|
| 1 | +import copy |
| 2 | +import numpy as np |
| 3 | +import torch |
| 4 | +import torch.nn as nn |
| 5 | +import torch.nn.functional as F |
| 6 | +import os |
| 7 | + |
| 8 | +# selectiong on which GPU code should be run.. |
| 9 | +# os.environ['CUDA_VISIBLE_DEVICES'] = '1' |
| 10 | + |
| 11 | + |
| 12 | +# if GPU avilable then use the GPU otherwise use the CPU. |
| 13 | +# device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 14 | +device = "cpu" |
| 15 | + |
| 16 | +# if torch.cuda.is_available(): |
| 17 | +# print("training on the nvedia GPU........") |
| 18 | + |
| 19 | +# torch.cuda.empty_cache() |
| 20 | + |
| 21 | +# Re-tuned version of Deep Deterministic Policy Gradients (DDPG) |
| 22 | +# Paper: https://arxiv.org/abs/1509.02971 |
| 23 | + |
| 24 | + |
| 25 | +class Actor(nn.Module): |
| 26 | + |
| 27 | + """ |
| 28 | + Actor class define the structure of neural network of the actor part of actor-critic frameworks and doing the forward pass. |
| 29 | + Arguments : |
| 30 | + state_dim (integer) : number of observation actor observed from the environment. |
| 31 | + action_dim (integer) : number of actions actor need to give to the environment. |
| 32 | +
|
| 33 | + Return : |
| 34 | + model : return the actor model. |
| 35 | +
|
| 36 | + """ |
| 37 | + |
| 38 | + def __init__(self, state_dim, action_dim): |
| 39 | + |
| 40 | + """ |
| 41 | + init function is used to initilize the critic network. |
| 42 | + |
| 43 | + Arguments : |
| 44 | + state_dim (integer) : number of observation actor observed from the environment. |
| 45 | + action_dim (integer) : number of actions actor need to give to the environment. |
| 46 | +
|
| 47 | + Return : |
| 48 | + None |
| 49 | +
|
| 50 | + """ |
| 51 | + super(Actor, self).__init__() |
| 52 | + |
| 53 | + self.l1 = nn.Linear(state_dim, 256) |
| 54 | + self.l2 = nn.Linear(256, 256) |
| 55 | + self.l3 = nn.Linear(256, action_dim) |
| 56 | + |
| 57 | + def forward(self, state): |
| 58 | + |
| 59 | + """ |
| 60 | + forward function takes the (state, action) and predict its Q-value. |
| 61 | +
|
| 62 | + Arguements : |
| 63 | + state (array) : observations of the actor networks. |
| 64 | + action (array) : output array of the actor network. |
| 65 | + Return : |
| 66 | + model : return the critic model. |
| 67 | + """ |
| 68 | + |
| 69 | + a = F.relu(self.l1(state)) |
| 70 | + a = F.relu(self.l2(a)) |
| 71 | + |
| 72 | + model = torch.tanh(self.l3(a)) |
| 73 | + return model |
| 74 | + |
| 75 | + |
| 76 | +class Critic(nn.Module): |
| 77 | + |
| 78 | + """ |
| 79 | + Critic class define the structure of neural network of the critic part of actor-critic frameworks and doing the forward pass. |
| 80 | + """ |
| 81 | + |
| 82 | + def __init__(self, state_dim, action_dim): |
| 83 | + super(Critic, self).__init__() |
| 84 | + |
| 85 | + """ |
| 86 | + init function is used to initilize the critic network. |
| 87 | + |
| 88 | + Arguments : |
| 89 | + state_dim (integer) : number of observation actor observed from the environment. |
| 90 | + action_dim (integer) : number of actions actor need to give to the environment. |
| 91 | +
|
| 92 | + Return : |
| 93 | + None |
| 94 | +
|
| 95 | + """ |
| 96 | + self.l1 = nn.Linear(state_dim + action_dim, 256) |
| 97 | + self.l2 = nn.Linear(256, 256) |
| 98 | + self.l3 = nn.Linear(256, 1) |
| 99 | + |
| 100 | + |
| 101 | + def forward(self, state, action): |
| 102 | + |
| 103 | + """ |
| 104 | + forward function takes the (state, action) and predict its Q-value. |
| 105 | +
|
| 106 | + Arguements : |
| 107 | + state (array) : observations of the actor networks. |
| 108 | + action (array) : output array of the actor network. |
| 109 | + Return : |
| 110 | + model : return the critic model. |
| 111 | + """ |
| 112 | + q = F.relu(self.l1(torch.cat([state, action], 1))) |
| 113 | + q = F.relu(self.l2(q)) |
| 114 | + return self.l3(q) |
| 115 | + |
| 116 | + |
| 117 | +class DDPG(object): |
| 118 | + |
| 119 | + """ |
| 120 | + DDPG class define the ddpg algorithm |
| 121 | + """ |
| 122 | + |
| 123 | + |
| 124 | + def __init__(self, state_dim, action_dim, discount=0.99, tau=0.001): |
| 125 | + |
| 126 | + """ |
| 127 | + init funtion is called when we create the object of the class. |
| 128 | +
|
| 129 | + Argurments : |
| 130 | + state_dim (integer) : number of observation actor observed from the environment. |
| 131 | + action_dim (integer) : number of actions actor need to give to the environment. |
| 132 | + discount (float) : discount factor (gamma) used while updating the Q-value of (state, action). |
| 133 | + tau (float) : used to soft update the target actor and critic. |
| 134 | + |
| 135 | + Return : |
| 136 | + None |
| 137 | + """ |
| 138 | + |
| 139 | + self.actor = Actor(state_dim, action_dim).to(device) |
| 140 | + self.actor_target = copy.deepcopy(self.actor) |
| 141 | + self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=3e-4) |
| 142 | + |
| 143 | + self.critic = Critic(state_dim, action_dim).to(device) |
| 144 | + self.critic_target = copy.deepcopy(self.critic) |
| 145 | + self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=3e-4) |
| 146 | + |
| 147 | + self.discount = discount |
| 148 | + self.tau = tau |
| 149 | + |
| 150 | + self.actor_loss_list = [] |
| 151 | + self.critic_loss_list = [] |
| 152 | + |
| 153 | + |
| 154 | + def select_action(self, state): |
| 155 | + |
| 156 | + """ |
| 157 | + This function take the state as input and return action taken by the agent on this state. |
| 158 | + Arguments : |
| 159 | + state (array) : state on which we need to take the action. |
| 160 | + Return : |
| 161 | + action (array) : action taken by the actor on this state. |
| 162 | +
|
| 163 | + """ |
| 164 | + |
| 165 | + state = torch.FloatTensor(state.reshape(1, -1)).to(device) |
| 166 | + return self.actor(state).cpu().data.numpy().flatten() |
| 167 | + |
| 168 | + |
| 169 | + def train(self, replay_buffer, batch_size=256): |
| 170 | + |
| 171 | + """ |
| 172 | + Train function is used to update the actor and critic network using the sampled data from the replay buffer. |
| 173 | +
|
| 174 | + Arguments : |
| 175 | + replay_buffer (object) : replay_buffer takes the object of the buffer.ReplayBuffer() class where the (interaction) data is stored. |
| 176 | + batch_size (integer) : the number of samples we randomly select to update the actor and critic network from the replay_buffer. |
| 177 | + default value of the replay buffer is 256. |
| 178 | + """ |
| 179 | + |
| 180 | + ### Sample replay buffer |
| 181 | + state, action, next_state, reward, not_done = replay_buffer.sample(batch_size) |
| 182 | + |
| 183 | + ### Compute the target Q value |
| 184 | + target_Q = self.critic_target(next_state, self.actor_target(next_state)) |
| 185 | + target_Q = reward + (not_done * self.discount * target_Q).detach() |
| 186 | + |
| 187 | + ### Get current Q estimate |
| 188 | + current_Q = self.critic(state, action) |
| 189 | + |
| 190 | + ### Compute critic loss |
| 191 | + critic_loss = F.mse_loss(current_Q, target_Q) |
| 192 | + |
| 193 | + ### Append the critic loss to the critic_loss_list |
| 194 | + self.critic_loss_list.append(critic_loss.cpu().data.numpy()) |
| 195 | + |
| 196 | + ### Optimize the critic |
| 197 | + self.critic_optimizer.zero_grad() |
| 198 | + critic_loss.backward() |
| 199 | + self.critic_optimizer.step() |
| 200 | + |
| 201 | + ### Compute actor loss |
| 202 | + actor_loss = -self.critic(state, self.actor(state)).mean() |
| 203 | + |
| 204 | + ### Append the actor loss to the actor_loss_list. |
| 205 | + self.actor_loss_list.append(actor_loss.cpu().data.numpy()) |
| 206 | + |
| 207 | + ### Optimize the actor |
| 208 | + self.actor_optimizer.zero_grad() |
| 209 | + actor_loss.backward() |
| 210 | + self.actor_optimizer.step() |
| 211 | + |
| 212 | + ### Update the frozen target models |
| 213 | + for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()): |
| 214 | + target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) |
| 215 | + |
| 216 | + for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()): |
| 217 | + target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) |
| 218 | + |
| 219 | + |
| 220 | + def save(self, dir, ep): |
| 221 | + |
| 222 | + """ |
| 223 | + save function is used to save the actor, critic losses and models. |
| 224 | + Arguments : |
| 225 | + dir (str) : directory where we need to save the actor, critic losses and models. |
| 226 | + ep (integer) : episode number at which we are saving the data. |
| 227 | + Return : |
| 228 | + None |
| 229 | + """ |
| 230 | + |
| 231 | + torch.save(self.critic.state_dict(), dir + "/model/_critic" + str(ep)) |
| 232 | + torch.save(self.critic_optimizer.state_dict(), dir + "/model/_critic_optimizer" + str(ep)) |
| 233 | + |
| 234 | + torch.save(self.actor.state_dict(), dir + "/model/_actor" + str(ep)) |
| 235 | + torch.save(self.actor_optimizer.state_dict(), dir + "/model/_actor_optimizer"+ str(ep)) |
| 236 | + |
| 237 | + ac_loss = np.asarray(self.actor_loss_list) |
| 238 | + c_loss = np.asarray(self.critic_loss_list) |
| 239 | + |
| 240 | + np.savetxt(dir + "/mat/actor_loss "+ str(ep) + ".csv", ac_loss, delimiter=',') |
| 241 | + np.savetxt(dir + "/mat/critic_loss"+ str(ep) +".csv", c_loss, delimiter=',') |
| 242 | + |
| 243 | + |
| 244 | + def load(self, dir, ep): |
| 245 | + |
| 246 | + """ |
| 247 | + save function is used to save the actor, critic losses and models. |
| 248 | + Arguments : |
| 249 | + dir (str) : directory where we need to save the actor, critic losses and models. |
| 250 | + ep (integer) : episode number at which we are saving the data. |
| 251 | + Return : |
| 252 | + None |
| 253 | + """ |
| 254 | + |
| 255 | + self.critic.load_state_dict(torch.load(dir + "/model/_critic" + str(ep) )) |
| 256 | + self.critic_optimizer.load_state_dict(torch.load(dir + "/model/_critic_optimizer" + str(ep) )) |
| 257 | + self.critic_target = copy.deepcopy(self.critic) |
| 258 | + |
| 259 | + self.actor.load_state_dict(torch.load(dir + "/model/_actor" + str(ep) )) |
| 260 | + self.actor_optimizer.load_state_dict(torch.load(dir + "/model/_actor_optimizer" + str(ep) )) |
| 261 | + self.actor_target = copy.deepcopy(self.actor) |
| 262 | + |
| 263 | + |
| 264 | + |
0 commit comments