Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 20 additions & 46 deletions chapter2-deep-networks/cnn-functional-2.1.1.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,79 +3,53 @@
~99.3% test accuracy
'''

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

# Import required libraries
from __future__ import absolute_import, division, print_function
import numpy as np
from tensorflow.keras.layers import Dense, Dropout, Input
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten
from tensorflow.keras.layers import Conv2D, Dense, Dropout, Flatten, Input, MaxPooling2D
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical


# load MNIST dataset
# Load MNIST dataset and prepare it
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# from sparse label to categorical
num_labels = len(np.unique(y_train))
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

# reshape and normalize input images
# Reshape and normalize input images
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size, image_size, 1])
x_test = np.reshape(x_test,[-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
x_train = np.reshape(x_train,[-1, image_size, image_size, 1]).astype('float32') / 255
x_test = np.reshape(x_test,[-1, image_size, image_size, 1]).astype('float32') / 255

# network parameters
# Set network parameters
input_shape = (image_size, image_size, 1)
batch_size = 128
kernel_size = 3
filters = 64
dropout = 0.3

# use functional API to build cnn layers
# Build CNN layers with functional API
inputs = Input(shape=input_shape)
y = Conv2D(filters=filters,
kernel_size=kernel_size,
activation='relu')(inputs)
y = Conv2D(filters=filters, kernel_size=kernel_size, activation='relu')(inputs)
y = MaxPooling2D()(y)
y = Conv2D(filters=filters,
kernel_size=kernel_size,
activation='relu')(y)
y = Conv2D(filters=filters, kernel_size=kernel_size, activation='relu')(y)
y = MaxPooling2D()(y)
y = Conv2D(filters=filters,
kernel_size=kernel_size,
activation='relu')(y)
# image to vector before connecting to dense layer
y = Conv2D(filters=filters, kernel_size=kernel_size, activation='relu')(y)
y = Flatten()(y)
# dropout regularization
y = Dropout(dropout)(y)
outputs = Dense(num_labels, activation='softmax')(y)

# build the model by supplying inputs/outputs
# Build the model and show summary
model = Model(inputs=inputs, outputs=outputs)
# network model in text
model.summary()

# classifier loss, Adam optimizer, classifier accuracy
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
# Compile the model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# train the model with input images and labels
model.fit(x_train,
y_train,
validation_data=(x_test, y_test),
epochs=20,
batch_size=batch_size)
# Train the model with input images and labels
model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=20, batch_size=batch_size)

# model accuracy on test dataset
score = model.evaluate(x_test,
y_test,
batch_size=batch_size,
verbose=0)
print("\nTest accuracy: %.1f%%" % (100.0 * score[1]))
# Calculate and print model accuracy on test dataset
score = model.evaluate(x_test, y_test, batch_size=batch_size, verbose=0)
print("Test accuracy: %.1f%%" % (100.0 * score[1]))