Skip to content

对这个work有一个疑惑: #19

@scofield7419

Description

@scofield7419

我在研究您的论文时,产生了一个疑惑:
你的模型/方法破坏了training set & testing set的原始分布。

其他的RL工作都是基于改变模型参数来适配拟合数据的,也就是不会改变training data & testing data。这样就保证了training set & testing set的原始分布。

但是这篇文章的工作核心是:用RL来对原始training数据的noise bag进行剔除,通过标签Y改变input data。这在training阶段是OK的,这样做确实可以减少noise data对我的分类模型的干扰。但是在test阶段还能这样吗?test set都没label了,如何反馈reward给policy module进行test set中的bag的剔除?那么我在test phrase还如何work呢?

我看了代码,发现in test phrase,确实是直接对test set用CNN做关系分类。

谢谢。

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions