|
2 | 2 |
|
3 | 3 |  |
4 | 4 |
|
5 | | -A Julia package for kernel functions on graphs. |
| 5 | +A Julia package for calculating [graph kernels](https://en.wikipedia.org/wiki/Graph_kernel) - |
| 6 | +kernel function where the inputs are graphs. |
| 7 | + |
| 8 | +### Example |
| 9 | + |
| 10 | +```julia |
| 11 | +julia> using GraphKernels: ShortestPathGraphKernel, svmtrain, svmpredict |
| 12 | + |
| 13 | +julia> using GraphDatasets: loadgraphs, TUDatasets |
| 14 | +julia> using SimpleValueGraphs: get_graphval |
| 15 | +julia> using Random: shuffle |
| 16 | +julia> using Statistics: mean |
| 17 | + |
| 18 | +# load the MUTAG dataset - it contains 188 graphs of two different classes |
| 19 | +julia> graphs = loadgraphs(TUDatasets.MUTAGDataset(); resolve_categories=true) |
| 20 | +188-element ValGraphCollection of graphs with |
| 21 | + eltype: Int8 |
| 22 | + vertex value types: (chem = String,) |
| 23 | + edge value types: (bond_type = String,) |
| 24 | + graph value types: (class = Int8,) |
| 25 | + |
| 26 | +# shuffle the graphs and split into train and test data |
| 27 | +julia> graphs = shuffle(graphs); |
| 28 | +julia> X_train, X_test = graphs[begin:120], graphs[121:end]; |
| 29 | +julia> y_train, y_test = get_graphval.(X_train, :class), get_graphval.(X_test, :class); |
| 30 | + |
| 31 | +# instantiate a ShortestPathGraphKernel |
| 32 | +# dist_key is set to nothing so that we use unit distances for all edges |
| 33 | +julia> kernel = ShortestPathGraphKernel(;dist_key=nothing) |
| 34 | +ShortestPathGraphKernel{ConstVertexKernel}(0.0, ConstVertexKernel(1.0), nothing) |
| 35 | + |
| 36 | +# train a support vector machine with that kernel |
| 37 | +julia> model = svmtrain(X_train, y_train, kernel); |
| 38 | + |
| 39 | +# predict classed on the test data |
| 40 | +julia> y_test_pred = svmpredict(model, X_test); |
| 41 | + |
| 42 | +# compare with the actual classes and calculate the accuracy |
| 43 | +julia> accuracy = mean(y_test .== y_test_pred) |
| 44 | +0.8529411764705882 |
| 45 | +``` |
0 commit comments