@@ -110,7 +110,7 @@ static double rational_p1q1( const double x ) {
110110* @param {number} x - value at which to evaluate the rational function
111111* @returns {number} evaluated rational function
112112*/
113- static double rational_p2q2 (const double x ) {
113+ static double rational_p2q2 ( const double x ) {
114114 double ax ;
115115 double ix ;
116116 double s1 ;
@@ -152,7 +152,7 @@ static double rational_p2q2(const double x ) {
152152* @param {number} x - value at which to evaluate the rational function
153153* @returns {number} evaluated rational function
154154*/
155- static double rational_pcqc (const double x ) {
155+ static double rational_pcqc ( const double x ) {
156156 double ax ;
157157 double ix ;
158158 double s1 ;
@@ -194,7 +194,7 @@ static double rational_pcqc(const double x ) {
194194* @param {number} x - value at which to evaluate the rational function
195195* @returns {number} evaluated rational function
196196*/
197- static double rational_psqs (const double x ) {
197+ static double rational_psqs ( const double x ) {
198198 double ax ;
199199 double ix ;
200200 double s1 ;
@@ -238,7 +238,7 @@ static double rational_psqs(const double x ) {
238238*/
239239
240240double stdlib_base_bessely1 ( double x ) {
241- double rc ;
241+ double rc ;
242242 double rs ;
243243 double y ;
244244 double r ;
@@ -261,24 +261,24 @@ double stdlib_base_bessely1( double x ) {
261261 xc = x ;
262262 if (xc <= 4.0 ) {
263263 y = xc * xc ;
264- z = ( stdlib_base_ln (xc / x1 ) * stdlib_base_besselj1 (xc ) ) * TWO_DIV_PI ;
265- r = rational_p1q1 (y );
266- f = ( ( xc + x1 ) * ( (xc - (x11 / 256.0 )) - x12 ) ) / xc ;
267- return z + (f * r );
264+ z = ( stdlib_base_ln ( xc / x1 ) * stdlib_base_besselj1 ( xc ) ) * TWO_DIV_PI ;
265+ r = rational_p1q1 ( y );
266+ f = ( ( xc + x1 ) * ( ( xc - ( x11 / 256.0 ) ) - x12 ) ) / xc ;
267+ return z + ( f * r );
268268 }
269- if (xc <= 8.0 ) {
269+ if ( xc <= 8.0 ) {
270270 y = xc * xc ;
271- z = ( stdlib_base_ln (xc / x2 ) * stdlib_base_besselj1 (xc ) ) * TWO_DIV_PI ;
272- r = rational_p2q2 (y );
273- f = ( ( xc + x2 ) * ( (xc - (x21 / 256.0 ) ) - x22 ) ) / xc ;
274- return z + (f * r );
271+ z = ( stdlib_base_ln ( xc / x2 ) * stdlib_base_besselj1 ( xc ) ) * TWO_DIV_PI ;
272+ r = rational_p2q2 ( y );
273+ f = ( ( xc + x2 ) * ( ( xc - ( x21 / 256.0 ) ) - x22 ) ) / xc ;
274+ return z + ( f * r );
275275 }
276276
277277 y = 8.0 / xc ;
278278 y2 = y * y ;
279- rc = rational_pcqc (y2 );
280- rs = rational_psqs (y2 );
281- f = ONE_DIV_SQRT_PI / stdlib_base_sqrt (xc );
279+ rc = rational_pcqc ( y2 );
280+ rs = rational_psqs ( y2 );
281+ f = ONE_DIV_SQRT_PI / stdlib_base_sqrt ( xc );
282282
283283 /*
284284 * This code is really just:
@@ -291,5 +291,5 @@ double stdlib_base_bessely1( double x ) {
291291 * But using the sin/cos addition rules, plus constants for sin/cos of `3π/4` which then cancel out with corresponding terms in "f".
292292 */
293293 stdlib_base_sincos ( xc , & s , & c );
294- return f * ( ( (y * rs ) * ( s - c ) ) - ( rc * ( s + c ) ) );
294+ return f * ( ( ( y * rs ) * ( s - c ) ) - ( rc * ( s + c ) ) );
295295}
0 commit comments