Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 30 additions & 0 deletions docs/datasets/Chinatown/Chinatown.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
# PedestrianCountingSystem dataset

The City of Melbourne, Australia has developed an automated pedestrian counting system to better understand pedestrian activity within the municipality, such as how people use different city locations at different time of the day. The data analysis can facility decision making and urban planning for the future.

We extract data of 10 locations for the whole year 2017. We make two datasets from these data.

## MelbournePedestrian (not this file) and Chinatown

Data are pedestrian count in Chinatown-Swanston St (North for 12
months of the year 2017. Classes are based on whether data are from
a normal day or a weekend day.

- Class 1: Weekend
- Class 2: Weekday

Train size: 20

Test size: 343

Missing value: No

Number of classses: 2

Time series length: 24

There is nothing to infer from the order of examples in the train and test set.

Data source: City of Melbourne (see [1]). Data edited by Hoang Anh Dau.

[1] http://www.pedestrian.melbourne.vic.gov.au/#date=11-06-2018&time=4
399 changes: 399 additions & 0 deletions docs/datasets/Chinatown/Chinatown_TEST.arff

Large diffs are not rendered by default.

381 changes: 381 additions & 0 deletions docs/datasets/Chinatown/Chinatown_TEST.ts

Large diffs are not rendered by default.

343 changes: 343 additions & 0 deletions docs/datasets/Chinatown/Chinatown_TEST.txt

Large diffs are not rendered by default.

78 changes: 78 additions & 0 deletions docs/datasets/Chinatown/Chinatown_TRAIN.arff
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
%# PedestrianCountingSystem dataset
%
%The City of Melbourne, Australia has developed an automated pedestrian counting system to better understand pedestrian activity within the municipality, such as how people use different city locations at different time of the day. The data analysis can facility decision making and urban planning for the future.
%
%We extract data of 10 locations for the whole year 2017. We make two datasets from these data.
%
%## MelbournePedestrian (not this problem) and
%
%## Chinatown
%
%Data are pedestrian count in Chinatown-Swanston St (North for 12 months of the year 2017. Classes are based on whether data are from a normal day or a weekend day.
%
%- Class 1: Weekend
%- Class 2: Weekday
%
%Train size: 20
%
%Test size: 343
%
%Missing value: No
%
%Number of classses: 2
%
%Time series length: 24
%
%There is nothing to infer from the order of examples in the train and test set.
%
%Data source: City of Melbourne (see [1]). Data edited by Hoang Anh Dau.
%
%[1] http://www.pedestrian.melbourne.vic.gov.au/#date=11-06-2018&time=4
@Relation Chinatown
@attribute att1 numeric
@attribute att2 numeric
@attribute att3 numeric
@attribute att4 numeric
@attribute att5 numeric
@attribute att6 numeric
@attribute att7 numeric
@attribute att8 numeric
@attribute att9 numeric
@attribute att10 numeric
@attribute att11 numeric
@attribute att12 numeric
@attribute att13 numeric
@attribute att14 numeric
@attribute att15 numeric
@attribute att16 numeric
@attribute att17 numeric
@attribute att18 numeric
@attribute att19 numeric
@attribute att20 numeric
@attribute att21 numeric
@attribute att22 numeric
@attribute att23 numeric
@attribute att24 numeric
@attribute target {1,2}

@data
573.0,375.0,301.0,212.0,55.0,34.0,25.0,33.0,113.0,143.0,303.0,615.0,1226.0,1281.0,1221.0,1081.0,866.0,1096.0,1039.0,975.0,746.0,581.0,409.0,182.0,1
394.0,264.0,140.0,144.0,104.0,28.0,28.0,25.0,70.0,153.0,401.0,649.0,1216.0,1399.0,1249.0,1240.0,1109.0,1137.0,1290.0,1137.0,791.0,638.0,597.0,316.0,1
603.0,348.0,176.0,177.0,47.0,30.0,40.0,42.0,101.0,180.0,401.0,777.0,1344.0,1573.0,1408.0,1243.0,1141.0,1178.0,1256.0,1114.0,814.0,635.0,304.0,168.0,1
428.0,309.0,199.0,117.0,82.0,43.0,24.0,64.0,152.0,183.0,408.0,797.0,1288.0,1491.0,1523.0,1460.0,1365.0,1520.0,1700.0,1797.0,1596.0,1139.0,910.0,640.0,1
372.0,310.0,203.0,133.0,65.0,39.0,27.0,36.0,107.0,139.0,329.0,651.0,990.0,1027.0,1041.0,971.0,1104.0,844.0,1023.0,1019.0,862.0,643.0,591.0,452.0,1
448.0,344.0,183.0,146.0,71.0,14.0,30.0,41.0,108.0,137.0,277.0,576.0,1010.0,1271.0,1264.0,1062.0,1093.0,1030.0,1069.0,1151.0,898.0,754.0,467.0,362.0,1
621.0,322.0,221.0,150.0,65.0,40.0,42.0,84.0,148.0,190.0,341.0,685.0,1162.0,1391.0,1367.0,1279.0,1318.0,1336.0,1440.0,1479.0,1417.0,1347.0,1003.0,803.0,1
597.0,409.0,142.0,93.0,48.0,30.0,34.0,87.0,132.0,157.0,389.0,1024.0,1648.0,1768.0,1703.0,1706.0,1520.0,1562.0,1608.0,1766.0,1533.0,1441.0,1252.0,964.0,1
525.0,431.0,248.0,240.0,91.0,64.0,29.0,117.0,200.0,236.0,456.0,717.0,1331.0,1609.0,1563.0,1398.0,1465.0,1459.0,1631.0,1891.0,1847.0,1731.0,1375.0,1188.0,1
587.0,382.0,165.0,192.0,130.0,44.0,21.0,35.0,73.0,132.0,299.0,639.0,1110.0,1320.0,1208.0,1069.0,1070.0,1164.0,1547.0,1575.0,1503.0,1139.0,1066.0,776.0,1
144.0,73.0,21.0,16.0,10.0,12.0,26.0,100.0,177.0,220.0,371.0,599.0,1280.0,1346.0,1461.0,1367.0,1319.0,1205.0,1250.0,1269.0,981.0,806.0,550.0,320.0,2
141.0,63.0,51.0,14.0,16.0,14.0,28.0,103.0,172.0,205.0,442.0,601.0,1165.0,1228.0,912.0,872.0,847.0,1227.0,1561.0,1611.0,1386.0,1007.0,810.0,680.0,2
67.0,67.0,107.0,14.0,11.0,19.0,18.0,75.0,185.0,223.0,298.0,571.0,1044.0,1107.0,872.0,765.0,824.0,1032.0,1237.0,1084.0,759.0,543.0,377.0,168.0,2
69.0,54.0,35.0,6.0,7.0,15.0,19.0,76.0,212.0,238.0,364.0,717.0,1223.0,1166.0,994.0,931.0,929.0,1093.0,1275.0,1161.0,1083.0,726.0,441.0,241.0,2
142.0,104.0,55.0,33.0,51.0,13.0,36.0,77.0,185.0,222.0,437.0,739.0,1326.0,1372.0,979.0,942.0,1019.0,1250.0,1663.0,1781.0,1513.0,1188.0,1000.0,638.0,2
256.0,171.0,104.0,67.0,51.0,26.0,25.0,41.0,170.0,192.0,334.0,801.0,1341.0,1468.0,1395.0,1221.0,1168.0,1284.0,1400.0,1321.0,1099.0,791.0,498.0,272.0,2
130.0,68.0,52.0,23.0,10.0,16.0,28.0,128.0,226.0,271.0,402.0,652.0,1282.0,1353.0,1084.0,1124.0,920.0,1063.0,1160.0,1184.0,893.0,720.0,541.0,304.0,2
78.0,60.0,51.0,17.0,10.0,12.0,22.0,73.0,172.0,186.0,318.0,414.0,1003.0,1153.0,981.0,846.0,872.0,1051.0,1200.0,1276.0,1004.0,841.0,525.0,315.0,2
95.0,63.0,45.0,26.0,3.0,23.0,28.0,108.0,209.0,241.0,372.0,549.0,1206.0,1223.0,1156.0,1102.0,1083.0,1107.0,1109.0,1193.0,900.0,660.0,442.0,226.0,2
82.0,93.0,51.0,28.0,39.0,17.0,30.0,138.0,225.0,261.0,358.0,621.0,1074.0,1176.0,914.0,858.0,830.0,928.0,954.0,871.0,730.0,506.0,262.0,150.0,2
58 changes: 58 additions & 0 deletions docs/datasets/Chinatown/Chinatown_TRAIN.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
## PedestrianCountingSystem dataset
#
#The City of Melbourne, Australia has developed an automated pedestrian counting system to better understand pedestrian activity within the municipality, such as how people use different city locations at different time of the day. The data analysis can facility decision making and urban planning for the future.
#
#We extract data of 10 locations for the whole year 2017. We make two datasets from these data.
#
### MelbournePedestrian (not this file) and Chinatown
#
#Data are pedestrian count in Chinatown-Swanston St (North for 12
#months of the year 2017. Classes are based on whether data are from
#a normal day or a weekend day.
#
#- Class 1: Weekend
#- Class 2: Weekday
#
#Train size: 20
#
#Test size: 343
#
#Missing value: No
#
#Number of classses: 2
#
#Time series length: 24
#
#There is nothing to infer from the order of examples in the train and test set.
#
#Data source: City of Melbourne (see [1]). Data edited by Hoang Anh Dau.
#
#[1] http://www.pedestrian.melbourne.vic.gov.au/#date=11-06-2018&time=4
@problemName Chinatown
@timeStamps false
@missing false
@univariate true
@equalLength true
@seriesLength 24
@classLabel true 1 2
@data
573.0,375.0,301.0,212.0,55.0,34.0,25.0,33.0,113.0,143.0,303.0,615.0,1226.0,1281.0,1221.0,1081.0,866.0,1096.0,1039.0,975.0,746.0,581.0,409.0,182.0:1
394.0,264.0,140.0,144.0,104.0,28.0,28.0,25.0,70.0,153.0,401.0,649.0,1216.0,1399.0,1249.0,1240.0,1109.0,1137.0,1290.0,1137.0,791.0,638.0,597.0,316.0:1
603.0,348.0,176.0,177.0,47.0,30.0,40.0,42.0,101.0,180.0,401.0,777.0,1344.0,1573.0,1408.0,1243.0,1141.0,1178.0,1256.0,1114.0,814.0,635.0,304.0,168.0:1
428.0,309.0,199.0,117.0,82.0,43.0,24.0,64.0,152.0,183.0,408.0,797.0,1288.0,1491.0,1523.0,1460.0,1365.0,1520.0,1700.0,1797.0,1596.0,1139.0,910.0,640.0:1
372.0,310.0,203.0,133.0,65.0,39.0,27.0,36.0,107.0,139.0,329.0,651.0,990.0,1027.0,1041.0,971.0,1104.0,844.0,1023.0,1019.0,862.0,643.0,591.0,452.0:1
448.0,344.0,183.0,146.0,71.0,14.0,30.0,41.0,108.0,137.0,277.0,576.0,1010.0,1271.0,1264.0,1062.0,1093.0,1030.0,1069.0,1151.0,898.0,754.0,467.0,362.0:1
621.0,322.0,221.0,150.0,65.0,40.0,42.0,84.0,148.0,190.0,341.0,685.0,1162.0,1391.0,1367.0,1279.0,1318.0,1336.0,1440.0,1479.0,1417.0,1347.0,1003.0,803.0:1
597.0,409.0,142.0,93.0,48.0,30.0,34.0,87.0,132.0,157.0,389.0,1024.0,1648.0,1768.0,1703.0,1706.0,1520.0,1562.0,1608.0,1766.0,1533.0,1441.0,1252.0,964.0:1
525.0,431.0,248.0,240.0,91.0,64.0,29.0,117.0,200.0,236.0,456.0,717.0,1331.0,1609.0,1563.0,1398.0,1465.0,1459.0,1631.0,1891.0,1847.0,1731.0,1375.0,1188.0:1
587.0,382.0,165.0,192.0,130.0,44.0,21.0,35.0,73.0,132.0,299.0,639.0,1110.0,1320.0,1208.0,1069.0,1070.0,1164.0,1547.0,1575.0,1503.0,1139.0,1066.0,776.0:1
144.0,73.0,21.0,16.0,10.0,12.0,26.0,100.0,177.0,220.0,371.0,599.0,1280.0,1346.0,1461.0,1367.0,1319.0,1205.0,1250.0,1269.0,981.0,806.0,550.0,320.0:2
141.0,63.0,51.0,14.0,16.0,14.0,28.0,103.0,172.0,205.0,442.0,601.0,1165.0,1228.0,912.0,872.0,847.0,1227.0,1561.0,1611.0,1386.0,1007.0,810.0,680.0:2
67.0,67.0,107.0,14.0,11.0,19.0,18.0,75.0,185.0,223.0,298.0,571.0,1044.0,1107.0,872.0,765.0,824.0,1032.0,1237.0,1084.0,759.0,543.0,377.0,168.0:2
69.0,54.0,35.0,6.0,7.0,15.0,19.0,76.0,212.0,238.0,364.0,717.0,1223.0,1166.0,994.0,931.0,929.0,1093.0,1275.0,1161.0,1083.0,726.0,441.0,241.0:2
142.0,104.0,55.0,33.0,51.0,13.0,36.0,77.0,185.0,222.0,437.0,739.0,1326.0,1372.0,979.0,942.0,1019.0,1250.0,1663.0,1781.0,1513.0,1188.0,1000.0,638.0:2
256.0,171.0,104.0,67.0,51.0,26.0,25.0,41.0,170.0,192.0,334.0,801.0,1341.0,1468.0,1395.0,1221.0,1168.0,1284.0,1400.0,1321.0,1099.0,791.0,498.0,272.0:2
130.0,68.0,52.0,23.0,10.0,16.0,28.0,128.0,226.0,271.0,402.0,652.0,1282.0,1353.0,1084.0,1124.0,920.0,1063.0,1160.0,1184.0,893.0,720.0,541.0,304.0:2
78.0,60.0,51.0,17.0,10.0,12.0,22.0,73.0,172.0,186.0,318.0,414.0,1003.0,1153.0,981.0,846.0,872.0,1051.0,1200.0,1276.0,1004.0,841.0,525.0,315.0:2
95.0,63.0,45.0,26.0,3.0,23.0,28.0,108.0,209.0,241.0,372.0,549.0,1206.0,1223.0,1156.0,1102.0,1083.0,1107.0,1109.0,1193.0,900.0,660.0,442.0,226.0:2
82.0,93.0,51.0,28.0,39.0,17.0,30.0,138.0,225.0,261.0,358.0,621.0,1074.0,1176.0,914.0,858.0,830.0,928.0,954.0,871.0,730.0,506.0,262.0,150.0:2
20 changes: 20 additions & 0 deletions docs/datasets/Chinatown/Chinatown_TRAIN.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
1.0000000e+00 5.7300000e+02 3.7500000e+02 3.0100000e+02 2.1200000e+02 5.5000000e+01 3.4000000e+01 2.5000000e+01 3.3000000e+01 1.1300000e+02 1.4300000e+02 3.0300000e+02 6.1500000e+02 1.2260000e+03 1.2810000e+03 1.2210000e+03 1.0810000e+03 8.6600000e+02 1.0960000e+03 1.0390000e+03 9.7500000e+02 7.4600000e+02 5.8100000e+02 4.0900000e+02 1.8200000e+02
1.0000000e+00 3.9400000e+02 2.6400000e+02 1.4000000e+02 1.4400000e+02 1.0400000e+02 2.8000000e+01 2.8000000e+01 2.5000000e+01 7.0000000e+01 1.5300000e+02 4.0100000e+02 6.4900000e+02 1.2160000e+03 1.3990000e+03 1.2490000e+03 1.2400000e+03 1.1090000e+03 1.1370000e+03 1.2900000e+03 1.1370000e+03 7.9100000e+02 6.3800000e+02 5.9700000e+02 3.1600000e+02
1.0000000e+00 6.0300000e+02 3.4800000e+02 1.7600000e+02 1.7700000e+02 4.7000000e+01 3.0000000e+01 4.0000000e+01 4.2000000e+01 1.0100000e+02 1.8000000e+02 4.0100000e+02 7.7700000e+02 1.3440000e+03 1.5730000e+03 1.4080000e+03 1.2430000e+03 1.1410000e+03 1.1780000e+03 1.2560000e+03 1.1140000e+03 8.1400000e+02 6.3500000e+02 3.0400000e+02 1.6800000e+02
1.0000000e+00 4.2800000e+02 3.0900000e+02 1.9900000e+02 1.1700000e+02 8.2000000e+01 4.3000000e+01 2.4000000e+01 6.4000000e+01 1.5200000e+02 1.8300000e+02 4.0800000e+02 7.9700000e+02 1.2880000e+03 1.4910000e+03 1.5230000e+03 1.4600000e+03 1.3650000e+03 1.5200000e+03 1.7000000e+03 1.7970000e+03 1.5960000e+03 1.1390000e+03 9.1000000e+02 6.4000000e+02
1.0000000e+00 3.7200000e+02 3.1000000e+02 2.0300000e+02 1.3300000e+02 6.5000000e+01 3.9000000e+01 2.7000000e+01 3.6000000e+01 1.0700000e+02 1.3900000e+02 3.2900000e+02 6.5100000e+02 9.9000000e+02 1.0270000e+03 1.0410000e+03 9.7100000e+02 1.1040000e+03 8.4400000e+02 1.0230000e+03 1.0190000e+03 8.6200000e+02 6.4300000e+02 5.9100000e+02 4.5200000e+02
1.0000000e+00 4.4800000e+02 3.4400000e+02 1.8300000e+02 1.4600000e+02 7.1000000e+01 1.4000000e+01 3.0000000e+01 4.1000000e+01 1.0800000e+02 1.3700000e+02 2.7700000e+02 5.7600000e+02 1.0100000e+03 1.2710000e+03 1.2640000e+03 1.0620000e+03 1.0930000e+03 1.0300000e+03 1.0690000e+03 1.1510000e+03 8.9800000e+02 7.5400000e+02 4.6700000e+02 3.6200000e+02
1.0000000e+00 6.2100000e+02 3.2200000e+02 2.2100000e+02 1.5000000e+02 6.5000000e+01 4.0000000e+01 4.2000000e+01 8.4000000e+01 1.4800000e+02 1.9000000e+02 3.4100000e+02 6.8500000e+02 1.1620000e+03 1.3910000e+03 1.3670000e+03 1.2790000e+03 1.3180000e+03 1.3360000e+03 1.4400000e+03 1.4790000e+03 1.4170000e+03 1.3470000e+03 1.0030000e+03 8.0300000e+02
1.0000000e+00 5.9700000e+02 4.0900000e+02 1.4200000e+02 9.3000000e+01 4.8000000e+01 3.0000000e+01 3.4000000e+01 8.7000000e+01 1.3200000e+02 1.5700000e+02 3.8900000e+02 1.0240000e+03 1.6480000e+03 1.7680000e+03 1.7030000e+03 1.7060000e+03 1.5200000e+03 1.5620000e+03 1.6080000e+03 1.7660000e+03 1.5330000e+03 1.4410000e+03 1.2520000e+03 9.6400000e+02
1.0000000e+00 5.2500000e+02 4.3100000e+02 2.4800000e+02 2.4000000e+02 9.1000000e+01 6.4000000e+01 2.9000000e+01 1.1700000e+02 2.0000000e+02 2.3600000e+02 4.5600000e+02 7.1700000e+02 1.3310000e+03 1.6090000e+03 1.5630000e+03 1.3980000e+03 1.4650000e+03 1.4590000e+03 1.6310000e+03 1.8910000e+03 1.8470000e+03 1.7310000e+03 1.3750000e+03 1.1880000e+03
1.0000000e+00 5.8700000e+02 3.8200000e+02 1.6500000e+02 1.9200000e+02 1.3000000e+02 4.4000000e+01 2.1000000e+01 3.5000000e+01 7.3000000e+01 1.3200000e+02 2.9900000e+02 6.3900000e+02 1.1100000e+03 1.3200000e+03 1.2080000e+03 1.0690000e+03 1.0700000e+03 1.1640000e+03 1.5470000e+03 1.5750000e+03 1.5030000e+03 1.1390000e+03 1.0660000e+03 7.7600000e+02
2.0000000e+00 1.4400000e+02 7.3000000e+01 2.1000000e+01 1.6000000e+01 1.0000000e+01 1.2000000e+01 2.6000000e+01 1.0000000e+02 1.7700000e+02 2.2000000e+02 3.7100000e+02 5.9900000e+02 1.2800000e+03 1.3460000e+03 1.4610000e+03 1.3670000e+03 1.3190000e+03 1.2050000e+03 1.2500000e+03 1.2690000e+03 9.8100000e+02 8.0600000e+02 5.5000000e+02 3.2000000e+02
2.0000000e+00 1.4100000e+02 6.3000000e+01 5.1000000e+01 1.4000000e+01 1.6000000e+01 1.4000000e+01 2.8000000e+01 1.0300000e+02 1.7200000e+02 2.0500000e+02 4.4200000e+02 6.0100000e+02 1.1650000e+03 1.2280000e+03 9.1200000e+02 8.7200000e+02 8.4700000e+02 1.2270000e+03 1.5610000e+03 1.6110000e+03 1.3860000e+03 1.0070000e+03 8.1000000e+02 6.8000000e+02
2.0000000e+00 6.7000000e+01 6.7000000e+01 1.0700000e+02 1.4000000e+01 1.1000000e+01 1.9000000e+01 1.8000000e+01 7.5000000e+01 1.8500000e+02 2.2300000e+02 2.9800000e+02 5.7100000e+02 1.0440000e+03 1.1070000e+03 8.7200000e+02 7.6500000e+02 8.2400000e+02 1.0320000e+03 1.2370000e+03 1.0840000e+03 7.5900000e+02 5.4300000e+02 3.7700000e+02 1.6800000e+02
2.0000000e+00 6.9000000e+01 5.4000000e+01 3.5000000e+01 6.0000000e+00 7.0000000e+00 1.5000000e+01 1.9000000e+01 7.6000000e+01 2.1200000e+02 2.3800000e+02 3.6400000e+02 7.1700000e+02 1.2230000e+03 1.1660000e+03 9.9400000e+02 9.3100000e+02 9.2900000e+02 1.0930000e+03 1.2750000e+03 1.1610000e+03 1.0830000e+03 7.2600000e+02 4.4100000e+02 2.4100000e+02
2.0000000e+00 1.4200000e+02 1.0400000e+02 5.5000000e+01 3.3000000e+01 5.1000000e+01 1.3000000e+01 3.6000000e+01 7.7000000e+01 1.8500000e+02 2.2200000e+02 4.3700000e+02 7.3900000e+02 1.3260000e+03 1.3720000e+03 9.7900000e+02 9.4200000e+02 1.0190000e+03 1.2500000e+03 1.6630000e+03 1.7810000e+03 1.5130000e+03 1.1880000e+03 1.0000000e+03 6.3800000e+02
2.0000000e+00 2.5600000e+02 1.7100000e+02 1.0400000e+02 6.7000000e+01 5.1000000e+01 2.6000000e+01 2.5000000e+01 4.1000000e+01 1.7000000e+02 1.9200000e+02 3.3400000e+02 8.0100000e+02 1.3410000e+03 1.4680000e+03 1.3950000e+03 1.2210000e+03 1.1680000e+03 1.2840000e+03 1.4000000e+03 1.3210000e+03 1.0990000e+03 7.9100000e+02 4.9800000e+02 2.7200000e+02
2.0000000e+00 1.3000000e+02 6.8000000e+01 5.2000000e+01 2.3000000e+01 1.0000000e+01 1.6000000e+01 2.8000000e+01 1.2800000e+02 2.2600000e+02 2.7100000e+02 4.0200000e+02 6.5200000e+02 1.2820000e+03 1.3530000e+03 1.0840000e+03 1.1240000e+03 9.2000000e+02 1.0630000e+03 1.1600000e+03 1.1840000e+03 8.9300000e+02 7.2000000e+02 5.4100000e+02 3.0400000e+02
2.0000000e+00 7.8000000e+01 6.0000000e+01 5.1000000e+01 1.7000000e+01 1.0000000e+01 1.2000000e+01 2.2000000e+01 7.3000000e+01 1.7200000e+02 1.8600000e+02 3.1800000e+02 4.1400000e+02 1.0030000e+03 1.1530000e+03 9.8100000e+02 8.4600000e+02 8.7200000e+02 1.0510000e+03 1.2000000e+03 1.2760000e+03 1.0040000e+03 8.4100000e+02 5.2500000e+02 3.1500000e+02
2.0000000e+00 9.5000000e+01 6.3000000e+01 4.5000000e+01 2.6000000e+01 3.0000000e+00 2.3000000e+01 2.8000000e+01 1.0800000e+02 2.0900000e+02 2.4100000e+02 3.7200000e+02 5.4900000e+02 1.2060000e+03 1.2230000e+03 1.1560000e+03 1.1020000e+03 1.0830000e+03 1.1070000e+03 1.1090000e+03 1.1930000e+03 9.0000000e+02 6.6000000e+02 4.4200000e+02 2.2600000e+02
2.0000000e+00 8.2000000e+01 9.3000000e+01 5.1000000e+01 2.8000000e+01 3.9000000e+01 1.7000000e+01 3.0000000e+01 1.3800000e+02 2.2500000e+02 2.6100000e+02 3.5800000e+02 6.2100000e+02 1.0740000e+03 1.1760000e+03 9.1400000e+02 8.5800000e+02 8.3000000e+02 9.2800000e+02 9.5400000e+02 8.7100000e+02 7.3000000e+02 5.0600000e+02 2.6200000e+02 1.5000000e+02
29 changes: 29 additions & 0 deletions docs/datasets/Chinatown/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
# PedestrianCountingSystem dataset

The City of Melbourne, Australia has developed an automated pedestrian counting system to better understand pedestrian activity within the municipality, such as how people use different city locations at different time of the day. The data analysis can facility decision making and urban planning for the future.

We extract data of 10 locations for the whole year 2017. We make two datasets from these data.

## MelbournePedestrian (not this file) and
## Chinatown

Data are pedestrian count in Chinatown-Swanston St (North for 12 months of the year 2017. Classes are based on whether data are from a normal day or a weekend day.

- Class 1: Weekend
- Class 2: Weekday

Train size: 20

Test size: 343

Missing value: No

Number of classses: 2

Time series length: 24

There is nothing to infer from the order of examples in the train and test set.

Data source: City of Melbourne (see [1]). Data edited by Hoang Anh Dau.

[1] http://www.pedestrian.melbourne.vic.gov.au/#date=11-06-2018&time=4
Loading