_labels=False, | ||
| device=device, | ||
| patch_mode=True, | ||
| ) | ||
|
|
||
| assert 0.48 < np.mean(output["features"][:]) < 0.52 | ||
|
|
||
| with pytest.raises( | ||
| ValueError, | ||
| match=r".*output_type: `annotationstore` is not supported " | ||
| r"for `DeepFeatureExtractor` engine", | ||
| ): | ||
| _ = extractor.run( | ||
| images=inputs, | ||
| return_probabilities=True, | ||
| return_labels=False, | ||
| device=device, | ||
| patch_mode=True, | ||
| output_type="annotationstore", | ||
| ) | ||
|
|
||
|
|
||
| def test_feature_extractor_wsi(remote_sample: Callable, track_tmp_path: Path) -> None: | ||
| """Test feature extraction with DeepFeatureExtractor engine.""" | ||
| save_dir = track_tmp_path / "output" | ||
| # # convert to pathlib Path to prevent wsireader complaint | ||
| mini_wsi_svs = Path(remote_sample("wsi2_4k_4k_svs")) | ||
|
|
||
| # * test providing pretrained from torch vs pretrained_model.yaml | ||
| shutil.rmtree(save_dir, ignore_errors=True) # default output dir test | ||
|
|
||
| extractor = DeepFeatureExtractor(batch_size=1, model="fcn-tissue_mask") | ||
| output = extractor.run( | ||
| images=[mini_wsi_svs], | ||
| return_probabilities=False, | ||
| return_labels=False, | ||
| device=device, | ||
| patch_mode=False, | ||
| save_dir=track_tmp_path / "wsi_out_check", | ||
| batch_size=1, | ||
| output_type="zarr", | ||
| memory_threshold=1, | ||
| ) | ||
|
|
||
| output_ = zarr.open(output[mini_wsi_svs], mode="r") | ||
| assert len(output_["coordinates"].shape) == 2 | ||
| assert len(output_["features"].shape) == 3 | ||
|
|
||
|
|
||
| @pytest.mark.parametrize( | ||
| "model", [CNNBackbone("resnet50"), TimmBackbone("efficientnet_b0", pretrained=True)] | ||
| ) | ||
| def test_full_inference( | ||
| remote_sample: Callable, track_tmp_path: Path, model: Callable | ||
| ) -> None: | ||
| """Test full inference with CNNBackbone and TimmBackbone models.""" | ||
| save_dir = track_tmp_path / "output" | ||
| # pre-emptive clean up | ||
| shutil.rmtree(save_dir, ignore_errors=True) # default output dir test | ||
|
|
||
| mini_wsi_svs = Path(remote_sample("wsi4_1k_1k_svs")) | ||
|
|
||
| ioconfig = IOSegmentorConfig( | ||
| input_resolutions=[ | ||
| {"units": "mpp", "resolution": 0.25}, | ||
| ], | ||
| output_resolutions=[ | ||
| {"units": "mpp", "resolution": 0.25}, | ||
| ], | ||
| patch_input_shape=[512, 512], | ||
| patch_output_shape=[512, 512], | ||
| stride_shape=[256, 256], | ||
| save_resolution={"units": "mpp", "resolution": 8.0}, | ||
| ) | ||
|
|
||
| extractor = DeepFeatureExtractor(batch_size=4, model=model) | ||
| output = extractor.run( | ||
| images=[mini_wsi_svs], | ||
| device=device, | ||
| save_dir=track_tmp_path / "wsi_out_check", | ||
| batch_size=4, | ||
| output_type="zarr", | ||
| ioconfig=ioconfig, | ||
| patch_mode=False, | ||
| ) | ||
|
|
||
| output_ = zarr.open(output[mini_wsi_svs], mode="r") | ||
|
|
||
| positions = output_["coordinates"] | ||
| features = output_["features"] | ||
|
|
||
| reader = WSIReader.open(mini_wsi_svs) | ||
| patches = [ | ||
| reader.read_bounds( | ||
| positions[patch_idx], | ||
| resolution=0.25, | ||
| units="mpp", | ||
| pad_constant_values=255, | ||
| coord_space="resolution", | ||
| ) | ||
| for patch_idx in range(4) | ||
| ] | ||
| patches = np.array(patches) | ||
| patches = torch.from_numpy(patches) # NHWC | ||
| patches = patches.permute(0, 3, 1, 2).contiguous() # NCHW | ||
| patches = patches.to(device).type(torch.float32) | ||
| model = extractor.model | ||
| # Inference mode | ||
| model.eval() | ||
| with torch.inference_mode(): | ||
| _features = model(patches).cpu().numpy() | ||
| # ! must maintain same batch size and likely same ordering | ||
| # ! else the output values will not exactly be the same (still < 1.0e-4 | ||
| # ! of epsilon though) | ||
| assert np.mean(np.abs(features[:4] - _features)) < 1.0e-1 | ||
shaneahmed marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
||
|
|
||
| @pytest.mark.skipif( | ||
| toolbox_env.running_on_ci() or not ON_GPU, | ||
| reason="Local test on machine with GPU.", | ||
| ) | ||
| def test_multi_gpu_feature_extraction( | ||
| remote_sample: Callable, track_tmp_path: Path | ||
| ) -> None: | ||
| """Local functionality test for feature extraction using multiple GPUs.""" | ||
| save_dir = track_tmp_path / "output" | ||
| mini_wsi_svs = Path(remote_sample("wsi4_1k_1k_svs")) | ||
| shutil.rmtree(save_dir, ignore_errors=True) | ||
|
|
||
| # Use multiple GPUs | ||
| device = select_device(on_gpu=ON_GPU) | ||
|
|
||
| wsi_ioconfig = IOSegmentorConfig( | ||
| input_resolutions=[{"units": "mpp", "resolution": 0.5}], | ||
| patch_input_shape=[224, 224], | ||
| output_resolutions=[{"units": "mpp", "resolution": 0.5}], | ||
| patch_output_shape=[224, 224], | ||
| stride_shape=[224, 224], | ||
| ) | ||
|
|
||
| model = TimmBackbone(backbone="UNI", pretrained=True) | ||
| extractor = DeepFeatureExtractor( | ||
| model=model, | ||
| batch_size=32, | ||
| num_workers=4, | ||
| ) | ||
|
|
||
| output = extractor.run( | ||
| [mini_wsi_svs], | ||
| patch_mode=False, | ||
| device=device, | ||
| ioconfig=wsi_ioconfig, | ||
| save_dir=save_dir, | ||
| auto_get_mask=True, | ||
| output_type="zarr", | ||
| ) | ||
| output_ = zarr.open(output[mini_wsi_svs], mode="r") | ||
|
|
||
| positions = output_["coordinates"] | ||
| features = output_["features"] | ||
| assert len(positions.shape) == 2 | ||
| assert len(features.shape) == 2 | ||
|
|
||
|
|
||
| # ------------------------------------------------------------------------------------- | ||
| # Command Line Interface | ||
| # ------------------------------------------------------------------------------------- | ||
|
|
||
|
|
||
| def test_cli_model_single_file(sample_svs: Path, track_tmp_path: Path) -> None: | ||
| """Test for feature extractor CLI single file.""" | ||
| runner = CliRunner() | ||
| models_wsi_result = runner.invoke( | ||
| cli.main, | ||
| [ | ||
| "deep-feature-extractor", | ||
| "--img-input", | ||
| str(sample_svs), | ||
| "--patch-mode", | ||
| "False", | ||
| "--output-path", | ||
| str(track_tmp_path / "output"), | ||
| ], | ||
| ) | ||
|
|
||
| assert models_wsi_result.exit_code == 0 | ||
| assert (track_tmp_path / "output" / (sample_svs.stem + ".zarr")).exists() | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,113 @@ | ||
| """Command line interface for deep feature extractor.""" | ||
|
|
||
| from __future__ import annotations | ||
|
|
||
| from tiatoolbox.cli.common import ( | ||
| cli_auto_get_mask, | ||
| cli_batch_size, | ||
| cli_device, | ||
| cli_file_type, | ||
| cli_img_input, | ||
| cli_masks, | ||
| cli_memory_threshold, | ||
| cli_model, | ||
| cli_num_workers, | ||
| cli_output_path, | ||
| cli_output_type, | ||
| cli_patch_mode, | ||
| cli_return_labels, | ||
| cli_return_probabilities, | ||
| cli_verbose, | ||
| cli_weights, | ||
| cli_yaml_config_path, | ||
| prepare_ioconfig, | ||
| prepare_model_cli, | ||
| tiatoolbox_cli, | ||
| ) | ||
|
|
||
|
|
||
| @tiatoolbox_cli.command() | ||
| @cli_img_input() | ||
| @cli_output_path( | ||
| usage_help="Output directory where model features will be saved.", | ||
| default="deep_feature_extractor", | ||
| ) | ||
| @cli_file_type( | ||
| default="*.png, *.jpg, *.jpeg, *.tif, *.tiff, *.svs, *.ndpi, *.jp2, *.mrxs", | ||
| ) | ||
| @cli_model(default="fcn-tissue_mask") | ||
| @cli_weights() | ||
| @cli_device(default="cpu") | ||
| @cli_batch_size(default=1) | ||
| @cli_yaml_config_path() | ||
| @cli_masks(default=None) | ||
| @cli_num_workers(default=0) | ||
| @cli_output_type( | ||
| default="zarr", | ||
| ) | ||
| @cli_memory_threshold(default=80) | ||
| @cli_patch_mode(default=False) | ||
| @cli_return_probabilities(default=True) | ||
| @cli_return_labels(default=False) | ||
| @cli_auto_get_mask(default=True) | ||
| @cli_verbose(default=True) | ||
| def deep_feature_extractor( | ||
| model: str, | ||
| weights: str, | ||
| img_input: str, | ||
| file_types: str, | ||
| masks: str | None, | ||
| output_path: str, | ||
| batch_size: int, | ||
| yaml_config_path: str, | ||
| num_workers: int, | ||
| device: str, | ||
| output_type: str, | ||
| memory_threshold: int, | ||
| *, | ||
| patch_mode: bool, | ||
| return_probabilities: bool, | ||
| return_labels: bool, | ||
| auto_get_mask: bool, | ||
| verbose: bool, | ||
| ) -> None: | ||
| """Process a set of input images with a deep feature extractor engine.""" | ||
| from tiatoolbox.models import ( # noqa: PLC0415 | ||
| DeepFeatureExtractor, | ||
| IOSegmentorConfig, | ||
| ) | ||
|
|
||
| files_all, masks_all, output_path = prepare_model_cli( | ||
| img_input=img_input, | ||
| output_path=output_path, | ||
| masks=masks, | ||
| file_types=file_types, | ||
| ) | ||
|
|
||
| ioconfig = prepare_ioconfig( | ||
| IOSegmentorConfig, | ||
| pretrained_weights=weights, | ||
| yaml_config_path=yaml_config_path, | ||
| ) | ||
|
|
||
| extractor = DeepFeatureExtractor( | ||
| model=model, | ||
| weights=weights, | ||
| batch_size=batch_size, | ||
| num_workers=num_workers, | ||
| verbose=verbose, | ||
shaneahmed marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| ) | ||
|
|
||
| _ = extractor.run( | ||
| images=files_all, | ||
| masks=masks_all, | ||
| patch_mode=patch_mode, | ||
| ioconfig=ioconfig, | ||
| device=device, | ||
| save_dir=output_path, | ||
| output_type=output_type, | ||
| return_probabilities=return_probabilities, | ||
| return_labels=return_labels, | ||
| auto_get_mask=auto_get_mask, | ||
| memory_threshold=memory_threshold, | ||
| ) | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.