Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
.env
*.csv
*.npy
*.pth
*.pkl
*.pyc
*.txt
131 changes: 91 additions & 40 deletions WiGesture/data_process_example/process1.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,8 @@
import os
import pandas as pd

root="./data"
data=[]
root = "./data"
data = []
csi_vaid_subcarrier_index = range(0, 52)

def handle_complex_data(x, valid_indices):
Expand All @@ -15,44 +15,95 @@ def handle_complex_data(x, valid_indices):
imag_parts.append(x[i * 2 - 1])
return np.array(real_parts) + 1j * np.array(imag_parts)

people_id = 0
for dataset_dir in os.listdir(root):
print(dataset_dir)
dataset_path = os.path.join(root, dataset_dir)
if not os.path.isdir(dataset_path):
continue

for static_dir in os.listdir(dataset_path):
print(static_dir)
static_path = os.path.join(dataset_path, static_dir)
if not os.path.isdir(static_path):
continue

for id_dir in os.listdir(static_path):
id_path = os.path.join(static_path, id_dir)
if not os.path.isdir(id_path):
continue

print(f"Processing ID: {id_dir}")
action_id = 0

# Verifique se há arquivos CSV diretamente no diretório ID
for item in os.listdir(id_path):
item_path = os.path.join(id_path, item)

# Se for um diretório, considere como um diretório de ação
if os.path.isdir(item_path):
action_dir = item
print(f" Action: {action_dir}")

# Processe os arquivos CSV dentro do diretório de ação
for file in os.listdir(item_path):
if not file.endswith('.csv'):
continue

file_path = os.path.join(item_path, file)
try:
df = pd.read_csv(file_path)
df.dropna(inplace=True)
df['data'] = df['data'].apply(lambda x: eval(x))
complex_data = df['data'].apply(lambda x: handle_complex_data(x, csi_vaid_subcarrier_index))
magnitude = complex_data.apply(lambda x: np.abs(x))
phase = complex_data.apply(lambda x: np.angle(x, deg=True))
time = np.array(df['timestamp'])
local_time = np.array(df['local_timestamp'])

data.append({
'csi_time': time,
'csi_local_time': local_time,
'volunteer_name': id_dir,
'volunteer_id': people_id,
'action': action_dir,
'action_id': action_id,
'magnitude': np.array([np.array(a) for a in magnitude]),
'phase': np.array([np.array(a) for a in phase])
})
except Exception as e:
print(f" Error processing {file_path}: {e}")

action_id += 1

# Se for um arquivo CSV, processe-o diretamente
elif item.endswith('.csv'):
try:
df = pd.read_csv(item_path)
df.dropna(inplace=True)
df['data'] = df['data'].apply(lambda x: eval(x))
complex_data = df['data'].apply(lambda x: handle_complex_data(x, csi_vaid_subcarrier_index))
magnitude = complex_data.apply(lambda x: np.abs(x))
phase = complex_data.apply(lambda x: np.angle(x, deg=True))
time = np.array(df['timestamp'])
local_time = np.array(df['local_timestamp'])

data.append({
'csi_time': time,
'csi_local_time': local_time,
'volunteer_name': id_dir,
'volunteer_id': people_id,
'action': 'unknown',
'action_id': 0,
'magnitude': np.array([np.array(a) for a in magnitude]),
'phase': np.array([np.array(a) for a in phase])
})
except Exception as e:
print(f" Error processing {item_path}: {e}")

people_id += 1


people_id=0
for people in os.listdir(root):
print(people)
action_id=0
path_people=os.path.join(root,people)
for action in os.listdir(path_people):
count=0
print(action)
path_action=os.path.join(path_people,action)
for file in os.listdir(path_action):
count+=1
path=os.path.join(path_action,file)
df = pd.read_csv(path)
df.dropna(inplace=True)
df['data'] = df['data'].apply(lambda x: eval(x))
complex_data = df['data'].apply(lambda x: handle_complex_data(x, csi_vaid_subcarrier_index))
magnitude = complex_data.apply(lambda x: np.abs(x))
phase = complex_data.apply(lambda x: np.angle(x, deg=True))
time = np.array(df['timestamp'])
local_time = np.array(df['local_timestamp'])
data.append({
'csi_time':time,
'csi_local_time':local_time,
'volunteer_name': people,
'volunteer_id': people_id,
'action': action,
'action_id': action_id,
'magnitude': np.array([np.array(a) for a in magnitude]),
'phase': np.array([np.array(a) for a in phase])
})
# if count==4:
# break
action_id+=1
people_id+=1

# 保存全局字典为一个pickle文件
# Salve o dicionário global como um arquivo pickle
output_file = './csi_data.pkl'
with open(output_file, 'wb') as f:
pickle.dump(data, f)
pickle.dump(data, f)