Skip to content

Commit e5d877d

Browse files
committed
remove .names.repair warnings
1 parent 2623a49 commit e5d877d

File tree

2 files changed

+19
-22
lines changed

2 files changed

+19
-22
lines changed

tutorials/workflow/populationModel_workfow.Rmd renamed to tutorials/workflow/populationModel_workflow.Rmd

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -489,7 +489,7 @@ In practice, the hierarchy has little impact in this controlled environment (the
489489

490490
Finally we can implement the goodness-of-fit check that was commonly used in the tutorials: the observed vs predicted plot at cluster level.
491491

492-
```{r}
492+
```{r, message=F, warning=F}
493493
# New validation: cluster-based
494494
comp_obs_poisson_lognormal_hierarchical_cp <- as_tibble(samples_poisson_lognormal_hierarchical_cp$pop_post_pred) %>%
495495
summarise(across(
@@ -602,7 +602,7 @@ We see a gain in goodness-of-fit for the low values of population counts, due to
602602

603603
A more thorough analysis can be undertaken by comparing the residuals from the two models.
604604

605-
```{r}
605+
```{r, message=FALSE, warning=F}
606606
# validation metrics based on residuals
607607
comp_obs_poisson_lognormal_hierarchical_var <- as_tibble(samples_poisson_lognormal_hierarchical_var$pop_post_pred) %>%
608608
summarise(across(
@@ -676,7 +676,7 @@ fit_poisson_lognormal_hierarchical_nclp <- stan(
676676
)
677677
```
678678

679-
We can plot the estimated parameters by adding the deviation $delta_{settlement}$ to the baseline, {alpha_{national}}:
679+
We can plot the estimated parameters by adding the deviation $delta_{settlement}$ to the baseline, $alpha_{national}$:
680680

681681
```{r}
682682
samples_poisson_lognormal_hierarchical_nclp<- rstan::extract(fit_poisson_lognormal_hierarchical_nclp)

0 commit comments

Comments
 (0)