|
| 1 | +import torch |
| 2 | +from vllm.config import CUDAGraphMode |
| 3 | +from vllm.v1.spec_decode.suffix_decoding import \ |
| 4 | + SuffixDecodingProposer as VllmSuffixDecodingProposer |
| 5 | + |
| 6 | +from vllm_ascend.spec_decode.interface import Proposer, SpecDcodeType |
| 7 | + |
| 8 | + |
| 9 | +class SuffixDecodingProposer(VllmSuffixDecodingProposer, Proposer): |
| 10 | + |
| 11 | + def __init__(self, vllm_config, device, runner): |
| 12 | + super().__init__(vllm_config) |
| 13 | + self.name = SpecDcodeType.SUFFIX |
| 14 | + self.device = device |
| 15 | + self.runner = runner |
| 16 | + |
| 17 | + def load_model(self, *args, **kwargs): |
| 18 | + # No model to load. |
| 19 | + pass |
| 20 | + |
| 21 | + @torch.inference_mode() |
| 22 | + def dummy_run(self, |
| 23 | + num_tokens, |
| 24 | + with_prefill=None, |
| 25 | + skip_attn=None, |
| 26 | + num_reqs=None, |
| 27 | + num_tokens_across_dp=None, |
| 28 | + aclgraph_runtime_mode: CUDAGraphMode = CUDAGraphMode.NONE, |
| 29 | + batch_descriptor=None): |
| 30 | + pass |
| 31 | + |
| 32 | + def generate_token_ids(self, |
| 33 | + valid_sampled_token_ids, |
| 34 | + sampling_metadata=None, |
| 35 | + scheduler_output=None, |
| 36 | + spec_decode_metadata=None, |
| 37 | + positions=None, |
| 38 | + num_scheduled_tokens=None, |
| 39 | + hidden_states=None, |
| 40 | + attn_metadata=None, |
| 41 | + aux_hidden_states=None) -> list[list[int]]: |
| 42 | + draft_token_ids = self.propose(self.runner.input_batch, valid_sampled_token_ids) |
| 43 | + return draft_token_ids |
0 commit comments