Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion pyopls/permutation_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -314,7 +314,12 @@ def _permutation_test_score(estimator, X, y, groups=None, cv='warn',
"""Auxiliary function for permutation_test_score"""
if score_functions is None:
score_functions = [r2_score]
y_pred = cross_val_predict(estimator, X, y, groups, cv, n_jobs, verbose, fit_params, pre_dispatch, method)
try:
y_pred = cross_val_predict(estimator, X, y, groups=groups, cv=cv, n_jobs=n_jobs,
verbose=verbose, fit_params=fit_params, pre_dispatch=pre_dispatch, method=method)
except TypeError:
y_pred = cross_val_predict(estimator, X, y, groups=groups, cv=cv, n_jobs=n_jobs,
verbose=verbose, params=fit_params, pre_dispatch=pre_dispatch, method=method)
cv_scores = [score_function(y, y_pred) for score_function in score_functions]
return np.array(cv_scores)

Expand Down
12 changes: 6 additions & 6 deletions pyopls/validation.py
Original file line number Diff line number Diff line change
Expand Up @@ -205,12 +205,12 @@ def _get_score_function(self, Y):
def _validate(self, X, Y, n_components, score_function, cv=None, n_jobs=None, verbose=0, pre_dispatch='2*n_jobs'):
cv = cv or self._get_validator(Y, self.k)
Z = OPLS(n_components, self.scale).fit_transform(X, Y)
y_pred = cross_val_predict(PLSRegression(1, self.scale), Z, Y, cv=cv, n_jobs=n_jobs, verbose=verbose,
y_pred = cross_val_predict(PLSRegression(1, scale=self.scale), Z, Y, cv=cv, n_jobs=n_jobs, verbose=verbose,
pre_dispatch=pre_dispatch)
return score_function(Y, y_pred)

def _process_binary_target(self, y, pos_label=None):
self.binarizer_ = LabelBinarizer(-1, 1)
self.binarizer_ = LabelBinarizer(neg_label=-1, pos_label=1)
self.binarizer_.fit(y)
if pos_label is not None and self.binarizer_.transform([pos_label])[0] == -1:
self.binarizer_.classes_ = np.flip(self.binarizer_.classes_)
Expand Down Expand Up @@ -367,7 +367,7 @@ def _determine_significant_features(self,
"""
Z = OPLS(n_components, self.scale).fit_transform(X, y)
x_loadings, permutation_x_loadings, p_values = feature_permutation_loading(
PLSRegression(1, self.scale), Z, y, self.n_inner_permutations, self.inner_alpha,
PLSRegression(1, scale=self.scale), Z, y, self.n_inner_permutations, self.inner_alpha,
self.n_outer_permutations, random_state, n_jobs, verbose, pre_dispatch
)
return p_values < self.outer_alpha, p_values, permutation_x_loadings
Expand All @@ -376,7 +376,7 @@ def cross_val_roc_curve(self, X, y, cv=None, n_jobs=None, verbose=0, pre_dispatc
Z = self.opls_.transform(X)
cv = cv or self._get_validator(y, self.k)
check_is_fitted(self, ['opls_', 'pls_', 'binarizer_'])
y_pred = cross_val_predict(PLSRegression(1, self.scale), Z, y, cv=cv, n_jobs=n_jobs, verbose=verbose,
y_pred = cross_val_predict(PLSRegression(1, scale=self.scale), Z, y, cv=cv, n_jobs=n_jobs, verbose=verbose,
pre_dispatch=pre_dispatch)
return roc_curve(y, y_pred)

Expand Down Expand Up @@ -462,7 +462,7 @@ def _log(txt):

self.opls_ = OPLS(self.n_components_, self.scale).fit(X, y)
Z = self.opls_.transform(X)
self.pls_ = PLSRegression(1, self.scale).fit(Z, y)
self.pls_ = PLSRegression(1, scale=self.scale).fit(Z, y)
self.r_squared_X_ = self.opls_.score(X)
y_pred = self.pls_.predict(Z)
self.r_squared_Y_ = r2_score(y, y_pred)
Expand All @@ -477,7 +477,7 @@ def _log(txt):

_log('Performing cross-validated metric permutation tests.')

cv_results = permutation_test_score(PLSRegression(1, self.scale), Z, y, cv=cv,
cv_results = permutation_test_score(PLSRegression(1, scale=self.scale), Z, y, cv=cv,
n_permutations=self.n_permutations, cv_score_functions=score_functions,
n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)
if self.is_discrimination(y):
Expand Down