๐ฅ Lightweight, fast, and production-ready anomaly detection โ powered by PaDiM. Deploy anywhere: edge devices, servers, or the cloud.
- ๐ฆ Multi-backend exports: PyTorch, ONNX, TorchScript, OpenVINO, TorchRT,INT8 Quantization
- ๐จ Visualizations: anomaly heatmaps, bounding boxes, ROC curves
- ๐ฅ๏ธ Unified Python + CLI workflows
- ๐ Edge-first design with compact
.pthmodels - โกC++ inference runtime for edge deployment
- โก 3ร faster inference on CPU (MVTec & Visa benchmarks)
- ๐ฆ Smaller models (30 MB vs 40 MB) with lower memory usage
- ๐ฏ Higher AUROC across most classes on both MVTec AD and Visa datasets
- ๐ Edge-first design โ optimized for ONNX, TorchScript, and OpenVINO
- ๐ก๏ธ Production-ready with clean API, CLI, and deployment options
| Metric | ๐ข AnomaVision | ๐ต Anomalib | ๐บ Difference | ๐ Winner |
|---|---|---|---|---|
| ๐งฎ Training Time (s) | 8.38 | 13.07 | -35.9% | ๐ข AV |
| ๐ Inference FPS | 43.41 | 13.03 | +233% | ๐ข AV |
| โฑ๏ธ ms / image | 23.0 | 76.7 | -70% | ๐ข AV |
โก AnomaVision trains faster, infers over 3ร quicker, and processes each image in 70% less time โ making it ideal for real-time CPU deployment.
| Metric | ๐ข AnomaVision | ๐ต Anomalib | ๐บ Difference | ๐ Winner |
|---|---|---|---|---|
| ๐งฎ Training Time (s) | 8.38 | 13.07 | -35.9% | ๐ข AV |
| ๐ Inference FPS | 547.46 | 355.72 | +53.9% | ๐ข AV |
| โฑ๏ธ ms / image | 1.83 | 2.81 | -35.0% | ๐ข AV |
โก AnomaVision runs over 1.5ร faster โ ideal for real-time edge inspection.
๐ See detailed results in Benchmarks.
๐ Download: AnomaVision vs Anomalib โ A Comprehensive Performance Analysis (PDF)
AnomaVision isnโt just Python ๐ โ it also provides a C++ implementation for ONNX Runtime + OpenCV.
- ๐ผ๏ธ Full pipeline: preprocessing โ inference โ postprocessing โ visualization
- ๐ฆ Modular design (Config, Preprocessor, ONNXModel, Postprocessor, Visualizer, App)
- ๐ Perfect for edge devices and production environments without Python
๐ See full guide: Quickstart โ C++ Inference
๐ Full docs are available in the /docs folder.
- Installation
- Quick Start
- CLI Reference
- API Reference
- Configuration Guide
- Benchmarks
- Troubleshooting & FAQ โ Common issues and fixes
- Contributing
Quick Install: using Pyenv and Poetry
git clone https://github.com/DeepKnowledge1/AnomaVision.git
cd AnomaVision
poetry install
poetry shellFrom PYPI: PYPI Video
pip install AnomaVisionโก For detailed installation options, see Installation Guide.
Train with a config file:
python train.py --config config.yml
## Save:
# Full model โ padim_model.pt
# Compact stats-only model โ padim_model.pth
# Config snapshot โ config.yml
Run detection:
python detect.py --config config.ymlEvaluate performance:
python eval.py --config config.ymlExport to ONNX:
python export.py --config export_config.ymlโก For more examples, see Quick Start.
- Image AUROC: AV 0.85 โ vs AL 0.81
- Pixel AUROC: AV 0.96 โ vs AL 0.94
- FPS: AV 43 โ vs AL 13
- Image AUROC: AV 0.81 โ vs AL 0.78
- Pixel AUROC: AV 0.96 โ vs AL 0.95
- FPS: AV 45 โ vs AL 13
๐ Full tables & plots โ Benchmarks
We welcome contributions!
- See Contributing Guide for high-level steps
AnomaVision is built on top of the excellent Anodet repository. We thank the original authors for their contributions to open-source anomaly detection research, which laid the foundation for this work.
If you use AnomaVision in your research, please cite:
@software{anomavision2025,
title={AnomaVision: Edge-Ready Visual Anomaly Detection},
author={DeepKnowledge Contributors},
year={2025},
url={https://github.com/DeepKnowledge1/AnomaVision},
}- ๐ข Discussions
- ๐ Issues
- ๐ง deepp.knowledge@gmail.com
๐ Start with Quick Start and build your first anomaly detection pipeline in 5 minutes!
