From 1f51a5393123079403aa7d17a52f2be6a57c3953 Mon Sep 17 00:00:00 2001
From: Planeshifter <1913638+Planeshifter@users.noreply.github.com>
Date: Thu, 13 Mar 2025 02:41:19 +0000
Subject: [PATCH 1/2] docs: update namespace table of contents
Signed-off-by: stdlib-bot <82920195+stdlib-bot@users.noreply.github.com>
---
lib/node_modules/@stdlib/math/base/ops/README.md | 3 ---
lib/node_modules/@stdlib/stats/base/README.md | 8 ++++----
2 files changed, 4 insertions(+), 7 deletions(-)
diff --git a/lib/node_modules/@stdlib/math/base/ops/README.md b/lib/node_modules/@stdlib/math/base/ops/README.md
index 7d7e40b51d98..462c3f31354d 100644
--- a/lib/node_modules/@stdlib/math/base/ops/README.md
+++ b/lib/node_modules/@stdlib/math/base/ops/README.md
@@ -45,7 +45,6 @@ The namespace contains the following functions:
-- [`cdiv( z1, z2 )`][@stdlib/complex/float64/base/div]: divide two double-precision complex floating-point numbers.
- [`cneg( z )`][@stdlib/math/base/ops/cneg]: negate a double-precision complex floating-point number.
- [`cnegf( z )`][@stdlib/math/base/ops/cnegf]: negate a single-precision complex floating-point number.
- [`csub( z1, z2 )`][@stdlib/math/base/ops/csub]: subtract two double-precision complex floating-point numbers.
@@ -102,8 +101,6 @@ console.log( ns.cmul( z1, z2 ) ); // { 're': -13.0, 'im': -1.0 }
-[@stdlib/complex/float64/base/div]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/complex/float64/base/div
-
[@stdlib/math/base/ops/cneg]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/math/base/ops/cneg
[@stdlib/math/base/ops/cnegf]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/math/base/ops/cnegf
diff --git a/lib/node_modules/@stdlib/stats/base/README.md b/lib/node_modules/@stdlib/stats/base/README.md
index 8033485ccdea..14659ee62370 100644
--- a/lib/node_modules/@stdlib/stats/base/README.md
+++ b/lib/node_modules/@stdlib/stats/base/README.md
@@ -85,7 +85,7 @@ The namespace contains the following statistical functions:
- [`dnanstdevpn( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevpn]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.
- [`dnanstdevtk( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevtk]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.
- [`dnanstdevwd( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevwd]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.
-- [`dnanstdevyc( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevyc]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
+- [`dnanstdevyc( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevyc]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
- [`dnanvariance( N, correction, x, stride )`][@stdlib/stats/base/dnanvariance]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values.
- [`dnanvariancech( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancech]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
- [`dnanvariancepn( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancepn]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.
@@ -104,13 +104,13 @@ The namespace contains the following statistical functions:
- [`dsmeanpn( N, x, strideX )`][@stdlib/stats/base/dsmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm with extended accumulation and returning an extended precision result.
- [`dsmeanpw( N, x, strideX )`][@stdlib/stats/base/dsmeanpw]: calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation with extended accumulation and returning an extended precision result.
- [`dsmeanwd( N, x, strideX )`][@stdlib/stats/base/dsmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result.
-- [`dsnanmean( N, x, stride )`][@stdlib/stats/base/dsnanmean]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using extended accumulation, and returning an extended precision result.
+- [`dsnanmean( N, x, strideX )`][@stdlib/stats/base/dsnanmean]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using extended accumulation, and returning an extended precision result.
- [`dsnanmeanors( N, x, strideX )`][@stdlib/stats/base/dsnanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.
- [`dsnanmeanpn( N, x, strideX )`][@stdlib/stats/base/dsnanmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result.
- [`dsnanmeanwd( N, x, strideX )`][@stdlib/stats/base/dsnanmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using Welford's algorithm with extended accumulation, and returning an extended precision result.
- [`dstdev( N, correction, x, stride )`][@stdlib/stats/base/dstdev]: calculate the standard deviation of a double-precision floating-point strided array.
- [`dstdevch( N, correction, x, strideX )`][@stdlib/stats/base/dstdevch]: calculate the standard deviation of a double-precision floating-point strided array using a one-pass trial mean algorithm.
-- [`dstdevpn( N, correction, x, stride )`][@stdlib/stats/base/dstdevpn]: calculate the standard deviation of a double-precision floating-point strided array using a two-pass algorithm.
+- [`dstdevpn( N, correction, x, strideX )`][@stdlib/stats/base/dstdevpn]: calculate the standard deviation of a double-precision floating-point strided array using a two-pass algorithm.
- [`dstdevtk( N, correction, x, strideX )`][@stdlib/stats/base/dstdevtk]: calculate the standard deviation of a double-precision floating-point strided array using a one-pass textbook algorithm.
- [`dstdevwd( N, correction, x, strideX )`][@stdlib/stats/base/dstdevwd]: calculate the standard deviation of a double-precision floating-point strided array using Welford's algorithm.
- [`dstdevyc( N, correction, x, strideX )`][@stdlib/stats/base/dstdevyc]: calculate the standard deviation of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
@@ -241,7 +241,7 @@ The namespace contains the following statistical functions:
- [`stdevyc( N, correction, x, stride )`][@stdlib/stats/base/stdevyc]: calculate the standard deviation of a strided array using a one-pass algorithm proposed by Youngs and Cramer.
- [`svariance( N, correction, x, stride )`][@stdlib/stats/base/svariance]: calculate the variance of a single-precision floating-point strided array.
- [`svariancech( N, correction, x, strideX )`][@stdlib/stats/base/svariancech]: calculate the variance of a single-precision floating-point strided array using a one-pass trial mean algorithm.
-- [`svariancepn( N, correction, x, stride )`][@stdlib/stats/base/svariancepn]: calculate the variance of a single-precision floating-point strided array using a two-pass algorithm.
+- [`svariancepn( N, correction, x, strideX )`][@stdlib/stats/base/svariancepn]: calculate the variance of a single-precision floating-point strided array using a two-pass algorithm.
- [`svariancetk( N, correction, x, strideX )`][@stdlib/stats/base/svariancetk]: calculate the variance of a single-precision floating-point strided array using a one-pass textbook algorithm.
- [`svariancewd( N, correction, x, stride )`][@stdlib/stats/base/svariancewd]: calculate the variance of a single-precision floating-point strided array using Welford's algorithm.
- [`svarianceyc( N, correction, x, strideX )`][@stdlib/stats/base/svarianceyc]: calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
From 5c4ffe4ba4f51323919c216aec21ef8601cb8e42 Mon Sep 17 00:00:00 2001
From: Athan
Date: Thu, 13 Mar 2025 09:26:00 -0700
Subject: [PATCH 2/2] docs: update examples
Signed-off-by: Athan
---
lib/node_modules/@stdlib/math/base/ops/README.md | 13 +------------
1 file changed, 1 insertion(+), 12 deletions(-)
diff --git a/lib/node_modules/@stdlib/math/base/ops/README.md b/lib/node_modules/@stdlib/math/base/ops/README.md
index 462c3f31354d..82fd9e76fca3 100644
--- a/lib/node_modules/@stdlib/math/base/ops/README.md
+++ b/lib/node_modules/@stdlib/math/base/ops/README.md
@@ -67,20 +67,9 @@ The namespace contains the following functions:
```javascript
-var Complex128 = require( '@stdlib/complex/float64/ctor' );
var ns = require( '@stdlib/math/base/ops' );
-console.log( ns.sub( 1.25, 0.45 ) );
-// => 0.8
-
-console.log( ns.divf( 1.2, 0.4 ) );
-// => 3.0
-
-// Operations for complex numbers:
-var z1 = new Complex128( 5.0, 3.0 );
-var z2 = new Complex128( -2.0, 1.0 );
-console.log( ns.cmul( z1, z2 ) ); // { 're': -13.0, 'im': -1.0 }
-// =>
+console.log( ns );
```