From 7c95894a65b6f8abe3a02d38217e9db5359f9ab7 Mon Sep 17 00:00:00 2001
From: Ansh0611 <62184938+Ansh0611@users.noreply.github.com>
Date: Thu, 11 Jun 2020 10:37:05 +0530
Subject: [PATCH 1/2] Add files via upload
---
Student_Performance.ipynb | 5589 +++++++++++++++++++------------------
1 file changed, 2801 insertions(+), 2788 deletions(-)
diff --git a/Student_Performance.ipynb b/Student_Performance.ipynb
index 60985ca..473465d 100644
--- a/Student_Performance.ipynb
+++ b/Student_Performance.ipynb
@@ -1,2841 +1,2854 @@
{
- "nbformat": 4,
- "nbformat_minor": 0,
- "metadata": {
- "colab": {
- "name": "Student Performance.ipynb",
- "version": "0.3.2",
- "provenance": [],
- "collapsed_sections": [],
- "include_colab_link": true
- },
- "kernelspec": {
- "name": "python3",
- "display_name": "Python 3"
- }
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "view-in-github"
+ },
+ "source": [
+ "
"
+ ]
},
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "view-in-github",
- "colab_type": "text"
- },
- "source": [
- "
"
- ]
- },
- {
- "metadata": {
- "id": "G7ZVqj3wV1Ry",
- "colab_type": "code",
- "colab": {}
- },
- "cell_type": "code",
- "source": [
- "import numpy as np\n",
- "import pandas as pd\n",
- "\n",
- "import matplotlib.pyplot as plt\n",
- "import seaborn as sns"
- ],
- "execution_count": 0,
- "outputs": []
- },
- {
- "metadata": {
- "id": "RiBBc-sEWTN5",
- "colab_type": "code",
- "outputId": "f0b50be4-b473-4383-d381-33c057fb8fb6",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 225
- }
- },
- "cell_type": "code",
- "source": [
- "data = pd.read_csv('drive/My Drive/Projects/Students Performance/StudentsPerformance.csv')\n",
- "\n",
- "print(data.shape)\n",
- "\n",
- "data.head()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "(1000, 8)\n"
- ],
- "name": "stdout"
- },
- {
- "output_type": "execute_result",
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " gender | \n",
- " race/ethnicity | \n",
- " parental level of education | \n",
- " lunch | \n",
- " test preparation course | \n",
- " math score | \n",
- " reading score | \n",
- " writing score | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " female | \n",
- " group B | \n",
- " bachelor's degree | \n",
- " standard | \n",
- " none | \n",
- " 72 | \n",
- " 72 | \n",
- " 74 | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " female | \n",
- " group C | \n",
- " some college | \n",
- " standard | \n",
- " completed | \n",
- " 69 | \n",
- " 90 | \n",
- " 88 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " female | \n",
- " group B | \n",
- " master's degree | \n",
- " standard | \n",
- " none | \n",
- " 90 | \n",
- " 95 | \n",
- " 93 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " male | \n",
- " group A | \n",
- " associate's degree | \n",
- " free/reduced | \n",
- " none | \n",
- " 47 | \n",
- " 57 | \n",
- " 44 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " male | \n",
- " group C | \n",
- " some college | \n",
- " standard | \n",
- " none | \n",
- " 76 | \n",
- " 78 | \n",
- " 75 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " gender race/ethnicity parental level of education lunch \\\n",
- "0 female group B bachelor's degree standard \n",
- "1 female group C some college standard \n",
- "2 female group B master's degree standard \n",
- "3 male group A associate's degree free/reduced \n",
- "4 male group C some college standard \n",
- "\n",
- " test preparation course math score reading score writing score \n",
- "0 none 72 72 74 \n",
- "1 completed 69 90 88 \n",
- "2 none 90 95 93 \n",
- "3 none 47 57 44 \n",
- "4 none 76 78 75 "
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 168
- }
- ]
- },
- {
- "metadata": {
- "id": "EGC_GP4-Wll0",
- "colab_type": "code",
- "outputId": "5236fee8-f525-40ab-8cbd-aa8f9dee483d",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 223
- }
- },
- "cell_type": "code",
- "source": [
- "data.tail()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " gender | \n",
- " race/ethnicity | \n",
- " parental level of education | \n",
- " lunch | \n",
- " test preparation course | \n",
- " math score | \n",
- " reading score | \n",
- " writing score | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 995 | \n",
- " female | \n",
- " group E | \n",
- " master's degree | \n",
- " standard | \n",
- " completed | \n",
- " 88 | \n",
- " 99 | \n",
- " 95 | \n",
- "
\n",
- " \n",
- " | 996 | \n",
- " male | \n",
- " group C | \n",
- " high school | \n",
- " free/reduced | \n",
- " none | \n",
- " 62 | \n",
- " 55 | \n",
- " 55 | \n",
- "
\n",
- " \n",
- " | 997 | \n",
- " female | \n",
- " group C | \n",
- " high school | \n",
- " free/reduced | \n",
- " completed | \n",
- " 59 | \n",
- " 71 | \n",
- " 65 | \n",
- "
\n",
- " \n",
- " | 998 | \n",
- " female | \n",
- " group D | \n",
- " some college | \n",
- " standard | \n",
- " completed | \n",
- " 68 | \n",
- " 78 | \n",
- " 77 | \n",
- "
\n",
- " \n",
- " | 999 | \n",
- " female | \n",
- " group D | \n",
- " some college | \n",
- " free/reduced | \n",
- " none | \n",
- " 77 | \n",
- " 86 | \n",
- " 86 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " gender race/ethnicity parental level of education lunch \\\n",
- "995 female group E master's degree standard \n",
- "996 male group C high school free/reduced \n",
- "997 female group C high school free/reduced \n",
- "998 female group D some college standard \n",
- "999 female group D some college free/reduced \n",
- "\n",
- " test preparation course math score reading score writing score \n",
- "995 completed 88 99 95 \n",
- "996 none 62 55 55 \n",
- "997 completed 59 71 65 \n",
- "998 completed 68 78 77 \n",
- "999 none 77 86 86 "
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 169
- }
- ]
- },
- {
- "metadata": {
- "id": "yQEEsbpSWpdG",
- "colab_type": "code",
- "outputId": "c664fcb3-0563-483a-8b79-d2f072a9f47e",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 261
- }
- },
- "cell_type": "code",
- "source": [
- "data.info()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "\n",
- "RangeIndex: 1000 entries, 0 to 999\n",
- "Data columns (total 8 columns):\n",
- "gender 1000 non-null object\n",
- "race/ethnicity 1000 non-null object\n",
- "parental level of education 1000 non-null object\n",
- "lunch 1000 non-null object\n",
- "test preparation course 1000 non-null object\n",
- "math score 1000 non-null int64\n",
- "reading score 1000 non-null int64\n",
- "writing score 1000 non-null int64\n",
- "dtypes: int64(3), object(5)\n",
- "memory usage: 62.6+ KB\n"
- ],
- "name": "stdout"
- }
- ]
- },
- {
- "metadata": {
- "id": "p8qPdumvWsFi",
- "colab_type": "code",
- "outputId": "7e538d81-7631-42b2-875f-b053da212534",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 300
- }
- },
- "cell_type": "code",
- "source": [
- "data.describe()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " math score | \n",
- " reading score | \n",
- " writing score | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | count | \n",
- " 1000.00000 | \n",
- " 1000.000000 | \n",
- " 1000.000000 | \n",
- "
\n",
- " \n",
- " | mean | \n",
- " 66.08900 | \n",
- " 69.169000 | \n",
- " 68.054000 | \n",
- "
\n",
- " \n",
- " | std | \n",
- " 15.16308 | \n",
- " 14.600192 | \n",
- " 15.195657 | \n",
- "
\n",
- " \n",
- " | min | \n",
- " 0.00000 | \n",
- " 17.000000 | \n",
- " 10.000000 | \n",
- "
\n",
- " \n",
- " | 25% | \n",
- " 57.00000 | \n",
- " 59.000000 | \n",
- " 57.750000 | \n",
- "
\n",
- " \n",
- " | 50% | \n",
- " 66.00000 | \n",
- " 70.000000 | \n",
- " 69.000000 | \n",
- "
\n",
- " \n",
- " | 75% | \n",
- " 77.00000 | \n",
- " 79.000000 | \n",
- " 79.000000 | \n",
- "
\n",
- " \n",
- " | max | \n",
- " 100.00000 | \n",
- " 100.000000 | \n",
- " 100.000000 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " math score reading score writing score\n",
- "count 1000.00000 1000.000000 1000.000000\n",
- "mean 66.08900 69.169000 68.054000\n",
- "std 15.16308 14.600192 15.195657\n",
- "min 0.00000 17.000000 10.000000\n",
- "25% 57.00000 59.000000 57.750000\n",
- "50% 66.00000 70.000000 69.000000\n",
- "75% 77.00000 79.000000 79.000000\n",
- "max 100.00000 100.000000 100.000000"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 171
- }
- ]
- },
- {
- "metadata": {
- "id": "2t2utISaWuH0",
- "colab_type": "code",
- "outputId": "c9c4dcd2-1b0b-49f5-9c57-15d93c8f874c",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 186
- }
- },
- "cell_type": "code",
- "source": [
- "data.isnull().sum()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "gender 0\n",
- "race/ethnicity 0\n",
- "parental level of education 0\n",
- "lunch 0\n",
- "test preparation course 0\n",
- "math score 0\n",
- "reading score 0\n",
- "writing score 0\n",
- "dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 172
- }
- ]
- },
- {
- "metadata": {
- "id": "b-u05ntqWw2y",
- "colab_type": "code",
- "outputId": "7efae39c-7258-47de-976f-941f969144bc",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 396
- }
- },
- "cell_type": "code",
- "source": [
- "# visualising the number of male and female in the dataset\n",
- "\n",
- "data['gender'].value_counts(normalize = True)\n",
- "data['gender'].value_counts(dropna = False).plot.bar(color = 'magenta')\n",
- "plt.title('Comparison of Males and Females')\n",
- "plt.xlabel('gender')\n",
- "plt.ylabel('count')\n",
- "plt.show()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAF7CAYAAAApLgnAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XtYVVX+x/HP4SZhqICQl5wulpfU\n8DY5VIwpXrCcokhT02bMLk5pzq9UvKZlppNTORqZ01iZTSNF6lA5ajbpmIN0odScysZ+mZjCAUFA\nQBDW748ez09GRTS2h3V4v56n5+Hsc/Y+373by89ea1+OyxhjBAAArOTn7QIAAMC5I8gBALAYQQ4A\ngMUIcgAALEaQAwBgMYIcAACLEeSwmjFGL7/8sgYPHqyBAweqX79+mj17toqKirxdWjWvvfaaFi5c\n6LXvLyoq0i233KIBAwYoPz+/2nuLFy9W+/bttXv37mrTDxw4oA4dOmjx4sVnXH779u118ODBOq35\np+jfv78yMjJOmj5lyhT94he/UHx8fLX/du3a5Wg9WVlZuuqqqxz9DjRcAd4uAPgp/vCHP+ijjz7S\nsmXLdNFFF6mkpERz587V/fffr7/85S9yuVzeLlGSNHLkSK9+/9dff62CggJt3rz5lO+3bNlS77zz\njh5++GHPtHfffVctWrQ4XyWeN3fddZceeOABb5cB1BmCHNYqKCjQihUrtHr1al100UWSpJCQED36\n6KPaunWrjDEqLy/X3LlzlZGRIT8/P/Xu3VuTJk2Sv7+/+vbtq9GjR2vVqlXKzs7W7NmzlZ6eri1b\ntig8PFwvvviimjZtqvbt22v69Ol66623lJOTo4ceekjDhw+XJCUnJystLU2VlZVq27atFixYoCZN\nmmjx4sXKzs7WV199pcGDB6uoqEgHDx7U3Llz9fe//13JycmqrKxUQECAZsyYoV69eumHH37QzJkz\nlZWVpcDAQN1zzz1KSEhQVlaWhg0bpvvuu09vvvmmCgoKNHXqVN14440nbZOMjAzNnz9fpaWlCg0N\n1aOPPqqIiAhNnDhReXl5io+P1+uvv67w8PBq811//fVau3ZttSBfu3atrr32Ws/r3NxcJSUlaf/+\n/SovL9eoUaM0evTok2pISUnRyy+/rPLycnXt2lVPPvmkgoOD9dFHH2nevHk6evSojDF66KGHNGjQ\noJPmr2mb5ufne7ZrWFiYnn/+eUVFRemLL75QUlKSjh07pt69e5/T/mSMUXJyst5++22Vl5crLi5O\nU6dOlb+/v0aNGqXY2Fi9//772rt3r8aPH6/Dhw8rLS1Nfn5+Wrp0qdq0aaNvv/1W06dPV0FBgY4d\nO6YJEyZo8ODBtf6e0+0bQI0MYKlNmzaZ/v371/iZpUuXmnvvvddUVFSY0tJSk5iYaNasWWOMMaZP\nnz5m5syZxhhjVqxYYaKjo822bdtMVVWVSUxMNG+88YYxxph27dqZxx9/3BhjzJ49e0znzp3NoUOH\nzM6dO01MTIwpKioylZWV5je/+Y1JTk42xhizaNEic/3115u8vDzP62nTphljjOnVq5fJysoyxhjz\n8ccfmyeffNIYY8zdd99tXnjhBWOMMVlZWaZHjx5m3759Zt++feaqq64yK1asMMYYs3bt2lOud3Fx\nsenVq5f55JNPjDHGrFu3zgwYMMBUVlaabdu2mX79+p1yGy1atMgsWrTIDB8+3GRmZhpjjPn222/N\n0KFDPe8ZY8zjjz9uHn30UWOMMd9//73p1KmT+eGHHzzb6MCBA+bjjz82MTEx5uDBg8YYY2bOnGnm\nz59vjDHmtttuMxkZGcYYY/73f//XPPzwwyfVcqZtGhMTY7KyskxVVZW57777zPPPP2+MMSYxMdGs\nXLnSs306dOhgtm3bdtLyk5KSPMv7b6tXrzY33XSTKSwsNBUVFea+++7zbPORI0eae+65x1RUVJh/\n/OMfJjo62rz11lvGGGPGjx9vnn32WWOMMffff79ZunSpMcaYjz76yFx99dWmvLzc7Nu3z3Ts2PGM\n33O6fQOoCefIYa2CggJFRETU+JlNmzZp6NChCggIUHBwsH71q19p69atnvfj4uIkSe3atVOjRo3U\nq1cvuVwuXXnllcrJyfF8LjExUZJ0+eWX67LLLtOOHTvUuXNnbdq0SRdeeKH8/PzUrVs37du3zzNP\ndHT0ST1fSYqIiNDKlSu1f/9+9ezZU1OnTlVFRYX+9a9/acSIEZKk1q1bq1evXtq2bZsk6dixY7rt\nttskSZ06ddIPP/xw0nJ37NihFi1aqEePHpKkgQMHKj8/X/v37z/zxpR000036Z133pH047D6f/eW\nZ8yYoZkzZ0qS2rRpo8jISGVlZVX7zD/+8Q/deOONnhGS4cOHa8OGDZ71XrNmjfbs2aNLL71UTz/9\n9Ek1nGmb9uzZU61bt5bL5VLHjh114MABHT16VDt37vSMUMTHx+uCCy447Xq++uqrJ50jP3TokD74\n4AMlJiYqNDRUAQEBGjJkiKd2SerTp48CAgLUrl07lZaWauDAgZJ+3HeO7yvPP/+8xowZI0nq0aOH\njh49KrfbXe37a/qeU+0bwJkwtA5rhYWFKTs7u8bPHDp0SE2bNvW8btq0qfLy8jyvGzduLEny8/Pz\n/H38dVVVVbX5Tvy7sLBQpaWlmjdvnueiqsOHD+uGG2445TwnWrJkiZYsWaLbbrtNLVu21LRp03TZ\nZZfJGKPQ0FDP55o0aaJDhw5Jkvz9/RUSEnLK2k5c1yZNmlSbFhoaWm19axIfH6+EhARNmzZN69at\n07Jly/TGG2943t+5c6eefvppHThwQH5+fnK73SfVUVRUpPfee08ffvihpB+HkSsqKiRJTz75pJYs\nWaLRo0crODhYDz/8sOLj46vNf6ZteuL28ff3V2VlpQoKCiRJF154oSTJ5XKdtB1OdLpz5EVFRVq2\nbJlSUlIkSZWVldUOxI7vH/7+/tVen/j/Y8uWLVqyZIny8/PlcrlkjDnlNjrd95xq37jmmmtOuy6A\nRJDDYl27dlVeXp527dqlTp06eaZXVFToueee09ixY9W8eXPPP/TSj7345s2bn/V35efnq3Xr1p5l\nNG3aVMuXL9d3332nVatWqXHjxnr22WfPeGAhST/72c80b948VVVVac2aNXrkkUf0wQcfyM/PT4cP\nH/YcANRmxOFEERER1dbVGKPDhw8rIiLilD34U81/5ZVX6q9//auaNWvm6VUfN2nSJP3617/W8OHD\n5XK5FBsbe9IyoqKidOuttyopKemk95o3b66ZM2dq5syZ+vDDDzV+/HjFxsZWO4A6l216fHsVFxcr\nNDRUVVVVOnz48BnX91S19+3b95wvTKyoqNDvfvc7LVy4UL1791Z5ebmuvvrqs/qeU+0bW7ZsOad6\n0HAwtA5rNWnSRPfcc4+SkpK0d+9eST/26B599FH9+9//1gUXXKAbbrhBqampqqysVElJif72t7+d\n08VQ7777riRpz5492rt3r6Kjo5WXl6fLL79cjRs31v79+7V582aVlJTUuJxDhw5p9OjRKi4ulp+f\nn6Kjo+VyuRQQEKDrr7/e00v7/vvv9cknn1S72OxMrr76auXm5uqzzz7z1NyiRQtdfPHFtV7GTTfd\npCVLlpzyIrS8vDx17txZLpdLq1evVmlp6Unr27dvX23YsMEzkrBx40b96U9/UkVFhUaNGuUZgu7U\nqZMCAgLk5+d30nec7TYNDg5Whw4d9N5773nW++jRo7Ve5+Pi4uL0t7/9TaWlpZKklStXavXq1bWe\n//j26Ny5s6QfD0oCAwNPqv9033O6fQM4E3rksNr48ePVtGlT/fa3v1VlZaX8/PwUFxen2bNnS5JG\njRqlffv26aabbpLL5VJ8fPwpQ+pMwsPDdcsttyg7O1szZsxQ06ZNNWzYMD300EMaOHCg2rdvrylT\npmj8+PF65ZVXalxObGysEhMT5e/vr8DAQM2dO1eS9Nhjj2nGjBlatWqVAgMD9cQTT6hly5YnnYc+\nnZCQEC1cuFBz5sxRSUmJwsPD9cwzz5xVGAwYMEBz5sw5achbkiZMmKAHH3xQzZo107Bhw3THHXdo\n5syZev311z2f6dSpk8aOHatRo0apqqpKEREReuyxxxQYGKjbb79dv/nNbyT9OBw9Y8aMk85ln8s2\nlaTZs2dr2rRpWrp0qX75y1+qbdu2tV7n4/r166dvvvlGt956q6Qfe8fH/9/UxvEDy4SEBEVEROi3\nv/2t+vXrp7Fjx2rp0qVn/J6a9g2gJi5j+D1yoCbt27fX5s2bffKeagD2Y2gdAACLEeQAAFiMoXUA\nACxGjxwAAIsR5AAAWMzK28/c7vr1E5U4O2FhIcrPr/neYAB1j7Znr8jI0NO+R48c511AgL+3SwAa\nJNqebyLIAQCwGEEOAIDFCHIAACxGkAMAYDGCHAAAixHkAABYjCAHAMBiBDkAABYjyAEAsBhBDgCA\nxQhyAAAsRpADAGAxK3/9zNdFRp3+V258RaR8cx3dOfwyH4Dzix45AAAWI8gBALAYQQ4AgMUIcgAA\nLEaQAwBgMceuWs/IyNCECRN05ZVXSpLatWune+65R5MnT1ZlZaUiIyO1YMECBQUFKS0tTcuXL5ef\nn5+GDh2qIUOGOFUWAAA+xdHbz6655hotWrTI83rq1KkaMWKEBg0apGeeeUapqalKSEhQcnKyUlNT\nFRgYqNtvv139+/dXs2bNnCwNAACfcF6H1jMyMhQXFydJ6tOnj9LT07V9+3Z16dJFoaGhCg4OVvfu\n3ZWZmXk+ywIAwFqO9sj/85//aOzYsTp8+LDGjRun0tJSBQUFSZIiIiLkdruVm5ur8PBwzzzh4eFy\nu91OlgUAgM9wLMgvvfRSjRs3ToMGDdK+fft01113qbKy0vO+MeaU851u+onCwkIUEOBfZ7UCdSUy\n0jefWAffwT7qexwL8osuukg33nijJOlnP/uZmjdvrp07d6qsrEzBwcHKzs5WVFSUoqKilJub65kv\nJydHXbt2rXHZ+fklTpVdL/jq40sbArebR7Si/oqMDGUftVRNB2COnSNPS0vTsmXLJElut1t5eXm6\n7bbbtH79eknShg0bFBsbq+joaO3cuVOFhYU6cuSIMjMz1bNnT6fKAgDAp7hMbcayz0FxcbEmTpyo\nwsJCVVRUaNy4cerYsaOSkpJ09OhRtWrVSvPmzVNgYKDWrVunZcuWyeVyaeTIkbr55ptrXLavH1E2\nhB9N8VX8aArqM3rk9qqpR+5YkDvJ13dEgtxeBDnqM4LcXl4ZWgcAAM4jyAEAsBhBDgCAxQhyAAAs\nRpADAGAxRx/RCgA2aQh3jPjyA6ca6l0j9MgBALAYQQ4AgMUIcgAALEaQAwBgMYIcAACLEeQAAFiM\nIAcAwGIEOQAAFiPIAQCwGEEOAIDFCHIAACxGkAMAYDGCHAAAixHkAABYjCAHAMBiBDkAABYjyAEA\nsBhBDgCAxQhyAAAsRpADAGAxghwAAIsR5AAAWIwgBwDAYgQ5AAAWI8gBALAYQQ4AgMUIcgAALEaQ\nAwBgMYIcAACLEeQAAFiMIAcAwGIEOQAAFiPIAQCwGEEOAIDFCHIAACxGkAMAYDGCHAAAixHkAABY\njCAHAMBiBDkAABZzNMjLysrUr18/rVq1SgcOHNCoUaM0YsQITZgwQeXl5ZKktLQ0JSYmasiQIXrz\nzTedLAcAAJ/jaJAvWbJETZs2lSQtWrRII0aM0Ouvv65LLrlEqampKikpUXJysl555RWtWLFCy5cv\nV0FBgZMlAQDgUxwL8j179ug///mPbrjhBklSRkaG4uLiJEl9+vRRenq6tm/fri5duig0NFTBwcHq\n3r27MjMznSoJAACf41iQ//73v9eUKVM8r0tLSxUUFCRJioiIkNvtVm5ursLDwz2fCQ8Pl9vtdqok\nAAB8ToATC12zZo26du2qNm3anPJ9Y8xZTf9vYWEhCgjwP+f6AKdERoZ6uwSgwWqo7c+RIN+0aZP2\n7dunTZs26eDBgwoKClJISIjKysoUHBys7OxsRUVFKSoqSrm5uZ75cnJy1LVr1zMuPz+/xImy641I\nNcyd0Re43UXeLgE/AW3Pbr7c/mo6SHEkyBcuXOj5e/HixWrdurU+++wzrV+/Xrfccos2bNig2NhY\nRUdHa8aMGSosLJS/v78yMzM1bdo0J0oCAMAnORLkpzJ+/HglJSUpJSVFrVq1UkJCggIDA/XII49o\nzJgxcrlcevDBBxUayhExAAC15TK1PTFdj/jy8IkkRUZxMGMrd45v75u+jrZnN19ufzUNrfNkNwAA\nLEaQAwBgMYIcAACLEeQAAFiMIAcAwGIEOQAAFiPIAQCwGEEOAIDFCHIAACxGkAMAYDGCHAAAixHk\nAABYjCAHAMBiBDkAABYjyAEAsBhBDgCAxQhyAAAsRpADAGAxghwAAIsR5AAAWIwgBwDAYgQ5AAAW\nI8gBALAYQQ4AgMUIcgAALEaQAwBgMYIcAACLEeQAAFiMIAcAwGIEOQAAFiPIAQCwGEEOAIDFCHIA\nACxGkAMAYDGCHAAAixHkAABYjCAHAMBiBDkAABYjyAEAsBhBDgCAxQhyAAAsRpADAGAxghwAAIsR\n5AAAWIwgBwDAYgQ5AAAWC3BqwaWlpZoyZYry8vJ09OhRPfDAA+rQoYMmT56syspKRUZGasGCBQoK\nClJaWpqWL18uPz8/DR06VEOGDHGqLAAAfIpjQf7BBx+oc+fOuvfee7V//37dfffd6t69u0aMGKFB\ngwbpmWeeUWpqqhISEpScnKzU1FQFBgbq9ttvV//+/dWsWTOnSgMAwGc4NrR+44036t5775UkHThw\nQBdddJEyMjIUFxcnSerTp4/S09O1fft2denSRaGhoQoODlb37t2VmZnpVFkAAPgUx3rkxw0bNkwH\nDx7UCy+8oNGjRysoKEiSFBERIbfbrdzcXIWHh3s+Hx4eLrfb7XRZAAD4BMeDfOXKlfryyy81adIk\nGWM800/8+0Snm36isLAQBQT411mNQF2JjAz1dglAg9VQ259jQf7FF18oIiJCLVu2VMeOHVVZWanG\njRurrKxMwcHBys7OVlRUlKKiopSbm+uZLycnR127dq1x2fn5JU6VXS9EqmHujL7A7S7ydgn4CWh7\ndvPl9lfTQYpj58g/+eQTvfTSS5Kk3NxclZSU6Nprr9X69eslSRs2bFBsbKyio6O1c+dOFRYW6siR\nI8rMzFTPnj2dKgsAAJ/iMrUZyz4HZWVlmj59ug4cOKCysjKNGzdOnTt3VlJSko4ePapWrVpp3rx5\nCgwM1Lp167Rs2TK5XC6NHDlSN998c43L9uWjLkmKjKJXYCt3jm/vm76Otmc3X25/NfXIaxXkU6ZM\n0fz586tNGzNmjJYtW/bTqzsHBDnqK1/+h6QhoO3ZzZfbX01BXuM58rS0NK1cuVLffPON7rzzTs/0\nioqKaue1AQCAd9QY5DfffLN69eqliRMnavz48Z7pfn5+uuKKKxwvDgAA1KzW58iLiopUUFBQbVqb\nNm0cKepMGFpHfeXLQ3sNAW3Pbr7c/s55aP24J554Qm+99ZbCw8M993m7XC69//77dVMhAAA4J7UK\n8oyMDG3btk2NGjVyuh4AAHAWanUf+SWXXEKIAwBQD9WqR96iRQvdeeed6tGjh/z9///RqBMmTHCs\nMAAAcGa1CvJmzZopJibG6VoAAMBZqlWQP/DAA07XAQAAzkGtgvyqq66Sy+XyvHa5XAoNDVVGRoZj\nhQEAgDOrVZB/9dVXnr/Ly8uVnp6ur7/+2rGiAABA7Zz1r58FBQWpd+/e2rp1qxP1AACAs1CrHnlq\namq11wcPHlR2drYjBQEAgNqrVZB/+umn1V5feOGFWrhwoSMFAQCA2jur3yMvKCiQy+VS06ZNnazp\njHjWOuorX37Wc0NA27ObL7e/n/ys9czMTE2ePFlHjhyRMUbNmjXTggUL1KVLlzorEgAAnL1aBfnT\nTz+t559/Xu3atZMk/fvf/9bcuXP1l7/8xdHiAABAzWp11bqfn58nxKUf7ys/8VGtAADAO2od5OvX\nr1dxcbGKi4u1du1aghwAgHqgVhe7fffdd5ozZ4527NghPz8/dejQQU888YTatGlzPmo8CRe7ob7y\n5YttGgLant18uf3VdLFbrXrkW7duVVBQkD7++GNlZGTIGKPNmzfXWYEAAODc1CrI09LS9Nxzz3le\nv/TSS3rnnXccKwoAANROrYK8srKy2jlxl8uls7j9HAAAOKRWt5/17dtXw4YNU48ePVRVVaVt27Zp\nwIABTtcGAADOoNZPdvvkk0+0Y8cOuVwudevWTV27dnW6ttPiYjfUV758sU1DQNuzmy+3v5/8ZDdJ\n6tmzp3r27FknBQEAgLpx1j9jCgAA6g+CHAAAixHkAABYjCAHAMBiBDkAABYjyAEAsBhBDgCAxQhy\nAAAsRpADAGAxghwAAIsR5AAAWIwgBwDAYgQ5AAAWI8gBALAYQQ4AgMUIcgAALEaQAwBgMYIcAACL\nEeQAAFiMIAcAwGIBTi78qaee0qeffqpjx47p/vvvV5cuXTR58mRVVlYqMjJSCxYsUFBQkNLS0rR8\n+XL5+flp6NChGjJkiJNlAQDgMxwL8m3btumbb75RSkqK8vPzdeuttyomJkYjRozQoEGD9Mwzzyg1\nNVUJCQlKTk5WamqqAgMDdfvtt6t///5q1qyZU6UBAOAzHBta//nPf64//vGPkqQmTZqotLRUGRkZ\niouLkyT16dNH6enp2r59u7p06aLQ0FAFBwere/fuyszMdKosAAB8imNB7u/vr5CQEElSamqqfvnL\nX6q0tFRBQUGSpIiICLndbuXm5io8PNwzX3h4uNxut1NlAQDgUxw9Ry5JGzduVGpqql566SUNGDDA\nM90Yc8rPn276icLCQhQQ4F9nNQJ1JTIy1NslAA1WQ21/jgb5li1b9MILL+jPf/6zQkNDFRISorKy\nMgUHBys7O1tRUVGKiopSbm6uZ56cnBx17dq1xuXm55c4WbbXRaph7oy+wO0u8nYJ+Aloe3bz5fZX\n00GKY0PrRUVFeuqpp7R06VLPhWvXXnut1q9fL0nasGGDYmNjFR0drZ07d6qwsFBHjhxRZmamevbs\n6VRZAAD4FMd65GvXrlV+fr5+97vfeabNnz9fM2bMUEpKilq1aqWEhAQFBgbqkUce0ZgxY+RyufTg\ngw8qNJSjYgAAasNlanNSup7x5eETSYqM4kDGVu4c3943fR1tz26+3P68MrQOAACcR5ADAGAxghwA\nAIsR5AAAWIwgBwDAYgQ5AAAWI8gBALAYQQ4AgMUIcgAALEaQAwBgMYIcAACLEeQAAFiMIAcAwGIE\nOQAAFiPIAQCwGEEOAIDFCHIAACxGkAMAYDGCHAAAixHkAABYjCAHAMBiBDkAABYjyAEAsBhBDgCA\nxQhyAAAsRpADAGAxghwAAIsR5AAAWIwgBwDAYgQ5AAAWI8gBALAYQQ4AgMUIcgAALEaQAwBgMYIc\nAACLEeQAAFiMIAcAwGIEOQAAFiPIAQCwGEEOAIDFCHIAACxGkAMAYDGCHAAAixHkAABYjCAHAMBi\nBDkAABZzNMh3796tfv366bXXXpMkHThwQKNGjdKIESM0YcIElZeXS5LS0tKUmJioIUOG6M0333Sy\nJAAAfIpjQV5SUqI5c+YoJibGM23RokUaMWKEXn/9dV1yySVKTU1VSUmJkpOT9corr2jFihVavny5\nCgoKnCoLAACf4liQBwUF6cUXX1RUVJRnWkZGhuLi4iRJffr0UXp6urZv364uXbooNDRUwcHB6t69\nuzIzM50qCwAAnxLg2IIDAhQQUH3xpaWlCgoKkiRFRETI7XYrNzdX4eHhns+Eh4fL7XY7VRYAAD7F\nsSA/E2PMWU0/UVhYiAIC/Ou6JOAni4wM9XYJQIPVUNvfeQ3ykJAQlZWVKTg4WNnZ2YqKilJUVJRy\nc3M9n8nJyVHXrl1rXE5+fonTpXpVpBrmzugL3O4ib5eAn4C2Zzdfbn81HaSc19vPrr32Wq1fv16S\ntGHDBsXGxio6Olo7d+5UYWGhjhw5oszMTPXs2fN8lgUAgLUc65F/8cUX+v3vf6/9+/crICBA69ev\n1x/+8AdNmTJFKSkpatWqlRISEhQYGKhHHnlEY8aMkcvl0oMPPqjQUI6KAQCoDZepzUnpesaXh08k\nKTKKAxlbuXN8e9/0dbQ9u/ly+6s3Q+sAAKBuEeQAAFiMIAcAwGIEOQAAFiPIAQCwGEEOAIDFCHIA\nACxGkAMAYDGCHAAAixHkAABYjCAHAMBiBDkAABYjyAEAsBhBDgCAxQhyAAAsRpADAGAxghwAAIsR\n5AAAWIwgBwDAYgQ5AAAWI8gBALAYQQ4AgMUIcgAALEaQAwBgMYIcAACLEeQAAFiMIAcAwGIEOQAA\nFiPIAQCwGEEOAIDFCHIAACxGkAMAYDGCHAAAixHkAABYjCAHAMBiBDkAABYjyAEAsBhBDgCAxQhy\nAAAsRpADAGAxghwAAIsR5AAAWIwgBwDAYgQ5AAAWI8gBALAYQQ4AgMUCvF3AcU8++aS2b98ul8ul\nadOm6eqrr/Z2SQAA1Hv1Isg/+ugj7d27VykpKdqzZ4+mTZumlJQUb5cFAEC9Vy+G1tPT09WvXz9J\nUtu2bXX48GEVFxd7uSoAAOq/ehHkubm5CgsL87wODw+X2+32YkUAANihXgyt/zdjTI3vR0aGnqdK\nvKTm1Uc9Fikf3zd9HW3Pag21/dWLHnlUVJRyc3M9r3NychQZGenFigAAsEO9CPLrrrtO69evlyTt\n2rVLUVFRuvDCC71cFQAA9V+9GFrv3r27OnXqpGHDhsnlcmnWrFneLgkAACu4zJlOSAMAgHqrXgyt\nAwCAc0OQAwBgMYIcAACLEeQAAFiMIIfjjh07pnfeeUfLli2TJO3evVsVFRVergpoWI4dO+btEuAQ\nghyOmzlzpr788kutW7dO0o8/kpOUlOTlqoCGYdu2bbr55ps1ePBgSdKzzz6rLVu2eLkq1CWCHI47\ncOCAJk2apODgYEnSyJEjlZOT4+WqgIZh8eLFWr58uedpmXfddZeee+45L1eFukSQw3EVFRUqLCyU\ny+WSJO3Zs0fl5eVergpoGAK9ZSQyAAAGwElEQVQCAhQWFuZpfxEREZ6/4RvqxZPd4Nv+53/+R7/+\n9a/13XffKT4+Xi6XS0888YS3ywIahIsvvlh//OMflZ+fr7Vr12rjxo264oorvF0W6hBPdsN5k5eX\np8DAQDVp0sTbpQANRlVVld5++2199tlnCgwMVHR0tAYNGiR/f39vl4Y6QpDDMYmJiTUO4aWmpp7H\naoCGZfPmzTW+37t37/NUCZzG0Docs2jRotO+V1xcfB4rARqe43eJnA5B7jvokcNxhYWFevvtt5Wf\nny/px4vf1qxZc8YeA4C6V1FRoccee4zrVHwIV63DcRMmTFBeXp7efvtthYSE6PPPP9fMmTO9XRbQ\nIKSmpio2NladO3dW9+7d9fOf/5wRMR9DkMNxVVVVeuihhxQVFaW7775bL774olatWuXtsoAGYeXK\nldq4caO6deumzMxMPf300+rWrZu3y0IdIsjhuIqKCn311VcKDg7W1q1bdfDgQX3//ffeLgtoEBo1\naqRGjRqpoqJCVVVViouL08aNG71dFuoQ58jhuK+++kqHDh1SRESE5s6dq4KCAo0cOVJDhw71dmmA\nz5s/f74uvvhiFRQUKCMjQy1atNDevXv1xhtveLs01BGCHOdFcXGxioqKZIyRMUYul0utWrXydlmA\nz9uxY4feeustlZeXa//+/friiy903XXXafHixd4uDXWE28/guIkTJ+rTTz9VRESEJHmCnPvIAedN\nmjRJ9957r5o3b+7tUuAQghyO27t3rz744ANvlwE0SJdffvkZH84EuxHkcFx8fLw2bNigjh07Vnss\nJEPrgPMGDx6shIQEtW/fvlr7mzdvnherQl0iyOG4Xbt2acWKFZ6hdUkMrQPnycKFC3Xfffd5fsYU\nvocgh+P27t2rTZs2ebsMoEFq27athgwZ4u0y4CCCHI4bOHCg0tPT1aVLl2pDexdccIEXqwIahrCw\nMN15553q3LlztfY3efJkL1aFusTtZ3Bc//79VVlZWW2ay+XS+++/76WKgIZj9erVp5x+6623nudK\n4BSCHAAAi/GIVjhu9+7duvvuu3XHHXdIkl555RXt2rXLy1UBgG8gyOG4OXPmaPr06QoKCpIkXX/9\n9fyEIgDUEYIcjgsICFDbtm09r6+44gr5+bHrAUBd4Kp1OC40NFSpqakqLS3V9u3b9d5771W7pxwA\ncO7oFsExU6dOlSQ1btxYbrdbYWFh+tOf/qQmTZpo/vz5Xq4OAHwDV63DMUOHDlVFRYW+//57XXrp\npdXe48luAFA3CHI45tixY8rJydH8+fOVlJR00vutW7f2QlUA4FsIcgAALMY5cgAALEaQAwBgMYIc\nwE+yd+9e9e3b19tlAA0WQQ4AgMV4IAzQgBhj9Pjjj2v79u1q3ry5WrRoobCwMMXExCg5OVnGGAUE\nBGjOnDlq06aN+vbtq7vuukv//Oc/lZWVpccee0wxMTHKzMzUrFmzFB4erk6dOnmWf/jwYc2aNUuH\nDh1ScXGxRo8erV/96ldavHixsrKy9MMPPygpKUmdO3f24lYAfAtBDjQg6enp2rFjh958800dPXpU\nCQkJ6tOnj2bNmqWUlBQ1a9ZMGzdu1FNPPaXFixdLkho1aqSXXnpJq1ev1quvvqqYmBg99dRTmjhx\nonr37q2XX37Zs/yFCxcqNjZWiYmJKikp0S233KLrrrtOkpSVlaXXXntNLpfLK+sO+CqCHGhAvvzy\nS/Xs2VP+/v4KCQlRbGysvv32W7ndbo0fP16SVFlZWS1sr7nmGklSq1atdPjwYUnS119/rR49ekiS\nfvGLX2jFihWSpIyMDO3cuVNr1qyR9ONz9rOysiRJ0dHRhDjgAIIcaECqqqqq/WCNn5+fgoKC1KpV\nK08Y/7eAgP//Z+LEx04cX05lZaVnWlBQkGbNmqUuXbpUW8bmzZsVGBhYJ+sAoDoudgMakMsvv1yf\nf/65jDEqLS3Vhx9+qDZt2ig/P1+7d++WJH388cdKSUmpcTlt27bV559/Lkn617/+5Zneo0cP/f3v\nf5cklZWVafbs2Tp27JhDawNAokcONCi9e/fWu+++q8TERLVs2VLdunVT48aNtWDBAk2fPl2NGjWS\nJD3++OM1LmfSpEmaM2eOWrZsqauuusozfdy4cZoxY4aGDx+u8vJy3XHHHdV69ADqHo9oBRqQoqIi\nbdy4UQkJCXK5XBo7dqwGDx6swYMHe7s0AOeIQ2WgAWncuLEyMzP16quvqlGjRrrssssUHx/v7bIA\n/AT0yAEAsBgXuwEAYDGCHAAAixHkAABYjCAHAMBiBDkAABYjyAEAsNj/AQjZFk1dPMGQAAAAAElF\nTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
- ]
- },
- {
- "metadata": {
- "id": "NQiPqVqiW4Wa",
- "colab_type": "code",
- "outputId": "e5a583af-483d-4e11-e649-94feaf2a5b3a",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 401
- }
- },
- "cell_type": "code",
- "source": [
- "# visualizing the different groups in the dataset\n",
- "\n",
- "data['race/ethnicity'].value_counts(normalize = True)\n",
- "data['race/ethnicity'].value_counts(dropna = False).plot.bar(color = 'cyan')\n",
- "plt.title('Comparison of various groups')\n",
- "plt.xlabel('Groups')\n",
- "plt.ylabel('count')\n",
- "plt.show()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAGACAYAAABWe+AaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X94jHe+//HXTJKRhon8kLC2pavV\nrvpNWqVsmwTBcsTP2ij9Eb1av8opS7Z+dqkqrdMqu9SlWLbL2azjOGrFpS3tcSKq6dHoVutoEbTJ\nJBIJiYq4v3/0Ml8pIrq5Z3zG83Fde12ZOzN33vOK7Sv3575nxmFZliUAAGAkp78HAAAAPx1FDgCA\nwShyAAAMRpEDAGAwihwAAINR5AAAGIwixy3HsiytWrVKffv2VVJSkrp3767Zs2ertLTU36NVsW7d\nOr3++ut++/mlpaXq37+/evbsqaKiolrf/+OPP67PP/+81vcL3GocvI4ct5qFCxdq7969WrJkiRo2\nbKiysjK99NJL+uabb/TnP/9ZDofD3yPeFPbt26dJkyZp165d/h4FQDU4Isctpbi4WGvXrtX8+fPV\nsGFDSVJYWJhmzpypUaNGybIsff/995o5c6aSkpLUu3dvzZ8/X5WVlZKkhIQErV27VgMGDFCXLl20\nfft2vfjii+revbuGDh2q06dPS5Luvfde/elPf1L//v3VuXNn/eUvf/HOsHTpUu9KwDPPPKOSkhJJ\n0ptvvqnp06dr8ODBWr16td58801NmzZNkvT3v/9dffv2Ve/evdWvXz9lZWVJkk6ePKnU1FQlJSWp\nb9++2rRpkyTp+PHj6tq1q/70pz+pX79+6tatm7Zu3XrVTLKysjRgwAD16tVLQ4YMUU5Ojk6ePKnJ\nkyersLBQvXr10qlTp7z337Vrl/r161dlH/3799eHH36ogoICpaamqlevXkpISNCqVau890lISNCS\nJUuUlJSkkydPKiEhQfv27avy/Hr16qWRI0fq2LFjkqS0tDT94Q9/8O7j8tvr1q1T79691atXLw0e\nPFiHDh266u975MiReuSRR/Tcc89p2rRpevPNN686z7WyzMrKUo8eParkdel2Wlqa5s2bpxEjRqhb\nt2569tlnVV5eXuP5gFphAbeQnTt3Wj169Kj2PsuXL7eefvppq6KiwiovL7cGDRpkbdq0ybIsy4qP\nj7dmzJhhWZZlrV271mrbtq21Z88e6+LFi9agQYOsf//3f7csy7Luuece6/e//71lWZZ1+PBhq1Wr\nVtapU6esnJwcq3PnzlZpaalVWVlpPfHEE9bSpUsty7KsxYsXW127drUKCwu9t1944QXLsiyrU6dO\n1vHjxy3LsqyPP/7YmjdvnmVZlvXUU09Zy5YtsyzLso4fP2517NjRys3NtXJzc6377rvPWrt2rWVZ\nlrV169arPu8zZ85YnTp1svbt22dZlmVt27bN6tmzp1VZWWnt2bPH6t69+xWP+f777624uDjr2LFj\nlmVZ1rFjx6wHHnjAqqiosH7/+99bM2fO9G5v2bKldfLkSW9206dP9+4nPj7e+vjjj60TJ05YHTt2\ntI4cOWJZlmWtXLnSevzxxy3LsqypU6d687n8dmlpqRUXF2eVlpZ6n99bb711xazz58+3JkyYYFmW\nZeXk5Fht27a1Fi9efNV5rpXlj3O4/PbUqVOt+Ph469SpU1ZlZaU1fPhwa/Xq1TWeD6gNHJHjllJc\nXKzo6Ohq77Nz504NHTpUwcHBCg0NVb9+/bR7927v9xMTEyVJ99xzj+rUqaNOnTrJ4XCoefPmys/P\n995v0KBBkqRmzZrpF7/4hT777DO1atVKO3fuVL169eR0OtW+fXvl5uZ6H9O2bVtFRUVdMVN0dLTW\nr1+vEydOKC4uTr/73e9UUVGh//mf/1FKSook6ec//7k6deqkPXv2SJIuXLiggQMHSpJatmypkydP\nXrHfzz77TI0aNVLHjh0lSUlJSSoqKtKJEyeumY/L5VJ8fLzef/99SdKOHTvUvXt3BQcHa/r06Zox\nY4Yk6Y477lBMTIyOHz/ufewjjzxyxf52796tTp06qWnTppKkIUOGKCsrSxcuXLjmDHXq1JHD4VB6\neroKCgrUu3dvPf3001fcb9++ferbt68kqVWrVmrTpk2V71+a53pZVichIUGRkZFyOp3q3r27Pv30\n0xrPB9QGihy3lMjISOXl5VV7n1OnTql+/fre2/Xr11dhYaH3dt26dSVJTqfT+/Wl2xcvXqzyuMu/\nLikpUXl5uebOnaukpCQlJSXpnXfekXXZZSqXP+Zyf/zjH1VQUKCBAwcqOTlZe/fuVXFxsSzLktvt\n9t4vPDzcuwweFBSksLCwq852+XMNDw+vss3tdld5vleTlJRUpcj79OkjScrJyVFqaqp69uypXr16\nyePxXDOTS4qKiqrM4Ha7ZVlWtRfYhYSEaPXq1crOzlZSUpJSUlL05ZdfXnG/kpKSKj/z0umUH89z\nvSyrExERUeUxJSUlNZ4PqA0UOW4p7dq1U2Fh4RVXS1dUVOjf/u3fVF5ergYNGqi4uNj7veLiYjVo\n0OCGf9blRVRcXKz69etrzZo1OnLkiDZu3KiMjAw9+uijNdpXkyZN9PLLLyszM1MjR47UpEmTvEeB\nl87LX/o511txuFx0dHSV52pZlk6fPn3dfXTr1k0HDx7UkSNHdOTIET344IOSpN/+9rdKSkpSRkaG\ntm3bpsjIyBue4fTp03I6nd7nd/kfApc/1/vuu0+LFy9WZmamunbtqlmzZl2x77p166qsrMx72+Px\nXHWG6rIMCgryXiMhyXtNwyWX/55Pnz7t/eOgJvMBtYEixy0lPDxco0aN0tSpU3X06FFJUnl5uWbO\nnKl//OMfuu222/TII48oPT1dlZWVKisr03/+53/q4YcfvuGf9e6770qSDh8+rKNHj6pt27YqLCxU\ns2bNVLduXZ04cUK7du2qUjRXc+rUKT355JM6c+aMnE6n2rZtK4fDoeDgYHXt2lUbNmyQJB07dkz7\n9u1Tly5dajxjmzZtVFBQoE8//dQ7c6NGjXT77bdX+ziXy6WuXbtq4cKFSkxMVFBQkCSpsLBQrVq1\nksPh0H/8x3+ovLz8us/voYce0r59+7ynGNavX6+HHnpIwcHBiomJ0cGDByVJubm5ys7OliR9+eWX\neu6553T+/Hm5XC7vz7za89u2bZsk6YsvvtBnn3121RmqyzImJkYej0eFhYWqrKzUf/3Xf1V57Ecf\nfaSSkhJVVlZqx44diouLq/F8QG0I9vcAgK+NHz9e9evX1+jRo1VZWSmn06nExETNnj1bkjRixAjl\n5ubq17/+tRwOh3r16qXevXvf8M+JiopS//79lZeXp+nTp6t+/foaNmyYnnvuOSUlJenee+9VWlqa\nxo8fr9WrV1e7n27dumnQoEEKCgpSSEiIXnrpJUnSiy++qOnTp2vjxo0KCQnR3Llz9bOf/azKeenq\nhIWF6fXXX9ecOXNUVlamqKgoLVq0qEalk5SUdMXsEyZM0NixYxUREaFhw4bp0Ucf1YwZM/TOO+9c\ncz+NGjXS3LlzNWbMGFVUVOj222/XnDlzJElDhw7VuHHj1LNnT913331KSkqS9MP1Cbfffrv69u2r\nkJAQ1a1bVzNnzrxi36NHj9aECRPUo0cPtWvXTomJidd8btfKUvrheofk5GQ1btxY/fv31xdffOF9\n3IMPPqhx48bp66+/VuvWrTVo0CDVqVOnRvMBtYHXkQM2uPfee7Vr1y41atTI36Pc8izL8pb3c889\np44dO+rxxx+vlX2npaWpSZMmGjNmTK3sD/gpWFoHELDWrVun0aNH6+LFiyosLNTevXvVvn17f48F\n1CqW1gEErAEDBmjv3r3q2bOnnE6nnnrqqSteggaYjqV1AAAMxtI6AAAGo8gBADCYkefIPZ6b6+Mm\nayIyMkxFRdW/nhb/HDK2Hxn7Bjnbz7SMY2Lc1/weR+Q+Ehwc5O8RAh4Z24+MfYOc7RdIGVPkAAAY\njCIHAMBgFDkAAAajyAEAMBhFDgCAwShyAAAMRpEDAGAwihwAAINR5AAAGIwiBwDAYBQ5AAAGo8gB\nADCYkZ9+ZpfYaj5dplbYsP98Az8JDgBQezgiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBg\nMIocAACDUeQAABiMIgcAwGAUOQAABqPIAQAwGEUOAIDBbPvQlPLycqWlpamwsFDff/+9xowZo1/+\n8peaMmWKKisrFRMTo4ULF8rlcmnz5s1as2aNnE6nhg4dqiFDhtg1FgAAAcW2Iv/ggw/UqlUrPf30\n0zpx4oSeeuopdejQQSkpKerdu7cWLVqk9PR0JScna+nSpUpPT1dISIgGDx6sHj16KCIiwq7RAAAI\nGLYtrffp00dPP/20JOnbb79Vw4YNlZWVpcTERElSfHy8MjMztX//frVu3Vput1uhoaHq0KGDsrOz\n7RoLAICAYvvnkQ8bNkzfffedli1bpieffFIul0uSFB0dLY/Ho4KCAkVFRXnvHxUVJY/HY/dYAAAE\nBNuLfP369friiy/029/+VpZlebdf/vXlrrX9cpGRYQoODqq1GU0WE+P29wg3FfKwHxn7BjnbL1Ay\ntq3IDxw4oOjoaP3sZz9TixYtVFlZqbp16+rcuXMKDQ1VXl6eYmNjFRsbq4KCAu/j8vPz1a5du2r3\nXVRUZs/QBv5SPZ5Sf49w04iJcZOHzcjYN8jZfqZlXN0fHbadI9+3b5/efvttSVJBQYHKysrUpUsX\nZWRkSJK2b9+ubt26qW3btsrJyVFJSYnOnj2r7OxsxcXF2TUWAAABxbYj8mHDhmnatGlKSUnRuXPn\nNHPmTLVq1UpTp07Vhg0b1LhxYyUnJyskJESTJk1SamqqHA6Hxo4dK7fbvCNjAAD8wWHV5KT0Tcau\n5ZBYA5fW8w1aGrKbaUtlJiJj3yBn+5mWsV+W1gEAgP0ocgAADEaRAwBgMIocAACDUeQAABiMIgcA\nwGAUOQAABqPIAQAwGEUOAIDBKHIAAAxGkQMAYDCKHAAAg1HkAAAYjCIHAMBgFDkAAAajyAEAMBhF\nDgCAwShyAAAMRpEDAGAwihwAAINR5AAAGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBg\nMIocAACDUeQAABgs2N8D4NYTG+O2b+c27DvfU1rr+wSA2sIROQAABqPIAQAwGEUOAIDBKHIAAAxG\nkQMAYDCKHAAAg9n68rMFCxbok08+0YULF/TMM8/o/fff1+eff66IiAhJUmpqqh555BFt3rxZa9as\nkdPp1NChQzVkyBA7xwIAIGDYVuR79uzRoUOHtGHDBhUVFWnAgAF68MEH9fzzzys+Pt57v7KyMi1d\nulTp6ekKCQnR4MGD1aNHD2/ZAwCAa7OtyO+//361adNGkhQeHq7y8nJVVlZecb/9+/erdevWcrt/\neCOPDh06KDs7WwkJCXaNBgBAwLCtyIOCghQWFiZJSk9P169+9SsFBQVp3bp1WrVqlaKjozVjxgwV\nFBQoKirK+7ioqCh5PJ5q9x0ZGabg4CC7RjdKjJ3vkgZJZPxj5OEb5Gy/QMnY9rdo3bFjh9LT0/X2\n22/rwIEDioiIUIsWLfTWW29pyZIlat++fZX7W5Z13X0WFZXZM6yBv1SPiW8faljORmZsk5gYN3n4\nADnbz7SMq/ujw9ar1j/66CMtW7ZMK1askNvtVufOndWiRQtJUkJCgr766ivFxsaqoKDA+5j8/HzF\nxsbaORYAAAHDtiIvLS3VggULtHz5cu+Fa+PHj1dubq4kKSsrS82bN1fbtm2Vk5OjkpISnT17VtnZ\n2YqLi7NrLAAAAoptS+tbt25VUVGRJk6c6N02cOBATZw4UbfddpvCwsL08ssvKzQ0VJMmTVJqaqoc\nDofGjh3rvfANAABUz2HV5KT0Tcau8xq2frymTUz8iE3TcjYxY7uYdl7RVORsP9My9ts5cgAAYC+K\nHAAAg1HkAAAYjCIHAMBgFDkAAAajyAEAMBhFDgCAwShyAAAMRpEDAGAwihwAAINR5AAAGIwiBwDA\nYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBgMIocAACDUeQAABiMIgcAwGAUOQAABqPIAQAwGEUO\nAIDBKHIAAAxGkQMAYDCKHAAAg1HkAAAYjCIHAMBgFDkAAAajyAEAMBhFDgCAwShyAAAMRpEDAGAw\nihwAAINR5AAAGIwiBwDAYMF27nzBggX65JNPdOHCBT3zzDNq3bq1pkyZosrKSsXExGjhwoVyuVza\nvHmz1qxZI6fTqaFDh2rIkCF2jgUAQMCwrcj37NmjQ4cOacOGDSoqKtKAAQPUuXNnpaSkqHfv3lq0\naJHS09OVnJyspUuXKj09XSEhIRo8eLB69OihiIgIu0YDACBg2La0fv/99+uNN96QJIWHh6u8vFxZ\nWVlKTEyUJMXHxyszM1P79+9X69at5Xa7FRoaqg4dOig7O9uusQAACCi2HZEHBQUpLCxMkpSenq5f\n/epX+u///m+5XC5JUnR0tDwejwoKChQVFeV9XFRUlDweT7X7jowMU3BwkF2jGyUmxu3vEQIeGVdF\nHr5BzvYLlIxtPUcuSTt27FB6errefvtt9ezZ07vdsqyr3v9a2y9XVFRWa/NVYeAv1eMp9fcIN86w\nnI3M2CYxMW7y8AFytp9pGVf3R4etV61/9NFHWrZsmVasWCG3262wsDCdO3dOkpSXl6fY2FjFxsaq\noKDA+5j8/HzFxsbaORYAAAHDtiIvLS3VggULtHz5cu+Fa126dFFGRoYkafv27erWrZvatm2rnJwc\nlZSU6OzZs8rOzlZcXJxdYwEAEFBsW1rfunWrioqKNHHiRO+2+fPna/r06dqwYYMaN26s5ORkhYSE\naNKkSUpNTZXD4dDYsWPldpu19AoAgL84rJqclL7J2HVeI9awc7eSlG/QOZ5LTMvZxIztYtp5RVOR\ns/1My9hv58gBAIC9KHIAAAxGkQMAYDDbX0cOwPdsvQ7Bpn1zLQLw03BEDgCAwShyAAAMRpEDAGAw\nihwAAINR5AAAGIwiBwDAYBQ5AAAGo8gBADBYjYo8LS3tim2pqam1PgwAALgx1b6z2+bNm7V+/Xod\nOnRIw4cP926vqKhQQUGB7cMBAIDqVVvk//Iv/6JOnTpp8uTJGj9+vHe70+nU3XffbftwAACgetd9\nr/WGDRtq7dq1Ki0tVXFxsXd7aWmpIiIibB0OAABUr0YfmjJ37lz97W9/U1RUlCzLkiQ5HA699957\ntg4HAACqV6Miz8rK0p49e1SnTh275wEAADegRletN23alBIHAOAmVKMj8kaNGmn48OHq2LGjgoKC\nvNsnTJhg22AAAOD6alTkERER6ty5s92zAACAG1SjIh8zZozdcwAAgJ+gRkV+3333yeFweG87HA65\n3W5lZWXZNhgAALi+GhX5wYMHvV+fP39emZmZ+vLLL20bCgAA1MwNf2iKy+XSww8/rN27d9sxDwAA\nuAE1OiJPT0+vcvu7775TXl6eLQMBAICaq1GRf/LJJ1Vu16tXT6+//rotAwEAgJqrUZG//PLLkqTi\n4mI5HA7Vr1/f1qEAAEDN1KjIs7OzNWXKFJ09e1aWZSkiIkILFy5U69at7Z4PAABUo0ZF/tprr+kP\nf/iD7rnnHknSP/7xD7300kv685//bOtwAACgejW6at3pdHpLXPrhdeWXv1UrAADwjxoXeUZGhs6c\nOaMzZ85o69atFDkAADeBGi2tv/jii5ozZ46mT58up9OpX/7yl5o7d67dswEAgOuo0RH57t275XK5\n9PHHHysrK0uWZWnXrl12zwYAAK6jRkW+efNmLVmyxHv77bff1pYtW2wbCgAA1EyNiryysrLKOXGH\nwyHLsq77uK+++krdu3fXunXrJElpaWnq16+fRowYoREjRmjnzp2SfvhDYdCgQRoyZIj++te//oSn\nAQDAralG58gTEhI0bNgwdezYURcvXtSePXvUs2fPah9TVlamOXPmXPE55s8//7zi4+Or3G/p0qVK\nT09XSEiIBg8erB49eigiIuInPB0AAG4tNToiHzNmjCZPnqzo6GjFxsZq1qxZGj16dLWPcblcWrFi\nhWJjY6u93/79+9W6dWu53W6FhoaqQ4cOys7OrvkzAADgFlajI3JJiouLU1xcXM13HBys4OArd79u\n3TqtWrVK0dHRmjFjhgoKChQVFeX9flRUlDweT41/DgAAt7IaF3lt6N+/vyIiItSiRQu99dZbWrJk\nidq3b1/lPjU59x4ZGabgYF7HLkkxMW5/jxDwyNg3yLkq8rBfoGTs0yK//Hx5QkKCZs+eraSkJBUU\nFHi35+fnq127dtXup6iozJ4BDfylejyl/h7hxhmWMxn7hpE52yQmxk0eNjMt4+r+6KjROfLaMn78\neOXm5kqSsrKy1Lx5c7Vt21Y5OTkqKSnR2bNnlZ2dfUNL+AAA3MpsOyI/cOCAXnnlFZ04cULBwcHK\nyMjQY489pokTJ+q2225TWFiYXn75ZYWGhmrSpElKTU2Vw+HQ2LFj5XabdzQBAIA/OKyanJS+ydi1\nHBJr4HJkvkFLQ5eYljMZ+4aJOdvFtGVfE5mW8U2ztA4AAGoXRQ4AgMEocgAADEaRAwBgMJ++jhwA\nAoXtFxTasH8uKAxMHJEDAGAwihwAAINR5AAAGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaR\nAwBgMIocAACDUeQAABiMIgcAwGAUOQAABqPIAQAwGEUOAIDBKHIAAAxGkQMAYDCKHAAAg1HkAAAY\njCIHAMBgFDkAAAajyAEAMBhFDgCAwShyAAAMRpEDAGAwihwAAINR5AAAGIwiBwDAYBQ5AAAGo8gB\nADAYRQ4AgMFsLfKvvvpK3bt317p16yRJ3377rUaMGKGUlBRNmDBB58+flyRt3rxZgwYN0pAhQ/TX\nv/7VzpEAAAgothV5WVmZ5syZo86dO3u3LV68WCkpKXrnnXfUtGlTpaenq6ysTEuXLtXq1au1du1a\nrVmzRsXFxXaNBQBAQLGtyF0ul1asWKHY2FjvtqysLCUmJkqS4uPjlZmZqf3796t169Zyu90KDQ1V\nhw4dlJ2dbddYAAAElGDbdhwcrODgqrsvLy+Xy+WSJEVHR8vj8aigoEBRUVHe+0RFRcnj8VS778jI\nMAUHB9X+0AaKiXH7e4SAR8a+Qc72I+OqAiUP24r8eizLuqHtlysqKqvtcX5g4C/V4yn19wg3zrCc\nydg3jMuZjI0WE+M2Ko/q/ujw6VXrYWFhOnfunCQpLy9PsbGxio2NVUFBgfc++fn5VZbjAQDAtfm0\nyLt06aKMjAxJ0vbt29WtWze1bdtWOTk5Kikp0dmzZ5Wdna24uDhfjgUAgLFsW1o/cOCAXnnlFZ04\ncULBwcHKyMjQq6++qrS0NG3YsEGNGzdWcnKyQkJCNGnSJKWmpsrhcGjs2LFyu81bsgIAwB8cVk1O\nSt9k7DqvEWvgOa98g87xXGJazmTsG6blTMZm4xw5AAC4KVDkAAAYjCIHAMBgFDkAAAbz2xvCAABw\nPbZeVGjDvv1xQSFH5AAAGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBgMIocAACDUeQA\nABiMIgcAwGAUOQAABqPIAQAwGEUOAIDBKHIAAAxGkQMAYDCKHAAAg1HkAAAYjCIHAMBgFDkAAAaj\nyAEAMBhFDgCAwShyAAAMRpEDAGAwihwAAINR5AAAGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAA\nDEaRAwBgsGBf/rCsrCxNmDBBzZs3lyTdc889GjVqlKZMmaLKykrFxMRo4cKFcrlcvhwLAABj+bTI\nJemBBx7Q4sWLvbd/97vfKSUlRb1799aiRYuUnp6ulJQUX48FAICR/L60npWVpcTERElSfHy8MjMz\n/TwRAADm8PkR+f/93//p2Wef1enTpzVu3DiVl5d7l9Kjo6Pl8Xiuu4/IyDAFBwfZPaoRYmLc/h4h\n4JGxb5Cz/cjYfv7I2KdFfuedd2rcuHHq3bu3cnNzNXLkSFVWVnq/b1lWjfZTVFRmz4AG/iP3eEr9\nPcKNMyxnMvYN43ImY98wLGe7Mq7uDwSfLq03bNhQffr0kcPhUJMmTdSgQQOdPn1a586dkyTl5eUp\nNjbWlyMBAGA0nxb55s2btXLlSkmSx+NRYWGhBg4cqIyMDEnS9u3b1a1bN1+OBACA0Xy6tJ6QkKDJ\nkyfrvffeU0VFhWbPnq0WLVpo6tSp2rBhgxo3bqzk5GRfjgQAgNF8WuT16tXTsmXLrti+atUqX44B\nAEDA8PvLzwAAwE9HkQMAYDCKHAAAg1HkAAAYjCIHAMBgFDkAAAajyAEAMBhFDgCAwShyAAAMRpED\nAGAwihwAAINR5AAAGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBgMIocAACDUeQAABiM\nIgcAwGAUOQAABqPIAQAwGEUOAIDBKHIAAAxGkQMAYDCKHAAAg1HkAAAYjCIHAMBgFDkAAAajyAEA\nMBhFDgCAwShyAAAMRpEDAGAwihwAAIMF+3uAS+bNm6f9+/fL4XDohRdeUJs2bfw9EgAAN72bosj3\n7t2ro0ePasOGDTp8+LBeeOEFbdiwwd9jAQBw07spltYzMzPVvXt3SdJdd92l06dP68yZM36eCgCA\nm99NUeQFBQWKjIz03o6KipLH4/HjRAAAmOGmWFr/Mcuyqv1+TIzbnp9ry15tZlMWdjIuZzL2DcNy\nJmPfMC5nP2R8UxyRx8bGqqCgwHs7Pz9fMTExfpwIAAAz3BRF/tBDDykjI0OS9Pnnnys2Nlb16tXz\n81QAANz8boql9Q4dOqhly5YaNmyYHA6HZs2a5e+RAAAwgsO63glpAABw07opltYBAMBPQ5EDAGAw\nihwAAINR5LXs/Pnzev3111VRUeHddujQIS1evNiPUwWer776SjNnztRjjz2mkSNHav78+fruu+/8\nPVbAunjxok6cOKELFy74e5SAUlJScs3v5eTk+HCSW09ubq6WL1/u7zFqBUVeyxYsWKAzZ85UeVOb\npk2b6syZM1qyZIkfJwscmZmnsuZhAAAJIUlEQVSZ+td//Vc98MADmjNnjqZMmaI777xTTzzxhDIz\nM/09XkDIzs5Wamqqpk2bpsOHD6t///6aOHGievTooQ8++MDf4wWMcePGVbl9+St2Fi5c6OtxAl5+\nfr5Wr16toUOHatSoUbp48aK/R6oVN8XLzwLJp59+qr/97W9VtrlcLqWlpWn48OFX/B8XN+6tt97S\nsmXLdMcdd3i3tWrVSl26dNHkyZPVuXNnP04XGBYsWKDJkyfL4/Fo1KhRWrlypZo1a6bi4mI9++yz\nio+P9/eIAeHHLxr6+uuvr/k9/DTFxcXKyMjQli1bdPToUfXs2VMlJSXe9y4JBBR5LQsKCrrqdqfT\nWWW5HT/dhQsXqpT4JU2aNJHTySJTbXC5XIqLi5MkrV69Ws2aNZMkRUREKCQkxJ+jBRSHw/GTvoea\n69q1q5o0aaKpU6eqW7ducjqdSk5O9vdYtYr/6tWyyMhI7du374rtO3fuVIMGDfwwUeCp7j9wLpfL\nh5PcGurUqVPlNgVjH7KtffPnz1eTJk00bdo0zZo1KyBPv/GGMLXs6NGjGj9+vO666y61aNFClZWV\n2r9/v7799lutXLmSMq8FHTp08B4hXs6yLB05ckSffPKJH6YKLJcytixL33zzjTdvMq5dl/9bvjxr\ncq59p0+f1rZt27Rlyxbt379fw4cP16BBg3T33Xf7e7R/GkVug4sXL2r37t36+uuv5XA41KxZMz30\n0EP8tV1LTpw4Ue33f/7zn/toksBFxr5Bzv6Rl5enLVu26N1339XGjRv9Pc4/jSIHAMBgnCMHAMBg\nFDkAAAbj5Wc2OXjwoJYsWaIjR47I4XDorrvu0tixY9W8eXN/jxYwyNh+ZOwb5Gy/gM7Ygi2Sk5Ot\n999/3zp16pRVWFho7dixw+rfv7+/xwooZGw/MvYNcrZfIGfM0rpNIiIiFB8fr8jISEVFRSkxMVGN\nGjXy91gBhYztR8a+Qc72C+SMg2bPnj3b30MEopycHH3wwQc6f/68Dh06pPXr1ys0NFROp1NHjx7V\nnXfe6e8RjUfG9iNj3yBn+wVyxpwjt0lZWZkkXfEBE9u2bZMkPfzwwz6fKdCQsf3I2DfI2X6BnDGv\nI7fJyZMnr7q9cePGPp4kcJGx/cjYN8jZfoGcMUVuk0GDBnnfya2iokK5ublq2bKl1q5d6+fJAgcZ\n24+MfYOc7RfIGbO0bpMff5Spx+PRG2+84adpAhMZ24+MfYOc7RfIGXPVuo/ExMTo4MGD/h4joJGx\n/cjYN8jZfoGUMUfkNrl8GceyLBUWFqpLly5+niqwkLH9yNg3yNl+gZwx58htcvmnGjkcDtWrV0/h\n4eF+nCjwkLH9yNg3yNl+gZwxR+Q2evPNN/XFF1/I6XSqVatWGj9+vGJjY/09VkAhY/uRsW+Qs/0C\nNWOOyG3yxBNP6De/+Y06deqkiooK7d27V5s2bdKKFSv8PVrAIGP7kbFvkLP9AjljLnazSWVlpZKS\nkhQREaGYmBj9+te/1vnz5/09VkAhY/uRsW+Qs/0COWOK3CYul0t///vfderUKRUWFurdd9+Vy+Xy\n91gBhYztR8a+Qc72C+SMWVq3SV5ent544w0dOHBATqdTrVu3DpjzMTcLMrYfGfsGOdsvkDPmYjeb\nbNq0SfPmzfP3GAGNjO1Hxr5BzvYL5IxZWrdJYWGhdu/erZKSEpWXl3v/h9pDxvYjY98gZ/sFcsYs\nrdskKSlJFRUVVbY5HA699957fpoo8JCx/cjYN8jZfoGcMUUOAIDBOEduk8TExCu2BQUF6Y477tDz\nzz+vli1b+mGqwELG9iNj3yBn+wVyxhS5TYYOHSq32+39x/Phhx/q1KlT6tSpk+bOnau//OUvfp7Q\nfGRsPzL2DXK2XyBnzMVuNvnwww+VkpKihg0bqmHDhhoyZIh2796tdu3a+Xu0gEHG9iNj3yBn+wVy\nxhyR26ROnTqaN2+eOnToIKfTqQMHDqiiokK7d+9WWFiYv8cLCGRsPzL2DXK2XyBnzMVuNjlz5ow2\nbdqkw4cPy7IsNWnSRAMGDFB5ebncbrfcbre/RzQeGduPjH2DnO0XyBlT5AAAGIxz5AAAGIwiBwDA\nYFzsBtxCPB6PXn31VR08eFB169bV2bNnNXDgQD3++OP+Hg3AT0SRA7cIy7I0ZswYDRw4UK+88ook\nqaCgQE888YQaNWqkpKQkP08I4KegyIFbRGZmpoKCgvSb3/zGu61BgwbauHGjXC6X0tLS5HK59M03\n3+jVV1/Vd999p/nz5ys4OFgOh0MzZ87U3XffrREjRmj06NHq0qWLjh8/rpSUFH344YdKS0tTnTp1\ndPz4ceXn52vgwIF68skntWfPHr322msKDQ3V+fPnNW3aNLVp08aPSQCBhSIHbhGHDh1Sq1atrtju\ncrm8X5eVlWnt2rWSpJEjR2rhwoVq06aNPvjgA7344ove711LXl6eVq5cqZKSEnXv3l3Jyclas2aN\nnnzySfXp00dff/21vvnmm9p9YsAtjiIHbhFBQUGqrKz03t6wYYO2bNmi77//Xo0aNVJYWJjat28v\nSSopKVFhYaH3yPmBBx7Q888/f92f0bVrV0lSeHi47rzzTh09elT9+vXTokWL9NlnnykxMfGq73kN\n4KfjqnXgFnHvvffqf//3f723H330Ua1du1aTJk2Sx+OR9P+Pzh0OR5XHXuvtJn78sZAXL16s8hiH\nw6E+ffpo48aNatOmjZYuXapFixbVyvMB8AOKHLhF3H///YqIiNDy5cu92y69RWVoaGiV+7rdbsXE\nxGj//v2Sfji/fuk9qevVq6dvv/1WkrRnz54qj8vKypIknT59WseOHdMvfvELLV68WJWVlerTp4+m\nTZumTz/91LbnCNyKWFoHbiF//OMftWjRIvXv31/16tVTeXm5OnbsqNdee00LFiyoct9XXnlF8+fP\nV1BQkJxOp2bPni1JeuyxxzRr1ixt2bJF3bp1q/KY8PBwjRkzRrm5uRo/frzCw8PVtGlTPfXUUwoP\nD9fFixc1fvx4Xz1d4JbAW7QCqBVpaWnq2LGjhgwZ4u9RgFsKS+sAABiMI3IAAAzGETkAAAajyAEA\nMBhFDgCAwShyAAAMRpEDAGAwihwAAIP9PzE9EGvWEdsCAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
- ]
- },
- {
- "metadata": {
- "id": "HuHz4ouB-McA",
- "colab_type": "code",
- "outputId": "17a911b5-7543-439a-9c69-1c4f9b6218ed",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 129
- }
- },
- "cell_type": "code",
- "source": [
- "data['race/ethnicity'].value_counts()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "group C 319\n",
- "group D 262\n",
- "group B 190\n",
- "group E 140\n",
- "group A 89\n",
- "Name: race/ethnicity, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 175
- }
- ]
- },
- {
- "metadata": {
- "id": "G5B9KxHRW_D0",
- "colab_type": "code",
- "outputId": "c0a96572-aa93-4161-8ed9-1f8f48945ac2",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 449
- }
- },
- "cell_type": "code",
- "source": [
- "# visualizing the differnt parental education levels\n",
- "\n",
- "data['parental level of education'].value_counts(normalize = True)\n",
- "data['parental level of education'].value_counts(dropna = False).plot.bar()\n",
- "plt.title('Comparison of Parental Education')\n",
- "plt.xlabel('Degree')\n",
- "plt.ylabel('count')\n",
- "plt.show()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAGwCAYAAABSAee3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlYVPXiBvB3ZthEEUTBJZe01FQQ\nBcXcLu7gGrlviKZZ/ayUDMUlE5WUMDOT1KxEQa+muXDVUtzyloAZIi6VqY8LigiyL8Ywc35/eD2J\noI7kcM4X38/z+DzOYRze+crhne9ZNZIkSSAiIiIhaZUOQEREROXHIiciIhIYi5yIiEhgLHIiIiKB\nsciJiIgExiInIiISGIucKgVJkrBu3ToMGDAA3t7e6NWrF+bPn4/c3Fylo5UQFRWF5cuXK/b9c3Nz\n8corr6BPnz7IzMws8bXPP/8c7dq1g4+PD3x8fODt7Y0PP/wQhYWFFZKtqKgIO3fufOzztm/fjvHj\nx5danpycjObNm8v57/+Tmppa6vm7du2Cn5/f04heyrfffiv/3cfHB+np6Wb5PkQAYKF0AKKnYenS\npTh+/Di+/vpr1K5dGwUFBQgJCcEbb7yBjRs3QqPRKB0RADB27FhFv/8ff/yBrKws/Pjjj2V+3dvb\nGyEhIQDuFuu0adMQHh6O999/3+zZzp07h507d8LX17fcr6HT6fDDDz88xVRPLi0tDV999RWGDx8O\nAIrnocqPM3ISXlZWFiIjI7FkyRLUrl0bAGBra4t58+Zh0qRJkCQJf/31F+bNmwdvb2/07dsXS5Ys\ngcFgAAD06NEDkZGRePXVV9GpUyfs378fwcHB6NWrF4YPH47s7GwAQPPmzbFhwwa88sor6NixI/79\n73/LGcLDw+UtAW+88QZycnIA3J3lzp07F0OHDkVERAQ+//xzzJkzBwDw/fffY8CAAejbty8GDhyI\n+Ph4AMCNGzcwceJEeHt7Y8CAAfIsNTk5GV26dMGGDRswcOBAdO3aFXv37i1zTOLj4/Hqq6/Cx8cH\nw4YNw+nTp3Hjxg28//77uH37Nnx8fJCRkfHIcbWyssKIESPw888/AwDS09MxceJE+Pj4oEePHli3\nbp383B49emDlypXw9vbGjRs3cPPmTbz55pvw9vaGt7e3/MHhYe8hPT0db7/9NhITEzF69GgAwMGD\nBzFw4EB4e3tj8ODB+O2330z9kSiT0WjEggUL0K1bNwwdOhS///67/DU/Pz/s2rWrzMdHjx5F//79\n4e3tjTfeeANZWVmPzDdy5EjcuHEDPj4+KCoqQvPmzXHz5k0AwIYNG9CvXz/4+Pjgrbfekv8PgoKC\nsGLFCkyYMAHdu3fHhAkTKmxLCFUCEpHgjhw5IvXu3fuRz1mzZo30+uuvS3q9XiosLJSGDBki7dy5\nU5IkSerevbv0wQcfSJIkSZGRkZKbm5sUFxcnGY1GaciQIdK3334rSZIkNWvWTFqwYIEkSZJ08eJF\nycXFRcrIyJBOnz4tdezYUcrNzZUMBoM0fvx4KTw8XJIkSVqxYoXUpUsX6fbt2/Lj2bNnS5IkSR06\ndJCSk5MlSZKkX375Rfroo48kSZKk1157TVq9erUkSZKUnJwseXh4SNeuXZOuXbsmtWzZUoqMjJQk\nSZL27t1b5vvOy8uTOnToIJ04cUKSJEn64YcfpD59+kgGg0GKi4uTevXqVeYY3Z/tnpiYGGn48OGS\nJEnSggULpHnz5kmSJElXr16VWrVqJd24cUMew7lz58r/bty4cdKnn34qSZIkXb58WfL09JQyMjIe\n+R6+++47yd/fX5IkSdLr9VK7du2kkydPSpIkSZ9//rn8tfufd79r165JLVq0KPO9SdLdn5M+ffpI\neXl5UmFhoTR06FBp7NixkiRJ0tixY+Wfh/sf5+fnS56entIff/whSZIkLVq0SJo/f/4j8z04xs2a\nNZNSUlKkkydPSv/617+k9PR0eTzvjffMmTOlvn37SpmZmZJer5cGDRok7dq166Hvheh+nJGT8LKy\nslCzZs1HPufIkSMYPnw4LCwsYGNjg4EDB8ozTQDo2bMnAKBZs2awtrZGhw4doNFo0LRpU9y6dUt+\n3pAhQwAATZo0QePGjZGUlAQXFxccOXIE1apVg1arRdu2bXHt2jX537i5ucHR0bFUppo1a2Lz5s24\nfv062rVrh1mzZkGv1+PYsWPyrPS5555Dhw4dEBcXBwAoLi7G4MGDAQCtWrXCjRs3Sr1uUlIS6tSp\nAw8PDwB3N5dnZmbi+vXrjx/M++Tl5WHTpk3o3bs3AGDu3Ln44IMPAAANGjSAk5MTkpOT5ed369YN\nAFBQUID4+Hh5P3ajRo3g4eEhz8pNeQ8WFhY4duwY2rRpAwBo165diTF9GIPBUGr/eEBAAADgl19+\ngZeXF6pWrQobGxv07dv3sa+XkJCAOnXqoFmzZgCAwMBAzJo1q1z5jhw5Am9vb/lnddiwYSV+Br28\nvODg4AALCws0a9YMKSkpj81HBHAfOVUCNWrUKPNgpvtlZGTA3t5efmxvb4/bt2/Lj6tWrQoA0Gq1\n8t/vPTYajSX+3f1/z8nJQWFhIRYvXixvGs/OzpZL7cF/c79Vq1Zh1apVGDx4MOrWrYvZs2ejcePG\nkCQJdnZ28vOqV68ub4LV6XSwtbUtM9v977V69eolltnZ2ZV4vw+zb98+/PrrrwAAS0tL9O7dWy7k\n06dP45NPPkFKSgq0Wi3S0tLKHJvc3FxIkoSRI0fKXysoKMDLL79s8nsAgMjISOzYsQNFRUUoKioy\n6TiHR+0jz87OhrOzs/z4wTEqS2ZmZonnWVlZlTtfRkZGqe9////J/f/nOp1O3vVD9DgschJemzZt\ncPv2bZw9exatWrWSl+v1eqxcuRJvvvkmatWqJe/bBO7O4mvVqvXE3yszMxPPPfec/Br29vZYv349\nLl++jO3bt6Nq1ar49NNPH/vBAgAaNmyIxYsXw2g0YufOnZg+fToOHz4MrVaL7OxsuRhN2eJwv5o1\na5Z4r5IkITs7GzVr1ixz9nu/+w92e1BgYCD8/f0xatQoaDQadO3a9aHfX6fT4bvvvivxoQhAiRn8\noyQkJGDt2rXYunUr6tevj59//lneGlBe1atXL3EWw/3HCDz4geLecRE1atQocXR/YWEhsrOzcePG\njSfO97R+BokexE3rJLzq1atj0qRJmDlzJq5cuQLg7i/cefPm4dy5c6hSpQq6deuGbdu2wWAwoKCg\nALt27YKXl9cTf689e/YAAC5evIgrV67Azc0Nt2/fRpMmTVC1alVcv34dP/74IwoKCh75OhkZGZgw\nYQLy8vKg1Wrh5uYGjUYDCwsLdOnSBVu2bAEAXL16FSdOnECnTp1Mzti6dWukp6fj5MmTcuY6deqg\nfv36T/x+73f79m24uLhAo9Fgx44dKCwsLPN9WlhYwMvLC5s3bwZw9/9i1qxZj91UbGFhgby8PEiS\nhIyMDNSsWRP16tVDYWEhduzYgYKCAkj/4GaNbdu2xU8//YTCwkIUFhaWmLk7OTnJB7+dPHkSly9f\nBgB4eHggLS0NSUlJAIAvvvgC4eHhj8xnYWGBgoICFBcXl/j+3bp1Q0xMjPzBYPPmzeX6GSR6EGfk\nVCm88847sLe3x1tvvQWDwQCtVouePXti/vz5AO4ehXzt2jX0798fGo0GPj4+Ju0jfZCjoyNeeeUV\npKamYu7cubC3t8fIkSPx7rvvwtvbG82bN0dQUBDeeecdREREPPJ1unbtiiFDhkCn08HS0lKeCQcH\nB2Pu3LnYvn07LC0tsWjRItStW9fk2aytrS2WL1+OhQsXoqCgAI6Ojli2bNk/PgVv6tSpmDJlChwc\nHDBy5EiMGDECH3zwATZt2lTqufPnz8eHH36IrVu3AgAGDRr02Pfg4eGBpUuXomvXrti/fz82bdqE\nXr16oXbt2pg9ezZOnTqFd999F927d3/oa9zbR/6g6dOno0ePHjhy5Ah8fHxQq1YteHl54cSJEwCA\nCRMm4L333sPRo0fh6emJzp07AwCqVKmCzz//HIGBgQDu7u9fsmQJqlat+tB8ixcvhr29PTp37owd\nO3bIGVq3bo3JkydjzJgxMBqNaNGihfzzSfRPaKR/8hGX6BnSvHlz/Pjjj6hTp47SUYiIZNy0TkRE\nJDAWORERkcC4aZ2IiEhgnJETEREJjEVOREQkMCFPP0tLU9etKQGgRg1bZGY++txhuotjZRqOk2k4\nTqbjWJlGjePk5GT30K9xRv6UWFjolI4gDI6VaThOpuE4mY5jZRrRxolFTkREJDAWORERkcBY5ERE\nRAJjkRMREQmMRU5ERCQwFjkREZHAWOREREQCY5ETEREJjEVOREQkMBY5ERGRwFjkREREAmORExER\nCUzIu589Ta8tOaR0hFK+CeqhdAQiIhIEZ+REREQCY5ETEREJjEVOREQkMBY5ERGRwJ75g93INFMO\nzVA6QinhPT5WOgIRkeI4IyciIhIYi5yIiEhgLHIiIiKBsciJiIgExiInIiISGIuciIhIYCxyIiIi\ngbHIiYiIBMYiJyIiEhiLnIiISGAsciIiIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKBsciJiIgE\nxiInIiISGIuciIhIYCxyIiIigbHIiYiIBMYiJyIiEhiLnIiISGAsciIiIoFZmPPFP/74Y/z6668o\nLi7GG2+8AVdXV8yYMQMGgwFOTk4ICwuDlZUVoqOjsX79emi1WgwfPhzDhg0zZywiIqJKw2xFHhcX\nhz///BNbtmxBZmYmXn31VXTs2BGjR49G3759sWzZMmzbtg2+vr4IDw/Htm3bYGlpiaFDh6J3795w\ncHAwVzQiIqJKw2yb1tu3b4/PPvsMAFC9enUUFhYiPj4ePXv2BAB0794dsbGxOHXqFFxdXWFnZwcb\nGxu4u7sjISHBXLGIiIgqFbMVuU6ng62tLQBg27Zt+Ne//oXCwkJYWVkBAGrWrIm0tDSkp6fD0dFR\n/neOjo5IS0szVywiIqJKxaz7yAHgwIED2LZtG7755hv06dNHXi5JUpnPf9jy+9WoYQsLC91Ty6g2\nTk52SkcQwrMwTs/Ce3waOE6m41iZRqRxMmuR//e//8Xq1avx1Vdfwc7ODra2trhz5w5sbGyQmpoK\nZ2dnODs7Iz09Xf43t27dQps2bR75upmZBeaMrbi0tFylIwihso+Tk5NdpX+PTwPHyXQcK9OocZwe\n9cHCbJvWc3Nz8fHHH2PNmjXygWudOnXCvn37AAD79+9H165d4ebmhtOnTyMnJwf5+flISEhAu3bt\nzBWLiIioUjHbjHzv3r3IzMzEtGnT5GVLlizB3LlzsWXLFtSrVw++vr6wtLTE9OnTMXHiRGg0GkyZ\nMgV2duJs0iAiIlKS2Yp8xIgRGDFiRKnl69atK7XMx8cHPj4+5opCRERUaZn9YDeiZ8n5SeOf3ms9\ntVcCmn0V8RRfjYjUhJdoJSIiEhiLnIiISGAsciIiIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKB\nsciJiIgExiInIiISGIuciIhIYCxyIiIigbHIiYiIBMYiJyIiEhiLnIiISGAsciIiIoGxyImIiATG\nIiciIhIYi5yIiEhgLHIiIiKBsciJiIgEZqF0ACJ6Nq1ackTpCKW8FdRN6QhET4wzciIiIoGxyImI\niATGIiciIhIYi5yIiEhgLHIiIiKBsciJiIgExiInIiISGIuciIhIYCxyIiIigbHIiYiIBMYiJyIi\nEhiLnIiISGAsciIiIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKBsciJiIgExiInIiISGIuciIhI\nYCxyIiIigbHIiYiIBMYiJyIiEhiLnIiISGAsciIiIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKB\nsciJiIgExiInIiISGIuciIhIYGYt8vPnz6NXr16IiooCAAQFBWHgwIHw8/ODn58fjhw5AgCIjo7G\nkCFDMGzYMGzdutWckYiIiCoVC3O9cEFBARYuXIiOHTuWWP7ee++he/fuJZ4XHh6Obdu2wdLSEkOH\nDkXv3r3h4OBgrmhERESVhtlm5FZWVli7di2cnZ0f+bxTp07B1dUVdnZ2sLGxgbu7OxISEswVi4iI\nqFIxW5FbWFjAxsam1PKoqCiMGzcOAQEByMjIQHp6OhwdHeWvOzo6Ii0tzVyxiIiIKhWzbVovyyuv\nvAIHBwe0aNECX375JVauXIm2bduWeI4kSY99nRo1bGFhoTNXTMU5OdkpHUEIahyn80oHeAg1jpUa\nPQvj9Cy8x6dBpHGq0CK/f395jx49MH/+fHh7eyM9PV1efuvWLbRp0+aRr5OZWWC2jGqQlpardAQh\ncJxMx7EyTWUfJycnu0r/Hp8GNY7Toz5YVOjpZ++88w6uXbsGAIiPj0fTpk3h5uaG06dPIycnB/n5\n+UhISEC7du0qMhYREZGwzDYjP3PmDEJDQ3H9+nVYWFhg3759GDt2LKZNm4YqVarA1tYWixcvho2N\nDaZPn46JEydCo9FgypQpsLMTZ5MGERGRksxW5C4uLoiMjCy13Nvbu9QyHx8f+Pj4mCsKERFRpcUr\nuxEREQmMRU5ERCQwFjkREZHAWOREREQCY5ETEREJjEVOREQkMBY5ERGRwFjkREREAmORExERCYxF\nTkREJDAWORERkcBY5ERERAJjkRMREQmMRU5ERCQwFjkREZHAWOREREQCY5ETEREJjEVOREQkMBY5\nERGRwFjkREREAmORExERCYxFTkREJDAWORERkcBMKvKgoKBSyyZOnPjUwxAREdGTsXjUF6Ojo7F5\n82b8+eefGDNmjLxcr9cjPT3d7OGIiIjo0R5Z5IMGDUKHDh3w/vvv45133pGXa7VavPjii2YPR0RE\nRI/2yCIHgNq1ayMyMhK5ubnIysqSl+fm5sLBwcGs4YiIiOjRHlvkALBo0SJ89913cHR0hCRJAACN\nRoODBw+aNRwRERE9mklFHh8fj7i4OFhbW5s7DxERET0Bk45ab9SoEUuciIhIhUyakdepUwdjxoyB\nh4cHdDqdvHzq1KlmC0ZERESPZ1KROzg4oGPHjubOQkRERE/IpCL/v//7P3PnICIionIwqchbtmwJ\njUYjP9ZoNLCzs0N8fLzZghEREdHjmVTkv//+u/z3oqIixMbG4o8//jBbKCIiIjKNSUV+PysrK3h5\neeGbb77B5MmTzZGJiIj+5+rJBU/vtZ7S6zRsO+8pvRI9DSYV+bZt20o8vnnzJlJTU80SiIiIiExn\nUpH/+uuvJR5Xq1YNy5cvN0sgIiIiMp1JRb548WIAQFZWFjQaDezt7c0aioiIiExjUpEnJCRgxowZ\nyM/PhyRJcHBwQFhYGFxdXc2dj4iIiB7BpCL/5JNP8MUXX6BZs2YAgHPnziEkJAQbN240azgiIiJ6\nNJOuta7VauUSB+6eV37/pVqJiIhIGSYX+b59+5CXl4e8vDzs3buXRU5ERKQCJm1aDw4OxsKFCzF3\n7lxotVq89NJLWLRokbmzERER0WOYNCP/+eefYWVlhV9++QXx8fGQJAk//vijubMRERHRY5hU5NHR\n0Vi5cqX8+JtvvsHu3bvNFoqIiIhMY1KRGwyGEvvENRoNJEkyWygiIiIyjUn7yHv06IGRI0fCw8MD\nRqMRcXFx6NOnj7mzERER0WOYfD9yT09PJCUlQaPR4MMPP0SbNm3MnY2IiIgew+S7n7Vr1w7t2rUz\nZxYiIiJ6QibtIyciIiJ1YpETEREJjEVOREQkMBY5ERGRwMxa5OfPn0evXr0QFRUFAEhJSYGfnx9G\njx6NqVOnoqioCMDdC84MGTIEw4YNw9atW80ZiYiIqFIxW5EXFBRg4cKF6Nixo7xsxYoVGD16NDZt\n2oRGjRph27ZtKCgoQHh4OCIiIhAZGYn169cjKyvLXLGIiIgqFbMVuZWVFdauXQtnZ2d5WXx8PHr2\n7AkA6N69O2JjY3Hq1Cm4urrCzs4ONjY2cHd3R0JCgrliERERVSomn0f+xC9sYQELi5IvX1hYCCsr\nKwBAzZo1kZaWhvT0dDg6OsrPcXR0RFpamrliERERVSpmK/LHedi12k25hnuNGrawsKi890N3crJT\nOoIQ1DhO55UO8BBqHCs1UuM4XVU6QBnUOE5Pm0jvsUKL3NbWFnfu3IGNjQ1SU1Ph7OwMZ2dnpKen\ny8+5devWYy//mplZYO6oikpLy1U6ghA4TqbjWJmG42Sayj5OTk52qnuPj/pgUaGnn3Xq1An79u0D\nAOzfvx9du3aFm5sbTp8+jZycHOTn5yMhIYGXgiUiIjKR2WbkZ86cQWhoKK5fvw4LCwvs27cPS5cu\nRVBQELZs2YJ69erB19cXlpaWmD59OiZOnAiNRoMpU6bAzk6cTRpERERKMluRu7i4IDIystTydevW\nlVrm4+MDHx8fc0UhIiKqtHhlNyIiIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKBsciJiIgExiIn\nIiISGIuciIhIYCxyIiIigbHIiYiIBMYiJyIiEhiLnIiISGAsciIiIoGxyImIiATGIiciIhIYi5yI\niEhgLHIiIiKBsciJiIgExiInIiISGIuciIhIYCxyIiIigbHIiYiIBMYiJyIiEhiLnIiISGAsciIi\nIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKBsciJiIgExiInIiISGIuciIhIYCxyIiIigbHIiYiI\nBMYiJyIiEhiLnIiISGAsciIiIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKBsciJiIgExiInIiIS\nGIuciIhIYCxyIiIigbHIiYiIBMYiJyIiEpiF0gGIiIiehtm//Kl0hFI+at/U7N+DM3IiIiKBsciJ\niIgExiInIiISGIuciIhIYCxyIiIigbHIiYiIBFahp5/Fx8dj6tSpaNr07uH4zZo1w6RJkzBjxgwY\nDAY4OTkhLCwMVlZWFRmLiIhIWBV+HrmnpydWrFghP541axZGjx6Nvn37YtmyZdi2bRtGjx5d0bGI\niIiEpPim9fj4ePTs2RMA0L17d8TGxiqciIiISBwVPiO/cOEC3nzzTWRnZ+Ptt99GYWGhvCm9Zs2a\nSEtLq+hIREREwqrQIn/++efx9ttvo2/fvrh27RrGjRsHg8Egf12SJJNep0YNW1hY6MwVU3FOTnZK\nRxCCGsfpvNIBHkKNY6VGahynq0oHKIMax0mtKmKsKrTIa9eujX79+gEAGjZsiFq1auH06dO4c+cO\nbGxskJqaCmdn58e+TmZmgbmjKiotLVfpCELgOJmOY2UajpNpOE6me1pj9agPBBW6jzw6Ohpff/01\nACAtLQ23b9/G4MGDsW/fPgDA/v370bVr14qMREREJLQKnZH36NED77//Pg4ePAi9Xo/58+ejRYsW\nmDlzJrZs2YJ69erB19e3IiMREREJrUKLvFq1ali9enWp5evWravIGERERJWG4qefERERUfmxyImI\niATGIiciIhIYi5yIiEhgLHIiIiKBsciJiIgExiInIiISGIuciIhIYCxyIiIigbHIiYiIBMYiJyIi\nEhiLnIiISGAsciIiIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKBsciJiIgExiInIiISGIuciIhI\nYCxyIiIigbHIiYiIBMYiJyIiEhiLnIiISGAsciIiIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKB\nsciJiIgExiInIiISGIuciIhIYCxyIiIigbHIiYiIBMYiJyIiEhiLnIiISGAsciIiIoGxyImIiATG\nIiciIhIYi5yIiEhgLHIiIiKBsciJiIgExiInIiISGIuciIhIYCxyIiIigbHIiYiIBMYiJyIiEhiL\nnIiISGAsciIiIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKBsciJiIgEZqF0gHs++ugjnDp1ChqN\nBrNnz0br1q2VjkRERKR6qijy48eP48qVK9iyZQsuXryI2bNnY8uWLUrHIiIiUj1VbFqPjY1Fr169\nAAAvvPACsrOzkZeXp3AqIiIi9VNFkaenp6NGjRryY0dHR6SlpSmYiIiISAwaSZIkpUN88MEH8PLy\nkmflo0aNwkcffYTGjRsrnIyIiEjdVDEjd3Z2Rnp6uvz41q1bcHJyUjARERGRGFRR5J07d8a+ffsA\nAGfPnoWzszOqVaumcCoiIiL1U8VR6+7u7mjVqhVGjhwJjUaDDz/8UOlIREREQlDFPnIiIiIqH1Vs\nWiciIqLyYZETEREJjEVOREQkMBb5P3Dz5k2cOHECAFBUVKRwGnXjWNE/VVhY+Mg/VDaue49XXFyM\n3bt34+uvvwYAnD9/Hnq9XuFUpuPBbuUUERGBH374AQUFBYiOjkZISAicnJwwefJkpaOpDsfq0V5+\n+WVoNBoAwIOro0ajQWxsrBKxVKdHjx7QaDSlxgi4O04HDx5UIJW6cd0zzaxZs+Do6Ijjx49j69at\niIqKQkJCApYtW6Z0NNNIVC5jxoyRJEmSxo4dK0mSJBmNRmn48OFKRlItjhWZQ1ZWlpSTk6N0DFXj\numcaf39/SZL+HidJ+nvsRKCK88hFZDAYAECeSf31118oLi5WMpJqcaxM89tvv+Gjjz7C1atXYTAY\n0KxZM8yZMwcvvPCC0tFU5dixYwgODoa1tTX0ej20Wi0WLFgADw8PpaOpDtc90+j1euTk5MjjdPHi\nRaF2Q3DTejlt3LgR+/btw5UrV9CtWzfEx8dj3LhxGD16tNLRVKessfL398eoUaOUjqYqY8aMwaxZ\ns+Di4gIASExMxLJly7BhwwaFk6nLyJEjsWLFCjg7OwMAUlJSMH36dGzatEnhZOrDdc80J06cQEhI\nCC5fvow6deoAAEJCQuDu7q5wMtOwyP+B5ORkJCUlwcrKCq1atULdunWVjqRaHKvHGzduXKnS9vf3\nx/r16xVKpE5+fn6IjIwssayssaO7uO6Z7vbt27C0tET16tWVjvJEuGm9nGbNmlXi8cGDB6HT6dCw\nYUOMHDlSuB8Ec8rLy8Pu3btx+/ZtzJkzB3FxcahatSrH6AHVq1fHV199BU9PTwBAXFwc7O3tFU6l\nPvXr10dwcDA8PT0hSRLi4uLj+jX5AAAd5klEQVTQsGFDpWOpEtc905w/fx5LlixBfn4+tmzZgoiI\nCLRv3x6tWrVSOppJePpZOdWoUQOFhYXo2LEjOnXqhOLiYtjZ2QEApk+frnA6dQkKCkL16tVx+vRp\nAEBGRgbHqAxLlizBX3/9hdWrV2PNmjUwGo1YvHix0rFUZ+HChXBzc0NCQgISExPRvn17BAcHKx1L\nlbjumWbhwoWYM2cOrKysAABdunTBokWLFE5lOhZ5OZ09exbLly/HoEGDMHDgQISFheHPP//E5MmT\neU7rA/Lz8zF69GhYWloCAPr164c7d+4onEp9qlWrhnbt2sHT01P+U7VqVaVjqY4kSTAajSVOQ7t3\nkBKVxHXPNBYWFiUOKn3xxReh1YpTj9y0Xk45OTk4ePAg2rZtC61WizNnziA1NRXnz5/nivIAo9GI\nq1evyr9sjx49CqPRqHAq9QkJCUFycjI8PT1RVFSEL774Aq1atUJAQIDS0VRl9uzZsLe3h6enJ/R6\nPY4fP474+HihZlAVheueaezs7LBt2zYUFhbi1KlTiImJQc2aNZWOZTIe7FZOf/zxB8LDw3Hx4kVI\nkoSGDRvirbfeAgBYWVmhRYsWCidUj4sXL2LhwoVISkqCra0tmjdvjtmzZ/O0qgeMGTMGGzduLLFs\n7NixiIqKUiiROvFgN9Nx3TNNfn4+1q9fj5MnT8LS0hJubm4YO3asMFvEOCMvp+bNm2Pp0qVITU1F\ngwYNlI6jaomJiYiIiFA6huoVFxfjzp07sLGxAQAUFBTI5wHT3/R6PVJTU1G7dm0Ady9BynOjy8Z1\nzzSffvop5s6dq3SMcmORl9OePXuwatUqAMDu3buxaNEiuLi4wNfXV+Fk6vPzzz+jTZs2nAU8hr+/\nPwYNGoTnn39e3iQaGBiodCzVCQgIwPjx46HVamE0GuULwlBpXPdMI0kStmzZgtatW8vHEwB395WL\ngJvWy2n06NGIiIjAxIkTERkZib/++gt+fn749ttvlY6mOn369EFycjKqVKkiryS8hnjZCgoKcPny\nZWi1WjRq1AhVqlRROpJqZWdnQ6vVymeLUGlc90zj5+dXaplGoxFmdw1n5OWk0+lgZWUlH0Ry77QF\nKm3//v1KRxDCTz/9hM2bNyM3N7fEEdmi/DKpKNu3b0dkZGSpceJNU0rjumeaB4+5EA2LvJzc3d0R\nGBiI1NRUfPnllzh06BA6duyodCxVGjduXKllOp0ODRo0wOTJk1G/fn0FUqlPSEgI5syZI+/7pbJ9\n/fXXWLlyJcfJBFz3TOPl5YW0tDTodDpoNBoYDAY4ODjA3t4es2fPRpcuXZSO+Egs8nIKCAjAiRMn\n0KxZM1hZWWHmzJlo27at0rFUycPDA0VFRfJtKI8ePQoAaNq0KWbNmiX8p+GnpVGjRqr/haEGL7zw\nAho3bqx0DCFw3TNN37598fLLL8PLywvA3a1jCQkJGDlyJN555x3Vr5cs8if04OlBtra2AIBz587h\n3LlzGDNmjBKxVO3EiRMlfmG4u7vjtddew7Rp03ijC/z9M1W7dm1MnToVHh4e0Ol08tf5M3VXaGgo\nNBoNLC0tMXLkSLi5uZUYpxkzZiiYTp247pkmMTERQUFB8uOuXbti9erVmDp1qhAXG2KRP6HMzEyl\nIwhHr9dj/fr1cHd3ly+ek5mZiZMnT4LHWv79M+Xk5AQnJyfk5OQonEidmjVrBuDubJJMw3XPNHXr\n1sWUKVNKjFPVqlWxf/9+1KtXT+l4j8Wj1p/QhQsXHvl1UU5XqEipqamIiIgocfGccePGQa/Xo2rV\nqrwb0/8YjUacOXMGrVu3BgDExsbi5ZdfFmJGUJEKCgoQGxuLnj17AgB27tyJPn36yFvH6G9c90xT\nXFyM//73vyXGqXv37igsLETVqlVhYaHuOa+606lQcHAwNBqN/Gn23i9ZSZKEOl2hItWuXRv+/v5I\nTk5Gu3btUFRUxKP8yxAUFARnZ2e5yH/55Rfs3LkToaGhCidTl/fee6/EgaV//fUXpk+fLl/Xgf7G\ndc90eXl50Gg0mDRpEs6fPw+NRiPM3QdZ5E/o/v1N+fn5uHLlCrRaLZ5//nn5ilxUUkREBH744QcU\nFhZi165dCAsLg5OTEyZPnqx0NFW5ceMGPv74Y/nxu+++W+b5rc+63Nxc+Pv7y49HjBiB3bt3K5hI\nvbjumeaDDz6Ao6Mjjh8/jokTJ+L48eNYvXo1li1bpnQ0k4hzexeViY6OxquvvorPP/8cYWFheOWV\nVxATE6N0LFU6cOAANm/eLN8Defbs2TzntwwajQZHjhxBdnY2MjMzsXfvXtVv0lNCtWrVEBUVhXPn\nzuHMmTNYu3YtLwrzEFz3TJOSkoLAwEB5MjZ27FjcunVL4VSm42+Jctq4cSN27dolX3krPz8fEydO\nRO/evRVOpj73rhd+bzfEX3/9xWtjlyE0NBSffvopwsLCoNPp4OrqyvuRl2Hp0qX4+uuvsXz5cnmc\n7t+SQX/jumcavV6PnJwceZwuXryIoqIihVOZjkVeTlqttsTlM0U4IEIpAwYMwLhx43DlyhV8+OGH\niI+PL/NCFc+62rVrY+bMmahVqxYuXbqES5cuoUaNGkrHUh2NRoNBgwZh2rRpiI+Px2+//SbUL92K\nxHXPNAEBAfD398fly5fh4+MDjUYj1G1xedR6OYWFheHChQto3749JElCfHw8XFxcMG3aNKWjqVJy\ncjKSkpJgZWWFVq1a8WjZMgQEBKB///546aWX8NZbb6Ffv374448/sHz5cqWjqcqkSZPw+uuvw9HR\nEUFBQfD398eePXuwZs0apaOpEtc9092+fRtWVlbC7aphkf8DJ06cwJkzZwAArVu3hru7u8KJ1GXW\nrFmP/Do3G5d07z7bX375JRwcHDB8+HBMmDAB69atUzqaqty79/iKFSvQuHFjDBw4EOPHj+ftOu/D\ndc809654VxaNRoMDBw5UcKLy4bbgcrpw4QKOHTuGd999FwCwYMEC2NnZ8WIV9/H29gYAHDp0CFqt\nFp6envLWC54CU9qdO3fw66+/Ijo6Ghs2bEBOTg6ys7OVjqU6RUVFiI6Oxp49e/Ddd98hOTkZubm5\nSsdSFa57ptm9ezckScKaNWvw0ksvoUOHDjAajYiLi8OVK1eUjmc6icpl9OjR0i+//CI/Pnv2rDRm\nzBgFE6nX+PHjSy2bPHmyAknU7aeffpLefPNNadeuXZIkSVJ4eLi0Y8cOhVOpz7lz56SFCxdKx44d\nkyRJkqKioqSjR48qnEqduO6Zpqzf3WWNnVpxRl5OxcXFaNeunfy4ZcuWvOThQ2RlZeHw4cNo06aN\nfPnDmzdvKh1LdTp37ozOnTvLj//v//5PwTTq1aJFC8ydO1d+zGvRPxzXPdNYWVlhyZIlaNu2LbRa\nLU6fPi0f8S8C7iMvp5CQEKSmpsLd3R1GoxHx8fFo0qQJZs6cqXQ01Tl//jy++OIL+fKHTZo0wZtv\nvomWLVsqHY2oUuO6Z5q8vDxER0fL49S4cWP4+voKc9Abi/wfiI2NxdmzZ+VzWe+foRMREVUEFjmR\nSty7GciDB275+voqlEidbt68if379yM3N7fE7qy3335bwVREyuE+ciKVmDhxIurVqwdnZ2d5Ge98\nVtpbb72Frl27onbt2kpHIVIFFjmZXUpKCtLS0tC6dWvs2rULZ86cwahRo9CkSROlo6mKTqfDJ598\nonQM1bO3t8d7772ndAwhcN0zzU8//YTs7Gz0798fs2fPxqVLl4S65DZvmlJON2/exAcffCCfR75n\nzx5cv35d4VTqFBgYCEtLSyQmJuK7776Dj48PQkJClI6lGoWFhSgsLISXlxd+/PFH5OXlycsKCwuV\njqcaFy5cwIULF+Du7o6NGzfi999/l5dduHBB6XiqxHXPNJ9//jm8vLwQExMDnU6HqKioEne6VDvO\nyMtpzpw5GDduHNauXQsA8uUiRfrPryg6nQ4tWrRAaGgo/P394eHhIdSpHebWv3//Eve4v59Go+Hd\nqv4nODi4xOMffvhB/rtGo8GGDRsqOpLqcd0zjZWVFapVq4YDBw5gxIgRsLCwEGqcWOTlZDQa4eXl\nha+++goA0LFjR4SHhyucSp0MBgNWrVqFQ4cOYdq0aUhKSkJ+fr7SsVTj0KFDSkcQAj8kPzmue6ap\nVasWJkyYgPz8fLi7uyM6OrrETbHUjkVeThYWFoiNjYXRaER6ejpiYmJgbW2tdCxVCgsLw759+7By\n5UpYW1sjOTm51OyKUOZdqXQ6HRo0aIDJkyejfv36CqRSn549e5Zadm+c3nvvPbRq1UqBVOrEdc80\nYWFhOH/+vHzswIsvvohly5YpnMp0PP2snG7duoXPPvsMJ0+ehJWVFVq3bo233367xBHHz7qVK1cC\nAMaOHQsHBweF06jfZ599hqKiIvlGDkePHgUANG3aFJs3b+aM9H/WrFkDOzs7udCPHj2KjIwMdOjQ\nAaGhofj3v/+tcELlcd0zjZ+fHzQaDT7++GPUqVNH6Tjlxhl5OTk7O2PWrFnIzc2F0WiERqNBcXGx\n0rFUxdPTEwCE2kSlpBMnTpQoa3d3d7z22muYNm0aNm3apGAydTl69Cg2btwoPx42bBjGjRuHN954\nQ8FU6nJv3eN92h/t3vr2448/ssifRe+//z4SEhLg6OgIAJAkCRqNBtu2bVM4mXrc+2WSl5eHdevW\n4fbt25gzZw7i4uLQsmVLVK9eXeGE6qLX67F+/Xq4u7vL13vOzMzEyZMneR3/+1hbW+Ojjz4qMU56\nvR4///wzbG1tlY6nCvfWvbFjxyIqKkrhNOoXFRWFtm3bCvs7iZvWy2nYsGHYunWr0jGE8Pbbb6NT\np06Ijo7G5s2bsXfvXuzYsUM+4p/uSk1NRUREhHy950aNGsHPzw96vR5Vq1ZF3bp1lY6oCnl5edi5\nc2eJcfL19UVhYSHs7OyEuT52RQgICEBKSgpcXV1haWkpL58xY4aCqdRn1KhR+P3339GwYUNYWloK\nNzHjjLycfHx8sH//frRo0QI6nU5eXq9ePQVTqVN+fj5Gjx6N77//HgDQr18/7se8z/Xr1/Hcc88h\nNzcXQ4YMKfE1vV6PF198UaFk6nLq1Cm4ubnh119/RYMGDdCgQQP5a0lJSfDy8lIwnTr961//UjqC\nEJYuXap0hH+ERV5OZ8+eRWRkJGrWrCkvE+kTXEUyGo24evWqfLnRo0ePwmg0KpxKPTZs2IBZs2aV\neTQxz4/+W3x8PNzc3EqcP34/Fnlp/fv3x+7du3Hu3DnodDq4uLigf//+SsdSHXt7e0RFRZXa/ScK\nblovpyFDhuC7775TOoYQLl68iIULFyIpKQm2trZo3rw55syZw8tEUrnl5eWVumkKt4aVFhgYCHt7\ne3h6ekKv1+P48eMwGAxYtGiR0tFURfTdf5yRl5O3tzdiY2Ph6upaYtM6j9Au7erVq4iIiCixbPfu\n3SzyB3zxxReIiooqdWBbbGysQonUad68eTh69Chq1aoFgAeaPsrNmzcRFhYmP+7fv3+Z1yt41om+\n+49FXk5bt27F5s2bSyzj5TRLSkpKwunTp7FhwwbcuHFDXm4wGPDVV19hwIABCqZTn++//x4HDhzg\nkdePcebMGRw+fJh3hjOBXq9HamqqfKe4mzdv8jTZMoi++49FXk4xMTEAgOzsbGi1Wh4pWwYnJyfY\n2tpCr9cjMzNTXq7RaBAaGqpgMnV66aWXYGHBVfJx3NzckJmZKZ/6SQ8XEBCA8ePHQ6vVwmg0QqvV\nYsGCBUrHUp158+Zh3rx5OHPmDLp06YLmzZtj4cKFSscyGfeRl9OxY8cQHBwMa2tr6PV6eQXx8PBQ\nOprqZGRklPilq9frERwczP10//Puu+9Co9EgPz8fly5dQsuWLUvsrvnss88UTKceQ4YMgUajgdFo\nxOXLl9GoUSPodDpuWjdBdnY2NBqNsOdJm9vhw4fRvXv3Est2794tzFZDfvwvpxUrViAyMlK+JGtK\nSgqmT5/OK3CV4dChQ/jss8+QmZkJKysrGI1GdOvWTelYqjF27FilIwhhxYoVSkcQxr0PPQ/DDz13\nVZbdfyzycrK0tCxxXfW6detys+hDbN68GQcOHMCkSZMQGRmJgwcPIjk5WelYqnHvKlz0aM8995zS\nEYTBDz2medTuvyVLliiY7Mmwecqpfv36CA4OhqenJyRJQlxcHBo2bKh0LFWytraWd0EYjUb07NkT\nfn5+8Pf3VzoaUaV070NPXl6e0OdHm1vdunXx6quvwsvLC5IkoWbNmrh06RIuXbok1G5SrdIBRLVw\n4UL5KlOJiYlo3749bw/4EK6uroiKikKXLl3g7++PwMBA3LlzR+lYRJVeUFAQqlevjtOnTwO4e7zK\n9OnTFU6lPgsXLsTJkyeRnJyMqVOn4s8//8TMmTOVjmUyzsjLKS0tDU2aNIGvry927tyJpKQktGrV\niudGlyEoKAhFRUWwsrJChw4dkJmZiU6dOikdiwR18+ZNhIeHIzs7GytWrMCePXvQpk0bbnovg+jn\nR1eU9PR09OrVC19++SX8/PwwfPhwTJgwQelYJuOMvJwCAwNhaWmJxMREbN++HT4+PggJCVE6lqrc\nO88+NDQUy5cvx8cff4zDhw8jMTERX3zxhcLpSFRz5sxBr169kJGRAQBwdHREUFCQwqnUSfTzoyvK\nnTt38OuvvyI6Ohq9evVCTk4OsrOzlY5lMhZ5Oel0OrRo0QL79u2Dv78/PDw8YDAYlI6lKvdmSM2a\nNUPTpk1L/SEqD6PRCC8vL7mcOnbsyNu8PsT950d37twZ69ev53nkZZg6dSq++uorvP7663B0dERU\nVJRQV8DjpvVyMhgMWLVqFQ4dOoRp06YhKSkJ+fn5SsdSla5duwIAOnXqhMOHD2PkyJEAgDVr1uDV\nV19VMhoJzMLCArGxsTAajUhPT0dMTAysra2VjqVKL7zwQqnLI1NpXbp0QZcuXeTHr7/+OoKDg+Hr\n66tgKtNxRl5OYWFhqFKlClauXAlra2skJyfzYLeHuHfAzT3NmzfnplAqt5CQEOzevRuZmZmYNGkS\nfvvtNyxevFjpWKoUHh6OTp06oWPHjiX+UElbt25F165d4eLiAnd3d7Rv3x55eXlKxzIZr+xGZjdq\n1KhSB9j4+fkhMjJSoUQkunt3PzMajfImdt79rLSBAwdiy5YtvH7/YwwdOhQbN24sda0LUU6R5aZ1\nMrt69eohNDQU7u7uMBqNiI2N5S9dKrf3338fCQkJ8mV/eYnWh+P1+00j+rUuOCMnsysuLsaOHTvw\n22+/QavVwtXVFf369YOlpaXS0UhAw4YNw9atW5WOoWoPu37/vQ89vH5/SUuWLEH9+vWRlZWF+Ph4\n1KlTB5cvXxbm54wf1cjsJEmCTqeDVquV/9x/UxCiJ+Hj44P9+/ejRYsWJX6OuJXnb7x+/5N58FoX\nWVlZQh1LwBk5mV1gYCDs7e3h6ekJvV6P48ePw2Aw8O5nVC7vvfceEhISULNmTXkZN62X7datWzh0\n6JB8xsiXX34JX1/fEveJoLs3T9mzZw9yc3NLnMooykGUnJGT2d28eRNhYWHy4/79+wt1jiapy5Ur\nV3DkyBGlYwhh5syZGDZsmPy4adOmCAoKwjfffKNgKvUJDAzE66+/jlq1aikdpVxY5GR2er0eqamp\nqF27NoC7xV5cXKxwKhKVt7c3YmNj4erqWmLTepUqVRRMpU537txBv3795Mfdu3dniZehSZMmj731\nq5qxyMnsAgICMH78eGi1WhiNRmi1Wl5dispt69at8uV/79FoNDh48KBCidTrwTNG4uLieCxBGQYM\nGABfX180b968xIdDUTatcx85VZjs7GwYDAbodDrY29srHYcEl52dDa1WCzs7O6WjqNa9M0bOnTsH\nnU4HFxcX9O/fn2eMPKB3796YPHkynJycSizv1q2bMoGeEGfkZHZffvklqlevjoEDB2LChAlwcHCA\nm5sbpk6dqnQ0EtCxY8cQHBwsn/d7bwuPSPePrigWFhZo06YNnn/+eQBAUVERBg8ejP/85z/KBlOZ\nF154ocSxBKJhkZPZHTp0CJs3b8a3336Lnj17YsqUKRg/frzSsUhQK1asQGRkpHzkdUpKCqZPn45N\nmzYpnEx95s2bh0uXLuHSpUto3bo1zpw5g0mTJikdS3Vq1KiBMWPGwMXFpcSm9RkzZiiYynQscjI7\no9EIo9GI//znP/K+cd5ghsrL0tKyxOlTdevW5dXLHuLChQvYtGkT/Pz8sHr1aqSkpPAWwmXw9PSE\np6en0jHKjT/9ZHa9evVC586d4ePjg8aNGyM8PBxubm5KxyJB1a9fH8HBwfD09IQkSYiLi0PDhg2V\njqVKBoNBvvlHRkYG6tati99//13hVOoj+t0YebAbVSij0YjU1FTUrVtX6SgkqOLiYuzevRtnzpwp\ncclfXi2wtP/85z8oLCyEvb09FixYAAsLC3Tq1EmYo7HJNCxyMrv7D3bz8/ODg4MD2rRpg3fffVfp\naCSglJQUpKWloXXr1ti5cyfOnj2LUaNGoUmTJkpHU62srCz5jBEHBwel49BTxvuRk9ndu0Tknj17\n0LNnT3zzzTdISEhQOhYJKjAwEJaWlkhMTMT27dvh4+ODkJAQpWOp0vbt2+Hl5YWxY8fC398fgwcP\nxu7du5WORU8Z95GT2fFgN3qadDodWrRogdDQUPj7+8PDwwMGg0HpWKoUERGBXbt2ybPwjIwMTJgw\nAQMGDFA4GT1NnJGT2d072O3FF1/kwW70jxkMBqxatQqHDh1Cly5dkJSUxA+GD1GnTh1Ur15dflyj\nRg0eGFgJcR85Vbi8vDzExMQIf6QoKSMlJQX79u1D586d0bRpU+zduxfPP/88WrZsqXQ01QgNDYVG\no0FycjIuX74MDw8PaDQaJCYmonHjxvjkk0+UjkhPEYuczO706dNYu3YtsrKyANy9iUp6ejpiYmIU\nTkZUOe3YseORX+eH6MqFRU5mN2LECAQEBGDp0qWYP38+YmJi0KZNG3Tv3l3paEREwuM+cjI7Gxsb\nvPzyy7CysoKLiwsCAgIQFRWldCwiokqBR62T2VWpUgUHDx5E/fr1sWzZMjRo0AApKSlKxyIiqhS4\naZ3MLi8vD+np6ahVqxYiIiKQlZWFV155Ba6urkpHIyISHouciIhIYNxHTkREJDAWORERkcB4sBvR\nMyI5ORk+Pj5o27YtgLvn87dr1w5TpkxBlSpVFE5HROXFGTnRM8TR0RGRkZGIjIzE+vXrkZ+fj+nT\npysdi4j+Ac7IiZ5R1tbWmD17Nry9vXHhwgVER0cjISEBd+7cQfv27TFjxgwAwIIFC3Dq1CnUqlUL\nderUQY0aNRAQEAB3d3cMHToURqMRc+fORWRkJL7//nsYDAY0adIEH374IWxsbLB3715ERUVBkiQ4\nOjpi0aJFqFGjhsLvnqjy4Iyc6BlmaWkJFxcXnD9/HqmpqYiKisK2bdtw9epVHD58GLGxsUhKSsLW\nrVuxfPlyxMXFyf+2oKAAXl5emDt3LpKSkhATE4ONGzdiy5YtsLOzw9atW5GSkoLVq1cjIiIC//73\nv+Hp6Yk1a9Yo+I6JKh/OyImecbm5uVi5ciUMBgP8/PzkZcnJyfJ+dJ1OB1tbW3Tt2lX+d5Ikwd3d\nHQAQHx+Pq1evYty4cQDulryFhQVOnjyJtLQ0TJw4EQBQVFSE+vXrV/A7JKrcWOREz7DCwkL89ttv\n8PDwgLu7u1y496xduxZa7d8b7u7/O3B3Rg8AVlZW6NGjB+bNm1fi6wcOHEDr1q05CycyI25aJ3pG\n6fV6LFq0CJ07d8agQYMQExOD4uJiAMDKlStx+fJlNGnSBImJiZAkCYWFhfjpp5/KfC13d3ccPXpU\nvi/4xo0bcfLkSbi6uiIpKQlpaWkAgO+//x4HDhyomDdI9IzgjJzoGZKRkQE/Pz8YDAbk5OSgc+fO\nmDdvHqysrJCYmIiRI0dCp9OhZcuWaNCgAerXr489e/ZgyJAhqFu3Ltq2bQsLi9K/NlxdXTFmzBj4\n+fnB2toazs7OGDx4MKpUqYI5c+bgjTfeQJUqVWBjY4PQ0FAF3jlR5cVLtBLRQ+Xm5uLAgQPw9fWF\nRqPBm2++iQEDBmDAgAFKRyOi/+GMnIgeqmrVqkhISMCGDRtgbW2Nxo0bw8fHR+lYRHQfzsiJiIgE\nxoPdiIiIBMYiJyIiEhiLnIiISGAsciIiIoGxyImIiATGIiciIhLY/wN7lzTQ8eP3CgAAAABJRU5E\nrkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
- ]
- },
- {
- "metadata": {
- "id": "r8temzw0XFd1",
- "colab_type": "code",
- "outputId": "80a975e8-482b-4b43-9db1-970dd89e5221",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 422
- }
- },
- "cell_type": "code",
- "source": [
- "# visualizing different types of lunch \n",
- "\n",
- "data['lunch'].value_counts(normalize = True)\n",
- "data['lunch'].value_counts(dropna = False).plot.bar(color = 'yellow')\n",
- "plt.title('Comparison of different types of lunch')\n",
- "plt.xlabel('types of lunch')\n",
- "plt.ylabel('count')\n",
- "plt.show()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAGVCAYAAAAFYHMyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XtUVPXCxvFnuIUXUKABw6zslJqJ\nIJimSV4w0bxf81Xzzayjx0t5jnc085qaJzPNrLejpWhloRknTeym9XaQMnyR9GTmWSneYFAQERCE\n/f7RalZkEhq7YQ/fz1quxeyZvedhhu0z+7f3nm0zDMMQAACwJA9XBwAAANePIgcAwMIocgAALIwi\nBwDAwihyAAAsjCIHAMDCKHJUa4Zh6LXXXlOvXr0UGxurrl27au7cubpw4YKro5WzceNGrVixwmXP\nf+HCBfXt21fdunVTTk5OhY995JFHtHXrVmVmZqpXr16/Ov/y5cvVoUMHbdmyxfTs2dnZ+vjjj3/1\nvrS0NH377bemZ7geU6ZMUceOHfX555+Xm75q1SrNmjWryp9v69ateuSRR6p8ubA+L1cHACry97//\nXV9++aXWrl2rkJAQFRQUaNGiRRozZow2bdokm83m6oiSpBEjRrj0+Q8fPqzc3Fzt2bOn0vOEhITo\n/fff/9X5d+zYoWXLlqldu3am5P25lJQU/etf/1JMTMwV923ZskVRUVFq1qyZ6Tmu1fbt25WUlKRb\nbrnF1VFQw7FFjmorNzdX8fHxWrJkiUJCQiRJtWvX1pw5c/TYY4/JMAxdunRJc+bMUWxsrHr06KEl\nS5aotLRUktSlSxfFx8erf//+at++vXbt2qV58+apa9euGjJkiM6fPy9Jatq0qTZs2KC+ffuqXbt2\nevPNN50ZVq9e7RwJGDNmjPLy8iT9uNU1e/ZsDRo0SK+//nq5rbAPPvhAvXr1Uo8ePdS7d2+lpKRI\nkk6dOqXRo0crNjZWvXr10rZt2yRJJ06cUIcOHbRhwwb17t1b0dHR2rFjx6++JikpKerfv7+6d++u\nwYMHKz09XadOndKUKVN09uxZde/eXefOnSs3T0ZGhgYPHqyuXbtq8uTJztfnxIkTat68+RXz//nP\nf9bp06cVFxent99+W3l5eZo6dapiY2MVExNTbiu9adOmeuWVVxQbG6vS0lJ9//33GjFihGJjY9W7\nd2+lp6c7cz/00EN67rnn1KNHD3Xp0kVffvmlDh48qPnz5yspKUl//etfy+V+88039d5772nZsmVa\nt26dwsPDlZ2d7bx/6dKlWrRokVatWqUZM2ZozJgx6ty5s4YOHaqzZ89Kks6cOaOxY8cqNjZWsbGx\nzg8qly9f1qxZsxQbG6sHHnhAEyZMUH5+/hWv99Xes4cfflhlZWUaPXp0hR+eunTpon379l1xu6L3\n3DAMLV68WF26dFFsbKz+8Y9/lFvm/Pnz1a1bN/Xs2VPffffdVZ8bNYgBVFO7d+82HnjggQof88or\nrxiPP/64UVJSYhQWFhoDBw40tm3bZhiGYXTu3Nl46qmnDMMwjPj4eCM8PNzYu3evUVZWZgwcONB4\n++23DcMwjCZNmhjz5883DMMwjh49arRo0cI4d+6ckZ6ebrRr1864cOGCUVpaajzyyCPG6tWrDcMw\njJUrVxodOnQwzp4967wdFxdnGIZhtG3b1jhx4oRhGIbx1VdfGc8884xhGIbx6KOPGi+//LJhGIZx\n4sQJIyoqysjIyDAyMjKM5s2bG/Hx8YZhGMaOHTt+9ffOz8832rZta+zbt88wDMPYuXOn0a1bN6O0\ntNTYu3ev0bVr1199jZ544gnjueeeMwzDMNLS0ozmzZsbW7ZsMTIyMoy77rrLMAzjivk7d+5sfPXV\nV4ZhGMbMmTONadOmGaWlpcbZs2eNjh07GocPH3a+dmvWrDEMwzBKS0uNbt26OV/Xffv2GR06dDBK\nSkqMvXv3Gi1atDA+/PBDwzAM49VXXzUeeeSRK167XxoxYoTz/RwzZoyxfv16530xMTHG/v37jZUr\nVxqtWrUyjh8/bhiGYUyZMsVYtGiRYRiGMXLkSOP55583DMMwfvjhB6NNmzbGuXPnjE8//dQYOXKk\nUVZWZpSVlRnPP/+88dlnn13x/Fd7z3763U+fPn3FPD//fX7+Ov78dkXv+bZt24yhQ4caxcXFxoUL\nF4yOHTsaaWlpxpYtW4yIiAgjPT3dMAzDmDdvnjFz5sxffd1Qs7BFjmorNzdXQUFBFT5m9+7dGjJk\niLy8vOTr66vevXvriy++cN7/03BtkyZNdMMNN6ht27ay2Wy68847lZWV5XzcwIEDJUm33367Gjdu\nrAMHDqhFixbavXu36tatKw8PD7Vq1UoZGRnOecLDwxUYGHhFpqCgIL311ls6efKkWrdurZkzZ6qk\npET/+te/NGzYMElSw4YN1bZtW+3du1fSj1uIAwYMkCTdfffdOnXq1BXLPXDggBo0aKCoqChJUmxs\nrHJycnTy5MkKX6N9+/bpwQcflCS1bNlSt99+e4WP/6VPP/1UI0eOlIeHhwIDA/XAAw9o165dzvs7\ndeokSfrPf/6js2fPatCgQZKkqKgoBQYGav/+/ZKkOnXqqGvXrhX+jhXp1auXtm/fLkn69ttvVVZW\npoiICElS27Zt1ahRI0lSt27dtH//fhUUFCglJcW5X/nWW29VVFSU9uzZo8DAQB09elQffvihCgsL\nNWnSJEVHR5d7vt96z36vq73nn332mWJjY+Xt7a26detqx44dCgsLkyT96U9/UosWLSRJd911lzIz\nM6skC6yNfeSotgICAn7zP6pz586pXr16ztv16tVzDqtKP5aHJHl4eDh//ul2WVlZufl+/nNeXp4K\nCwu1ePFi59D4+fPnnaX1y3l+bs2aNVqzZo0GDBigm266SXFxcWrcuLEMw5Cfn5/zcf7+/s5hcE9P\nT9WuXftXs/38d/X39y83zc/Pr9zv+2vOnz+vunXrlnvea3HhwgVNmjRJnp6ekqRLly6pe/fuzvvr\n168vScrLy1NRUZF69OjhvC8/P1+5ubny9/cv97tf7XesSJcuXfTUU08pIyNDH3300a9m+On3y8vL\n04ULF2QYhoYOHeq8r6CgQPfee69atmyp2bNnKz4+XtOnT1eXLl309NNPl3ttcnNzK3zPfq+rvec5\nOTnlcvz0GEnl3kdPT0/nbhLUbBQ5qq2IiAidPXtWBw8e1N133+2cXlJSohdffFFjx47VjTfeqNzc\nXOd9ubm5uvHGG6/5uXJyctSwYUPnMurVq6f169frhx9+0NatW1WnTh09//zzldoCuuWWW7R48WKV\nlZVp27Ztmjx5sj799FN5eHjo/Pnzzg8AlRlx+LmgoKByv6thGDp//ryCgoIq3Lr19/cvt//3Woso\nODhYq1evVpMmTX7zcXXq1NHOnTuvuO+nD0O/R+3atdW5c2ft3LlTSUlJWrx4sfO+nx+p/9NrHBQU\nJE9PT23ZsqXch7ifdO/eXd27d1dubq7i4uK0du3acvvpAwICfvd79ssPLD8dl1GRgICAcr9Pdna2\nfH19K/2cqHkYWke15e/vr8cee0zTp0/XsWPHJEmFhYWaM2eODh06pFq1aqlTp05KSEhQaWmpCgoK\n9N5776ljx47X/Fw/DdkePXpUx44dU3h4uM6ePavbb79dderU0cmTJ7Vnzx4VFBRUuJxz585p1KhR\nys/Pl4eHh8LDw2Wz2eTl5aUOHTpo8+bNkqTjx49r3759at++faUztmzZUtnZ2c6h6u3bt6tBgwa6\n+eabK5wvIiJCH374oSQpNTVVx48fr/RzSj9uCb/11luSfhwOfuaZZ3Tw4MErHtewYUM1aNDAWeTn\nzp3T3/72t998zby8vK56OuEv7+vVq5fefPNNFRUVOYeYJenrr7/W6dOnJUlJSUmKioqSl5eXOnbs\n6MxeWFiomTNn6vTp09qyZYtWr14t6cet+V/b3VAV75ndbneePrdjxw5dunTpN+fp0qWLtm/fruLi\nYhUUFGjYsGEc1IYKsUWOam3ixImqV6+e/vKXv6i0tFQeHh6KiYnR3LlzJf149HBGRoZ69uwpm82m\n7t27lxvarazAwED17dtXmZmZmj17turVq6ehQ4fqiSeeUGxsrJo2baoZM2Zo4sSJev311ytcTnR0\ntAYOHChPT095e3tr0aJFkqR58+Zp9uzZ2rp1q7y9vbVw4ULddNNNOnHiRKUy1q5dWytWrNCCBQtU\nUFCgwMBALV++/DdPwZs6daomT56s9957T+Hh4ddURJI0adIkzZs3T7GxsZKk6OhoNW3a9IrH2Ww2\nLV++XHPnztWKFSvk4eGhUaNGlRsa/jX33XefXnvtNQ0cOPCK89a7du2qZcuWKSMjQzNnzlSHDh2U\nn5+v//qv/yr3uPbt22vevHn697//rdDQUOcZBHPnztXTTz+td955R5LUp08f3XTTTYqJiVFcXJy6\ndesmT09P3XrrrVqyZMkV2a72nlXWuHHj9PTTT+vtt99WbGys7rjjjt+c58EHH9Thw4fVrVs33XDD\nDRo0aJAiIyP1ww8/VPp5UbPYDIPrkaNma9q0qfbs2aMGDRq4OgoqoWfPnnrhhRecpbhq1SqdOXPG\n+YEJqGkYWgdgGdu3b5fdbq/Uli1QUzC0DsASRo0apZycHK1cudLVUYBqhaF1AAAsjKF1AAAsjCIH\nAMDCLLmP3OGoXpewxLUJCKitnJyKzy0GUPVY96zLbve76n1skeMP5+Xl6eoIQI3EuueeKHIAACyM\nIgcAwMIocgAALIwiBwDAwihyAAAsjCIHAMDCKHIAACyMIgcAwMIocgAALIwiBwDAwihyAAAsjCIH\nAMDCLHn1M3dnt/u7OoLp7HZXJzCHw5Hn6ggAahi2yAEAsDCKHAAAC6PIAQCwMIocAAALo8gBALAw\nihwAAAujyAEAsDCKHAAAC6PIAQCwMIocAAALo8gBALAwihwAAAujyAEAsDCKHAAAC6PIAQCwMFOv\nR56YmKh//OMf8vLy0hNPPKGmTZtq2rRpKi0tld1u17Jly+Tj46PExEStX79eHh4eGjJkiAYPHmxm\nLAAA3IbNMAzDjAXn5ORo6NCh2rJliwoKCrRq1SpdvnxZ999/v3r06KHly5erQYMG6tevn/r376+E\nhAR5e3tr0KBB2rhxo+rXr3/VZTscF8yIXG3Y7f6ujoDr5HDkuToCcFV2u5/b///prux2v6veZ9rQ\nenJystq1a6e6desqODhYCxYsUEpKimJiYiRJnTt3VnJystLS0hQWFiY/Pz/5+voqMjJSqampZsUC\nAMCtmDa0fuLECRUVFWns2LHKy8vTxIkTVVhYKB8fH0lSUFCQHA6HsrOzFRgY6JwvMDBQDofDrFgA\nALgVU/eR5+bm6sUXX9SpU6c0cuRI/XwU/2oj+pUZ6Q8IqC0vL88qywlUlYqGv4DqgL9R92NakQcF\nBalVq1by8vLSLbfcojp16sjT01NFRUXy9fVVZmamgoODFRwcrOzsbOd8WVlZioiIqHDZOTkFZsWu\nFux2VyfA9WL/I6oz9pFbl0v2kXfo0EF79+5VWVmZcnJyVFBQoPbt2yspKUmStGvXLkVHRys8PFzp\n6enKy8vTxYsXlZqaqtatW5sVCwAAt2LaFnlISIhiY2M1ZMgQSdLs2bMVFham6dOna/PmzQoNDVW/\nfv3k7e2tyZMna/To0bLZbBo/frz8/Bj6AQCgMkw7/cxM7j40xOln1sXpZ6jOGFq3LpcMrQMAAPNR\n5AAAWBhFDgCAhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABYGEUOAICFUeQA\nAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABY\nGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhF\nDgCAhVHkAABYGEUOAICFeZm14JSUFD355JO68847JUlNmjTRY489pmnTpqm0tFR2u13Lli2Tj4+P\nEhMTtX79enl4eGjIkCEaPHiwWbEAAHArphW5JLVp00YrV6503p45c6aGDRumHj16aPny5UpISFC/\nfv20evVqJSQkyNvbW4MGDdIDDzyg+vXrmxkNAAC38IcOraekpCgmJkaS1LlzZyUnJystLU1hYWHy\n8/OTr6+vIiMjlZqa+kfGAgDAskzdIv/+++81duxYnT9/XhMmTFBhYaF8fHwkSUFBQXI4HMrOzlZg\nYKBznsDAQDkcDjNjAQDgNkwr8ttuu00TJkxQjx49lJGRoZEjR6q0tNR5v2EYvzrf1ab/XEBAbXl5\neVZZVqCq2O1+ro4AVIi/UfdjWpGHhITowQcflCTdcsstuvHGG5Wenq6ioiL5+voqMzNTwcHBCg4O\nVnZ2tnO+rKwsRUREVLjsnJwCs2JXC3a7qxPgejkcF1wdAbgqu92Pv1GLqugDmGn7yBMTE7V27VpJ\nksPh0NmzZzVgwAAlJSVJknbt2qXo6GiFh4crPT1deXl5unjxolJTU9W6dWuzYgEA4FZsRmXGsq9D\nfn6+pkyZory8PJWUlGjChAm66667NH36dF26dEmhoaFavHixvL29tXPnTq1du1Y2m00jRoxQnz59\nKly2u3+itNv9XR0B18nhyHN1BOCq2CK3roq2yE0rcjO5+x8iRW5dFDmqM4rculwytA4AAMxHkQMA\nYGEUOQAAFkaRAwBgYRQ5AAAWRpEDAGBhFDkAABZGkQMAYGEUOQAAFkaRAwBgYRQ5AAAWRpEDAGBh\nFDkAABZGkQMAYGEUOQAAFkaRAwBgYRQ5AAAWRpEDAGBhFDkAABZGkQMAYGEUOQAAFkaRAwBgYRQ5\nAAAWRpEDAGBhFDkAABZGkQMAYGEUOQAAFkaRAwBgYRQ5AAAWRpEDAGBhFDkAABZGkQMAYGEUOQAA\nFkaRAwBgYRQ5AAAWRpEDAGBhphZ5UVGRunbtqq1bt+r06dN6+OGHNWzYMD355JMqLi6WJCUmJmrg\nwIEaPHiw3nnnHTPjAADgdkwt8jVr1qhevXqSpJUrV2rYsGF64403dOuttyohIUEFBQVavXq1Xn/9\ndcXHx2v9+vXKzc01MxIAAG7FtCI/evSovv/+e3Xq1EmSlJKSopiYGElS586dlZycrLS0NIWFhcnP\nz0++vr6KjIxUamqqWZEAAHA7XmYteOnSpXrqqae0bds2SVJhYaF8fHwkSUFBQXI4HMrOzlZgYKBz\nnsDAQDkcjt9cdkBAbXl5eZoTHPgd7HY/V0cAKsTfqPsxpci3bdumiIgINWrU6FfvNwzjmqb/Uk5O\nwXVnswK73dUJcL0cjguujgBcld3ux9+oRVX0AcyUIt+9e7cyMjK0e/dunTlzRj4+Pqpdu7aKiork\n6+urzMxMBQcHKzg4WNnZ2c75srKyFBERYUYkAADckilFvmLFCufPq1atUsOGDbV//34lJSWpb9++\n2rVrl6KjoxUeHq7Zs2crLy9Pnp6eSk1NVVxcnBmRAABwS6btI/+liRMnavr06dq8ebNCQ0PVr18/\neXt7a/LkyRo9erRsNpvGjx8vPz/23wAAUFk2o7I7pqsRd9/HY7f7uzoCrpPDkefqCMBVsY/cuira\nR843uwEAYGEUOQAAFkaRAwBgYRQ5AAAWRpEDAGBhFDkAABZGkQMAYGEUOQAAFkaRAwBgYRQ5AAAW\nVqkinzFjxhXTRo8eXeVhAADAtanwoimJiYl66623dOTIEQ0fPtw5vaSkpNzlRwEAgGtUWOR9+vRR\n27ZtNWXKFE2cONE53cPDQ3fccYfp4QAAQMUqffWzCxcuKDc3t9y0Ro0amRLqt7j71Xu4+pl1cfUz\nVGdc/cy6Krr6WaWuR75w4UJt2bJFgYGB+qn3bTabPv7446pJCADVQE34EG23uzqBeWrqB+lKFXlK\nSor27t2rG264wew8AADgGlTqqPVbb72VEgcAoBqq1BZ5gwYNNHz4cEVFRcnT09M5/cknnzQtGAAA\n+G2VKvL69eurXbt2ZmcBAADXqFJFPm7cOLNzAACA61CpIm/evLlsNpvzts1mk5+fn1JSUkwLBgAA\nflulivzbb791/lxcXKzk5GQdPnzYtFAAAKByrvmiKT4+PurYsaO++OILM/IAAIBrUKkt8oSEhHK3\nz5w5o8zMTFMCAQCAyqtUkX/99dflbtetW1crVqwwJRAAAKi8Sn/XuiTl5ubKZrOpXr16Zmb6Te7+\nXcE14Wsi3VVN/YpId8G6Z23uvP797u9aT01N1bRp03Tx4kUZhqH69etr2bJlCgsLq7KQAADg2lWq\nyJ977jm99NJLatKkiSTp0KFDWrRokTZt2mRqOAAAULFKHbXu4eHhLHHpx/PKf/5VrQAAwDUqXeRJ\nSUnKz89Xfn6+duzYQZEDAFANVOpgtx9++EELFizQgQMH5OHhoWbNmmnhwoVq1KjRH5HxChzshurK\nnQ+2qQlY96zNnde/ig52q9QW+RdffCEfHx999dVXSklJkWEY2rNnT5UFBAAA16dSRZ6YmKgXX3zR\neXvdunV6//33TQsFAAAqp1JFXlpaWm6fuM1m0zWcfg4AAExSqdPPunTpoqFDhyoqKkplZWXau3ev\nunXrZnY2AADwGyr9zW779u3TgQMHZLPZ1KpVK0VERFT4+MLCQs2YMUNnz57VpUuXNG7cODVr1kzT\npk1TaWmp7Ha7li1bJh8fHyUmJmr9+vXy8PDQkCFDNHjw4AqXzcFuqK7c+WCbmoB1z9rcef2r6GC3\na/qK1muxY8cOnTx5Uo8//rhOnjypRx99VJGRkbr//vvVo0cPLV++XA0aNFC/fv3Uv39/JSQkyNvb\nW4MGDdLGjRtVv379qy6bIkd15c7/kdQErHvW5s7r3+8+av16PPjgg3r88cclSadPn1ZISIhSUlIU\nExMjSercubOSk5OVlpamsLAw+fn5ydfXV5GRkUpNTTUrFgAAbqVS+8h/j6FDh+rMmTN6+eWXNWrU\nKPn4+EiSgoKC5HA4lJ2drcDAQOfjAwMD5XA4KlxmQEBteXnxhTSofir61AzAXDV1/TO9yN966y39\n+9//1tSpU8sd6X61Ef3KjPTn5BRUWb7qyG53dQJcL3ff7ePuWPeszZ3XP5cMrX/zzTc6ffq0JOmu\nu+5SaWmp6tSpo6KiIklSZmamgoODFRwcrOzsbOd8WVlZCg4ONisWAABuxbQi37dvn9atWydJys7O\nVkFBgdq3b6+kpCRJ0q5duxQdHa3w8HClp6crLy9PFy9eVGpqqlq3bm1WLAAA3IppR60XFRVp1qxZ\nOn36tIqKijRhwgS1aNFC06dP16VLlxQaGqrFixfL29tbO3fu1Nq1a2Wz2TRixAj16dOnwmW78/CJ\nxJGzVubOR83WBKx71ubO659LTj8zE0WO6sqd/yOpCVj3rM2d1z+X7CMHAADmo8gBALAwihwAAAuj\nyAEAsDCKHAAAC6PIAQCwMIocAAALo8gBALAwihwAAAujyAEAsDCKHAAAC6PIAQCwMIocAAALo8gB\nALAwihwAAAujyAEAsDCKHAAAC6PIAQCwMIocAAALo8gBALAwihwAAAujyAEAsDCKHAAAC6PIAQCw\nMIocAAALo8gBALAwihwAAAujyAEAsDCKHAAAC6PIAQCwMIocAAALo8gBALAwihwAAAujyAEAsDCK\nHAAAC/Myc+HPPvusvv76a12+fFljxoxRWFiYpk2bptLSUtntdi1btkw+Pj5KTEzU+vXr5eHhoSFD\nhmjw4MFmxgIAwG2YVuR79+7VkSNHtHnzZuXk5Kh///5q166dhg0bph49emj58uVKSEhQv379tHr1\naiUkJMjb21uDBg3SAw88oPr165sVDQAAt2Ha0Po999yjF154QZLk7++vwsJCpaSkKCYmRpLUuXNn\nJScnKy0tTWFhYfLz85Ovr68iIyOVmppqViwAANyKaVvknp6eql27tiQpISFB999/v/73f/9XPj4+\nkqSgoCA5HA5lZ2crMDDQOV9gYKAcDkeFyw4IqC0vL0+zogPXzW73c3UEoMaqqeufqfvIJemjjz5S\nQkKC1q1bp27dujmnG4bxq4+/2vSfy8kpqLJ81ZHd7uoEuF4OxwVXR8DvwLpnbe68/lX0IcXUo9Y/\n//xzvfzyy3r11Vfl5+en2rVrq6ioSJKUmZmp4OBgBQcHKzs72zlPVlaWgoODzYwFAIDbMK3IL1y4\noGeffVavvPKK88C19u3bKykpSZK0a9cuRUdHKzw8XOnp6crLy9PFixeVmpqq1q1bmxULAAC3YtrQ\n+o4dO5STk6NJkyY5py1ZskSzZ8/W5s2bFRoaqn79+snb21uTJ0/W6NGjZbPZNH78ePn51cz9HAAA\nXCubUZmd0tWMO+8HkSS73d/VEXCdHI48V0fA78C6Z23uvP65bB85AAAwF0UOAICFUeQAAFgYRQ4A\ngIVR5AAAWBhFDgCAhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABYGEUOAICF\nUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHk\nAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAA\nWJipRf7dd9+pa9eu2rhxoyTp9OnTevjhhzVs2DA9+eSTKi4uliQlJiZq4MCBGjx4sN555x0zIwEA\n4FZMK/KCggItWLBA7dq1c05buXKlhg0bpjfeeEO33nqrEhISVFBQoNWrV+v1119XfHy81q9fr9zc\nXLNiAQDgVkwrch8fH7366qsKDg52TktJSVFMTIwkqXPnzkpOTlZaWprCwsLk5+cnX19fRUZGKjU1\n1axYAAC4FS/TFuzlJS+v8osvLCyUj4+PJCkoKEgOh0PZ2dkKDAx0PiYwMFAOh8OsWAAAuBXTivy3\nGIZxTdN/LiCgtry8PKs6EvC72e1+ro4A1Fg1df37Q4u8du3aKioqkq+vrzIzMxUcHKzg4GBlZ2c7\nH5OVlaWIiIgKl5OTU2B2VJdqiMTYAAAQJklEQVSy212dANfL4bjg6gj4HVj3rM2d17+KPqT8oaef\ntW/fXklJSZKkXbt2KTo6WuHh4UpPT1deXp4uXryo1NRUtW7d+o+MBQCAZZm2Rf7NN99o6dKlOnny\npLy8vJSUlKS///3vmjFjhjZv3qzQ0FD169dP3t7emjx5skaPHi2bzabx48fLz69mDo8AAHCtbEZl\ndkpXM+48fCJJdru/qyPgOjkcea6OgN+Bdc/a3Hn9qzZD6wAAoGpR5AAAWBhFDgCAhVHkAABYGEUO\nAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCA\nhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR\n5AAAWBhFDgCAhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABYGEUOAICFebk6\nwE+eeeYZpaWlyWazKS4uTi1btnR1JAAAqr1qUeRffvmljh07ps2bN+vo0aOKi4vT5s2bXR0LAIBq\nr1oMrScnJ6tr166SpD/96U86f/688vPzXZwKAIDqr1oUeXZ2tgICApy3AwMD5XA4XJgIAABrqBZD\n679kGEaF99vtfn9QElep+PdH9WW3uzoBfh/WPSurqetftdgiDw4OVnZ2tvN2VlaW7DX1HQEA4BpU\niyK/7777lJSUJEk6ePCggoODVbduXRenAgCg+qsWQ+uRkZG6++67NXToUNlsNj399NOujgQAgCXY\njN/aIQ0AAKqtajG0DgAArg9FDgCAhVHkAABYGEUOAICFVYuj1gEAVefFF1+s8P4JEyb8QUnwR6DI\nYZp7771XNptNkpSbmytfX1+VlZWpuLhYISEh2r17t2sDAm7qp6+8PnDggHJycnTPPffIMAylpKQo\nNDTUxelQ1ShymGbv3r2SpIULF6pPnz7OS9OmpqZqx44drowGuLXhw4dLkj755BOtXbvWOf3xxx/X\nX/7yF1fFgknYRw7TffPNN+WuLx8ZGanDhw+7MBFQM2RlZem7775z3j527JhOnjzpwkQwA1vkMF1I\nSIgmTpyoVq1aycPDQ+np6fL393d1LMDtxcXFadasWTp58qQ8PDwUEhKiadOmuToWqhjf7AbTFRcX\nKzk5WUePHpVhGGrcuLHuv/9+eXnxORL4I5SUlMjb29vVMWASihymGzFihDZu3OjqGECNk5KSokWL\nFqm4uFg7d+7U888/r9atWys6OtrV0VCF2CSC6Ro2bKjJkycrLCys3FbBTwfkADDHypUrtX79ej3x\nxBOSpJEjR2rcuHEUuZuhyGG6Ro0aSZLy8/NdnASoWby8vBQQEOA8DTQoKMj5M9wHRQ7TTZgwQRcv\nXtT58+cl/bjPfP78+S5OBbi/m2++WS+88IJycnK0Y8cOffTRR7rjjjtcHQtVjH3kMN3q1au1detW\n5ebmKjQ0VKdOndJDDz3E0bOAycrKyvTPf/5T+/fvl7e3tyIiItS9e3d5enq6OhqqEOeRw3SfffaZ\nPv74YzVv3lz//Oc/tWHDBv4jAf4A2dnZKiws1Ny5c52noZ09e9bVsVDFKHKYzmazyTAMlZaWqqio\nSHfffbe+/vprV8cC3N706dPLfWdDkyZNNGPGDBcmghkocpguNjZW69evV+/evdW3b18NGzZMtWrV\ncnUswO0VFRXpwQcfdN7u1KmTSkpKXJgIZmAfOf5Qp06dUk5Ojpo3b87Rs4DJJk+erODgYEVGRqqs\nrEzJyckqLCzU0qVLXR0NVYgih2kefvjhCst6w4YNf2AaoOa5fPmy3n33XR06dEienp4KCwtTz549\n+VZFN0ORwzRHjhyRJL399tsKDg5W27ZtVVZWppSUFOXl5Wnq1KkuTgi4t23btv3q9H79+v3BSWAm\nPpbBNHfeeack6fDhw5o1a5ZzekREhB577DFXxQJqjJ9fZfDy5ctKS0vTnXfeSZG7GYocpisuLlZ8\nfHy5q5/l5eW5Ohbg9qZPn17udmlpqfPrWuE+GFqH6TIzM7Vhwwbn1c9uv/12PfzwwwoNDXV1NMCt\nFRYWlrvtcDg0ZswYffDBBy5KBDOwRQ7ThYSEqHfv3rpw4YIMw5DNZtPJkycpcsBkPXv2dP5ss9nk\n5+enRx991IWJYAa2yGG6P//5z8rLy1NISIh++nOz2Wx64YUXXJwMAKyPLXKYLi8vT2+99ZarYwA1\nRpcuXa566qfNZtNHH330ByeCmShymC4yMlJHjhxxHsUOwFzvv/++DMPQK6+8ombNmjlP/dy7d6+O\nHTvm6nioYgytw3TdunVTRkaG6tat67xYis1mU3JysouTAe5txIgR2rhxY7lpo0aN0muvveaiRDAD\nW+Qw3a5du66Y9sUXX7ggCVCz+Pj4aMmSJeVO/SwtLXV1LFQxtshhuoyMDL3xxhvKzc2VJJWUlOir\nr77Snj17XJwMcG/5+flKTEx0nvrZuHFj9evXT35+fq6OhirE1c9guhkzZuiOO+7QwYMH1alTJ3l4\neGj+/PmujgW4vbp166pZs2aKjIzUnDlzFBsbS4m7IYocpvPy8tLAgQPl7++v2NhYPfvss1fstwNQ\n9ZYuXaoNGzZo7dq1kqTNmzdr4cKFLk6FqkaRw3SGYejLL79U/fr1tXnzZiUnJ+vEiROujgW4vW++\n+UYrVqxQnTp1JEkTJ07UoUOHXJwKVY0ih+mWLVumWrVqafbs2fq///s/rV+/XjNmzHB1LMDtXb58\nWSUlJc5zys+dO6dLly65OBWqGge7wXQvvfSSxo0bV27akiVLKHPAZB9++KHWrFmjU6dOqUWLFvrP\nf/6juLg4de3a1dXRUIUocphm165dev/997Vv3z7dc889zumlpaU6dOiQPvnkExemA9zfoUOHdNtt\nt+n777+Xt7e3GjduLF9fX1fHQhWjyGGqEydOKC4uTtHR0QoPD9epU6f07rvv6oknnlBUVJSr4wFu\nbeTIkVq3bp28vPjKEHfGuwtT3XzzzSotLVWHDh106dIlbd26VU8++aReeukl55G0AMxRq1YtdevW\nTc2aNZO3t7dzOhcsci8UOUzn5eWlu+66S0uXLtV///d/KyoqSpcvX3Z1LMBtFRYWqlatWho9erSr\no+APQJHDdKWlpVqzZo0++eQTTZo0SQcOHFBBQYGrYwFua+LEibp8+bLCwsLUpk0bRUVFqXbt2q6O\nBZOwjxymO336tJKSknTffffpzjvv1I4dO3TbbbepefPmro4GuK2SkhKlpaUpJSVFqampKi4uVsuW\nLdWmTRt17NjR1fFQhShyAKgBiouLncU+YcIEV8dBFWJoHQDc1JkzZ7R69WqdP39eK1euVGZmpvr3\n7+/qWKhifLMbALipWbNmqWvXrjp37pwk6cYbb+SLmNwQRQ4AbqqsrEwdO3Z0fkXrvffeK/amuh+G\n1gHATXl5eSk5OVllZWXKzs7Whx9+qBtuuMHVsVDFONgNANxUVlaWXnjhBe3fv18+Pj5q2bKlJkyY\noODgYFdHQxWiyAHAjRUXFysrK0s333yzq6PAJOwjBwA3tX37dg0YMEBjx46VJC1cuFDbtm1zcSpU\nNYocANzUpk2btHXrVgUEBEiSpk6dqjfeeMPFqVDVKHIAcFOenp7y8fFxHrXu4+Pj4kQwA0etA4Cb\nioyM1NSpU5WZman/+Z//0aeffqr27du7OhaqGAe7AYCbMgxDX3/9tfbv3y9vb2+Fh4erVatWro6F\nKkaRA4CbGjFihDZu3OjqGDAZRQ4Abmr69OnOy5l6e3s7pw8fPtyFqVDVONgNANzMzJkzJUkeHh5q\n3Lix8vPzlZOT4/wH98IWOQC4mSFDhqikpETHjx/XbbfdVu4+m82mhIQE1wSDKShyAHAzly9fVlZW\nlpYsWaLp06dfcX/Dhg1dkApmocgBALAw9pEDAGBhFDkAABZGkQMW8d5777k6glNqaqpiYmL00ksv\nlZs+Y8YMvfPOO1X2PFu3btWUKVOqbHmAO6LIAQsoLS29ojRdKTk5Wd27d9e4ceNcHQWo8fiudcAC\n4uLidPLkST366KMKCAjQfffdpwEDBkiSnn76aTVp0kTp6em64YYbdOLECWVlZWnAgAEaNWqUiouL\nNX/+fB07dkwXL15Ur1699Oijj+q7777TnDlz5O3traKiIo0fP16dOnUq97xpaWlasmSJvLy8ZLPZ\nNGfOHOXm5mrLli0yDEO1atXShAkTrsh74sQJDRs2TJ999pkkadWqVbp8+bL++te/KioqSmPHjtXn\nn38uh8OhFStWqGnTpkpLS9Mzzzwjb29v1atXT0uXLpUk5efna8qUKTp69KhCQ0P14osvOi8CAoAt\ncsASJk6cqMDAQK1bt05Dhw7Vu+++K+nHLfXPP/9cffr0kSRlZmZq7dq12rRpk9asWaOcnBxt2LBB\nwcHBio+P1zvvvKPt27fr22+/1dtvv60uXbooPj5eL7/8snJzc6943mnTpmnmzJmKj4/XqFGjNG/e\nPLVu3Vr9+/dXnz59frXEf0t+fr6aNGmiDRs2qGfPns6h+KlTp2rBggXauHGj7rnnHu3Zs0eS9P33\n32vBggXaunWrjhw5ooMHD17vywi4JbbIAYu55557dO7cOWVkZOjEiROKioqSn5+fJKlDhw6SJH9/\nf9122206duyYUlJSdObMGX311VeSpOLiYh0/flyxsbGaMWOGTp06pc6dO6tv377lnicvL09nz55V\ny5YtJUlt2rTR3/72tyr5He69915JUmhoqI4dO6Zz584pLy9PTZo0kSQ98sgjkn7cRx4WFqZatWpJ\nkkJCQnThwoUqyQC4C4ocsKDBgwcrMTFRmZmZGjx4sHN6WVmZ82fDMGSz2eTj46Px48ere/fuVyzn\n/fffV3JysrZu3arExEQ999xzzvt+OXx9LV858ct5S0pKyk3z9PS8IufVlv/zx15rDqAmYGgdsAAP\nDw9dvnzZebtfv376+OOP9e2336pNmzbO6SkpKZKk8+fP6/jx42rcuLGioqL0wQcfSPqx6BcvXqzc\n3FzFx8frzJkz6tKlixYtWqS0tLRyz+nn5ye73e6cnpycrIiIiErlrVu3rs6fP6/CwkKVlpY6RwOu\nJiAgQPXr19eBAwckSevWrdOmTZsq9VxATccWOWABwcHBuvHGGzVgwABt3LhR9evXV6NGjXT33XeX\ne5y/v7/GjRunjIwMTZw4Uf7+/ho+fLiOHDmihx56SKWlperUqZPq16+v22+/XZMnT1adOnVUVlam\nyZMnX/G8S5cu1ZIlS+Tp6SkPDw/NnTu3Unnr1aun/v37a+DAgbrlllvUvHnz35xn2bJleuaZZ+Tl\n5SU/Pz8tW7ZMu3btqtTzATUZX9EKWFBeXp6GDh2qTZs2KSAgQNKP53BHRUWVG2oH4P4YWgcsJiEh\nQcOHD9ekSZOcJQ6g5mKLHAAAC2OLHAAAC6PIAQCwMIocAAALo8gBALAwihwAAAujyAEAsLD/ByzR\naWSakSl3AAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
- ]
- },
- {
- "metadata": {
- "id": "CgO6Upe9XOMs",
- "colab_type": "code",
- "outputId": "5545fb2d-a20b-411f-af85-0f6a6b2b13e9",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 627
- }
- },
- "cell_type": "code",
- "source": [
- "# visualizing maths score\n",
- "\n",
- "data['math score'].value_counts(normalize = True)\n",
- "data['math score'].value_counts(dropna = False).plot.bar(figsize = (18, 10))\n",
- "plt.title('Comparison of math scores')\n",
- "plt.xlabel('score')\n",
- "plt.ylabel('count')\n",
- "plt.show()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABBsAAAJiCAYAAACGv8r3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3X2cVmWdP/DvwEg6ijw5oGaWFQiK\n+ZQRlgGjSVqupLtJFK6SZmom+YATyiQQSChmKesDBq6yrRhlUVKwhbhqwvpUJpawvvoFkiLioCgo\nMJzfH/tyxLxnnLHrPnMG3++/7rnu65zvZw6+fPh4zn1XZFmWBQAAAEAiHdo6AAAAALBjUTYAAAAA\nSSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQASybIsZs2aFZ/73Odi6NChccwxx8Tll18e\nGzZsaOtobzJ79uy45ppr2mz+hg0b4sQTT4xjjz026uvrk5//3nvvjb/97W8REXHttdfGpZdemnwG\nANA8ZQMAJHLVVVfF/Pnz44c//GEsWLAg5s2bF1u2bImzzjorsixr63iNvvzlL8fo0aPbbP6TTz4Z\n69evj4ULF0a3bt2Sn/+WW25pLBsAgLZRkRXp334AoJ1av359fOpTn4o777wzPvShDzWuv/baa3H/\n/ffH4MGDY8uWLTFp0qRYunRpdOjQIQYNGhQXX3xxdOzYMWpqauL000+Pn/70p7FmzZq4/PLL44EH\nHoh77703unfvHjNmzIguXbrE/vvvH5deemn85Cc/ieeeey6+8Y1vxBe/+MWIiJg+fXrMmzcvGhoa\n4kMf+lBceeWVsfvuu8e1114ba9asiT//+c/xuc99LjZs2BDPPvtsTJo0KX71q1/F9OnTo6GhISor\nK+Oyyy6LAQMGxN/+9rcYN25cPP3007HTTjvFGWecEcOGDYunn346hg8fHl/96lfjxz/+caxfvz6+\n9a1vxfHHH/+Wa7J06dKYMmVKbNq0KTp37hx1dXXRo0ePGDFiRDz//POxzz77xI9+9KPo3r174zG1\ntbXRq1eveOSRR2LFihXxhS98Id73vvfFrbfeGq+88kpcc8018ZGPfCSef/75uOSSS2L16tWxefPm\nGDlyZJx++ulxzTXXxIwZM6Jnz55x8cUXx1NPPRUrV66MhoaG+P3vfx977LFHXHvttdGrV683ZV2z\nZk2MGTMm1q5dG5s3b47Pfvaz8c1vfjOyLIspU6bEf/3Xf8VOO+0U//Iv/xJnnHFGbNu2Lb7//e/H\nggULIiLikEMOibq6uqiqqoqRI0fGYYcdFgsXLoxJkybFhz/84Zg4cWI89thjsXXr1jjnnHPi5JNP\njoiI733ve/HrX/86IiJ69eoVV1555VuyAUC7lAEA/7DFixdnn/70p5vdc+ONN2ZnnnlmtmXLlmzT\npk3ZySefnP3sZz/LsizLhgwZko0bNy7Lsiy77bbbsoMPPjhbsmRJtm3btuzkk0/O7rjjjizLsqxP\nnz7ZhAkTsizLsqeeeirr379/9sILL2R//OMfs4EDB2YbNmzIGhoastNOOy2bPn16lmVZ9oMf/CD7\n5Cc/ma1bt67x57Fjx2ZZlmUDBgzInn766SzLsuzBBx/MJk+enGVZlo0aNSq74YYbsizLsqeffjo7\n/PDDs1WrVmWrVq3KDjjggOy2227LsizL5s+fX/L3fvnll7MBAwZkDz30UJZlWfbrX/86O/bYY7OG\nhoZsyZIl2THHHFPyGl1yySXZsGHDsldeeSV78skns379+jXmmDJlSnbRRRdlWZZlEyZMyOrq6rIs\ny7KVK1dmBx54YPa3v/2t8Vo++OCDjb/rJz7xicbf8ayzzsquu+66t8ydMmVKdu2112ZZlmUbN27M\nvvnNb2Zr1qzJfvazn2XDhw/PNm/enG3YsCEbNGhQ9oc//CH75S9/2Zhz69at2dlnn914vb/85S9n\no0aNyhoaGrIsy7Jvfetb2ZgxY7KGhoZs3bp12aBBg7Inn3wyW758eXbsscdmmzdvzrIsy2699dbs\nzjvvLHldAKC98RgFACSwfv366NGjR7N7Fi9eHF/4wheisrIydt555zjhhBPi/vvvb3z/6KOPjoiI\nPn36xHve854YMGBAVFRURO/eveO5555r3Pf6/xX/4Ac/GPvtt1889thj0b9//1i8eHHstttu0aFD\nhzj00ENj1apVjcccfPDBb7qD4HU9evSI22+/PVavXh0f/ehH41vf+lZs2bIlfve738WIESMiIuK9\n731vDBgwIJYsWRIREVu3bo2TTjopIiIOPPDAko8sPPbYY7HnnnvG4YcfHhERQ4cOjfr6+li9evXb\nXssjjzwyqqqqonfv3rFt27YYMmRI43V5/TpcdtllMW7cuIiIeN/73hfV1dXx9NNPlzzf4YcfHu99\n73sjIqJv376xZs2aktfhvvvui4ceeig6deoUV199dfTs2TP++7//O4YOHRo77bRT7LbbbjF//vw4\n6KCDYvHixTFs2LCoqqqKjh07xkknnfSmP8tBgwZFhw7/969Zd999d5x66qnRoUOH6N69e3z605+O\nhQsXxu677x4vvPBC/OIXv4gXX3wxRo4cGcOGDXvb6wMA7UFlWwcAgB1Bt27dSv5H7PZeeOGF6NKl\nS+PPXbp0iXXr1jX+vOuuu0ZERIcOHRpfv/7ztm3b3nTc9q9feuml2LRpU1xxxRWxdOnSiIh48cUX\nY/DgwSWP2d71118f119/fZx00kmx1157xdixY2O//faLLMuic+fOjfte/w/jiIiOHTtGVVVVyWzb\n/6677777m9Y6d+78pt+3Ka//7hUVFdGhQ4eSs/74xz/GtGnT4plnnokOHTrE2rVrS+aIiNhtt90a\nX3fs2DEaGhresue0006Lbdu2xfjx4+O5556LL33pS3HeeedFfX39m36P17O83Z/l9u9t2LAhRo8e\nHR07doyI/3u05jOf+Uz06tUrrr322pg5c2ZMnDgxjjjiiBg/fnzstddeb3uNAKDolA0AkMAhhxwS\n69ati2XLlsWBBx7YuL5ly5a47rrr4mtf+1rssccesX79+sb31q9fH3vssUerZ9XX1zf+n/r169dH\nly5d4t///d/j//2//xc//elPY9ddd43vfe97b1t+RETsu+++ccUVV8S2bdviZz/7WVx44YVx9913\nR4cOHeLFF19s/I/mlty5sb0ePXq86XfNsixefPHF6NGjR5IPb7z44ovjX//1X+OLX/xiVFRUxFFH\nHfUPna+ysjK++tWvxle/+tX4y1/+EmeeeWYcfvjh0a1btzd9Y8bzzz8fO++8c6v+LHv27BnTp0+P\nPn36vOW9j3/84/Hxj388Nm7cGN/97nfjqquuimnTpv1DvwsAFIHHKAAggd133z3OOOOMuOSSS+Kv\nf/1rRERs2rQp6urq4oknnohddtklBg8eHHPnzo2GhobYuHFj/PznP49Bgwa1etZdd90VERFPPfVU\n/PWvf42DDz441q1bFx/84Adj1113jdWrV8c999wTGzdubPY8L7zwQpx++unx8ssvR4cOHeLggw+O\nioqKqKysjE9+8pMxZ86ciIhYuXJlPPTQQ3HkkUe2OOPrH+L46KOPNmbec889Y5999mn171vKunXr\non///lFRURF33nlnbNq0qfH3raysbPXXjdbV1TU+BrHvvvvGHnvsERUVFVFTUxN33XVXbN68OTZu\n3BgjRoyI5cuXx+DBg2PevHmxadOm2Lp1a8ydO7fJP8uampq4/fbbI+L/HkGZPHlyLFu2LO67774Y\nP358bNu2LaqqqqJv375RUVHxD1wVACgOdzYAQCLnnXdedOnSJc4+++xoaGiIDh06xNFHHx2XX355\nRESMHDkyVq1aFZ/97GejoqIiPvOZz8Rxxx3X6jndu3ePE088MdasWROXXXZZdOnSJYYPHx7f+MY3\nYujQobH//vtHbW1tnHfeeXHLLbc0e56jjjoqTj755OjYsWPstNNOMWnSpIiIGD9+fFx22WXx05/+\nNHbaaaf4zne+E3vttVeTn4vw96qqquKaa66JiRMnxsaNG6N79+5x9dVXJ/uP6fPPPz/OPffc6Nq1\nawwfPjxOOeWUGDduXPzoRz+KoUOHxgUXXBDf+MY3Wny+4cOHR11dXUycODGyLIuampoYOHBgRPzf\nV3Uee+yx8Z73vCf++Z//OQ477LDIsiyefPLJOOmkkyLLshgwYECceuqpJc89evToGD9+fAwdOjQi\nIo466qjYf//9o6GhIe66664YOnRodOrUKbp37x6TJ0/+xy8OABSAr74EgHZk//33j3vuuSf23HPP\nto4CANAkj1EAAAAASSkbAAAAgKQ8RgEAAAAk5c4GAAAAIKlCfxvF2rVNf21Vt25VUV/f/Fd65bl/\nR5lRxEx5zChipjxmFDFTHjOKmCmPGUXMlMeMImbKY0YRM+Uxo4iZ8phRxEx5zChipjxmFDFTHjOK\nmCmPGUXMlMeMImbKY0YRMzV3THV15yaPabd3NlRWdizU/h1lRhEz5TGjiJnymFHETHnMKGKmPGYU\nMVMeM4qYKY8ZRcyUx4wiZspjRhEz5TGjiJnymFHETHnMKGKmPGYUMVMeM4qYKY8ZRcz0To9pt2UD\nAAAAUEzKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAA\nAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABA\nUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApCrbOkBrjJqy\nqOT6zNqanJMAAAAATXFnAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQN\nAAAAQFLKBgAAACApZQMAAACQlLIBAAAASKqyXCfetGlT1NbWxrp16+K1116Lc845JxYsWBDLli2L\nrl27RkTEV77ylRg8eHC5IgAAAABtoGxlw9133x39+/ePM888M1avXh2jRo2KQw89NC644IIYMmRI\nucYCAAAAbaxsZcPxxx/f+PqZZ56JXr16lWsUAAAAUCBl/8yG4cOHx0UXXRRjx46NiIjZs2fHqaee\nGt/85jfjhRdeKPd4AAAAIGcVWZZl5R7ypz/9KcaMGRNjx46Nrl27Rr9+/eKmm26KZ599Nurq6po8\nbuvWhqis7Nj48wkX/rzkvl9MO7Hk+hfmnF1y/Y5Trm9FegAAAKA1yvYYxeOPPx49evSIvfbaK/r1\n6xcNDQ3Rp0+f6NGjR0RE1NTUxOWXX97sOerrN7Zo1tq1G1qVrSX7q6s7t/q8rT2miDOKmCmPGUXM\nlMeMImbKY0YRM+Uxo4iZ8phRxEx5zChipjxmFDFTHjOKmCmPGUXMlMeMImbKY0YRM+Uxo4iZ8phR\nxEx5zChipuaOqa7u3OQxZXuM4qGHHoqZM2dGRMTzzz8fGzdujLq6uli1alVERCxdujR69+5drvEA\nAABAGynbnQ3Dhw+PSy+9NEaMGBGvvvpq1NXVRVVVVYwePTp22WWXqKqqiiuuuKJc4wEAAIA2Uray\nYeedd45p06a9Zf0nP/lJuUYCAAAABVD2b6MAAAAA3l2UDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAA\nAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABI\nStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZ\nAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAA\nAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAA\nJFXZ1gGKZPkZp73x+u/e63PzLSWPuX7K4pLrZ9cOThEJAAAA2h13NgAAAABJKRsAAACApJQNAAAA\nQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBS\nygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoG\nAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJKqLNeJN23aFLW1tbFu3bp47bXX4pxzzom+\nffvGmDFjoqGhIaqrq+PKK6+MTp06lSsCAAAA0AbKVjbcfffd0b9//zjzzDNj9erVMWrUqDjssMNi\nxIgRcdxxx8XVV18dc+fOjREjRpQrAgAAANAGyvYYxfHHHx9nnnlmREQ888wz0atXr1i6dGkcffTR\nERExZMiQeOCBB8o1HgAAAGgjFVmWZeUcMHz48Hj22WfjhhtuiNNPP72xYFi5cmWMGTMmbr/99iaP\n3bq1ISorOzb+fMKFPy+57xfTTiy5/oU5Z5dcv+OU60uu33/iyU1m+cTPf1JyfcKFvyi5XjfthCbP\nBQAAADuysj1G8brbb789/vSnP8XFF18c2/caLek46us3tmjG2rUbWpWptfvLNaO6unOrz9vaY8q9\nf0eZUcRMecwoYqY8ZhQxUx4zipgpjxlFzJTHjCJmymNGETPlMaOImfKYUcRMecwoYqY8ZhQxUx4z\nipgpjxlFzJTHjCJmau6Y6urOTR5TtscoHn/88XjmmWciIqJfv37R0NAQu+66a7z66qsREbFmzZro\n2bNnucYDAAAAbaRsZcNDDz0UM2fOjIiI559/PjZu3BhHHnlkLFiwICIiFi5cGEcddVS5xgMAAABt\npGyPUQwfPjwuvfTSGDFiRLz66qtRV1cX/fv3j0suuSTmzJkTe++9dwwbNqxc4wEAAIA2UrayYeed\nd45p06a9ZX3WrFnlGgkAAAAUQNkeowAAAADenZQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZ\nAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAA\nAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAA\nJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSl\nbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkVdnW\nAd5tVj464Y3X263ve2hdk8eMfXBFyfXJR/ROFQsAAACScWcDAAAAkJSyAQAAAEhK2QAAAAAkpWwA\nAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAA\nAJJSNgAAAABJVbZ1ANIbNWVRyfWZtTWt2t/cMecuGlNyfXrN1JLry8847Y3X2633ufmWJmcDAADQ\nPrmzAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCU\nsgEAAABIStkAAAAAJFVZzpNPnTo1Hn744di6dWucddZZsWjRoli2bFl07do1IiK+8pWvxODBg8sZ\nAQAAAMhZ2cqGJUuWxIoVK2LOnDlRX18fn//85+PjH/94XHDBBTFkyJByjQUAAADaWNnKhiOOOCI+\n8pGPRETE7rvvHps2bYqGhoZyjQMAAAAKomxlQ8eOHaOqqioiIubOnRuf+tSnomPHjjF79uyYNWtW\n9OjRI8aNGxfdu3dv8hzdulVFZWXHt51VXd25Vdma2r88hxkrE53/nRzTljOaurbNnX/Chb8ouV43\n7YSS6w8vvLjx9fbX+fBjr2xyRkuzpDqmiDOKmCmPGUXMlMeMImbKY0YRM+Uxo4iZ8phRxEx5zChi\npjxmFDFTHjOKmCmPGUXMlMeMImbKY0YRM+Uxo4iZ3skxZf3MhoiI3/zmNzF37tyYOXNmPP7449G1\na9fo169f3HTTTXHddddFXV1dk8fW129s0Yy1aze0KlNr9+cxo4iZ8phRlEzV1Z1bfd7WHlPEGUXM\nlMeMImbKY0YRM+Uxo4iZ8phRxEx5zChipjxmFDFTHjOKmCmPGUXMlMeMImbKY0YRM+Uxo4iZ8phR\nxEzNHdNcAVHWb6O4995744YbbogZM2ZE586dY+DAgdGvX7+IiKipqYnly5u7lwAAAABoj8pWNmzY\nsCGmTp0aN954Y+O3T5x33nmxatWqiIhYunRp9O7du1zjAQAAgDZStsco5s+fH/X19TF69OjGtZNO\nOilGjx4du+yyS1RVVcUVV1xRrvEAAABAGylb2XDKKafEKaec8pb1z3/+8+UaCQAAABRAWT+zAQAA\nAHj3UTYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAA\nkqps6wDQVsY+uKLJ9yYf0bvk+qgpi0quz6ytSbIfAABgR+DOBgAAACApZQMAAACQlLIBAAAASErZ\nAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAA\nAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAA\nJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACRV\n2dYBgDc7d9GYkuvTa6aWXF9+xmlvvN5uvc/Nt6QLBQAA0ArubAAAAACSUjYAAAAASSkbAAAAgKSU\nDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0A\nAABAUsoGAAAAIKnKtg4A5Ov6KYubfO/s2sEl11c+OuGN19ut73toXZpQAADADsWdDQAAAEBSygYA\nAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAA\nIKnKcp586tSp8fDDD8fWrVvjrLPOioMOOijGjBkTDQ0NUV1dHVdeeWV06tSpnBEAAACAnJWtbFiy\nZEmsWLEi5syZE/X19fH5z38+Bg4cGCNGjIjjjjsurr766pg7d26MGDGiXBEAAACANlC2xyiOOOKI\n+P73vx8REbvvvnts2rQpli5dGkcffXRERAwZMiQeeOCBco0HAAAA2kjZ7mzo2LFjVFVVRUTE3Llz\n41Of+lTcd999jY9N9OjRI9auXdvsObp1q4rKyo5vO6u6unOrsjW1f3kOM1YmOv87OaYtZzR1bVNm\nak/XNmWmIl7bM+c/UnJ9xvGH/cNZ2mr/jjKjiJnymFHETHnMKGKmPGYUMVMeM4qYKY8ZRcyUx4wi\nZspjRhEz5TGjiJnymFHETHnMKGKmd3JMWT+zISLiN7/5TcydOzdmzpwZxx57bON6lmVve2x9/cYW\nzVi7dkOrMrV2fx4zipgpjxlFzJTHjCJmymNGS/dXV3du1bnLvX9HmVHETHnMKGKmPGYUMVMeM4qY\nKY8ZRcyUx4wiZspjRhEz5TGjiJnymFHETHnMKGKmPGYUMVNzxzRXQJT12yjuvffeuOGGG2LGjBnR\nuXPnqKqqildffTUiItasWRM9e/Ys53gAAACgDZStbNiwYUNMnTo1brzxxujatWtERBx55JGxYMGC\niIhYuHBhHHXUUeUaDwAAALSRsj1GMX/+/Kivr4/Ro0c3rk2ZMiUuu+yymDNnTuy9994xbNiwco0H\nAAAA2kjZyoZTTjklTjnllLesz5o1q1wjAQAAgAJo0WMUtbW1b1n7yle+kjwMAAAA0P41e2fDvHnz\n4vbbb48VK1bEl770pcb1LVu2xPPPP1/2cAAAAED702zZ8E//9E8xYMCAuOiii+K8885rXO/QoUN8\n+MMfLns4AAAAoP15289s6NWrV9x2222xYcOGWL9+feP6hg0bGr9lAgAAAOB1LfqAyO985zvxk5/8\nJLp37x5ZlkVEREVFRfz2t78tazgAAACg/WlR2bB06dJYsmRJvOc97yl3HgAAAKCda9G3Ubz//e9X\nNAAAAAAt0qI7G/bcc8/40pe+FIcffnh07Nixcf38888vWzAAAACgfWpR2dC1a9cYOHBgubMAAAAA\nO4AWlQ3nnHNOuXMAAAAAO4gWlQ0HHHBAVFRUNP5cUVERnTt3jqVLl5YtGAAAANA+tahs+POf/9z4\nevPmzfHAAw/Ek08+WbZQAAAAQPvVom+j2F6nTp1i0KBBcf/995cjDwAAANDOtejOhrlz577p52ef\nfTbWrFlTlkAAAABA+9aisuHhhx9+08+77bZbXHPNNWUJBAAAALRvLSobrrjiioiIWL9+fVRUVESX\nLl3KGgoAAABov1pUNjzyyCMxZsyYeOWVVyLLsujatWtceeWVcdBBB5U7HwAAANDOtKhsmDZtWvzb\nv/1b9OnTJyIinnjiiZg0aVL8x3/8R1nDAQAAAO1Pi76NokOHDo1FQ0TEAQccEB07dixbKAAAAKD9\nanHZsGDBgnj55Zfj5Zdfjvnz5ysbAAAAgJJa9BjF+PHjY+LEiXHZZZdFhw4dom/fvvGd73yn3NkA\nAACAdqhFdzbcf//90alTp3jwwQdj6dKlkWVZ3HPPPeXOBgAAALRDLSob5s2bF9ddd13jzzNnzoxf\n/vKXZQsFAAAAtF8teoyioaHhTZ/RUFFREVmWlS0U8O4zasqikusza2uS7D930ZgmZ0+vmVpyffkZ\np73xerv1PjffUnL/9VMWl1w/u3Zwk7NXPjrhjdfbre97aF3J/WMfXFFyffIRvZucAQAAeWtR2VBT\nUxPDhw+Pww8/PLZt2xZLliyJY489ttzZAAAAgHaoRWXDOeecEx/72Mfisccei4qKivj2t78dhxxy\nSLmzAQAAAO1Qi8qGiIiPfvQYMlo1AAAgAElEQVSj8dGPfrScWQAAAIAdQIs+IBIAAACgpZQNAAAA\nQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBS\nlW0dAIDyGTVlUZPvzaytadUxTe0HAIC/584GAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAA\nAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACS\nUjYAAAAASVW2dQAA2rdzF40puT69ZmqTxyw/47Q3Xm+33ufmW9KEAgCgTbmzAQAAAEhK2QAAAAAk\npWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAAJFXW\nsmH58uVxzDHHxOzZsyMiora2Nk444YQYOXJkjBw5MhYvXlzO8QAAAEAbqCzXiTdu3BgTJ06MgQMH\nvmn9ggsuiCFDhpRrLAAAANDGynZnQ6dOnWLGjBnRs2fPco0AAAAACqhsdzZUVlZGZeVbTz979uyY\nNWtW9OjRI8aNGxfdu3dv8hzdulVFZWXHt51VXd25Vdma2r88hxkrE53/nRzTljOaurYpM7Wna5sy\nU3u6tkX8s2jumFTXtrn9O/K1bW5/a6/thAt/UXK9btoJJdcfXnhx4+u/v8aHH3tlk7lakiXV/jxm\nFDFTHjOKmCmPGUXMlMeMImbKY0YRM+Uxo4iZ8phRxEx5zChipjxmFDHTOzmmbGVDKSeeeGJ07do1\n+vXrFzfddFNcd911UVdX1+T++vqNLTrv2rUbWpWjtfvzmFHETHnMKGKmPGYUMVMeM4qYKY8ZRcyU\nx4wiZmrpMdXVnVt17tbuz2NGETPlMaOImfKYUcRMecwoYqY8ZhQxUx4zipgpjxlFzJTHjCJmymNG\nETM1d0xzBUSu30YxcODA6NevX0RE1NTUxPLlzd1LAAAAALRHuZYN5513XqxatSoiIpYuXRq9e/fO\nczwAAACQg7I9RvH444/Hd7/73Vi9enVUVlbGggUL4stf/nKMHj06dtlll6iqqoorrriiXOMBAACA\nNlK2sqF///5x2223vWV96NCh5RoJAAAAFECuj1EAAAAAOz5lAwAAAJCUsgEAAABIStkAAAAAJKVs\nAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACCpyrYOAABFMPbBFSXXJx/Ru+T6qCmLSq7P\nrK1JlgkAoL1yZwMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBS\nygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoG\nAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAA\nACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAg\nKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICll\nAwAAAJCUsgEAAABIqrKtAwDAu8WoKYtKrs+srSm5fu6iMSXXp9dMLbm+/IzT3nj9d+/1ufmWksdc\nP2VxyfWzaweXXF/56IQ3Xm+3vu+hdSX3AwDvTu5sAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLK\nBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASZW1bFi+fHkcc8wxMXv27IiI\neOaZZ2LkyJExYsSIOP/882Pz5s3lHA8AAAC0gbKVDRs3boyJEyfGwIEDG9d+8IMfxIgRI+JHP/pR\nvP/974+5c+eWazwAAADQRspWNnTq1ClmzJgRPXv2bFxbunRpHH300RERMWTIkHjggQfKNR4AAABo\nI5VlO3FlZVRWvvn0mzZtik6dOkVERI8ePWLt2rXNnqNbt6qorOz4trOqqzu3KltT+5fnMGNlovO/\nk2PackZT1zZlpvZ0bVNmak/Xtoh/Fs0dk+raNrd/R762ze0v97Vt6rqmnJFqf8oZRf3n2JnzHym5\nPuP4w/6hLKn27ygzipgpjxlFzJTHjCJmymNGETPlMaOImfKYUcRMecwoYqZ3ckzZyoa3k2XZ2+6p\nr9/YonOtXbuhVbNbuz+PGUXMlMeMImbKY0YRM+Uxo4iZ8phRxEx5zChipjxmFDFTHjPKlam6unOr\nzt3a/TvKjCJmymNGETPlMaOImfKYUcRMecwoYqY8ZhQxUx4zipipuWOaKyBy/TaKqqqqePXVVyMi\nYs2aNW96xAIAAADYMeRaNhx55JGxYMGCiIhYuHBhHHXUUXmOBwAAAHJQtscoHn/88fjud78bq1ev\njsrKyliwYEFcddVVUVtbG3PmzIm99947hg0bVq7xAAAAQBspW9nQv3//uO22296yPmvWrHKNBAAA\nAAog18coAAAAgB2fsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAA\nACCpyrYOAACwvVFTFpVcn1lb06r9zR1z7qIxJden10wtub78jNPeeL3dep+bb2lyNgC8m7mzAQAA\nAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABI\nStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFKVbR0AAGBHdP2UxSXXz64dXHJ95aMT\n3ni93fq+h9aV3D/2wRVNzp58RO+3iwcAZeXOBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAA\nAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAA\nkqps6wAAAORj1JRFJddn1tYk2Q8Ar3NnAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJ\nKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkb\nAAAAgKQq2zoAAAA7jnMXjSm5Pr1masn15Wec9sbr7db73HxLyf3XT1nc5OyzaweXXF/56IQ3Xm+3\nvu+hdSX3j31wRcn1yUf0bnI2AG/mzgYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2\nAAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJBUZZ7Dli5dGueff3707t07IiL69OkT48aN\nyzMCAAAAUGa5lg0RER/72MfiBz/4Qd5jAQAAgJx4jAIAAABIKvc7G/73f/83vva1r8WLL74YX//6\n1+MTn/hEk3u7dauKysqOb3vO6urOrcrQ1P7lOcxYmej87+SYtpzR1LVNmak9XduUmdrTtS3in0Vz\nx6S6ts3t35GvbXP7y31tm7quKWek2p9yhn+OlW9Ge/p77Ts5Zkf4e21zx+Tx99oTLvx5yfVfTDsx\nyf7WZEl1TBFnFDFTHjOKmCmPGUXMlMeMImZ6J8fkWjZ84AMfiK9//etx3HHHxapVq+LUU0+NhQsX\nRqdOnUrur6/f2KLzrl27oVU5Wrs/jxlFzJTHjCJmymNGETPlMaOImfKYUcRMecwoYqY8ZhQxUx4z\nipgpjxlFzJTHjCJmymNGUTJVV3du9Xlbe0wRZxQxUx4zipgpjxlFzJTHjCJmau6Y5gqIXB+j6NWr\nVxx//PFRUVER++67b+yxxx6xZs2aPCMAAAAAZZZr2TBv3rz44Q9/GBERa9eujXXr1kWvXr3yjAAA\nAACUWa6PUdTU1MRFF10Uv/3tb2PLli1x+eWXN/kIBQAAANA+5Vo27LbbbnHDDTfkORIAAADIma++\nBAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACRV2dYB\nAACA5p27aEyT702vmVpyffkZp73xerv1PjffUnL/9VMWl1w/u3Zw8+EASnBnAwAAAJCUsgEAAABI\nStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZ\nAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKQq2zoAAADQPq18dMIbr7db3/fQupL7xz64ouT65CN6\nl1wfNWVRk7Nn1ta06pim9p+7aEzJ9ek1U5ucvfyM0954vd16n5tvafIYeLdxZwMAAACQlLIBAAAA\nSErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK\n2QAAAAAkpWwAAAAAklI2AAAAAElVtnUAAACAHdn1UxaXXD+7dnDJ9ZWPTnjj9d+9t++hdSWPGfvg\nipLrk4/oXXJ91JRFJddn1taUXH+nx/Du5c4GAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAA\nAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACS\nUjYAAAAASVW2dQAAAAB2POcuGlNyfXrN1JLry8847Y3Xf/den5tvKXnM9VMWl1w/u3ZwyfWVj054\n4/V26/seWldyf0TE2AdXlFyffETvkuujpiwquT6ztqZV+5s7JtW1beq6RrT+2v49dzYAAAAASSkb\nAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAA\nAICkKvMeOHny5PjDH/4QFRUVMXbs2PjIRz6SdwQAAACgjHItG/7nf/4n/vrXv8acOXPiqaeeirFj\nx8acOXPyjAAAAACUWa6PUTzwwANxzDHHRETEhz70oXjxxRfj5ZdfzjMCAAAAUGYVWZZleQ0bN25c\nDBo0qLFwGDFiREyaNCn222+/vCIAAAAAZdamHxCZY88BAAAA5CTXsqFnz57x/PPPN/783HPPRXV1\ndZ4RAAAAgDLLtWz4xCc+EQsWLIiIiGXLlkXPnj1jt912yzMCAAAAUGa5fhvFYYcdFgceeGAMHz48\nKioq4tvf/nae4wEAAIAc5PoBkQAAAMCOr00/IBIAAADY8SgbAAAAgKRy/cwGAAAAoO1kWRYVFRXN\n7nnllVcav0myuro6qqqqWj1H2QAAAAA7oPvuuy8mTZoU3bt3j0suuSTGjx8fzz33XOy6664xYcKE\n+NjHPvam/X/84x9j0qRJ8dJLL0W3bt0iy7J47rnnolevXlFXVxf7779/i2d3vPzyyy9P/Pskdc89\n98QHPvCBiIhYv359XHnllXHzzTfHsmXL4qCDDopddtnlLcesW7cupk+fHr/61a+iqqoq9tlnn8b3\nJkyYEIMGDXrT/m3btsX8+fNj1qxZcccdd8S8efPikUceiYqKisbZ/8j+iIjNmzfHr3/963jppZdi\n7733jrvuuituv/32WLlyZfTt2zcqK1ve+1x11VVx5JFHvmW9rq4u9thjj+jVq1eLzlNfXx+33XZb\nPP3009G3b9+48cYbY8aMGbFs2bI44IAD3nJtN2zYELfeemv85S9/ib59+8bs2bPjP//zP2PFihXR\nr1+/6NSpU4t/h4iIW265JQ455JCyzLjwwgtj6NChJd+76aabYp999mnx16629jq9/nv87ne/i/32\n2y9eeuml+P73vx+33nprs8c0pdR1et3vf//7mDt3bvzqV7+KxYsXx4oVK6JLly7RvXv3t+x94okn\norq6OiL+76/HW2+9Ne64445YuXJlHHDAAW/5a3DLli3xxBNPRK9evWLLli0xZ86cuPPOO2PlypWx\n//77t/iv2ZEjR8ZJJ51U8r3XXnstfvzjH8d9990XPXr0iG7duv3/9s48Koori8M/cA0m0SCSqBEj\nGnUkwdEEEYwLiKgYMYiCCyiBMK5oNAbFEdEko4kZdQwjrjEa1xw1riOKg8ElLDLiQhw0ihvIjgiy\nRaDv/OHpmm6qGnkFtE7mfudwjlbfV3d779brV1Wvpc8iIiJgZ2en2O7s2bPYs2cPDh48iKioKFy6\ndAmmpqbo0KFDnW1SU3NEx55ojQLEY6WmTonGtaKiAnv37sXGjRvx/fffY//+/Th79ixKSkrQrVs3\nmJrqv6knOvYqKytx/Phx5OXloUOHDvjpp59w9OhRZGdno0uXLrLzq7FJjQ7RsSRa10T7k1ZHfdUc\nQ9cYJWqqtaK5UOODmvFanZrqwdNQipWa2ikaK7VziqKiIsTFxSExMRH//ve/kZeXBwsLi1pfW2uK\nlZq6ZozaaYia+rnItVW0D6qZUzT0/A5o+LmwmtyJ6lAzhxRtI1qnRMe2Gh3GmLcoUVM9UDt3bshc\nGMuPhv4eqiZW8+fPx4YNG+Dg4AB/f3+Eh4cjODgYTk5O+Pzzz+Hp6akn//HHH+Mvf/kLgoKC4Onp\nCU9PT0yaNAndu3fHF198IZOvief+1ygmTZqE77//HsCTSU23bt0wePBgJCQk4MyZM1i/fr2sjb+/\nPwYPHgxzc3Ps2rULffv2xYwZM2Tn07J48WK0bdsW/fr1w7lz50BE6NmzJ3788Ue8+uqrmD9/fp3k\ngSdJe+GFF5CXl4eOHTvi4cOHGDx4MK5cuYKMjAysWbNGT76srMxgTAIDA7Fjxw7ZcXd3d7z11lso\nLi6Gj4+PbJVK6Tw9e/ZETk4O8vPz0alTJ7i6uuLKlSuIiYnB5s2b9eSnTp2KXr16obCwEElJSejd\nuzccHR2RnJyMlJQUfPPNNzXqq45SLtTocHZ2lh4D0nZn7QTKxMQE0dHRevJDhw5Fx44d8cYbb8DX\n1/epX1BF4wQAH374Idzc3DB27Fh88skn6NKlC9577z1cvXoV0dHR2LRpU53iBACrV69Gfn4++vXr\nh9jYWLRs2RIdOnTAoUOH4OrqCj8/P4PnCQsLg4mJCZycnHD+/HlkZWVh5cqVevKzZs1C9+7dMX36\ndISFhUGj0aBfv364evUq7t27J+uzANC9e3dYWlqiSZMmUi5yc3PRpk0bxVzMnDkTVlZWMDc3x6FD\nhxAQEIAPPvigRr+XLl2KoqIiODs7SxO/7OxsREVFoWPHjrLxJ2qTmpojOvZEa5SaWInWKdG4AsCc\nOXNgZWUFJycntG7dGkSE7OxsnDhxAkVFRVixYoWevOjYmzdvHszMzFBUVASNRgNTU1M4ODggOTkZ\nVVVVWL58eZ1tUqNDdCyJ1jXR/gSI1xw11xjRWiuaCzV1U3S8itYDNbFSUztFYyU6pwCAffv2Ydu2\nbejduzfMzc0lHRcvXkRQUBBGjBhRp1ipqWsNXTvV9PO6XFtr0wfVzCkaen4HNPxcWE3/ENWhZg4p\n2ka0TomObTU6jDFvEa0HavpgQ+fCWH409PdQNbHS1evq6oqoqCjpM19fX2zfvl1Pfty4cdizZ49M\n79M+U4Sec3x9faV/T5o0Se8zHx8fxTa6x6uqqmju3LkUHh5usE31Y5MnT5b+PWbMmDrL67apqKig\nQYMGUVVVlfTZxIkTZfI2Njbk5OSk9+fs7ExOTk5ka2tbo45bt27RkiVLyN3dnRYtWkQ7duygY8eO\nyeS1sdVoNOTq6lqjj7ryRETDhg0z+Jkuffv2Vfyzt7cnGxubetGxe/du8vf3p8uXL0vHvLy8FGWJ\n/utbbGwsTZkyhSZPnkzr1q2jn376Se8c1fXWNk5E+v2gusz48eNl8qJxUjqvv78/ERFVVlaSh4dH\njfLV+5ySH2PHjpX+PWHCBL3PlPosEdGZM2fIx8eHjh8/Lh2rTS6IiEpKSmjy5Mm0f/9+gzYRKcev\nps9EbapLzant2BOtUdWP1yZWonVKNK5EhvuBoc9Ex56uDy4uLgY/qw+bRHSIjiXRuiban4jEa46a\na4xorRXNhagPROLjVbQeEInHSk3tVNtvazunIHriZ3l5uex4cXExeXt7y47XpZ6L1rWGqp11mUtp\nedq1VbQPqplTNPT8Tul4fc+F63rdq40ONXNI0TaidUp0bKvRYYx5i9q5lEgfbOhcEBnHj4b+Hqpr\nF1HtYjVz5kxatWoVhYaGUkBAAIWGhlJUVBStWLGCZs+eLZNftmwZTZkyhfbu3UvR0dEUHR1NP/zw\nA/n7+9PKlSsVbTLEc/9rFAUFBTh9+jROnz6Npk2b4tq1awCAtLQ0gyvWjRs3xokTJ0BEMDU1xddf\nf420tDQsWrQIJSUlMnkiwrlz51BYWIiDBw+iefPmAJ48lqSEqDzw5DGqkpISNG7cGLNmzZIem8rN\nzcVvv/0mkw8ODsbIkSNx6tQp6S86OhqnTp2Cra2tog7tHadOnTohLCwM+/btw/Dhw1FcXIwLFy7I\n5CsrK3H//n2YmJhg0aJF0vFr166hoqJCUf7u3bu4ePEiCgsLcenSJQBAamqqojwAeHp6IigoCHFx\ncXp/8fHx6NWrV73oGDduHL7++mvs3r0bS5cuxaNHj2rc8ET7mYODA9avX4+vvvoKrVu3xqlTp7Bu\n3bo6xwkArKyssGzZMiQnJ8Pe3h7Hjh1DXl4efvzxR+nx67rECXjyGO2tW7cAAP/6179QVVUFALh5\n86aifFlZGVJTU3Hz5k2Ym5sjLS0NwJNHsZTGRcuWLbFt2zY8ePAA/fr1w5UrVwAACQkJaNasmaKO\n/v3749tvv8X169cxY8YMpKWl1ZgLjUaDX375BQBgZmaGiIgIHDlyBOvXr0dlZaXBNlevXpUd1z5y\nVleb1NQc0bFnqEaFhoYq5kLrt0isROuUobheuHDBYLxMTEwQFRWlNw4eP36Mw4cPKz6uKjr2tHUz\nIyMDRUVFSE9PB/AkR48fP64Xm9To0I6lGzdu1GosidY10f4EiNccNdcYNbVWJBeiPgD/Ha8xMTG1\nGq+i9UBNrNTUTrX9trZzCgCoqqoyWCs0Go3suGisGjdujOPHjwvVtYaunWr6uei1VbQPqplTNPT8\nDtC/Zhw6dKje58KG+oehubkaHWrmkKJtROuUiYkJTpw4UeuxrUaHaB/U2gXUvk+J1gM1fbCuuYiM\njHzqNcMYfojWQtGxpyZWX331FSwtLdG3b19s3rwZ7777Ln7++WdYWFhg2bJlMvmQkBAEBAQgIyMD\nMTExiImJQU5ODmbOnIm5c+catEsRoaWJZ8CCBQv0/uLi4ig/P59mzpxJCQkJim0yMzNpwYIFVFZW\nJh3Lz8+nw4cPK67ep6am0rRp08jNzY3mzJlDGRkZlJ6eTqtWraJbt249VT4rK4vy8/NpzZo1dPv2\nbUWboqOjyc/PT+/YmTNnaODAgXTmzBnFNgcPHqSSkhI9H4iI1q1bpyg/a9Ys2TFtGyUuXrwoW806\nduwYjRw5kn755ReZfGJiIo0ePZo++ugjunnzJk2ePJn+8Ic/kLu7O128eFFRh0ajoQ0bNuj5oeXz\nzz9/qo5JkyaRg4MDjRgxwqAOXeLj42nixImyVT5dDK1uG6J6nCoqKui7774jNzc3xThpZXbu3Ekf\nffQRDR8+nIYNG0Zubm60YcMGvX6pRRun0tJSvWNEynEiIkpKSiJ3d3dycHAgLy8vunHjBhERhYSE\n0IULF2TyPj4+5OvrSz4+PuTj40MnT54kIiI/Pz+KjIyUyT969IhWrFhBw4cPJzs7O7K1taWhQ4dS\nWFhYjf1Ky+3bt+lPf/oTDR482KDMtWvXyMfHR69//Pbbb7Ru3Tp67733FNukpKSQr68vOTs7k4eH\nB33wwQc0aNAg8vf3p5s3bz7Vpo8++oh69OhBlZWVijLVa865c+coPT29xppTfexVVFRQeno6VVRU\nKMpnZmbS/Pnzpb6glT9w4IBijSL6b6yKi4ulY5WVlRQREaEYK22dGjFihFSnYmNjKTw8XLFOpaSk\n0KRJk6S4enh4PDWu2lrr7OxMjo6O5ODgQC4uLhQaGkq5ubkyeaUVfW0/V+LEiRM0YMAAcnd3p4SE\nBHJ3d6eRI0fSwIEDKTo6ulY29enTh7p3704LFy6knJwcRR39+/enkSNHUkJCAo0cOfKpOrRjSTue\n/vnPf5JGo6EPP/xQcSxVr2t+fn7Up08fg7VTqZbHxsYajBORcs0ZP348bdy4UfFuNhHRgQMHpLGn\n22cNXWN0SUhIIB8fH9mdHl20uRg8eDA5OjqSo6Njjf2jug8uLi7k5OREa9euVaybRMpzhNjYWAoK\nCjI4XrVoa9SQIUOe6u/BgwepuLiY8vPzKS8vTzquFCtt7XRzcyM7Ozvq2bMnubq61lg7dWPVvXt3\neuutt6RYKfVbpTlFTEwMDRo0yOCc4tChQzR06FD69NNPafny5bR8+XKaO3cuubq60okTJwz6rtFo\n6PLlyzR58uQa67nu3Es3TobmXkT/7esajUYWW0M6dGsn0ZOxUZMO3X6ulScyPJdKSkqiUaNGkaOj\no3Rt1Wg0tHDhQkpKSpLJi85TleZekZGRNGrUKINzCtH5XVJSEs2ePVsvrlFRUTXqULpmaOe2tZkL\nZ2ZmEhHRN998Q4mJiTJ50bl5dR2TJk2irKwsIiIKDw9XtCkxMZE8PT2F5qnaNv7+/pSYmEh+fn7k\n6OhI7u7uivnW1qnAwEByc3Oj4cOH08SJE2njxo2Kdap6HXzadbK6jtrMIbV9Lzg4mAIDA+nIkSNE\nRBQUFETx8fGKOnTHnpLNNVGb+Z3odwwi/Vxor5UODg7k7u6u2Keq52LYsGHk4+NDGzdufKoPGo1G\ndg1QaqPkx8mTJw3apD3PggULZNfeQ4cOyZ6gJKp5LCk99UlEdP78edm8Qhur2nxfMibP/a9RDBs2\nDNHR0fjss88QFxeHkK0EeFYAABBMSURBVJAQtGjRAqWlpQZXQq9fv44mTZqgefPmiIuLw8KFC/Hi\niy+ipKQEoaGhMvldu3YhIiICABAbG4sJEybAwsIC+fn5ePfdd9GpUyc9+bS0NFhYWCAiIgJxcXEY\nN26cZJOtra3iZh6ffPIJRo8ejfz8fLRu3RoAYG9vj+joaDRq1Egmf/r0aVy4cAGjRo2SfNDqUPIB\nAEaPHo3FixdLsdJts3jxYgwaNEhPvrCwEC+//DIAyORzc3Nl5y8pKYGNjY10/rt378La2hqPHj1C\nQUGBok3vvPMOPDw8UFZWJvu5FN0VQi3Hjx/H/v37ATzJxb1799C+fXvk5+ejqKhIUUfv3r3h4eGB\n6dOnw97eHr1790ZKSoqiLABcvnwZn3/+OaZPny7loiaOHj2Kv/3tb5JNf/7zn2FhYYGysjI8ePBA\nsc3PP/+Ma9euYdOmTXqx3bNnD7p27SrLRWxsLA4cOIDTp0/LdoldunSpoo6AgADJb10/lFYoAeCX\nX37B6NGjZfLfffedovyAAQPg4eGB7du31ypOwJN+qx2vmZmZ+PXXX2FqagpnZ2fFPpibm4u8vDwE\nBgZKfufm5sLMzAx//etfFXVMmDABHh4eWLFihXQ3z9zc3OCGaF988YXU1zIyMnDz5k28/vrrGDJk\nCJYuXYr+/fvrybdo0UKS1813fn4+ysvLFXXorqBXb6OkY/Pmzfjyyy/15Nu0aYO8vDwY2rN3/Pjx\n8PDwQHl5OVq0aAEAaNSoEaZNm4Zp06bJ5K9cuQJXV1fpp43i4uIQERGB6dOn49KlS7I6lZeXh5yc\nHFhaWiI4OBiffvopKioqkJ6ejry8PHTu3FmmQ1tro6OjpX7erFkznDt3Ds7OzrJ8T5kyBcOHD9fb\nDVmbb6XdkM3MzGBmZoYXX3wRzZs3h6mpKW7duoXXXntNikF1Nm/eLO2zoI2tlZUV4uLiMGzYMNnd\njvnz5+uNi0OHDuHBgwd45ZVXFDfu0vpRfVfnJUuWwMzMTG/jTi3p6enw8fEB8GSHZ3d3d6Snp+PD\nDz/EnTt3ZBvADho0CAcPHpT+T0RYt24dpk+fDgDSXh26HD16FGZmZnBzc5OOrVu3Dm3atEFkZKSs\nje64qN5nDfXB6rtZl5SUICsrC8OGDcPSpUthb2+vJx8fHw97e3u9vEZERKB37944d+6czKYvv/wS\nixYtwoQJE/Rs2rdvH95++23ZOAIg6dT288zMTClWGRkZMnnduAJP5hhr166VjivF9vbt24iMjMTm\nzZuRnp6Ozp07o7CwEDY2NggJCZHJX758GadOnYK5uTmWLVsm9fP4+Hi4ubkpvhtdVlaGgoICvPDC\nC2jevDmsra1RVFQk7SVSnaZNmyIrKwsTJ06U+mB6ejpeeuklg3dL3d3dMWTIEFy+fBn5+fkAAEtL\nS9ja2io+cXH79m189dVXuH//PtLT02FtbQ0iwscff4yQkBDZxnJaH8aOHSvFqaioCD169FDcQwIA\nZs+ejalTp0o6dNso6YiPj0ffvn1x/PhxAPpjY9y4cbLza/OqfT9ZV/61115TtKmkpAS//fabtFfN\n/Pnzpeuxu7u7TH7o0KFYvnw52rZti4ULF2LevHmoqqpCaWkpSktLZfJ37tzRG+O6Nt24cQM2Njay\nNh4eHhg6dKhMR1lZGcLCwmQbzrVs2RLl5eVSrdHtsxYWFop+37t3D6mpqWjbti2mTp2KwMBASUfP\nnj1lc+HU1FSkpKSgtLQUb731lrTxb1BQkOJ76deuXUNSUhKmTp0q+aDRaKQ5qhImJibSXjpXrlzB\njBkzJD+UfoKvuLgYjx49wosvvoiqqio8ePBA2jywsLBQUYe5uTksLCxw//59BAYGwtraGmZmZujU\nqRPatWsnk09LS8OZM2eQmZmJjIwMWFtbIzs7G1evXkVhYaF0V7q636+//jpCQkIkv8+ePYvBgwcr\nboz5888/Y9u2bWjbti1Wr16NTz/9FFVVVdizZw+6desmaxMYGIgVK1ZI4+jBgwdYs2YNbGxsDG4w\n+P7778PJyQllZWUYOHAgQkNDpRwGBwfL8hcTE6PXzzMzM0FEcHZ2VuyDDx8+REpKCvz8/GTjQvtT\nitUpKChAfn4+0tLSsHHjRoSHh0s2KfWpmJgYbNq0CaWlpRg0aJCeD4b2ATl58iSWLVsm+b1y5Urp\n+6SS37m5ubh8+TL69u0rxcnFxQUuLi4GdSQnJyM+Ph4DBw7Ui627uzv27t0rk7e2tpa+h+piaCwB\ngJ2dnfR9CdCfyxtq88x4dusctWP06NHSyt/EiRPp3r17RET04MEDvfci69JG9073hAkTJPmcnBzF\n93jU2OTj40Pnz5+nyZMn04IFC+j8+fMG73oay++Gllfjt2gu1Ogwhk2isRo3bhxlZ2fTr7/+Svb2\n9pSSkkJEROnp6QbfO2tov0Xl1fqdk5PT4H5rqU3+1ORbtI2oTdo2In67uLjQmDFjKDw8XPobMGCA\n9O/qVM/FtWvXiKjmXDR0P1djk2hs1fRzUbuUcjFw4ECDuRDNnZo2avpg9fzVt99qbBL1W01sfX19\nJVtSU1NpyZIlRER0+vRpxad1ROOkVodo7Xz8+DHt3r2bgoKCyNvbm7y9vWnWrFm0d+9exSe9RG0S\nlVfTxhj5Fo2tl5cX3b9/nxITE8nJyUmSz83NJU9Pz3qxSVSHmlyI6hgzZgwVFBRQVVUV/fDDD+Tl\n5UVFRUVEpPwUm+j51fhhDB3GsMkY+dbN3549e+o9f2r8FrVJtA/WVUdt5J/WRunp6h07dhj8M/T0\noJo2z4rn/smGyspK6Q7WSy+9JP18SKtWraRdROujjRbtrsPAk7uVSndL1ZzfxMQEdnZ22Lp1K5KT\nk7F3716EhoaiRYsWaN26NTZu3Gh0v+sq3759+3r3W5fa5EKNDmPYJBqrJk2awNLSEpaWlnj55ZfR\nvXt3AED79u0Vn3wxht9q4qTG7zZt2qBNmzYN6reW2uZPrXxt26ixSdTvo0ePIiIiAtevX8eCBQvQ\nvn17nD17FjNnzlQ8f/VcaH9DuaZcNHQ/V2OTaGzV9HNRu0RzISqvpo2aPlg9f/XttxqbjBHbx48f\nS7a88cYbuH79OoAnT3+Fh4fL5EXjpFaHaO0MDg6GlZUV/P39Zbvih4SEyHbFF7VJVF5NG2PkWzS2\nTZs2Rbt27dCuXTtYWlpK8hYWFopPjKixSVSHmlyI6mjUqBFatWoFAPDy8oK5uTkCAgKwfv16xXfg\nRc+vxg9j6DCGTcbIt27+vL290bp163rNnxq/RW0S7YN11VEb+ae1UWLr1q1wcHCApaWl7DND+5ep\nafOseO4XG7Q/79avXz+0atUK06dPR69evZCQkICxY8fWS5sbN25g9uzZICLcvXsXkZGRGD58OLZs\n2YKXXnqpXmzSnXi//fbbePvttwEAOTk5iq8sGMPvusrPmDGj3v0WzYUaHcawSTRWLVu2xOrVq1FQ\nUAArKyssXrwY/fv3x6VLlwy+wtDQfovKP69+i+ZPTb6NoUPU72bNmmHOnDm4desWPvvsM/Tq1Uvx\ncWwtanLR0PlWY5NobNX0c1G7RHMhKq+mjZo+2NB+q7HJGLHt2rUr5s6dC1tbW5w9e1Z6dWPhwoXo\n0qVLneNkLB25ublYvXq13jErKyvY2dlJr/nUxSZReTVtjJFv0di2bt0a3377LQICAqSfg8vKysKW\nLVsUX9VQY5OoDjW5ENXRu3dvTJkyBWvWrEHz5s3h4uKCZs2awc/PDw8fPqzz+dX4YQwdxrDJGPlu\n6Pyp8VvUJlH551XH2rVrpVcbq78Gl5CQoKhDTZtnhQk97Vb/c8DDhw8RGxuL+/fvg4hgYWGBfv36\nyd7lU9vm/Pnzev/v2LEjXn31VRw5cgTOzs6K7waL2rRv3z6MGTPmufLbGPKifqvJhagOY9gEiMWq\ntLQUBw4cwCuvvAI3NzccPnwYSUlJ6NixI7y9vRXfTWxov9X0WeD581s0f2rybQwdavOh5eDBgzh9\n+rTsy4YWNbkAGjbfamwSja2auKqNlZan5aKu8rVpo6YPNrTfamutiA418kSE6Oho3LlzB127dsWA\nAQMAPHkXu1u3brK7W2riZAwdvr6+8PX1hZOTE5o0aQLgyR3REydO4MCBA9iyZUudbBKVV9tGl4bI\nt2hsy8vLcerUKb39Uq5evYrExESMHz/e4F1cEZtEdaiJqxo/EhIS0KdPH73zFRcX49ixY/Dy8qrz\n+UX9MIYOY9hkjHwDDZs/teNCxCY18s+rjrKyMjRr1ky2V9TVq1cV93FR2+ZZ8D+x2MAwDMMwDMOo\nJysrC2vWrMH58+eln8Nr0aIFHBwcMHPmTMXHcRmGYRimLvBiA8MwDMMwzP8xz93u5QzDMMzvgud+\nzwaGYRiGYRimbuzcudPgZ9nZ2Ua0hGEYhvl/gRcbGIZhGIZhfuf8L+1ezjAMw/w+4MUGhmEYhmGY\n3zn/S7uXMwzDML8PeM8GhmEYhmGY/wP+V3YvZxiGYX4f8GIDwzAMwzAMwzAMwzD1iunTRRiGYRiG\nYRiGYRiGYWoPLzYwDMMwDMMwDMMwDFOv8GIDwzAMwzAMwzAMwzD1Ci82MAzDMAzDMAzDMAxTr/BP\nXzIMwzAMI0x2djbmzZsHACgvL4e3tzfeffddhIaGQqPRoFmzZli+fDleffVVREREICYmBo0bN8ab\nb76JRYsWITs7G9OmTUPXrl3x5ptvYurUqVi1ahWSkpJQXl4OOzs7BAcHw8TE5Bl7yjAMwzCMGvjJ\nBoZhGIZhhImMjIS1tTW2b9+OHTt2oLy8HGFhYQgICMDOnTvh6emJyMhIXLx4EVFRUdi5cyd27dqF\ngoICHD16FACQmpqKGTNmYOrUqYiMjER2djZ27NiBffv24d69e/jpp5+esZcMwzAMw6iFn2xgGIZh\nGEaY/v37Y9euXViwYAEGDhwIb29vrFy5En369AEAjBgxAgCwdetW2NnZoUmTJgCAPn36IDk5GXZ2\ndmjZsiWsra0BAAkJCbh06RJ8fX0BAI8ePUJ6evoz8IxhGIZhmPqAFxsYhmEYhhGmc+fO+Mc//oHE\nxEQcP34c27ZtAwBoNBo9ueqvQRCRdEy7AAEATZs2hZeXFwICAhrYcoZhGIZhjAG/RsEwDMMwjDBH\njhxBcnIyHB0dERYWhszMTNja2uLs2bMAgGPHjmHVqlX44x//iISEBFRUVAAA4uLi0LNnT9n53nnn\nHZw8eRKVlZUAgL///e+4c+eO0fxhGIZhGKZ+4ScbGIZhGIYRpkuXLggLC0PTpk1BRAgMDMR7772H\n0NBQ7Nq1C40bN8ayZcvQtm1bjBgxAhMnToSpqSlsbGzw/vvvIyMjQ+98rq6uuHTpEsaNG4dGjRqh\nR48e6NChwzPyjmEYhmGYumJCRPSsjWAYhmEYhmEYhmEY5vcDv0bBMAzDMAzDMAzDMEy9wosNDMMw\nDMMwDMMwDMPUK7zYwDAMwzAMwzAMwzBMvcKLDQzDMAzDMAzDMAzD1Cu82MAwDMMwDMMwDMMwTL3C\niw0MwzAMwzAMwzAMw9QrvNjAMAzDMAzDMAzDMEy98h/YWMAK0A52OgAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
- ]
- },
- {
- "metadata": {
- "id": "nwoEGMVuTU89",
- "colab_type": "code",
- "outputId": "80fb69df-b0ba-4b29-b274-b32e1ddda724",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 627
- }
- },
- "cell_type": "code",
- "source": [
- "# visualizing reading score score\n",
- "\n",
- "data['reading score'].value_counts(normalize = True)\n",
- "data['reading score'].value_counts(dropna = False).plot.bar(figsize = (18, 10), color = 'orange')\n",
- "plt.title('Comparison of math scores')\n",
- "plt.xlabel('score')\n",
- "plt.ylabel('count')\n",
- "plt.show()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABBsAAAJiCAYAAACGv8r3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xmc3fO9P/DXJCNlyCIxiaqlWktC\nlFK1VUmIlG4pt5Wm4hZVrRahtipB1VJbra2lxcV1pY1St1SSurgoKXVbRIvr0dtYYxKJhATJ5Pv7\nozW/pMnEiM+ZyeH5/GfO93vO63ze58zMMXn5fs9pqKqqCgAAAEAh3bp6AAAAAODdRdkAAAAAFKVs\nAAAAAIpSNgAAAABFKRsAAACAopQNAAAAQFHKBgAopKqqXHnllfnMZz6T4cOHZ9ddd81JJ52UOXPm\ndPVoi7n22mtz3nnnddn6c+bMyec///nstttumTlzZvH7v/vuu/Pcc88lSS688MJ873vfK74GALBs\nygYAKOTss8/Orbfemp/97GeZMGFCbr755syfPz8HHXRQqqrq6vHa7LPPPhkzZkyXrf/4449n1qxZ\nmThxYlZfffXi93/VVVe1lQ0AQNdoqFakv34AoE7NmjUrn/zkJ3PjjTfmwx/+cNv+119/Pffee292\n3nnnzJ8/P6eeemomT56cbt26ZaeddspRRx2V7t27Z+jQodlvv/3yy1/+MtOmTctJJ52U++67L3ff\nfXf69u2byy+/PL17987GG2+c733ve7nhhhvy4osv5tBDD82Xv/zlJMnFF1+cm2++Oa2trfnwhz+c\ns846K7169cqFF16YadOm5S9/+Us+85nPZM6cOXnhhRdy6qmn5je/+U0uvvjitLa2prGxMccff3y2\n2WabPPfccznhhBPyzDPPZKWVVsrXvva1jBgxIs8880xGjhyZr3/96/nFL36RWbNm5bvf/W722GOP\nJZ6TyZMn54wzzsi8efPSs2fPjB07Nv369cuoUaMyffr0rL322rnuuuvSt2/ftsyxxx6bAQMG5KGH\nHsqTTz6ZL33pS1lnnXVy9dVX59VXX815552Xj3zkI5k+fXqOOeaYPPvss3njjTcyevTo7Lfffjnv\nvPNy+eWXp3///jnqqKPy1FNPZerUqWltbc0f//jHrLHGGrnwwgszYMCAxWadNm1ajj766LS0tOSN\nN97Ipz/96Rx++OGpqipnnHFGJk2alJVWWilf/OIX87WvfS0LFy7M+eefnwkTJiRJtthii4wdOzZN\nTU0ZPXp0ttxyy0ycODGnnnpqNthgg5xyyil5+OGHs2DBghx88MHZa6+9kiQ/+tGPcttttyVJBgwY\nkLPOOmuJ2QCgLlUAwDt25513VsOGDVvmbS699NLqwAMPrObPn1/Nmzev2muvvaqbbrqpqqqqGjJk\nSHXCCSdUVVVV11xzTbX55ptX999/f7Vw4cJqr732qn7+859XVVVVG220UfX973+/qqqqeuqpp6rB\ngwdXL730UvXII49U2223XTVnzpyqtbW1+upXv1pdfPHFVVVV1QUXXFB94hOfqGbMmNG2fdxxx1VV\nVVXbbLNN9cwzz1RVVVUPPPBAddppp1VVVVX7779/dckll1RVVVXPPPNMtdVWW1VPP/109fTTT1eb\nbLJJdc0111RVVVW33nrrUh/3K6+8Um2zzTbVgw8+WFVVVd12223VbrvtVrW2tlb3339/teuuuy71\nOTrmmGOqESNGVK+++mr1+OOPV4MGDWqb44wzzqiOPPLIqqqq6vvf/341duzYqqqqaurUqdWmm25a\nPffcc23P5QMPPND2WHfYYYe2x3jQQQdVF1100RLrnnHGGdWFF15YVVVVzZ07tzr88MOradOmVTfd\ndFM1cuTI6o033qjmzJlT7bTTTtWf/vSn6te//nXbnAsWLKi++c1vtj3f++yzT7X//vtXra2tVVVV\n1Xe/+93q6KOPrlpbW6sZM2ZUO+20U/X4449XTzzxRLXbbrtVb7zxRlVVVXX11VdXN95441KfFwCo\nN06jAIACZs2alX79+i3zNnfeeWe+9KUvpbGxMSuvvHI++9nP5t577227fpdddkmSbLTRRnnf+96X\nbbbZJg0NDdlwww3z4osvtt3uzf8r/qEPfSjrr79+Hn744QwePDh33nlnVltttXTr1i0f/ehH8/TT\nT7dlNt9888WOIHhTv379cv311+fZZ5/Nxz72sXz3u9/N/Pnz87vf/S6jRo1KknzgAx/INttsk/vv\nvz9JsmDBguy5555Jkk033XSppyw8/PDDWXPNNbPVVlslSYYPH56ZM2fm2Weffcvncvvtt09TU1M2\n3HDDLFy4MEOGDGl7Xt58Ho4//viccMIJSZJ11lknzc3NeeaZZ5Z6f1tttVU+8IEPJEkGDhyYadOm\nLfV5uOeee/Lggw+mR48eOffcc9O/f//893//d4YPH56VVlopq622Wm699dZsttlmufPOOzNixIg0\nNTWle/fu2XPPPRf7Xu60007p1u3vf2bdcccd2XfffdOtW7f07ds3w4YNy8SJE9OrV6+89NJL+c//\n/M+8/PLLGT16dEaMGPGWzw8A1IPGrh4AAN4NVl999aX+I3ZRL730Unr37t223bt378yYMaNte9VV\nV02SdOvWre3ym9sLFy5cLLfo5dmzZ2fevHk5/fTTM3ny5CTJyy+/nJ133nmpmUX95Cc/yU9+8pPs\nueeeef/735/jjjsu66+/fqqqSs+ePdtu9+Y/jJOke/fuaWpqWupsiz7WXr16LbavZ8+eiz3e9rz5\n2BsaGtKtW7elrvXII4/knHPOyfPPP59u3bqlpaVlqXMkyWqrrdZ2uXv37mltbV3iNl/96lezcOHC\nnHzyyXnxxRfzla98JYccckhmzpy52ON4c5a3+l4uet2cOXMyZsyYdO/ePcnfT6351Kc+lQEDBuTC\nCy/MFVdckVNOOSVbb711Tj755Lz//e9/y+cIAFZ0ygYAKGCLLbbIjBkzMmXKlGy66aZt++fPn5+L\nLroo3/jGN7LGGmtk1qxZbdfNmjUra6yxxttea+bMmW3/p37WrFnp3bt3/u3f/i3/93//l1/+8pdZ\nddVV86Mf/egty48kWXfddXP66adn4cKFuemmm/Kd73wnd9xxR7p165aXX3657R/NHTlyY1H9+vVb\n7LFWVZWXX345/fr1K/LmjUcddVT+9V//NV/+8pfT0NCQHXfc8R3dX2NjY77+9a/n61//ev7617/m\nwAMPzFZbbZXVV199sU/MmD59elZeeeW39b3s379/Lr744my00UZLXLfttttm2223zdy5c/PDH/4w\nZ599ds4555x39FgAYEXgNAoAKKBXr1752te+lmOOOSZ/+9vfkiTz5s3L2LFj89hjj2WVVVbJzjvv\nnPHjx6e1tTVz587Nr371q+y0005ve61bbrklSfLUU0/lb3/7WzbffPPMmDEjH/rQh7Lqqqvm2Wef\nzV133ZW5c+cu835eeuml7LfffnnllVfSrVu3bL755mloaEhjY2M+8YlPZNy4cUmSqVOn5sEHH8z2\n22/f4RnffBPH//mf/2mbec0118zaa6/9th/v0syYMSODBw9OQ0NDbrzxxsybN6/t8TY2Nr7tjxsd\nO3Zs22kQ6667btZYY400NDRk6NChueWWW/LGG29k7ty5GTVqVJ544onsvPPOufnmmzNv3rwsWLAg\n48ePb/d7OXTo0Fx//fVJ/n4KymmnnZYpU6bknnvuycknn5yFCxemqakpAwcOTENDwzt4VgBgxeHI\nBgAo5JBDDknv3r3zzW9+M62trenWrVt22WWXnHTSSUmS0aNH5+mnn86nP/3pNDQ05FOf+lR23333\nt71O37598/nPfz7Tpk3L8ccfn969e2fkyJE59NBDM3z48Gy88cY59thjc8ghh+Sqq65a5v3suOOO\n2WuvvdK9e/estNJKOfXUU5MkJ598co4//vj88pe/zEorrZQf/OAHef/739/u+yL8s6amppx33nk5\n5ZRTMnfu3PTt2zfnnntusX9MH3bYYfnWt76VPn36ZOTIkdl7771zwgkn5Lrrrsvw4cNzxBFH5NBD\nD+3w/Y0cOTJjx47NKaeckqqqMnTo0Gy33XZJ/v5Rnbvttlve97735V/+5V+y5ZZbpqqqPP7449lz\nzz1TVVW22Wab7Lvvvku97zFjxuTkk0/O8OHDkyQ77rhjNt5447S2tuaWW27J8OHD06NHj/Tt2zen\nnXbaO39yAGAF4KMvAaCObLzxxrnrrruy5pprdvUoAADtchoFAAAAUJSyAQAAACjKaRQAAABAUY5s\nAAAAAIpaoT+NoqWl/Y+tWn31psycueyP9JKTk3vv5uphRjk5ufrL1cOMcnJy9Zerhxnl5Jamubln\nu7m6PbKhsbG7nJyc3Aqxlpyc3HsnVw8zysnJ1V+uHmaUk3u76rZsAAAAAFZMygYAAACgKGUDAAAA\nUJSyAQAAAChK2QAAAAAUpWwAAAAAimqs1R3Pmzcvxx57bGbMmJHXX389Bx98cCZMmJApU6akT58+\nSZIDDjggO++8c61GAAAAALpAzcqGO+64I4MHD86BBx6YZ599Nvvvv38++tGP5ogjjsiQIUNqtSwA\nAADQxWpWNuyxxx5tl59//vkMGDCgVksBAAAAK5CGqqqqWi4wcuTIvPDCC7nkkkty1VVXpaWlJfPn\nz0+/fv1ywgknpG/fvu1mFyxoTWNj91qOBwAAABRW87IhSf785z/n6KOPznHHHZc+ffpk0KBBueyy\ny/LCCy9k7Nix7eZaWua0e11zc89lXi8nJ/feztXDjHJycvWXq4cZ5eTk6i9XDzPKybV3XXtq9mkU\njz76aJ5//vkkyaBBg9La2pqNNtoogwYNSpIMHTo0TzzxRK2WBwAAALpIzcqGBx98MFdccUWSZPr0\n6Zk7d27Gjh2bp59+OkkyefLkbLjhhrVaHgAAAOgiNXuDyJEjR+Z73/teRo0alddeey1jx45NU1NT\nxowZk1VWWSVNTU05/fTTa7U8AAAA0EVqVjasvPLKOeecc5bYf8MNN9RqSQAAAGAFULPTKAAAAID3\nJmUDAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAAAICilA0AAABAUcoGAAAAoKjG\nrh7g7Wie1Gvx7UUutwyb3bnDAAAAAEvlyAYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAA\nilI2AAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAoStkAAAAAFKVsAAAAAIpS\nNgAAAABFNXb1AJ2heVKvxbcXudwybHbnDgMAAADvco5sAAAAAIpSNgAAAABFKRsAAACAopQNAAAA\nQFHKBgAAAKAoZQMAAABQlLIBAAAAKErZAAAAABSlbAAAAACKUjYAAAAARSkbAAAAgKKUDQAAAEBR\nygYAAACgKGUDAAAAUJSyAQAAACiqsasHWJE1T+q1+PYil1uGze7cYQAAAKBOOLIBAAAAKErZAAAA\nABSlbAAAAACKUjYAAAAARSkbAAAAgKKUDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAU\npWwAAAAAilI2AAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAoStkAAAAAFKVs\nAAAAAIpSNgAAAABFKRsAAACAopQNAAAAQFHKBgAAAKAoZQMAAABQlLIBAAAAKErZAAAAABTVWKs7\nnjdvXo499tjMmDEjr7/+eg4++OAMHDgwRx99dFpbW9Pc3JyzzjorPXr0qNUIAAAAQBeoWdlwxx13\nZPDgwTnwwAPz7LPPZv/998+WW26ZUaNGZffdd8+5556b8ePHZ9SoUbUaAQAAAOgCNTuNYo899siB\nBx6YJHn++eczYMCATJ48ObvsskuSZMiQIbnvvvtqtTwAAADQRRqqqqpqucDIkSPzwgsv5JJLLsl+\n++3XVjBMnTo1Rx99dK6//vp2swsWtKaxsfv/33FdQ/sLjVrGw3i35wAAAGAFUrPTKN50/fXX589/\n/nOOOuqoLNprdKTjmDlz7mLbzcu4bUvLnHave7fnFruP5p4dvq2c3Ls5Vw8zysnJ1V+uHmaUk5Or\nv1w9zCgn19517anZaRSPPvponn/++STJoEGD0tramlVXXTWvvfZakmTatGnp379/rZYHAAAAukjN\nyoYHH3wwV1xxRZJk+vTpmTt3brbffvtMmDAhSTJx4sTsuOOOtVoeAAAA6CI1O41i5MiR+d73vpdR\no0bltddey9ixYzN48OAcc8wxGTduXNZaa62MGDGiVssDAAAAXaRmZcPKK6+cc845Z4n9V155Za2W\nBAAAAFYANTuNAgAAAHhvUjYAAAAARSkbAAAAgKKUDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAAChK\n2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAoStkA\nAAAAFKVsAAAAAIpSNgAAAABFKRsAAACAopQNAAAAQFHKBgAAAKAoZQMAAABQlLIBAAAAKErZAAAA\nABSlbAAAAACKauzqAXjnmif1Wnx7kcstw2Z37jAAAAC85zmyAQAAAChK2QAAAAAUpWwAAAAAilI2\nAAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAoStkAAAAAFKVsAAAAAIpSNgAA\nAABFKRsAAACAopQNAAAAQFGNXT0AXad5Uq/Ftxe53DJsdvEcAAAA7w2ObAAAAACKUjYAAAAARSkb\nAAAAgKKUDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAA\nAICilA0AAABAUcoGAAAAoChlAwAAAFBUY1cPwHtH86Rei28vcrll2OwOZRbNtZd5JzkAAADeOUc2\nAAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAoStkAAAAAFKVsAAAAAIpSNgAA\nAABFKRsAAACAopQNAAAAQFGNtbzzM888M3/4wx+yYMGCHHTQQfmv//qvTJkyJX369EmSHHDAAdl5\n551rOQIAAADQyWpWNtx///158sknM27cuMycOTNf+MIXsu222+aII47IkCFDarUsAAAA0MVqVjZs\nvfXW+chHPpIk6dWrV+bNm5fW1tZaLQcAAACsIBqqqqpqvci4cePy4IMPpnv37mlpacn8+fPTr1+/\nnHDCCenbt2+7uQULWtPY2P3/77iuof1FRi3jYcjVb64eZnwnOQAAgHehmr5nQ5L89re/zfjx43PF\nFVfk0UcfTZ8+fTJo0KBcdtllueiiizJ27Nh2szNnzl1su3kZ67S0zGn3Orn6zdXDjO8kt8T9NPd8\nW7eXWzHWkpOTe+/k6mFGOTm5+svVw4xycu1d156afhrF3XffnUsuuSSXX355evbsme222y6DBg1K\nkgwdOjRPPPFELZcHAAAAukDNyoY5c+bkzDPPzKWXXtr26ROHHHJInn766STJ5MmTs+GGG9ZqeQAA\nAKCL1Ow0iltvvTUzZ87MmDFj2vbtueeeGTNmTFZZZZU0NTXl9NNPr9XyAAAAQBepWdmw9957Z++9\n915i/xe+8IVaLQkAAACsAGr6ng0AAADAe4+yAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAA\nAICilA0AAABAUcoGAAAAoChlAwAAAFBUY1cPAO9lzZN6LbnvH19bhs0ungMAAOgMjmwAAAAAilI2\nAAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAoStkAAAAAFKVsAAAAAIpSNgAA\nAABFKRsAAACAopQNAAAAQFHKBgAAAKAoZQMAAABQlLIBAAAAKKqxqwcAOk/zpF5L7vvH15Zhszt3\nGAAA4F3LkQ0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAoStkAAAAAFKVsAAAAAIpSNgAAAABFKRsA\nAACAopQNAAAAQFHKBgAAAKAoZQMAAABQlLIBAAAAKErZAAAAABSlbAAAAACKauzqAYAVX/OkXkvu\n+8fXlmGzO3cYAABghefIBgAAAKAoZQMAAABQlLIBAAAAKErZAAAAABSlbAAAAACKUjYAAAAARSkb\nAAAAgKKUDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEU1dvUA\nwLtX86ReS+77x9eWYbM7dxgAAKDTOLIBAAAAKErZAAAAABSlbAAAAACKUjYAAAAARSkbAAAAgKKU\nDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAAimqs5Z2feeaZ+cMf/pAFCxbk\noIMOymabbZajjz46ra2taW5uzllnnZUePXrUcgQAAACgk9WsbLj//vvz5JNPZty4cZk5c2a+8IUv\nZLvttsuoUaOy++6759xzz8348eMzatSoWo0AAAAAdIGanUax9dZb5/zzz0+S9OrVK/PmzcvkyZOz\nyy67JEmGDBmS++67r1bLAwAAAF2kZkc2dO/ePU1NTUmS8ePH55Of/GTuueeettMm+vXrl5aWlmXe\nx+qrN6WxsXuH1mtu7rlcc8rVb64eZpRbztx1DUve/s0Lo6oO55oX3ahF7p+sUM+hnJxczXL1MKOc\nnFz95ephRjm5t6Om79mQJL/97W8zfvz4XHHFFdltt93a9lfVW/8BP3Pm3MW2m9u5XZK0tMxp9zq5\n+s3Vw4xy793cYvfR3LPDt5WTk6vfXD3MKCcnV3+5ephRTq6969pT00+juPvuu3PJJZfk8ssvT8+e\nPdPU1JTXXnstSTJt2rT079+/lssDAAAAXaBmZcOcOXNy5pln5tJLL02fPn2SJNtvv30mTJiQJJk4\ncWJ23HHHWi0PAAAAdJGanUZx6623ZubMmRkzZkzbvjPOOCPHH398xo0bl7XWWisjRoyo1fIAAABA\nF6lZ2bD33ntn7733XmL/lVdeWaslAQAAgBVATd+zAQAAAHjvUTYAAAAARSkbAAAAgKKUDQAAAEBR\nygYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEU1dvUAAPWqeVKvxbcXudwy\nbPYKkwMAgM7myAYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEV1qGw49thj\nl9h3wAEHFB8GAAAAqH+Ny7ry5ptvzvXXX58nn3wyX/nKV9r2z58/P9OnT6/5cAAAAED9WWbZ8LnP\nfS7bbLNNjjzyyBxyyCFt+7t165YNNtig5sMBAAAA9WeZZUOSDBgwINdcc03mzJmTWbNmte2fM2dO\n+vTpU9PhAAAAgPrzlmVDkvzgBz/IDTfckL59+6aqqiRJQ0NDbr/99poOBwAAANSfDpUNkydPzv33\n35/3ve99tZ4HAAAAqHMd+jSK9dZbT9EAAAAAdEiHjmxYc80185WvfCVbbbVVunfv3rb/sMMOq9lg\nAAAAQH3qUNnQp0+fbLfddrWeBYAaaJ7Ua/HtRS63DJtdPAcAAB0qGw4++OBazwEAAAC8S3SobNhk\nk03S0NDQtt3Q0JCePXtm8uTJNRsMAAAAqE8dKhv+8pe/tF1+4403ct999+Xxxx+v2VAAAABA/erQ\np1EsqkePHtlpp51y77331mIeAAAAoM516MiG8ePHL7b9wgsvZNq0aTUZCAAAAKhvHSob/vCHPyy2\nvdpqq+W8886ryUAAAABAfetQ2XD66acnSWbNmpWGhob07t27pkMBAAAA9atDZcNDDz2Uo48+Oq++\n+mqqqkqfPn1y1llnZbPNNqv1fAAAAECd6VDZcM455+THP/5xNtpooyTJY489llNPPTX//u//XtPh\nAAAAgPrToU+j6NatW1vRkCSbbLJJunfvXrOhAAAAgPrV4bJhwoQJeeWVV/LKK6/k1ltvVTYAAAAA\nS9Wh0yhOPvnknHLKKTn++OPTrVu3DBw4MD/4wQ9qPRsAAABQhzp0ZMO9996bHj165IEHHsjkyZNT\nVVXuuuuuWs8GAAAA1KEOlQ0333xzLrroorbtK664Ir/+9a9rNhQAAABQvzp0GkVra+ti79HQ0NCQ\nqqpqNhQA9at5Uq/Ftxe53DJs9gqR++fMorllrQUAQMd0qGwYOnRoRo4cma222ioLFy7M/fffn912\n263WswEAAAB1qENlw8EHH5yPf/zjefjhh9PQ0JATTzwxW2yxRa1nAwAAAOpQh8qGJPnYxz6Wj33s\nY7WcBQAAAHgX6NAbRAIAAAB0lLIBAAAAKErZAAAAABSlbAAAAACKUjYAAAAARSkbAAAAgKKUDQAA\nAEBRygYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAU1djVAwBAvWie1GvJff/42jJsdt3nAABKcWQD\nAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAA\nAFCUsgEAAAAoStkAAAAAFFXTsuGJJ57IrrvummuvvTZJcuyxx+azn/1sRo8endGjR+fOO++s5fIA\nAABAF2is1R3PnTs3p5xySrbbbrvF9h9xxBEZMmRIrZYFAAAAuljNjmzo0aNHLr/88vTv379WSwAA\nAAAroJqVDY2NjVl55ZWX2H/ttddm3333zeGHH56XXnqpVssDAAAAXaRmp1Eszec///n06dMngwYN\nymWXXZaLLrooY8eObff2q6/elMbG7h267+bmnss1k1z95uphRjk5ufrL1cOMNctd17Dk7d+8MKoq\nt06d5+phRjk5ufrL1cOMcnJvR6eWDYu+f8PQoUNz0kknLfP2M2fOXWy7uZ3bJUlLy5x2r5Or31w9\nzCgnJ1d/uXqYsZ5yS9xPc8+3dft6ytXDjHJycvWXq4cZ5eTau649nfrRl4ccckiefvrpJMnkyZOz\n4YYbdubyAAAAQCeo2ZENjz76aH74wx/m2WefTWNjYyZMmJB99tknY8aMySqrrJKmpqacfvrptVoe\nAAAA6CI1KxsGDx6ca665Zon19WloAAAgAElEQVT9w4cPr9WSAAAAwAqgU0+jAAAAAN79lA0AAABA\nUcoGAAAAoChlAwAAAFCUsgEAAAAoStkAAAAAFKVsAAAAAIpSNgAAAABFKRsAAACAopQNAAAAQFGN\nXT0AAFDfmif1WnLfP762DJtdPAcArPgc2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAAAICilA0AAABA\nUcoGAAAAoChlAwAAAFCUsgEAAAAoStkAAAAAFKVsAAAAAIpSNgAAAABFKRsAAACAopQNAAAAQFHK\nBgAAAKCoxq4eAADg7Wie1GvJff/42jJsdvEcAPD2ObIBAAAAKErZAAAAABSlbAAAAACKUjYAAAAA\nRSkbAAAAgKKUDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEUp\nGwAAAICilA0AAABAUY1dPQAAwIqseVKvxbcXudwybHbnDgMAdcKRDQAAAEBRygYAAACgKGUDAAAA\nUJSyAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCU\nsgEAAAAoStkAAAAAFKVsAAAAAIpSNgAAAABFKRsAAACAopQNAAAAQFHKBgAAAKAoZQMAAABQlLIB\nAAAAKErZAAAAABSlbAAAAACKUjYAAAAARSkbAAAAgKKUDQAAAEBRygYAAACgKGUDAAAAUFRNy4Yn\nnngiu+66a6699tokyfPPP5/Ro0dn1KhROeyww/LGG2/UcnkAAACgC9SsbJg7d25OOeWUbLfddm37\nLrjggowaNSrXXXdd1ltvvYwfP75WywMAAABdpGZlQ48ePXL55Zenf//+bfsmT56cXXbZJUkyZMiQ\n3HfffbVaHgAAAOgijTW748bGNDYufvfz5s1Ljx49kiT9+vVLS0vLMu9j9dWb0tjYvUPrNTf3XK45\n5eo3Vw8zysnJ1V+uHmaUq5PcdQ2L33bRjVHVipP7JyvUcygn9x7K1cOMcnJvR83KhrdSVW/9H72Z\nM+cutt3czu2SpKVlTrvXydVvrh5mlJOTq79cPcwoJ9dZucXuo7lnh28rJydXLlcPM8rJtXddezr1\n0yiampry2muvJUmmTZu22CkWAAAAwLtDp5YN22+/fSZMmJAkmThxYnbcccfOXB4AAADoBDU7jeLR\nRx/ND3/4wzz77LNpbGzMhAkTcvbZZ+fYY4/NuHHjstZaa2XEiBG1Wh4AAADoIjUrGwYPHpxrrrlm\nif1XXnllrZYEAAAAVgCdehoFAAAA8O6nbAAAAACKUjYAAAAARSkbAAAAgKKUDQAAAEBRygYAAACg\nKGUDAAAAUJSyAQAAAChK2QAAAAAU1djVAwAA0HWaJ/VafHuRyy3DZhfPAfDe4MgGAAAAoChlAwAA\nAFCUsgEAAAAoStkAAAAAFKVsAAAAAIpSNgAAAABFKRsAAACAopQNAAAAQFHKBgAAAKAoZQMAAABQ\nlLIBAAAAKErZAAAAABSlbAAAAACKUjYAAAAARTV29QAAALx3NE/qtfj2Ipdbhs3u3GEAqBlHNgAA\nAABFKRsAAACAopQNAAAAQFHKBgAAAKAoZQMAAABQlLIBAAAAKErZAAAAABSlbAAAAACKUjYAAAAA\nRSkbAAAAgKKUDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAACiqsasHAACAt9I8qdfi24tcbhk2e4XJ\nAfB3jmwAAAAAilI2AAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAoStkAAAAA\nFKVsAAAAAIpSNgAAAABFKRsAAACAopQNAAAAQFHKBgAAAKAoZQMAAABQlLIBAAAAKKqxqwcAAIB3\ng+ZJvZbc94+vLcNmv2dzwHuTIxsAAACAopQNAAAAQFHKBgAAAKAoZQMAAABQlLIBAAAAKErZAAAA\nABSlbAAAAACKUjYAAAAARSkbAAAAgKKUDQAAAEBRygYAAACgqMbOXGzy5Mk57LDDsuGGGyZJNtpo\no5xwwgmdOQIAAABQY51aNiTJxz/+8VxwwQWdvSwAAADQSZxGAQAAABTV6Uc2/O///m++8Y1v5OWX\nX863v/3t7LDDDu3edvXVm9LY2L1D99vc3HO55pGr31w9zCgnJ1d/uXqYUU5Orv5y9TBjzXLXNSx5\n+zcvjKrKrVPnuXqYUU7u7ejUsuGDH/xgvv3tb2f33XfP008/nX333TcTJ05Mjx49lnr7mTPnLrbd\nvNRb/V1Ly5x2r5Or31w9zCgnJ1d/uXqYUU5Orv5y9TBjPeWWuJ/mnm/r9vWUq4cZ5eTau649nXoa\nxYABA7LHHnukoaEh6667btZYY41MmzatM0cAAAAAaqxTy4abb745P/vZz5IkLS0tmTFjRgYMGNCZ\nIwAAAAA11qmnUQwdOjRHHnlkbr/99syfPz8nnXRSu6dQAAAAAPWpU8uG1VZbLZdccklnLgkAAAB0\nMh99CQAAABSlbAAAAACKUjYAAAAARSkbAAAAgKKUDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAAChK\n2QAAAAAU1djVAwAAAPyz5km9ltz3j68tw2bXfQ7e7RzZAAAAABSlbAAAAACKUjYAAAAARSkbAAAA\ngKKUDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAAAICi\nlA0AAABAUcoGAAAAoKjGrh4AAADgvaZ5Uq/Ftxe53DJs9gqTg+XlyAYAAACgKGUDAAAAUJSyAQAA\nAChK2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAo\nStkAAAAAFKVsAAAAAIpSNgAAAABFNXb1AAAAAKyYmif1Wnx7kcstw2bXfY7acWQDAAAAUJSyAQAA\nAChK2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAo\nStkAAAAAFKVsAAAAAIpSNgAAAABFKRsAAACAopQNAAAAQFGNXT0AAAAAdIXmSb0W317kcsuw2StE\n7p8zi+bezlq1zv0zRzYAAAAARSkbAAAAgKKUDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAAChK2QAA\nAAAUpWwAAAAAilI2AAAAAEUpGwAAAICilA0AAABAUY2dveBpp52WP/3pT2loaMhxxx2Xj3zkI509\nAgAAAFBDnVo2/P73v8/f/va3jBs3Lk899VSOO+64jBs3rjNHAAAAAGqsU0+juO+++7LrrrsmST78\n4Q/n5ZdfziuvvNKZIwAAAAA11lBVVdVZi51wwgnZaaed2gqHUaNG5dRTT83666/fWSMAAAAANdal\nbxDZiT0HAAAA0Ek6tWzo379/pk+f3rb94osvprm5uTNHAAAAAGqsU8uGHXbYIRMmTEiSTJkyJf37\n989qq63WmSMAAAAANdapn0ax5ZZbZtNNN83IkSPT0NCQE088sTOXBwAAADpBp75BJAAAAPDu16Vv\nEAkAAAC8+ygbAAAAgKKUDQAAAEBRygYAAACgqO4nnXTSSV09xFt5/fXX84tf/CL33HNP+vXrl9VX\nX73tuh//+MfZeuutO3xf3/nOdzJ8+PC3PcPo0aOz5557LvM2b7zxRm677bbMnj07a621Vm655ZZc\nf/31mTp1agYOHJjGxqV/+MfYsWOzxhprZMCAAW9rpjlz5uTqq6/OX//61wwcODDXXntt/uM//iNP\nPvlkBg0alB49erSb+93vfpf1118/s2fPzvnnn5+rr746U6ZMySabbJJVVlllqbkFCxbktttuy/Tp\n07POOuvkjjvuyK9//etMmzYtG2ywQbp1W3p39dhjj6W5ubntObr66qvz85//PFOnTs0mm2zS7vPy\nzzr6vbv77rtz/fXX56abbsrEiRPzxz/+Md26dcs666zToXX+2VVXXZUttthiqdfNnz8/jz32WAYM\nGJD58+dn3LhxufHGGzN16tRsvPHGHX5sizr77LOz/fbbL/W6yy67LGuvvfbb/sjY5f1ZmTFjRi6+\n+OL85je/SVNTU9Zee+22677//e9np512Wmpu/vz5+cUvfpHLLrssV199dW644YbcfffdefXVV7Px\nxhu3+7Myc+bMXHPNNXnmmWcycODAXHrppbn88svf8mez5GvEm5b1fU+SP/7xjxk/fnx+85vf5M47\n78yTTz6Z3r17p2/fvu1mlvfn5a677soHP/jBJMmsWbNy1lln5ac//WmmTJmSzTbbrN3nZWk68lq2\nvL+zCxcuzK233porr7wyP//5z3PzzTfnoYceSkNDQ9v8S7O8r4FJMnv27Nx333154IEH8thjj2X6\n9OlZY4012v2ZXt6fzeV93VyWZf2uL+/v3vL+rCzv9y5Zvtfc5f3v5fK+Bi7va0uyfL/ry/uau7zf\nh+X9eVne52V5/x5Ynp/P5X1syfL9vi/v79A7+Rlrz7JeI97J7+zyrLe8r4Hv5PX9n3Xkv18lX6s7\nst7yPr6u+O/lP+vo87k8r2XL0lk/12/1+Jb374F38prUmf92eyevSSV/zuri0yi+/e1vZ911103f\nvn3zq1/9KgcccEBGjBiRJNl3331z9dVXLzU3dOjQNDQ0JEnefJhv/iHa0NCQ22+/fam5gQMHpn//\n/llppZXaci0tLWlubl5mbsyYMVlllVUyffr0rLfeepk1a1Z22WWXPPzww3nuuedy/vnnLzX3uc99\nLoMHD84rr7ySffbZJx//+Mc79Lx84xvfyEc/+tG8/PLLeeihh7Lllltm++23zyOPPJI///nPueCC\nC5aa22+//bLHHnvki1/8Yr7zne9kgw02yCc+8YlMmTIlt99+ey6//PKl5o488sg0NTVl9uzZWbhw\nYbp165btttsujzzySFpbW3P66acvNbfo9+jEE09MQ0NDhgwZkt///vd54YUXcs455yyRWd7v3ckn\nn5zZs2dn6NChbX8ITps2LRMnTsx6662XY445ZhnP6NIt62fs0EMPzcCBA3PwwQfnxBNPzMKFC7PD\nDjtkypQpmTp1arvf83nz5rW73oEHHphrr712qdcNHz486623Xj74wQ9m9OjRHS5QlvdnZf/9988u\nu+ySvn375rrrrsu2226bb33rW0mW/bwcfvjhWXfddTNkyJD069cvVVVl2rRpmTBhQmbPnp0zzzyz\n3ce++eab58UXX8yMGTOy/vrrZ7fddsvDDz+cO++8Mz/96U+Xmlve14hlWVbuRz/6UWbMmJH/1965\nR0V1Xn//izcsaDCgGGNjGkzUSsRqgohGQUQErFi8AAoIUalXtDEJXioiptXENKaWCsYkJq5464oJ\n3ipeihGlwEjF+xKjeGPkfgkKggKz3z9Yc95hmHOGeZiMP7L2Zy3Wghm+s/d+9n72OTznnIfRo0cj\nIyMDdnZ2eOmll3Dw4EH4+PggMjLSoE60XnR9effddzFw4ECMHz8eKpUKZ86cwbZt2wzqRHuZyJwF\nmg5Offr0wejRo5Geng4iwtChQ/H999+jd+/esvNPtAfu378fO3fuxPDhw2Fvby/V2YULFxAdHY1J\nkya10IjWpmjfFJ3ronNPtFZEcyfac0WPl6I9ULS3iM510Z4rmgfRehEdF3OcD7S2PkVjA8Tmu+gc\nEh1L0R4hWiui9kR7oGh/Fz1+ifopak80PksfL0XjE+1llq5rkfhEzwfa0pMs+bebaE8CxOvMINQO\nCAsLk76vqamhiIgI+u6771q8p8/evXtpzpw5dOnSJem1oKAgo/bOnDlDYWFhdOzYMZN0Wl/q6+vJ\n09OTGhsbpfdCQ0ON6m7fvk3r1q2jgIAAWrNmDe3atYuOHj0qqwsPD5e+9/X1lX1Pn+nTp7ewrWXm\nzJlG/SQi8vb2ln1PSac/DnI60dwp+a/03siRIw1+ubm5kbOzs6xuxowZ0vezZs1q9p5Szp2dnWnc\nuHHNvry8vGjcuHHk4uIiq9OOV0ZGBs2fP58iIiIoKSmJfvjhh2ZjpY9orejmp7GxkZYvX04JCQkt\n3tNHKXal97S+aDQa8vHxkfVFyU9TeoRo3vU/c86cOURE1NDQQIGBgbI60XrRzdHs2bMVfdGlrb3M\nkF+tzQMRUUREhPS9bt+R05naA4OCgqiurq7F69XV1RQcHGxQI1qbon2zrXOdyLS5J1ororkT7blt\nPV6K9sC29Bai1s91c/RcItPnEJFYvbRlXEw5HxCpT9HYiMTmu+gcEh1Lc/QIotbXiqi9tp47mtrf\nRY9fon629XhpanyWPl6Kxifayyxd1yLxiZ4PtKUnWfJvN9GepPu+qXVmiHaxZ4NGo8HVq1cBADY2\nNkhMTMThw4exbds2NDQ0yOpCQkLw8ccfY+/evYiPj8ejR4+kq+VKjBkzBl9++SVu3LiBxYsXIz8/\nv1W6+vp61NTUoFOnTli6dKl0+01paSmePHkiq9N+9iuvvIK4uDjs378ffn5+qK6uxvnz52V1DQ0N\nuHfvHi5cuICqqipcvHgRAJCXl4f6+npZXb9+/bBhwwZcuXIFbm5uOHr0KMrKyvD9999Lt04rxVdQ\nUICHDx9CrVYDaLpN5+nTp7K62tpa5OXl4datW7C3t0d+fj6ApluCampqDGpEc6fRaHDt2rUWr2tv\nwZJj2rRpiI6ORmZmZrOvrKwsDBs2TFZnZ2eHnTt3oqKiAqNHj8bly5cBACqVCtbW1rK6mJgYTJ48\nGadOnZK+UlNTcerUKbi4uMjqtDG4u7tj27Zt+Oijj+Dg4IBTp04hKSlJVidaK506dcLx48dBROjQ\noQM+/vhj5OfnY82aNbK50/p54sSJZp/99OlTHDp0SPGWu4aGBjx48ABWVlZYs2aN9Hpubq6in6I9\nQjTvT58+xe3btwEA//vf/9DY2AgAuHXrlqwGEK+XyspKpKWlIS0tDV26dEFubi4AID8/X/HqgWgv\n087ZmzdvtnrOAk13IaWnp6OqqgoHDhxA165dATTdlqyEaA9sbGw0mF8igkajkbUlUpuifVN0rsvN\nvdjYWMUciNaKaO7keu758+cVa62tx0uRHijSW0TnumjPFc1Dp06dcOzYMZPrRXRcRM8HtPV5+vTp\nVten6FwAxOa7iI+A+FiK9gjdWjl48GCra0XUnmgPFO3voscvUT9F7YnGZ+njpWh8or3MHHVtyriI\nxCd6PiDXb42dGwPm+9stJSXFaF2L9iRAvM4MYtLSxDMiNzeXwsLCqLq6WnqtoaGBEhMT6a233mrV\nZ2RlZVFoaGiLVSRj3Llzh/74xz/S+PHjjf5uamoqRUZGNnvtzJkz5OHhQWfOnJHVLV26tMVr5eXl\nRu1lZ2fT1KlTad68eXTr1i2aPXs2ubu706RJk+jChQuyuvr6etq9ezfNmzeP/Pz8yNfXl/z9/emz\nzz6j2tpaWd3x48dpzJgxNHnyZFKpVDR58mSaPHkyeXh4UGpqqqwuLCyMwsPDKSwsjMLCwujkyZNE\nRBQZGUkpKSlG41SpVBQWFtZiVc4Q169fp/DwcPLy8qLAwED6wx/+QJ6enjRnzhy6deuWrE6j0dBn\nn31Gjx8/bvYaEdEHH3wgq3v06BFt2rSJ/Pz8yNXVlVxcXGjixIkUFxdnNIcHDhygmpoa6Wft7ycl\nJclqlFY9ldCvlYiICPrtb39LAQEBirVSWFhIK1eubFYX5eXldOjQIdkrx7o6Ly8vGjVqFLm7u5O3\ntzfFxsZSaWmprO7ChQu0bNmyZq8dPXqUJk+eTFevXpXVaXuE7ng+efKEkpKSFHuENu+6Oi1Kec/J\nyaGAgAByd3enoKAgunnzJhERrVq1is6fPy+r09aLv78/ubq60tChQ8nHx8dovaxcubLZV2ZmJpWX\nl9OSJUtIpVLJ6nS5c+cOzZs3jwYPHkwNDQ2Kv6uds9p5+5///Ic0Gg29/fbbinM2Ly+PFi5cSP7+\n/vTOO+9QQUEBqdVq2rx5M92+fVtWp98D6+vrSa1WU319vaKfBw8epIkTJ9L7779PGzdupI0bN9Ly\n5cvJx8eHjh8/blCjrc3x48fToEGD6PXXX5dqs6SkRNaWft/09vamcePG0datWxX7JhFRcnKyVGO6\nsSnN9cLCQlqxYoX02VpdcnKy4tzTr5X09HRSq9VGa0U/d0VFRVReXk5btmyhO3fuyOquX79Os2fP\nlnpuYGBgq3quoePl6dOnydPTU/F4aehqjLZXK6HfW+rr6+mrr74if39/xd6Sk5NDU6ZMoVGjRklz\nXaPR0OrVqyknJ0dWp99zIyMjacSIEUZ7rjYPkyZNkvKQkZFBCQkJinnQ7dXl5eVUVlZGRGS0Vxvq\nuSkpKTRlyhTFcTl+/DiNHTuWAgICSKVSUUBAQKvOB7R1GRMTQ1FRUXT48GEiIoqOjqasrCzZ2HTn\nAlHTnS3GYtNqdY9FI0aMoEGDBtHq1atl57uhfpuRkUHR0dGKcygnJ4eWLVtGGo1GysGJEyeMjiVR\n0/lAdXV1s9wRKZ8PGKoV7ZxV6rdEzXsSUdN4GrNn6Nxx5syZtH37doN3mGnR9nfdcTEVU87FtX5G\nRUWRv78/+fn5UWhoKG3fvt1or9a3N2HCBKO/a+gcXjueSuj23NmzZ1NRURERESUkJJh0vCRq3d8M\nWjQaDV26dIkiIiJaNZ7Z2dk0bdo0k88ficTOc/WPRYWFhURE9I9//IOys7NbFZ9+/rSfoY/u+cCo\nUaNo1KhRrTpXFT03Jvr/46k9RkZGRpK7uzsFBAQoxqdf176+vhQWFkbbt2+Xjc9Qfz958qRRW0SG\n60xLVVWVolYf03evewbMnDkTgYGBqKurg62tLQCgY8eOWLhwIRYuXCirGz58OAIDA7Fo0SK4ublh\n+PDhuH79ulF7aWlpSE1Nxfr161FYWIgff/wRHTp0gJeXF9auXQtPT0+DunfffRdTp05FeXk5HBwc\nAABubm5ITU1Fx44dZe1NnToVa9euxfr165GZmYnVq1fD1tYWjx8/VrR37NgxfPfddwCAjIwM3L9/\nH3379kV5eTkePnwoa++///0vcnNz8fnnnzezt2/fPgwYMEDW3ooVKzB16lQsWrQIDg4OOHjwICoq\nKvD888/LbqICAFevXm2m0/LVV1/JatLT0/HXv/4V9vb2WLFiBWpqalBUVARfX1/Ex8fDzc3NoG7W\nrFkIDAzEpk2bJJ/s7e2NbtSYkZGB5ORkpKWlYcWKFYiPj0dJSQlsbW0RHx8vqxs7diwCAwPxzTff\nNIvNGGlpaTh//jymTJnSIuexsbGyukuXLuGDDz5oMZbGqKmpgbOzs1Rj9+7dg5OTEx49eoTKykpZ\n3Y0bN9C5c2d07dpV8rNbt26oqalR9FOrS01NlXTW1tZIT0+Hl5eXbI1VVVXhueeeA4AW41JaWipr\nr7S0FGVlZYiKipLyV1paChsbG/ztb3+T1b3xxhsIDAxEbW0tbGxsmr2nuwqsz9y5c6XeopuHDRs2\nyGqApvydOnUK9vb22LBhg+RnVlYW/P39ZZ+J8/X1lXpSZmYmVq1aJY2L0ir6X/7yFymOgoIC3Lp1\nC7/+9a8xYcIExMfHY8yYMQZ18+fPbzb/4uPjsW7dOtjY2DTbfFOfPXv2IDExEUDTnJo1axZ69uyJ\n8vJyvPnmm3jllVcM6nRX5TMyMvDnP/9Z0in5GRAQgAkTJuDSpUsoLy8HADg6OsLFxUX2TpHa2lpU\nVlbiV7/6Fbp27QonJyc8fPhQevZcjg8//BBr1qzBrFmzmvm4f/9+DBkyRNZH3Rzox6a0P/MXX3yB\nDz/8sJmuV69eKCsrU9TZ2trK2qurq5PV5efno2fPnkhMTERmZiZCQkKkGnNxcZHdmKusrAwlJSVw\ndHRETEwM3n//fdTX10OtVqOsrAz9+/c3qOvSpQuKiooQGhoq1ZharUb37t0VryjNnz8ffn5+zWpT\nO9fXr18vO4eOHDmCv//97y3Gpba2FhUVFbL2ampq8OTJE2n/iRUrVkjHhoCAAFmdWq1GWFgYAODK\nlSsICAiAWq3G22+/jbt378puPnv58mX4+PiAiGBlZYXMzEwkJiZi0aJFuHjxomwetHU9Y8YMqNVq\n9O/fHw8fPsTgwYNl978AgLt378LT0xMHDhwA0HRVMSkpCYsWLcLNmzfh7OxsUGdjYwMbGxt069YN\nXbt2RYcOHXD79m288MIL0nmaIaKiorBp0yY8ePAAarUaFRUV2LJlC5ydnWVjy8rKwsiRI3Hs2LEW\nPoaEhMjaAprmkXb/CG3e+/Xrh8zMTPj6+hq8Iqg9v9DmoLCwULJXUFAga8vOzg51dXVSrvv374+q\nqio4OzujZ8+esro7d+4gJSUFX3zxRQvdqlWrZHX3799HXl4e+vTpgwULFiAqKgqNjY2ora3F0KFD\nZfutNtcnTpyQ4tTG98ILL8jaO3LkCGxsbODv7y+9lpSUhF69eiElJUXaJ0mfZcuWYcGCBVLOdWtz\n1apVshvQnT59Ghs3bkSfPn2wevVqFBYWgojg5eWFuLg42U348vPzcebMGRQWFqKgoABOTk4oLi7G\ntWvXUFVVJV0plxsXLb6+vti6dav0ulx8uvMHaD6eSjorKytpv5PLly9j8eLFUt71z0d0CQwMxMSJ\nE6Vxee+996S8K43LnTt38NFHH0l5cHJyAhHhT3/6k2Ieqqur8ejRI3Tr1g2NjY2oqKiQNimsqqqS\n9TMtLQ2JiYlITk5u4efatWtldXl5ebh+/ToeP36M119/XdoMODo6WnE/hJMnT2LDhg2ora2Fh4cH\nPvnkE+n8KCYmxqAuKysLbm5uzY4biYmJGD58ONLT02Vzl5ubi5ycHCxYsECKTaPRSH+3KVFZWYny\n8nLk5+dj+/btSEhIkGJUiu/06dP4/PPP8fjxY3h6eiI2NtaorrS0FJcuXcLIkSPh4eGB2NhYeHt7\nw9vb2+jeEkrHjSVLlpAZ+7gAAAlmSURBVJi2F5pJSxPPiLCwMDp37hxFRETQypUr6dy5c0aveLVF\nN3XqVGlFKzQ0lO7fv09ERBUVFc2euX7W9nSvcs+aNUvSlZSUKD6nZOn4RHQhISFUXFxMP/74I7m5\nuVFubi4REanVaqPPBor4qG/v+vXrP6u99lJj7UUXEhJCJSUlFsufueqstXXdlnrRYkqP0B/P1vop\n2pNEdU+fPqW9e/dSdHQ0BQcHU3BwMC1dupS+/fZb2bs3wsPDpc/Py8ujdevWERFRWlpaq59RN8VH\nS+ssfVwQrRXROSvaq0XHRdRPb29vmj59OiUkJEhfHh4e0vem6MaOHWtUJ1rXovba0iNM9VPURyKx\neWTpHIjqgoKC6MGDB5SdnU3jxo2TarO0tJSmTZsmqxONz9LjIhqfpefCL31cRO2J6qZPn06VlZXU\n2NhI//rXvygoKIgePnxIRMr7DOjq9u3b1yqdaJ8WjU3UT9FxEbVFRLRr1y7Zr9bcaa5Lu7izwcrK\nCq6urvj6669x5coVfPvtt4iNjYWtrS0cHBywfft2s+oaGhqklfnu3bujb9++AIAePXpIO5z+nPa0\n/0LFmD1dtDtkA01XCZWu5Fs6PhFd586d4ejoCEdHRzz33HMYOHAgAKBv376Kd4mI+qhvb9CgQT+r\nPdGcW7qmRf20tL3OnTujV69e6NWrl0XyZ646a21dt6VetJjSI/THs7V+6mKKPVFdTEwM+vXrhzlz\n5rTYSXrVqlUGd5J++vSp9Pm/+c1vcOPGDQBNdyklJCTI2hIdS0vrdGnLcUF07rW2VkTnrGiv1qUt\nc6G19o4cOYLExETcuHEDK1euRN++fXH27FksWbJE0TdRnWhdi9oTzbuIn6I+AmLzyNI5ENV16dIF\nL774Il588UU4OjpKtdmzZ0/FPYDaS22KxmfpufBLHxdRe6K6jh07okePHgCAoKAg2NvbY+7cudi2\nbZviHgy6uuDgYDg4OBjVieZONDZRP/V1rR0XUVtA079/d3d3h6OjY4v3lPZCM0S7WGzQPdEZMmQI\nhgwZAgAoKSlRvLVaVKf9t3mjR49Gjx49sHjxYgwbNgwqlQozZsz42e0tWrSoVfZu3ryJZcuWgYhw\n7949pKSkwM/PDzt27ED37t3/z8QnorOzs8Onn36KyspK9OvXD2vXrsWYMWNw8eJFxccHRH20tD3R\nnFu6pkX9tLQ9S+fP0nVm6R4h6qeoPVFdaWkpPv3002av9evXD66urtIt7PoMGDAAy5cvh4uLC86e\nPSvdMr169Wq8+uqr/2dis7TO0nPP0jpLzwVra2u88847uH37NtavX49hw4YpPqbTVp1oXYvaEx0X\nET9FfQTE8m7pHIjqHBwc8OWXX2Lu3LnYt28fAKCoqAg7duxQfByivdSmaHyWngu/9HERtSeqGz58\nOObPn48tW7aga9eu8Pb2hrW1NSIjI/HTTz+ZVSeaO9HYLB2fqC0A2Lp1q/QYqP6jjSqVSlGrjxW1\n9tL5M2T//v2YPn26xXQA8NNPPyEjIwMPHjwAEaFnz54YPXq07DNNz8LeuXPnmv388ssvo3fv3jh8\n+DC8vLwUn5u0ZHwiusePHyM5ORnPP/88/P39cejQIeTk5ODll19GcHCw7PNsoj5a2h7QPmqsvegs\nnT9L1xlg2R4h6qeoPVFdeHg4wsPDMW7cOHTu3BlA09Wb48ePIzk5GTt27GihISKkpqbi7t27GDBg\nAMaOHQug6RnMgQMHyq72Wzo2S+sAy849S+ssPRf0OXDgANLS0losjplLJ1rXovZEx8Ucfpoylm2Z\nD6baE41NVFdXV4dTp04120Ph2rVryM7OxsyZM41eYTU1PlGdpeOz9FwQ1bWXcRG115b6VKlUGDFi\nRDOfqqurcfToUQQFBZldp6W1uWvr3LNkfG0Zk9raWlhbW7fYl+/atWuy+/kYol0sNjAMwzCMPkVF\nRdiyZQvOnTsn/Us6W1tbuLu7Y8mSJQZv/2MYhmEYhmEsAy82MAzDML84jO20zDAMwzAMw/y8tIs9\nGxiGYRhGn927d8u+V1xcbEFPGIZhGIZhGH14sYFhGIZpl5hzt2SGYRiGYRjGvPBiA8MwDNMuMedu\nyQzDMAzDMIx54T0bGIZhmHaLuXZLZhiGYRiGYcwLLzYwDMMwDMMwDMMwDGNWOhj/FYZhGIZhGIZh\nGIZhmNbDiw0MwzAMwzAMwzAMw5gVXmxgGIZhGIZhGIZhGMas8GIDwzAMwzAMwzAMwzBmhf/1JcMw\nDMMwJlNcXIz33nsPAFBXV4fg4GC8+eabiI2NhUajgbW1NTZu3IjevXsjMTERp0+fRqdOnfDaa69h\nzZo1KC4uxsKFCzFgwAC89tprWLBgATZv3oycnBzU1dXB1dUVMTExsLKyesaRMgzDMAwjAt/ZwDAM\nwzCMyaSkpMDJyQnffPMNdu3ahbq6OsTFxWHu3LnYvXs3pk2bhpSUFFy4cAEnTpzA7t27sWfPHlRW\nVuLIkSMAgLy8PCxevBgLFixASkoKiouLsWvXLuzfvx/379/HDz/88IyjZBiGYRhGFL6zgWEYhmEY\nkxkzZgz27NmDlStXwsPDA8HBwfjkk08wYsQIAMCkSZMAAF9//TVcXV3RuXNnAMCIESNw5coVuLq6\nws7ODk5OTgAAlUqFixcvIjw8HADw6NEjqNXqZxAZwzAMwzDmgBcbGIZhGIYxmf79++Pf//43srOz\ncezYMezcuRMAoNFomv2e/mMQRCS9pl2AAIAuXbogKCgIc+fO/Zk9ZxiGYRjGEvBjFAzDMAzDmMzh\nw4dx5coVjBo1CnFxcSgsLISLiwvOnj0LADh69Cg2b96M3/3ud1CpVKivrwcAZGZmYujQoS0+7403\n3sDJkyfR0NAAAPjnP/+Ju3fvWiwehmEYhmHMC9/ZwDAMwzCMybz66quIi4tDly5dQESIiorCW2+9\nhdjYWOzZswedOnXChg0b0KdPH0yaNAmhoaHo0KEDnJ2d8fvf/x4FBQXNPs/HxwcXL15ESEgIOnbs\niMGDB+Oll156RtExDMMwDNNWrIiInrUTDMMwDMMwDMMwDMP8cuDHKBiGYRiGYRiGYRiGMSu82MAw\nDMMwDMMwDMMwjFnhxQaGYRiGYRiGYRiGYcwKLzYwDMMwDMMwDMMwDGNWeLGBYRiGYRiGYRiGYRiz\nwosNDMMwDMMwDMMwDMOYFV5sYBiGYRiGYRiGYRjGrPw/2uzLVcH0EUYAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
- ]
- },
- {
- "metadata": {
- "id": "04Y4oXmfdpnN",
- "colab_type": "code",
- "outputId": "65f0de4b-2e08-42cf-9df2-931af2ce18fb",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 627
- }
- },
- "cell_type": "code",
- "source": [
- "# visualizing writing score\n",
- "\n",
- "data['math score'].value_counts(normalize = True)\n",
- "data['math score'].value_counts(dropna = False).plot.bar(figsize = (18, 10), color = 'pink')\n",
- "plt.title('Comparison of math scores')\n",
- "plt.xlabel('score')\n",
- "plt.ylabel('count')\n",
- "plt.show()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABBsAAAJiCAYAAACGv8r3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XucVnWdB/DvDCPpKHIdRk0zKx1A\nTPMSohkCJmk3kt0kEjctsyySTIFUJhFR85amlsqmLbIuFF6WTRK2Vk0NZqW2TCh0fbWBqDjgoKOg\nwHD2j3TWWWZwBn/PmQO+3/88c878zvP5nmdgHD6eM09ZlmVZAAAAACRS3tkDAAAAADsWZQMAAACQ\nlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbACCRLMvitttui09+8pMxYsSIOO644+Kiiy6K\nxsbGzh6thZkzZ8a1117bafmNjY3xmc98Jo4//vhoaGhI/vwPPfRQPPPMMxERcf3118cFF1yQPAMA\n2DplAwAkctVVV8W8efPixz/+ccyfPz/mzp0bGzdujDPPPDOyLOvs8ZqdcsopMX78+E7LX7ZsWaxd\nuzYWLFgQPXv2TP78P/nJT5rLBgCgc5RlRfrpBwC2U2vXro2PfvSjcffdd8f73//+5v2vvfZaPPLI\nI3HsscfGxo0bY9q0aVFXVxfl5eUxZMiQOO+886JLly4xbNiwOO200+Kuu+6KVatWxUUXXRQLFy6M\nhx56KHr16hXTp0+P7t27R01NTVxwwQVx5513xvPPPx/f/OY34/Of/3xERNx4440xd+7caGpqive/\n//1x5ZVXxu677x7XX399rFq1Kv785z/HJz/5yWhsbIznnnsupk2bFr/4xS/ixhtvjKampqioqIgL\nL7wwBg0aFM8880xMnjw5nn766dhpp53iy1/+cowcOTKefvrpGD16dHzlK1+Jn/3sZ7F27dr4zne+\nEyeeeOIWr0ldXV1cfvnlsX79+ujWrVvU1tZG7969Y8yYMbF69erYe++944477ohevXo1HzNp0qSo\nrq6O3/3ud/Hkk0/G5z73udhnn31ixowZ8corr8S1114bH/zgB2P16tUxceLEWLlyZWzYsCHGjh0b\np512Wlx77bUxffr06Nu3b5x33nnx1FNPxfLly6OpqSl+//vfR58+feL666+P6urqFrOuWrUqJkyY\nEPX19bFhw4b4xCc+Ed/61rciy7K4/PLL49///d9jp512ir//+7+PL3/5y7F58+a47rrrYv78+RER\nccghh0RtbW1UVlbG2LFj49BDD40FCxbEtGnT4gMf+EBMnTo1Hnvssdi0aVOcddZZMWrUqIiI+P73\nvx/33XdfRERUV1fHlVdeucVsALBdygCAt+2BBx7IPvaxj211zc0335ydccYZ2caNG7P169dno0aN\nyu65554sy7Js6NCh2eTJk7Msy7Lbb789O/jgg7NFixZlmzdvzkaNGpX99Kc/zbIsyw444IDs4osv\nzrIsy5566qls4MCB2QsvvJD98Y9/zAYPHpw1NjZmTU1N2Re/+MXsxhtvzLIsy37wgx9kH/nIR7I1\na9Y0b59//vlZlmXZoEGDsqeffjrLsix79NFHs0svvTTLsiw7/fTTs5tuuinLsix7+umns8MOOyxb\nsWJFtmLFimzAgAHZ7bffnmVZls2bN6/V83755ZezQYMGZYsXL86yLMvuu+++7Pjjj8+ampqyRYsW\nZccdd1yrr9HEiROzkSNHZq+88kq2bNmyrH///s1zXH755dm5556bZVmWXXzxxVltbW2WZVm2fPny\n7MADD8yeeeaZ5tfy0UcfbT7Xo48+uvkczzzzzOyGG27YIvfyyy/Prr/++izLsmzdunXZt771rWzV\nqlXZPffck40ePTrbsGFD1tjYmA0ZMiT7wx/+kP385z9vnnPTpk3Z1772tebX+5RTTslOP/30rKmp\nKcuyLPvOd76TTZgwIWtqasrWrFmTDRkyJFu2bFn2xBNPZMcff3y2YcOGLMuybMaMGdndd9/d6usC\nANsbt1EAQAJr166N3r17b3XNAw88EJ/73OeioqIidt555/jUpz4VjzzySPPnhw8fHhERBxxwQLzr\nXe+KQYMGRVlZWey///7x/PPPN6974/+Kv+9974v99tsvHnvssRg4cGA88MADsdtuu0V5eXl86EMf\nihUrVjQfc/DBB7e4guANvXv3jlmzZsXKlSvj8MMPj+985zuxcePG+M1vfhNjxoyJiIh3v/vdMWjQ\noFi0aFFERGzatClOOumkiIg48MADW71l4bHHHos99tgjDjvssIiIGDFiRDQ0NMTKlSvf8rU86qij\norKyMvbff//YvHlzDB06tPl1eeN1uPDCC2Py5MkREbHPPvtEVVVVPP30060+32GHHRbvfve7IyKi\nX79+sWrVqlZfh4cffjgWL14cXbt2jWuuuSb69u0bv/71r2PEiBGx0047xW677Rbz5s2Lgw46KB54\n4IEYOXJkVFZWRpcuXeKkk05q8bUcMmRIlJf/7ces+++/P0499dQoLy+PXr16xcc+9rFYsGBB7L77\n7vHCCy/Ev/3bv8WLL74YY8eOjZEjR77l6wMA24OKzh4AAHYEPXv2bPUfsW/2wgsvRPfu3Zu3u3fv\nHmvWrGne3nXXXSMiory8vPnjN7Y3b97c4rg3f/zSSy/F+vXr47LLLou6urqIiHjxxRfj2GOPbfWY\nN/vRj34UP/rRj+Kkk06KPffcM84///zYb7/9Isuy6NatW/O6N/5hHBHRpUuXqKysbHW2N5/r7rvv\n3mJft27dWpxvW94497KysigvL281649//GNcffXV8eyzz0Z5eXnU19e3OkdExG677db8cZcuXaKp\nqWmLNV/84hdj8+bNMWXKlHj++efjC1/4QowbNy4aGhpanMcbs7zV1/LNn2tsbIzx48dHly5dIuJv\nt9Z8/OMfj+rq6rj++uvj1ltvjalTp8YRRxwRU6ZMiT333PMtXyMAKDplAwAkcMghh8SaNWtiyZIl\nceCBBzbv37hxY9xwww3x1a9+Nfr06RNr165t/tzatWujT58+Hc5qaGho/j/1a9euje7du8c//dM/\nxf/8z//EXXfdFbvuumt8//vff8vyIyLiPe95T1x22WWxefPmuOeee+Lb3/523H///VFeXh4vvvhi\n8z+a23Plxpv17t27xblmWRYvvvhi9O7dO8kvbzzvvPPiH/7hH+Lzn/98lJWVxTHHHPO2nq+ioiK+\n8pWvxFe+8pX4y1/+EmeccUYcdthh0bNnzxbvmLF69erYeeedO/S17Nu3b9x4441xwAEHbPG5I488\nMo488shYt25dfO9734urrroqrr766rd1LgBQBG6jAIAEdt999/jyl78cEydOjL/+9a8REbF+/fqo\nra2NpUuXxi677BLHHntszJkzJ5qammLdunXxr//6rzFkyJAOZ917770REfHUU0/FX//61zj44INj\nzZo18b73vS923XXXWLlyZTz44IOxbt26rT7PCy+8EKeddlq8/PLLUV5eHgcffHCUlZVFRUVFfOQj\nH4nZs2dHRMTy5ctj8eLFcdRRR7V7xjd+ieN//dd/Nc+8xx57xN57793h823NmjVrYuDAgVFWVhZ3\n3313rF+/vvl8KyoqOvx2o7W1tc23QbznPe+JPn36RFlZWQwbNizuvffe2LBhQ6xbty7GjBkTTzzx\nRBx77LExd+7cWL9+fWzatCnmzJnT5tdy2LBhMWvWrIj42y0ol156aSxZsiQefvjhmDJlSmzevDkq\nKyujX79+UVZW9jZeFQAoDlc2AEAi48aNi+7du8fXvva1aGpqivLy8hg+fHhcdNFFERExduzYWLFi\nRXziE5+IsrKy+PjHPx4nnHBCh3N69eoVn/nMZ2LVqlVx4YUXRvfu3WP06NHxzW9+M0aMGBE1NTUx\nadKkGDduXPzkJz/Z6vMcc8wxMWrUqOjSpUvstNNOMW3atIiImDJlSlx44YVx1113xU477RSXXHJJ\n7Lnnnm3+XoT/r7KyMq699tqYOnVqrFu3Lnr16hXXXHNNsn9Mn3322fH1r389evToEaNHj46TTz45\nJk+eHHfccUeMGDEizjnnnPjmN7/Z7ucbPXp01NbWxtSpUyPLshg2bFgMHjw4Iv72Vp3HH398vOtd\n74q/+7u/i0MPPTSyLItly5bFSSedFFmWxaBBg+LUU09t9bnHjx8fU6ZMiREjRkRExDHHHBM1NTXR\n1NQU9957b4wYMSK6du0avXr1iksvvfTtvzgAUADe+hIAtiM1NTXx4IMPxh577NHZowAAtMltFAAA\nAEBSygYAAAAgKbdRAAAAAEm5sgEAAABIqtDvRlFf3/bbVvXsWRkNDVt/S6881+8oGUWcKY+MIs6U\nR0YRZ8ojo4gz5ZFRxJnyyCjiTHlkFHGmPDKKOFMeGUWcKY+MIs6UR0YRZ8ojo4gz5ZFRxJnyyCji\nTHlkFHGmrR1TVdWtzWO22ysbKiq6FGr9jpJRxJnyyCjiTHlkFHGmPDKKOFMeGUWcKY+MIs6UR0YR\nZ8ojo4gz5ZFRxJnyyCjiTHlkFHGmPDKKOFMeGUWcKY+MIs6UR0YRZ9rWY7bbsgEAAAAoJmUDAAAA\nkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCU\nsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIB\nAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSFZ09QEdULV3Wcvv1x/oBNfkP\nAwAAALTKlQ0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsA\nAACApJQNAAAAQFLKBgAAACCpilI98fr162PSpEmxZs2aeO211+Kss86K+fPnx5IlS6JHjx4REfGl\nL30pjj322FKNAAAAAHSCkpUN999/fwwcODDOOOOMWLlyZZx++unxoQ99KM4555wYOnRoqWIBAACA\nTlaysuHEE09s/vjZZ5+N6urqUkUBAAAABVLy39kwevToOPfcc+P888+PiIiZM2fGqaeeGt/61rfi\nhRdeKHU8AAAAkLOyLMuyUof86U9/igkTJsT5558fPXr0iP79+8ctt9wSzz33XNTW1rZ53KZNTVFR\n0eX/djy4uPWFQw5vfX9H1wMAAABvW8luo3j88cejd+/eseeee0b//v2jqakpDjjggOjdu3dERAwb\nNiwuuuiirT5HQ8O6FttVbayrr29sdX9H17c4tqpbu9a9nWOKmFHEmfLIKOJMeWQUcaY8Moo4Ux4Z\nRZwpj4wizpRHRhFnyiOjiDPlkVHEmfLIKOJMeWQUcaY8Moo4Ux4ZRZwpj4wizpRHRhFn2toxVVXd\n2jymZLdRLF68OG699daIiFi9enWsW7cuamtrY8WKFRERUVdXF/vvv3+p4gEAAIBOUrIrG0aPHh0X\nXHBBjBkzJl599dWora2NysrKGD9+fOyyyy5RWVkZl112WaniAQAAgE5SsrJh5513jquvvnqL/Xfe\neWepIgEAAIACKPm7UQAAAADvLMoGAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAA\nAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAA\nSSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkp\nGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsA\nAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSqujsAYqkaumylttv\n+rh+QE2HjmlrPQAAAOzoXNkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACAp\nZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUD\nAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAA\nAJCUsgEAAABIqqJUT7x+/fqYNGlSrFmzJl577bU466yzol+/fjFhwoRoamqKqqqquPLKK6Nr166l\nGgEAAADoBCUrG+6///4YOHBgnHHGGbFy5co4/fTT49BDD40xY8bECSecENdcc03MmTMnxowZU6oR\nAAAAgE5QstsoTjzxxDjjjDMiIuLZZ5+N6urqqKuri+HDh0dExNChQ2PhwoWligcAAAA6SVmWZVkp\nA0aPHh3PPfdc3HTTTXHaaac1FwzLly+PCRMmxKxZs9o8dtOmpqio6PJ/Ox5c3PrCIYe3vj/V+pQZ\nAAAAsIMr2W0Ub5g1a1b86U9/ivPOOy/e3Gu0p+NoaFjXYruqjXX19Y2t7k+1PmVGi2OrurVr3ds5\nptTrd5SMIs6UR0YRZ8ojo4gz5ZFRxJnyyCjiTHlkFHGmPDKKOFMeGUWcKY+MIs6UR0YRZ8ojo4gz\n5ZFRxJnyyCjiTHlkFHGmrR1TVdWtzWNKdhvF448/Hs8++2xERPTv3z+amppi1113jVdffTUiIlat\nWhV9+/YtVTwAAADQSUpWNixevDhuvfXWiIhYvXp1rFu3Lo466qiYP39+REQsWLAgjjnmmFLFAwAA\nAJ2kZLdRjB49Oi644IIYM2ZMvPrqq1FbWxsDBw6MiRMnxuzZs2OvvfaKkSNHlioeAAAA6CQlKxt2\n3nnnuPrqq7fYf9ttt5UqEgAAACiAkt1GAQAAALwzKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQ\nlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSy\nAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEA\nAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAA\nSErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEiq\norMHeKepWrqs5fbrj/UDapIeAwAAAJ3FlQ0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAA\nJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACRV\n0dkDkF7V0mUtt19/rB9Q06H123JMqvUAAABsv1zZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSU\nDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAkqoo5ZNfccUV8dvf/jY2bdoU\nZ555ZvzHf/xHLFmyJHr06BEREV/60pfi2GOPLeUIAAAAQM5KVjYsWrQonnzyyZg9e3Y0NDTEZz/7\n2TjyyCPjnHPOiaFDh5YqFgAAAOhkJSsbjjjiiPjgBz8YERG77757rF+/PpqamkoVBwAAABREWZZl\nWalDZs+eHYsXL44uXbpEfX19bNy4MXr37h2TJ0+OXr16tXncpk1NUVHR5f92PLi49YVDDm99f6r1\neWS0tT6PjHfqeQMAAFASJf2dDRERv/zlL2POnDlx6623xuOPPx49evSI/v37xy233BI33HBD1NbW\ntnlsQ8O6FttVbayrr29sdX+q9XlktLU+j4x36nm3OLaqW7vWvZ1jiphRxJnyyCjiTHlkFHGmPDKK\nOFMeGUWcKY+MIs6UR0YRZ8ojo4gz5ZFRxJnyyCjiTHlkFHGmPDKKOFMeGUWcaWvHVFV1a/OYkr4b\nxUMPPRQ33XRTTJ8+Pbp16xaDBw+O/v37R0TEsGHD4oknnihlPAAAANAJSlY2NDY2xhVXXBE333xz\n87tPjBs3LlasWBEREXV1dbH//vuXKh4AAADoJCW7jWLevHnR0NAQ48ePb9530kknxfjx42OXXXaJ\nysrKuOyyy0oVDwAAAHSSkpUNJ598cpx88slb7P/sZz9bqkgAAACgAEr6OxsAAACAdx5lAwAAAJCU\nsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACCpis4eADpL1dJl\nLbff9HH9gJoOHZNqPQAAwI7AlQ0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAA\nAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACS\nUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2\nAAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIqqKzBwBaqlq6rOX264/1A2qS\nrAcAACg1VzYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwA\nAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJBURWcPAOSraumylttv+rh+QE2H\njmlrPQAA8M7mygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICk\nlA0AAABAUsoGAAAAICllAwAAAJBURSmf/Iorrojf/va3sWnTpjjzzDPjoIMOigkTJkRTU1NUVVXF\nlVdeGV27di3lCAAAAEDOSlY2LFq0KJ588smYPXt2NDQ0xGc/+9kYPHhwjBkzJk444YS45pprYs6c\nOTFmzJhSjQAAAAB0gpLdRnHEEUfEddddFxERu+++e6xfvz7q6upi+PDhERExdOjQWLhwYaniAQAA\ngE5SsisbunTpEpWVlRERMWfOnPjoRz8aDz/8cPNtE7179476+vqtPkfPnpVRUdHlLbOqqrp1aLaO\nrs8jo4gz5ZFRxJnyyCjiTEkzHlzcct0bHww5PP9ZEq3fUTKKOFMeGUWcKY+MIs6UR0YRZ8ojo4gz\n5ZFRxJnyyCjiTHlkFHGmPDKKOFMeGUWcKY+MIs60LceU9Hc2RET88pe/jDlz5sStt94axx9/fPP+\nLMve8tiGhnUttqvaWFdf39jq/lTr88hoa30eGc47/wznvXVVVd3avTaP9TtKRhFnyiOjiDPlkVHE\nmfLIKOJMeWQUcaY8Moo4Ux4ZRZwpj4wizpRHRhFnyiOjiDPlkVHEmbZ2zNYKiJK+G8VDDz0UN910\nU0yfPj26desWlZWV8eqrr0ZExKpVq6Jv376ljAcAAAA6QcnKhsbGxrjiiivi5ptvjh49ekRExFFH\nHRXz58+PiIgFCxbEMcccU6p4AAAAoJOU7DaKefPmRUNDQ4wfP7553+WXXx4XXnhhzJ49O/baa68Y\nOXJkqeIBAACATlKysuHkk0+Ok08+eYv9t912W6kiAQAAgAJo120UkyZN2mLfl770peTDAAAAANu/\nrV7ZMHfu3Jg1a1Y8+eST8YUvfKF5/8aNG2P16tUlHw4AAADY/my1bPj0pz8dgwYNinPPPTfGjRvX\nvL+8vDw+8IEPlHw4AAAAYPvzlr+zobq6Om6//fZobGyMtWvXNu9vbGxsfpcJAAAAgDe06xdEXnLJ\nJXHnnXdGr169IsuyiIgoKyuLX/3qVyUdDgAAANj+tKtsqKuri0WLFsW73vWuUs8DAAAAbOfa9W4U\n++67r6IBAAAAaJd2Xdmwxx57xBe+8IU47LDDokuXLs37zz777JINBgAAAGyf2lU29OjRIwYPHlzq\nWQAAAIAdQLvKhrPOOqvUcwAAAAA7iHaVDQMGDIiysrLm7bKysujWrVvU1dWVbDAAAABg+9SusuHP\nf/5z88cbNmyIhQsXxrJly0o2FAAAALD9ate7UbxZ165dY8iQIfHII4+UYh4AAABgO9euKxvmzJnT\nYvu5556LVatWlWQgAAAAYPvWrrLht7/9bYvt3XbbLa699tqSDAQAAABs39pVNlx22WUREbF27doo\nKyuL7t27l3QoAAAAYPvVrrLhd7/7XUyYMCFeeeWVyLIsevToEVdeeWUcdNBBpZ4PAAAA2M60q2y4\n+uqr44c//GEccMABERGxdOnSmDZtWvzzP/9zSYcDAAAAtj/tejeK8vLy5qIhImLAgAHRpUuXkg0F\nAAAAbL/aXTbMnz8/Xn755Xj55Zdj3rx5ygYAAACgVe26jWLKlCkxderUuPDCC6O8vDz69esXl1xy\nSalnAwAAALZD7bqy4ZFHHomuXbvGo48+GnV1dZFlWTz44IOlng0AAADYDrWrbJg7d27ccMMNzdu3\n3npr/PznPy/ZUAAAAMD2q123UTQ1NbX4HQ1lZWWRZVnJhgLeeaqWLmu5/fpj/YCakq7PI6Ot9Xll\nAABA3tpVNgwbNixGjx4dhx12WGzevDkWLVoUxx9/fKlnAwAAALZD7SobzjrrrPjwhz8cjz32WJSV\nlcV3v/vdOOSQQ0o9GwAAALAdalfZEBFx+OGHx+GHH17KWQAAAIAdQLt+QSQAAABAeykbAAAAgKSU\nDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICkKjp7\nAABKp2rpspbbb/q4fkBNh45paz0AAPx/rmwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAA\nICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACAp\nZQMAAACQVEVnDwDA9q1q6bKW268/1g+oSXoMAADbD1c2AAAAAEkpGwAAAICklA0AAABAUsoGAAAA\nICllAwAAAJCUsgEAAABIStl5q/omAAAgAElEQVQAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApEpa\nNjzxxBNx3HHHxcyZMyMiYtKkSfGpT30qxo4dG2PHjo0HHniglPEAAABAJ6go1ROvW7cupk6dGoMH\nD26x/5xzzomhQ4eWKhYAAADoZCW7sqFr164xffr06Nu3b6kiAAAAgAIq2ZUNFRUVUVGx5dPPnDkz\nbrvttujdu3dMnjw5evXq1eZz9OxZGRUVXd4yq6qqW4dm6+j6PDKKOFMeGUWcKY+MIs6UR0YRZ8oj\no4gz5ZGRdKYHF7dc98YHQw7v2PqtHdPeWRKtzyOjiDPlkVHEmfLIKOJMeWQUcaY8Moo4Ux4ZRZwp\nj4wizpRHRhFnyiOjiDNtyzElKxta85nPfCZ69OgR/fv3j1tuuSVuuOGGqK2tbXN9Q8O6FttVbayr\nr29sdX+q9XlktLU+jwznnX+G884/w3nnn7G9nXeL46u6tWvdtq7PI6OIM+WRUcSZ8sgo4kx5ZBRx\npjwyijhTHhlFnCmPjCLOlEdGEWfKI6OIM23tmK0VELm+G8XgwYOjf//+ERExbNiweOKJJ/KMBwAA\nAHKQa9kwbty4WLFiRURE1NXVxf77759nPAAAAJCDkt1G8fjjj8f3vve9WLlyZVRUVMT8+fPjlFNO\nifHjx8cuu+wSlZWVcdlll5UqHgAAAOgkJSsbBg4cGLfffvsW+0eMGFGqSAAAAKAAcr2NAgAAANjx\nKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASVV0\n9gAAUARVS5e13H79sX5ATZL1AADvJK5sAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACAp\nZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUD\nAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAA\nAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQ\nlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSy\nAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAElVdPYAAPBOUbV0Wcvt1x/rB9SUdH0eGW2tBwDemVzZ\nAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAA\nAAAkpWwAAAAAkipp2fDEE0/EcccdFzNnzoyIiGeffTbGjh0bY8aMibPPPjs2bNhQyngAAACgE5Ss\nbFi3bl1MnTo1Bg8e3LzvBz/4QYwZMybuuOOO2HfffWPOnDmligcAAAA6ScnKhq5du8b06dOjb9++\nzfvq6upi+PDhERExdOjQWLhwYaniAQAAgE5SUbInrqiIioqWT79+/fro2rVrRET07t076uvrt/oc\nPXtWRkVFl7fMqqrq1qHZOro+j4wizpRHRhFnyiOjiDPlkVHEmfLIKOJMeWQUcaY8Moo4Ux4ZW13/\n4OKWa9/4YMjh+c+yA2cUcaY8Moo4Ux4ZRZwpj4wizpRHRhFnyiOjiDPlkVHEmbblmJKVDW8ly7K3\nXNPQsK7FdlUb6+rrG1vdn2p9Hhltrc8jw3nnn+G8889w3vlnOO/8M3aU825xbFW3dq3b1vU7SkYR\nZ8ojo4gz5ZFRxJnyyCjiTHlkFHGmPDKKOFMeGUWcaWvHbK2AyPXdKCorK+PVV1+NiIhVq1a1uMUC\nAAAA2DHkWjYcddRRMX/+/IiIWLBgQRxzzDF5xgMAAAA5KNltFI8//nh873vfi5UrV0ZFRUXMnz8/\nrrrqqpg0aVLMnj079tprrxg5cmSp4gEAAIBOUrKyYeDAgXH77bdvsf+2224rVSQAAABQALneRgEA\nAADs+JQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASVV09gAA\nAG9WtXRZy+3XH+sH1HRo/bYck2o9ALzTubIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAA\ngKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICk\nlA0AAABAUhWdPQAAwI6oaumyltuvP9YPqCnp+q0dAwB5cWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwA\nAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAA\nAJJSNgAAAABJVXT2AAAA5KNq6bKW268/1g+oSbIeAN7gygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAA\nAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAA\nJKVsAAAAAJJSNgAAAABJVXT2AAAA7Diqli5ruf36Y/2AmpKuzyOjrfUAbMmVDQAAAEBSygYAAAAg\nKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAIKmK\nPMPq6uri7LPPjv333z8iIg444ICYPHlyniMAAAAAJZZr2RAR8eEPfzh+8IMf5B0LAAAA5MRtFAAA\nAEBSuV/Z8N///d/x1a9+NV588cX4xje+EUcffXSba3v2rIyKii5v+ZxVVd06NENH1+eRUcSZ8sgo\n4kx5ZBRxpjwyijhTHhlFnCmPjCLOlEdGEWfKI6OIM+WRUcSZ8sgo4kx5ZGx1/YOLW65944Mhh6dZ\n35FZEh1TxIwizpRHRhFnyiOjiDPlkVHEmbblmFzLhve+973xjW98I0444YRYsWJFnHrqqbFgwYLo\n2rVrq+sbGta12K5qdVVEfX1jq/tTrc8jo631eWQ47/wznHf+Gc47/wznnX+G884/w3nnn/FOPe8W\nx1Z1a9e6t3NMETOKOFMeGUWcKY+MIs6UR0YRZ9raMVsrIHK9jaK6ujpOPPHEKCsri/e85z3Rp0+f\nWLVqVZ4jAAAAACWWa9kwd+7c+PGPfxwREfX19bFmzZqorq7OcwQAAACgxHK9jWLYsGFx7rnnxq9+\n9avYuHFjXHTRRW3eQgEAAABsn3ItG3bbbbe46aab8owEAAAAcuatLwEAAICklA0AAABAUsoGAAAA\nICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJVXT2AAAAwNZVLV3WcvtNH9cPqOnQ\nManWA2yNKxsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYA\nAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkVdHZAwAAANunqqXL\nWm6//lg/oKak6/PIaGv9th4D7zSubAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUD\nAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAIKmKzh4A\nAABgR1a1dFnL7dcf6wfUdGj9thyTav22HsM7lysbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSy\nAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEA\nAABIStkAAAAAJFXR2QMAAACw46lauqzl9uuP9QNqOrR+W45JtT6PjB3lvP8/VzYAAAAASSkbAAAA\ngKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICk\nKvIOvPTSS+MPf/hDlJWVxfnnnx8f/OAH8x4BAAAAKKFcy4b//M//jL/+9a8xe/bseOqpp+L888+P\n2bNn5zkCAAAAUGK53kaxcOHCOO644yIi4v3vf3+8+OKL8fLLL+c5AgAAAFBiZVmWZXmFTZ48OYYM\nGdJcOIwZMyamTZsW++23X14jAAAAACXWqb8gMseeAwAAAMhJrmVD3759Y/Xq1c3bzz//fFRVVeU5\nAgAAAFBiuZYNRx99dMyfPz8iIpYsWRJ9+/aN3XbbLc8RAAAAgBLL9d0oDj300DjwwANj9OjRUVZW\nFt/97nfzjAcAAABykOsviAQAAAB2fJ36CyIBAACAHY+yAQAAAEgq19/ZAAAAAHSeLMuirKxsq2te\neeWV5neSrKqqisrKyg7nKBsAAABgB/Twww/HtGnTolevXjFx4sSYMmVKPP/887HrrrvGxRdfHB/+\n8IdbrP/jH/8Y06ZNi5deeil69uwZWZbF888/H9XV1VFbWxs1NTXtzu5y0UUXXZT4fJJ68MEH473v\nfW9ERKxduzauvPLK+Md//MdYsmRJHHTQQbHLLrtsccyaNWvixhtvjF/84hdRWVkZe++9d/PnLr74\n4hgyZEiL9Zs3b4558+bFbbfdFj/96U9j7ty58bvf/S7Kysqas9/O+oiIDRs2xH333RcvvfRS7LXX\nXnHvvffGrFmzYvny5dGvX7+oqGh/73PVVVfFUUcdtcX+2tra6NOnT1RXV7freRoaGuL222+Pp59+\nOvr16xc333xzTJ8+PZYsWRIDBgzY4rVtbGyMGTNmxF/+8pfo169fzJw5M/7lX/4lnnzyyejfv390\n7dq13ecQEfGTn/wkDjnkkJJkfPvb344RI0a0+rlbbrkl9t5773a/7WpHX6c3zuM3v/lN7LfffvHS\nSy/FddddFzNmzNjqMW1p7XV6w+9///uYM2dO/OIXv4gHHnggnnzyyejevXv06tVri7VLly6Nqqqq\niPjbn8cZM2bET3/601i+fHkMGDBgiz+DGzdujKVLl0Z1dXVs3LgxZs+eHXfffXcsX748ampq2v1n\nduzYsXHSSSe1+rnXXnstfvazn8XDDz8cvXv3jp49ezZ/7oc//GEcccQRrR730EMPxaxZs+Kee+6J\nBQsWxO9///soLy+PffbZ523PtC3fczr6d6+j36MiOv5abcv3qY6+rhs3boyf/exnccstt8SMGTPi\nzjvvjIceeiheeeWVqKmpifLylnfqdfTv3qZNm+K+++6L1atXxz777BP3339//PznP49Vq1bFBz7w\ngS2ef1tm2paMjv5d6uj3tY7+eXojI9X3nLb+G9OarX2v7ejXYlvOYVv+vv5/W/t+8FZae6225Xtn\nR1+rbf2Z4qWXXoqFCxfGo48+GkuXLo3Vq1dHnz592v3f1q29VtvyfS2P751t2dqf8478t7Wjfwa3\n5WeKUv98F1H6n4W35WvX0Yxt+Rmyo8d09PtUR/9ub0tGHj+3tGZr3w+29WfnUn4t8jqPUv87dFte\nq4kTJ8bNN98cgwcPjtNPPz2uv/76mDBhQgwdOjSmTp0ao0aNarF+/PjxMW3atBg3blyMGjUqRo0a\nFaeeemr069cvLrnkki3Wb03h343i1FNPjRkzZkTE336oqampieHDh0ddXV38+te/jptuummLY04/\n/fQYPnx49OrVK+6444448sgj4+tf//oWz/eG2tra2HPPPePoo4+Ohx9+OLIsi4MPPjjuuuuuqK6u\njokTJ76t9RF/+6LtsssusXr16th3331j7dq1MXz48HjsscfimWeeieuuu67F+vXr17f5mpxxxhkx\nc+bMLfZ/+tOfjoEDB8bLL78cp5xyyhYtVWvPc/DB/9vemQdFceVx/IsXLmo0iCRqghGNcSXiSkQE\nDw4RESMGD1ABQZAVFXQ1XrgimmxhNKuuYUWjxmh5pjTrueKxGPDgXFFECo3iBXIfgnIoML/9w5re\nGaYH6QZGN/v7VFGlPb/Xv+u9X7953f1mEAoKClBcXIzevXvDyckJN2/eRExMDHbt2qUmHxgYiMGD\nB6OsrAwpKSmwsLCAjY0N0tLSkJGRge+++65BffURy4UcHQ4ODsJjQMrurJxA6enpITo6Wk1+7Nix\n6NWrFz766CN4e3u/9guq1DgBwKxZs+Di4oKpU6fiyy+/RN++fTFixAikp6cjOjoaO3fubFKcAGDz\n5s0oLi7G8OHDERcXh86dO+PDDz/EiRMn4OTkBF9fX63nCQsLg56eHuzt7ZGUlIS8vDxs3LhRTX7B\nggXo378/5s2bh7CwMCgUCgwfPhzp6el4/PixRp8FgP79+8PY2Bht27YVclFYWIhu3bqJ5iIoKAgm\nJiYwNDTEiRMn4O/vjy+++KJBv9euXYvy8nI4ODgIE7/8/HycP38evXr10hh/Um2SU3Okjj2pNUpO\nrKTWKalxBYBFixbBxMQE9vb26Nq1K4gI+fn5OHfuHMrLy7FhwwY1ealjb8mSJTAwMEB5eTkUCgVa\ntWoFa2trpKWloa6uDuvWrWuyTXJ0SB1LUuua1P4ESK85cq4xUmut1FzIqZtSx6vUeiAnVnJqp9RY\nSZ1TAMDRo0exd+9eWFhYwNDQUNBx/fp1BAcHY/z48U2KlZy61tK1U04/b8q1tTF9UM6coqXnd0DL\nz4Xl9A+pOuTMIaW2kVqnpI5tOTp0MW+RWg/k9MGWzoWu/Gjp76FyYqWq18nJCefPnxc+8/b2xr59\n+9Tkp02bhsOHD2vofd1notBbjre3t/DvmTNnqn3m5eUl2kb1eF1dHS1evJgiIiK0tql/zMfHR/j3\nlClTmiyv2qampobs7Oyorq5O+MzT01ND3szMjOzt7dX+HBwcyN7enszNzRvUcf/+fVqzZg25urrS\nqlWraP/+/XTmzBkNeWVsFQoFOTk5NeijqjwRkbOzs9bPVBk2bJjon5WVFZmZmTWLjkOHDpGfnx+l\npqYKx9zd3UVlif7rW1xcHM2ZM4d8fHxo27Zt9Msvv6ido77exsaJSL0f1JeZPn26hrzUOImd18/P\nj4iIamtryc3NrUH5+n1OzI+pU6cK/54xY4baZ2J9lojo0qVL5OXlRWfPnhWONSYXREQVFRXk4+ND\nP//8s1abiMTj19BnUm1qSs1p7NiTWqPqH29MrKTWKalxJdLeD7R9JnXsqfrg6Oio9bPmsEmKDqlj\nSWpdk9qfiKTXHDnXGKm1VmoupPpAJH28Sq0HRNJjJad2yu23jZ1TEL3ys7q6WuP48+fPycPDQ+N4\nU+q51LrWUrWzKXMpJa+7tkrtg3LmFC09vxM73txz4aZe9xqjQ84cUmobqXVK6tiWo0MX8xa5cykp\nfbClc0GkGz9a+nuoql1EjYtVUFAQbdq0iUJDQ8nf359CQ0Pp/PnztGHDBlq4cKGGfHh4OM2ZM4eO\nHDlC0dHRFB0dTT/99BP5+fnRxo0bRW3Sxlv/axSlpaWIjY1FbGws2rVrh9u3bwMAsrKytK5Yt2nT\nBufOnQMRoVWrVvj222+RlZWFVatWoaKiQkOeiHDlyhWUlZXh+PHjaN++PYBXjyWJIVUeePUYVUVF\nBdq0aYMFCxYIj00VFhbixYsXGvLLli3DhAkTcPHiReEvOjoaFy9ehLm5uagO5R2n3r17IywsDEeP\nHsW4cePw/PlzXLt2TUO+trYWT548gZ6eHlatWiUcv337NmpqakTlHz16hOvXr6OsrAw3btwAAGRm\nZorKA8DkyZMRHByM+Ph4tb+EhAQMHjy4WXRMmzYN3377LQ4dOoS1a9fi2bNnDW54ovzM2toa27dv\nx/r169G1a1dcvHgR27Zta3KcAMDExATh4eFIS0uDlZUVzpw5g6KiIvzjH/8QHr9uSpyAV4/R3r9/\nHwDw73//G3V1dQCAe/fuicpXVVUhMzMT9+7dg6GhIbKysgC8ehRLbFx07twZe/fuRUlJCYYPH46b\nN28CABITE6Gvry+qY+TIkfjhhx9w584dzJ8/H1lZWQ3mQqFQ4NatWwAAAwMDREZG4tSpU9i+fTtq\na2u1tklPT9c4rnzkrKk2yak5UseethoVGhoqmgul31JiJbVOaYvrtWvXtMZLT08P58+fVxsHL1++\nxMmTJ0UfV5U69pR1MycnB+Xl5cjOzgbwKkcvX75sFpvk6FCOpbt37zZqLEmta1L7EyC95si5xsip\ntVJyIdUH4L/jNSYmplHjVWo9kBMrObVTbr9t7JwCAOrq6rTWCoVCoXFcaqzatGmDs2fPSqprLV07\n5fRzqddWqX1Qzpyiped3gPo148SJE80+F9bWP7TNzeXokDOHlNpGap3S09PDuXPnGj225eiQ2geV\ndgGN71NS64GcPtjUXERFRb32mqELP6TWQqljT06s1q9fD2NjYwwbNgy7du3CkCFDcPXqVRgZGSE8\nPFxDPiQkBP7+/sjJyUFMTAxiYmJQUFCAoKAgLF68WKtdokhamngDrFixQu0vPj6eiouLKSgoiBIT\nE0Xb5Obm0ooVK6iqqko4VlxcTCdPnhRdvc/MzKS5c+eSi4sLLVq0iHJycig7O5s2bdpE9+/ff618\nXl4eFRcX05YtW+jBgweiNkVHR5Ovr6/asUuXLpGtrS1dunRJtM3x48epoqJCzQciom3btonKL1iw\nQOOYso0Y169f11jNOnPmDE2YMIFu3bqlIZ+cnEyTJk2i2bNn071798jHx4d+//vfk6urK12/fl1U\nh0KhoO+//17NDyVff/31a3XMnDmTrK2tafz48Vp1qJKQkECenp4aq3yqaFvd1kb9ONXU1NCPP/5I\nLi4uonFSyhw4cIBmz55N48aNI2dnZ3JxcaHvv/9erV8qUcapsrJS7RiReJyIiFJSUsjV1ZWsra3J\n3d2d7t69S0REISEhdO3aNQ15Ly8v8vb2Ji8vL/Ly8qILFy4QEZGvry9FRUVpyD979ow2bNhA48aN\nI0tLSzI3N6exY8dSWFhYg/1KyYMHD+iPf/wjjR49WqvM7du3ycvLS61/vHjxgrZt20YjRowQbZOR\nkUHe3t7k4OBAbm5u9MUXX5CdnR35+fnRvXv3XmvT7NmzacCAAVRbWysqU7/mXLlyhbKzsxusOfXH\nXk1NDWVnZ1NNTY2ofG5uLi1fvlzoC0r5Y8eOidYoov/G6vnz58Kx2tpaioyMFI2Vsk6NHz9eqFNx\ncXEUEREhWqcyMjJo5syZQlzd3NxeG1dlrXVwcCAbGxuytrYmR0dHCg0NpcLCQg15sRV9ZT8X49y5\nczRq1ChydXWlxMREcnV1pQkTJpCtrS1FR0c3yqahQ4dS//79aeXKlVRQUCCqY+TIkTRhwgRKTEyk\nCRMmvFaHciwpx9O//vUvUigUNGvWLNGxVL+u+fr60tChQ7XWTrFaHhcXpzVOROI1Z/r06bRjxw7R\nu9lERMeOHRPGnmqf1XaNUSUxMZG8vLw07vSooszF6NGjycbGhmxsbBrsH/V9cHR0JHt7e9q6dato\n3SQSnyPExcVRcHCw1vGqRFmjxowZ81p/jx8/Ts+fP6fi4mIqKioSjovFSlk7XVxcyNLSkgYNGkRO\nTk4N1k7VWPXv358+/fRTIVZi/VZsThETE0N2dnZa5xQnTpygsWPH0tKlS2ndunW0bt06Wrx4MTk5\nOdG5c+e0+q5QKCg1NZV8fHwarOeqcy/VOGmbexH9t68rFAqN2GrToVo7iV6NjYZ0qPZzpTyR9rlU\nSkoKTZw4kWxsbIRrq0KhoJUrV1JKSoqGvNR5qtjcKyoqiiZOnKh1TiF1fpeSkkILFy5Ui+v58+cb\n1CF2zVDObRszF87NzSUiou+++46Sk5M15KXOzevrmDlzJuXl5RERUUREhKhNycnJNHnyZEnzVGUb\nPz8/Sk5OJl9fX7KxsSFXV1fRfCvrVEBAALm4uNC4cePI09OTduzYIVqn6tfB110n6+tozBxS2feW\nLVtGAQEBdOrUKSIiCg4OpoSEBFEdqmNPzOaGaMz8Tup3DCL1XCivldbW1uTq6irap+rnwtnZmby8\nvGjHjh2v9UGhUGhcA8TaiPlx4cIFrTYpz7NixQqNa++JEyc0nqAkangsiT31SUSUlJSkMa9Qxqox\n35d0yVv/axTOzs6Ijo7GV199hfj4eISEhKBDhw6orKzUuhJ6584dtG3bFu3bt0d8fDxWrlyJjh07\noqKiAqGhoRryBw8eRGRkJAAgLi4OM2bMgJGREYqLizFkyBD07t1bTT4rKwtGRkaIjIxEfHw8pk2b\nJthkbm4uupnHl19+iUmTJqG4uBhdu3YFAFhZWSE6OhqtW7fWkI+NjcW1a9cwceJEwQelDjEfAGDS\npElYvXq1ECvVNqtXr4adnZ2afFlZGd555x0A0JAvLCzUOH9FRQXMzMyE8z969AimpqZ49uwZSktL\nRW367LPP4ObmhqqqKo2fS1FdIVRy9uxZ/PzzzwBe5eLx48fo2bMniouLUV5eLqrDwsICbm5umDdv\nHqysrGBhYYGMjAxRWQBITU3F119/jXnz5gm5aIjTp0/jb3/7m2DTn//8ZxgZGaGqqgolJSWiba5e\nvYrbt29j586darE9fPgw+vXrp5GLuLg4HDt2DLGxsRq7xK5du1ZUh7+/v+C3qh9iK5QAcOvWLUya\nNElD/scffxSVHzVqFNzc3LBv375GxQl41W+V4zU3Nxe//vorWrVqBQcHB9E+WFhYiKKiIgQEBAh+\nFxYWwsDAAH/9619FdcyYMQNubm7YsGGDcDfP0NBQ64Zof/nLX4S+lpOTg3v37uGDDz7AmDFjsHbt\nWowcOVJNvkOHDoK8ar6Li4tRXV0tqkN1Bb1+GzEdu3btwjfffKMm361bNxQVFUHbnr3Tp0+Hm5sb\nqqur0aFDBwBA69atMXfuXMydO1dD/ubNm3BychJ+2ig+Ph6RkZGYN28ebty4oVGnioqKUFBQAGNj\nYyxbtgxLly5FTU0NsorXpwkAAA3eSURBVLOzUVRUhD59+mjoUNba6OhooZ/r6+vjypUrcHBw0Mj3\nnDlzMG7cOLXdkJX5FtsN2cDAAAYGBujYsSPat2+PVq1a4f79+3j//feFGNRn165dwj4LytiamJgg\nPj4ezs7OGnc7li9frjYuTpw4gZKSErz77ruiG3cp/ai/q/OaNWtgYGCgtnGnkuzsbHh5eQF4tcOz\nq6srsrOzMWvWLDx8+FBjA1g7OzscP35c+D8RYdu2bZg3bx4ACHt1qHL69GkYGBjAxcVFOLZt2zZ0\n69YNUVFRGm1Ux0X9PqutD9bfzbqiogJ5eXlwdnbG2rVrYWVlpSafkJAAKysrtbxGRkbCwsICV65c\n0bDpm2++wapVqzBjxgw1m44ePYqBAwdqjCMAgk5lP8/NzRVilZOToyGvGlfg1Rxj69atwnGx2D54\n8ABRUVHYtWsXsrOz0adPH5SVlcHMzAwhISEa8qmpqbh48SIMDQ0RHh4u9POEhAS4uLiIvhtdVVWF\n0tJS/O53v0P79u1hamqK8vJyYS+R+rRr1w55eXnw9PQU+mB2djY6deqk9W6pq6srxowZg9TUVBQX\nFwMAjI2NYW5uLvrExYMHD7B+/Xo8efIE2dnZMDU1BRHhT3/6E0JCQjQ2llP6MHXqVCFO5eXlGDBg\ngOgeEgCwcOFCBAYGCjpU24jpSEhIwLBhw3D27FkA6mNj2rRpGudX5lX5frKq/Pvvvy9qU0VFBV68\neCHsVbN8+XLheuzq6qohP3bsWKxbtw7du3fHypUrsWTJEtTV1aGyshKVlZUa8g8fPlQb46o23b17\nF2ZmZhpt3NzcMHbsWA0dVVVVCAsL09hwrnPnzqiurhZqjWqfNTIyEvX78ePHyMzMRPfu3REYGIiA\ngABBx6BBgzTmwpmZmcjIyEBlZSU+/fRTYePf4OBg0ffSb9++jZSUFAQGBgo+KBQKYY4qhp6enrCX\nzs2bNzF//nzBD7Gf4Hv+/DmePXuGjh07oq6uDiUlJcLmgWVlZaI6DA0NYWRkhCdPniAgIACmpqYw\nMDBA79690aNHDw35rKwsXLp0Cbm5ucjJyYGpqSny8/ORnp6OsrIy4a50fb8/+OADhISECH5fvnwZ\no0ePFt0Y8+rVq9i7dy+6d++OzZs3Y+nSpairq8Phw4fxySefaLQJCAjAhg0bhHFUUlKCLVu2wMzM\nTOsGg59//jns7e1RVVUFW1tbhIaGCjlctmyZRv5iYmLU+nlubi6ICA4ODqJ98OnTp8jIyICvr6/G\nuFD+lGJ9SktLUVxcjKysLOzYsQMRERGCTWJ9KiYmBjt37kRlZSXs7OzUfNC2D8iFCxcQHh4u+L1x\n40bh+6SY34WFhUhNTcWwYcOEODk6OsLR0VGrjrS0NCQkJMDW1lYttq6urjhy5IiGvKmpqfA9VBVt\nYwkALC0the9LgPpcXlubN8abW+doHJMmTRJW/jw9Penx48dERFRSUqL2XmRT2qje6Z4xY4YgX1BQ\nIPoejxybvLy8KCkpiXx8fGjFihWUlJSk9a6nrvxuaXk5fkvNhRwdurBJaqymTZtG+fn59Ouvv5KV\nlRVlZGQQEVF2drbW985a2m+p8nL9LigoaHG/lTQmf3LyLbWNVJuUbaT47ejoSFOmTKGIiAjhb9So\nUcK/61M/F7dv3yaihnPR0v1cjk1SYyunn0u1SywXtra2WnMhNXdy2sjpg/Xz19x+y7FJqt9yYuvt\n7S3YkpmZSWvWrCEiotjYWNGndaTGSa4OqbXz5cuXdOjQIQoODiYPDw/y8PCgBQsW0JEjR0Sf9JJq\nk1R5OW10kW+psXV3d6cnT55QcnIy2dvbC/KFhYU0efLkZrFJqg45uZCqY8qUKVRaWkp1dXX0008/\nkbu7O5WXlxOR+FNsUs8vxw9d6NCFTbrIt2r+Dh8+3Oz5k+O3VJuk9sGm6miM/OvaiD1dvX//fq1/\n2p4elNPmTfHWP9lQW1sr3MHq1KmT8PMhXbp0EXYRbY42SpS7DgOv7laK3S2Vc349PT1YWlpiz549\nSEtLw5EjRxAaGooOHTqga9eu2LFjh879bqp8z549m91vVRqTCzk6dGGT1Fi1bdsWxsbGMDY2xjvv\nvIP+/fsDAHr27Cn65Isu/JYTJzl+d+vWDd26dWtRv5U0Nn9y5RvbRo5NUv0+ffo0IiMjcefOHaxY\nsQI9e/bE5cuXERQUJHr++rlQ/oZyQ7lo6X4uxyapsZXTz6XaJTUXUuXltJHTB+vnr7n9lmOTLmL7\n8uVLwZaPPvoId+7cAfDq6a+IiAgNealxkqtDau1ctmwZTExM4Ofnp7ErfkhIiMau+FJtkiovp40u\n8i01tu3atUOPHj3Qo0cPGBsbC/JGRkaiT4zIsUmqDjm5kKqjdevW6NKlCwDA3d0dhoaG8Pf3x/bt\n20XfgZd6fjl+6EKHLmzSRb5V8+fh4YGuXbs2a/7k+C3VJql9sKk6GiP/ujZi7NmzB9bW1jA2Ntb4\nTNv+ZXLavCne+sUG5c+7DR8+HF26dMG8efMwePBgJCYmYurUqc3S5u7du1i4cCGICI8ePUJUVBTG\njRuH3bt3o1OnTs1ik+rEe+DAgRg4cCAAoKCgQPSVBV343VT5+fPnN7vfUnMhR4cubJIaq86dO2Pz\n5s0oLS2FiYkJVq9ejZEjR+LGjRtaX2Foab+lyr+tfkvNn5x860KHVL/19fWxaNEi3L9/H1999RUG\nDx4s+ji2Ejm5aOl8y7FJamzl9HOpdknNhVR5OW3k9MGW9luOTbqIbb9+/bB48WKYm5vj8uXLwqsb\nK1euRN++fZscJ13pKCwsxObNm9WOmZiYwNLSUnjNpyk2SZWX00YX+ZYa265du+KHH36Av7+/8HNw\neXl52L17t+irGnJskqpDTi6k6rCwsMCcOXOwZcsWtG/fHo6OjtDX14evry+ePn3a5PPL8UMXOnRh\nky7y3dL5k+O3VJukyr+tOrZu3Sq82lj/NbjExERRHXLavCn06HW3+t8Cnj59iri4ODx58gREBCMj\nIwwfPlzjXT65bZKSktT+36tXL7z33ns4deoUHBwcRN8NlmrT0aNHMWXKlLfKb13IS/VbTi6k6tCF\nTYC0WFVWVuLYsWN499134eLigpMnTyIlJQW9evWCh4eH6LuJLe23nD4LvH1+S82fnHzrQofcfCg5\nfvw4YmNjNb5sKJGTC6Bl8y3HJqmxlRNXubFS8rpcNFW+MW3k9MGW9lturZWiQ448ESE6OhoPHz5E\nv379MGrUKACv3sX+5JNPNO5uyYmTLnR4e3vD29sb9vb2aNu2LYBXd0TPnTuHY8eOYffu3U2ySaq8\n3DaqtES+pca2uroaFy9eVNsvJT09HcnJyZg+fbrWu7hSbJKqQ05c5fiRmJiIoUOHqp3v+fPnOHPm\nDNzd3Zt8fql+6EKHLmzSRb6Bls2f3HEhxSY58m+rjqqqKujr62vsFZWeni66j4vcNm+C/4nFBoZh\nGIZhGEY+eXl52LJlC5KSkoSfw+vQoQOsra0RFBQk+jguwzAMwzQFXmxgGIZhGIb5P+at272cYRiG\n+U3w1u/ZwDAMwzAMwzSNAwcOaP0sPz9fh5YwDMMw/y/wYgPDMAzDMMxvnP+l3csZhmGY3wa82MAw\nDMMwDPMb539p93KGYRjmtwHv2cAwDMMwDPN/wP/K7uUMwzDMbwNebGAYhmEYhmEYhmEYpllp9XoR\nhmEYhmEYhmEYhmGYxsOLDQzDMAzDMAzDMAzDNCu82MAwDMMwDMMwDMMwTLPCiw0MwzAMwzAMwzAM\nwzQr/NOXDMMwDMNIJj8/H0uWLAEAVFdXw8PDA0OGDEFoaCgUCgX09fWxbt06vPfee4iMjERMTAza\ntGmDjz/+GKtWrUJ+fj7mzp2Lfv364eOPP0ZgYCA2bdqElJQUVFdXw9LSEsuWLYOent4b9pRhGIZh\nGDnwkw0MwzAMw0gmKioKpqam2LdvH/bv34/q6mqEhYXB398fBw4cwOTJkxEVFYXr16/j/PnzOHDg\nAA4ePIjS0lKcPn0aAJCZmYn58+cjMDAQUVFRyM/Px/79+3H06FE8fvwYv/zyyxv2kmEYhmEYufCT\nDQzDMAzDSGbkyJE4ePAgVqxYAVtbW3h4eGDjxo0YOnQoAGD8+PEAgD179sDS0hJt27YFAAwdOhRp\naWmwtLRE586dYWpqCgBITEzEjRs34O3tDQB49uwZsrOz34BnDMMwDMM0B7zYwDAMwzCMZPr06YN/\n/vOfSE5OxtmzZ7F3714AgEKhUJOr/xoEEQnHlAsQANCuXTu4u7vD39+/hS1nGIZhGEYX8GsUDMMw\nDMNI5tSpU0hLS4ONjQ3CwsKQm5sLc3NzXL58GQBw5swZbNq0CX/4wx+QmJiImpoaAEB8fDwGDRqk\ncb7PPvsMFy5cQG1tLQDg73//Ox4+fKgzfxiGYRiGaV74yQaGYRiGYSTTt29fhIWFoV27diAiBAQE\nYMSIEQgNDcXBgwfRpk0bhIeHo3v37hg/fjw8PT3RqlUrmJmZ4fPPP0dOTo7a+ZycnHDjxg1MmzYN\nrVu3xoABA/Dhhx++Ie8YhmEYhmkqekREb9oIhmEYhmEYhmEYhmF+O/BrFAzDMAzDMAzDMAzDNCu8\n2MAwDMMwDMMwDMMwTLPCiw0MwzAMwzAMwzAMwzQrvNjAMAzDMAzDMAzDMEyzwosNDMMwDMMwDMMw\nDMM0K7zYwDAMwzAMwzAMwzBMs8KLDQzDMAzDMAzDMAzDNCv/AWsOl6+8/9tMAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
- ]
- },
- {
- "metadata": {
- "id": "pfAaNUKvVGJY",
- "colab_type": "code",
- "outputId": "22ec3315-902c-4199-d5ef-72660cbb35fd",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 318
- }
- },
- "cell_type": "code",
- "source": [
- "# gender vs race/etnicity \n",
- "\n",
- "x = pd.crosstab(data['gender'], data['race/ethnicity'])\n",
- "x.div(x.sum(1).astype(float), axis = 0).plot(kind = 'bar', stacked = True, figsize = (4, 4))"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 181
- },
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQIAAAEaCAYAAAD6ylmmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAH6NJREFUeJzt3XlcVmX+//HXDTeLCCIotwq4Ymmi\nlkuWYeMGZjPW12+LMNXotP6cclpNJ61wQ22zKXWWNisrdX4Oj7aZIik1F0zTlMDM1GRRgptF9BaV\n7Xz/MG/FBW69N9D38x8593Xucz6Hg+/7nOs+1zkmwzAMROSS5uPtAkTE+xQEIqIgEBEFgYigIBAR\nwOzpFVqthzy9So8KCwuirKzC22XIBbqY919ERMg523RE4GJms6+3SxAnXKr7T0EgIgoCEVEQiAgK\nAhFBQSAiKAhEBAeDYOfOncTHx/Pee++d0bZ+/Xpuu+02EhMTWbhwocsLFBH3azAIKioqmDlzJgMH\nDjxr+6xZs5g/fz5Llixh3bp17Nq1y+VFioh7NRgE/v7+vP7661gsljPa8vLyCA0NpV27dvj4+DB4\n8GAyMjLcUqiIuE+DlxibzWbM5rPPZrVaCQ8Pt0+Hh4eTl5dX7/LCwoI8evXW5i+e9Ni6AHI9ujbo\nN+IFD6/Rs7T/PMPjYw0u1uu4veViH7txsfPk/nPbWAOLxUJxcbF9urCw8KynECLSuDkVBNHR0dhs\nNvLz86murmblypXExcW5qjYR8ZAGTw2ysrJ47rnn2LdvH2azmbS0NIYNG0Z0dDQJCQlMmzaNJ554\nAoDf/va3dO7c2e1Fi4hrNRgEPXv2ZPHixedsv/rqq1m2bJlLixIRz9KVhSKiIBARBYGIoCAQERQE\nIoKCQERQEIgICgIRQUEgIigIRAQFgYigIBARFAQigoJARFAQiAgKAhFBQSAiKAhEBAWBiKAgEBEU\nBCKCF5505Gn/SfuNt0twqz/18XYFcjHQEYGIKAhE5BI4NZCmTad2nqEjAhFREIiIgkBEUBCICAoC\nEUFBICIoCEQEB68jmD17Ntu2bcNkMjFlyhR69+5tb3v//ff5+OOP8fHxoWfPnkydOtVtxYqIezR4\nRLBx40ZycnJYtmwZKSkppKSk2NtsNhtvvvkm77//PkuWLGH37t1s3brVrQWLiOs1GAQZGRnEx8cD\nEBMTQ3l5OTabDQA/Pz/8/PyoqKigurqaI0eOEBoa6t6KRcTlGjw1KC4uJjY21j4dHh6O1WolODiY\ngIAAHnroIeLj4wkICOB3v/sdnTt3rnd5YWFBmM2+zlcuAEREhHi7BHFCY9l/5z3WwDAM+882m41/\n/vOffP755wQHBzNu3Dh27NhB9+7dz/n+srKKC6tUzspqPeTtEsQJntx/9YVOg6cGFouF4uJi+3RR\nUREREREA7N69m/bt2xMeHo6/vz/9+/cnKyvLBSWLiCc1GARxcXGkpaUBkJ2djcViITg4GICoqCh2\n797N0aNHAcjKyqJTp07uq1ZE3KLBU4O+ffsSGxtLUlISJpOJ5ORkUlNTCQkJISEhgXvvvZexY8fi\n6+tLnz596N+/vyfqFhEXcqiPYOLEiXWmT+0DSEpKIikpybVViYhH6cpCEVEQiIiCQERQEIgICgIR\nQUEgIigIRAQFgYigIBCpw1q6l1Wb3qp3noO2IgpLdgNQWLyLj76ac97rSc/4B6Xl+eds3749i8cf\nnwBAaWkJa9euPu91nA8FgcgpCop30rb1ZfXOk/dLFkWlPzu1nviB4wkPjT5ne48ePZk3bwEAW7Z8\ny9q1Xzu1vobokWfSpNgqSvli3QI6Rl5Jafk+rugymK0/fkZtbQ1+Zn+u6T2G8NAoALJ3fcWu3A2Y\nTD5EWXrQt8dNmEwmfsrZwI49q6mpraZ1WEeuvTIRs68fAL8U/8Q1vW4FOOt8vxTvJHvXV/j4+FJZ\nVUG0pQcAWT+l8/O+LdTW1nBN79tp27ormT+mcazyMBVHD3Lg0H4C/Joz+Oq7aRbYgg+/TOG6PncA\nQ/jss095553jRyGxsbFMnvwMWVmZPPfcLGbMmMvLLz9PTU0NR45UsG/fPu68cyxDhx6/WdC6dWt4\n/fW/8/bbHzj1e9URgTQ5xyoPE9YikuHX/j8yti3l2t63c/PQyUS3ieW7Hz4FoKj0Z3bnbuS3v3mc\n3w2eiLX0Z3ILMikq2UPmj58zfOB4Rg+fip85kMwfPwegqvoYh4+UERrS9pzzRbeJpX3bnnTrfD39\netwMQMXRclqGtOOmIZO4rONAsn5Kt9eaW5BJv9ibuXnoUwQEBLM7b2OdbSko2M/Cha+wYME/WbLk\n3xw5cpTly5fa27t1684tt4xhyJDhTJ8+h/j4EaxYkWZv//rrlQwfPsLp36mCQJqcWqOG9m174ePj\ny60J02gd1hGAiPAu2CpKANhf9AORba7AzxyIr4+Z+Ov+RPt2vcgv3E7HyKsICjx+S73LOg4k75fv\nASgs2Y0lvAtAvfOdzs8cQHTb43fxCg+NouJoub3N0qoLwUHhmEwmwkOjOHzkQJ33bty4gV69etO6\ndcSvo3tnMWbMHefc9uHDR/DNN+ux2WzU1NSwbt0ahg2LP+/f4el0aiBNjsnkg59fIAA//ryGPfmb\nqamtpqa2ChMm4PhRQ7OAFvb3mH39AaiqPkLeL1kUWH8EwMCgprYGgF+sJ/sH6pvvdH7mwJO1YcIw\nah1qAygvP0Bw8Mk7BwUEBNS77RERFq64IpbVq78iKiqadu3aERV17r4GRykIpMmylu4le/dKRg56\nhOCgcAqsO/km8/8DEODfnGOVh+3znvi5WUALukT3p2+Pm85Y3i/FP9EjZkiD87lSaGhLsrIy7dOH\nD9s4duxYve+Jj7+BlSvTiY5uz7Bhzp8WgE4NpAk7WmkjMCCY5s1aUl1TyZ78b6muqcQwDKLbxJJf\nuJ1jlRXU1taw+tu32W/9kei2seT98j1Hjx2/E3feL1lk7/qKiqPlGEYtQc1aApxzPgCTyZeqqiMu\n2YaBA+PIzNxGQcF+DMPghRfm8OmnH9WZx2w2Y7OdvLfhsGHxZGZuY+XKL11yWgA6IpAmLDKiGzv3\nruejr+YQFBhKv9j/obgshzWb3+U3/cfRI2YI/10zD18fM5ER3ekU2QeTyURs1+GkZ/wdA4NA/2AG\n9L6NX4p/os0pXxuGh0afdT6A6DY9WPfd+9gqSunWKc6pbbBY2jBp0lQefvhP+Pr6cMUVsSQm3kl2\n9sn+iAEDrmXp0ve5776xvPHGu7RoEcpVV/Xh0KGDtGnT1qn1n2AyTr0tsQd4+q67f5+7yqPr87Q/\n/WWIt0twK+2/s3vxxbl06RLDLbfc7vB7nLqLsYg0Lnl5uWzYsI4RI2502TJ1aiDShLzxxj9IS/sv\njz02yX43cVdQEIg0IffdN5777hvv8uXq1EBEFAQioiAQERQEIoI6C6UJ20RtwzOdh6sb6efiihWf\nM2tWMh99lEbLli3dso7GueUiYrdiRRpRUdGsWpXe8MwXSEcEIg6qrDrCms3vUlNTRaTlCnblbmD0\n8Kl8/NVcIi3dCQwIpkt0fzK2/Yva2mpMJhPXXjkGMLFm87vceP2jAHy25q9c328s3+/8giPzviEn\nJ4fy8gNMmfIsl1/evc46Dx4s54cfsnnqqWf54IN3GT36Nrdsm44IRBz0c/5mQoPbMCJuAv5+J4cX\n1xo1RFq60/OyeLbtTCOmwwASrnuQyzteR+bOL+pdZk1NDa+88jfuu288ixa9cUb7V1+lc911g7jm\nmoHk5eVitRa5fLtAQSDisHJbIRHhnQCIbhNbp61Vyw4AlB7Ip02rGADatO5KWfn+epfZv/8AAHr2\n7E1eXs4Z7enpacTH34Cvry9Dhw7nyy/rD5YLpVMDkfNw4sYn2P89zsfH9+TEr+P4amtrMJnqznfi\n9ZM/G7++xThjmUVFhWzfnsWCBX/FZDJx9OhRQkKCSUq6y/kNOY2OCEQcFBzUipJfb0G+37rjrPO0\natn+5K3OS3YTHhqNnzmQo8cOYRgGR44etN9ODSAz8zsAsrMz6dSpc51lpaen8b//ezvvvLOEt9/+\ngCVL/s3BgwfZt+/ct0G/UA4dEcyePZtt27ZhMpmYMmUKvXv3trcVFBTw+OOPU1VVRY8ePZgxY4bL\ni3TG8F1ve7sENxvi7QK8xtNf93VpfzWrNy1ixfq/0S7ickymM9ffu9sNbNj2L3blbsDHx8y1vccQ\n4B9E29aX8fnaVwhrEUnYr3dZBqisrGTSpEcpLCzk2Wdn1llWenoaTz893T5tMpm48cZRpKenMW7c\nvS7dtgaDYOPGjeTk5LBs2TJ2797NlClTWLZsmb197ty53HPPPSQkJDB9+nT2799PZGSkS4sUaQyq\nq4/R67IEIi3dsJbtpbBkDwCjh0+1zxMUGMqwa+4/470Dr0o66zIHDRpMXNz1Z2176633z3jtj3+8\n70JKb1CDQZCRkUF8/PHbIcXExFBeXo7NZiM4OJja2lo2b97MvHnzAEhOTnZLkSKNgb9fM3b8vJrv\nf1oBGPSPHe3tklymwSAoLi4mNvZkD2l4eDhWq5Xg4GBKS0tp3rw5c+bMITs7m/79+/PEE0/Uu7yw\nsCDMZt9653GlnR5bk3fUd9cZcS1/v2YMu+YBly1v4FVJjB79W5ctzxnn/a3BqXc2MwyDwsJCxo4d\nS1RUFA888ACrVq1iyJAh53x/WVnFBRUqZ+fpW7+Ja3ly/zl1qzKLxUJxcbF9uqioiIiICADCwsKI\njIykQ4cO+Pr6MnDgQH766ScXlCwintRgEMTFxZGWdvwRS9nZ2VgsFvstksxmM+3bt2fv3r329s6d\nO59rUSLSSDV4atC3b19iY2NJSkr69ZFMyaSmphISEkJCQgJTpkzhL3/5C4ZhcPnllzNs2DBP1C0i\nLnTR3858531/9Oj6PO3yN972dgluVd/+e+UOi0vX9cgH7rmOvz717b+Cgv2MHZtEt27dMZlMVFZW\n8uCDj3DllVdd0Lrq6yPQJcYijViHDh1ZsOA1ALZu3cI777zBvHkLXL4eBYGIgypqavjbvlwqDYPe\nzYP5uryM52O68ZfdO+kdHEKIry9xoWEsKsin2jAwmUzc3TYKE7Bwfy7JnboCMH3vLh6K7MBHxUW0\nmfdcvcOQT1VaWkrr1hFu2TYFgYiD1pcfIDIgkDvatOOrspITY4uoMQx6NQ+mV3AIbxXkc33LcAa0\nCOXbg+V8VFzE6NbnPoU5MQx57dqvWbToDebMebFOe25uDhMmPEBlZSXFxVZeemm+W7ZNg45EHFRQ\neYyuzYIAuCq4RZ22zs2aAbD36BG6BTUHoHvz5uQeq/9hqQ0NQz5xavDaa2/z8ssLSU5+iurqaqe3\n5XQKAhEHGZz8D3P64GKz6dThyccPFaoN4/iw5dNmrjmle76+Ycin69ixEwEBARQVFV5A9fVTEIg4\nyOLnz89Hj3/Cf3/47N9+dQ5sxg8VhwH4seIwnQKb0czHl4PV1RiGQXl1FdbKSvv89Q1DPt3Bg+WU\nlJQQEeHab0tAfQTShHn667640JbM35fLczl76NE8GJ+zfICPbm1h0S/7+PpAGeZfOwub+/rSo3kw\nM3J20z4gkA6BJ29zVt8wZDjZR3Bi3sceexI/Pz+Xb5uCQMRBx4xabm4VQc/gEHYdqWDnr5/8L3Tt\nZp8nzM+Px9t3OuO997aLPusy6xuG3K5dJCtWfO184Q5QEIg4KMjHl7SyEj4usWJgcIfl4rnvhoJA\nxEFBvr48cZZP+wt1b2Q0l5/jaMDT1FkoIgoCEVEQiAgKAhFBnYUijVpeXi6vvvoSBw6UUVNTS69e\nvXnooUfx9/d36Xp0RCDSSNXU1PD005O4446xvP76u7z55mIAFi163eXr0hGBiIM8PQx506Zv6NCh\nE3369AOOP+DkwQcfPuuDVZylIwIRB50YhjylYxeCfH3PGIZ8U2sLHxYXcn3LcCZ37MKwluF8VFz/\nZdD1PQ05N3cvl112eZ3XAgICXX5aAAoCEYd5fhiyidraWhdU3jAFgYiDPD0MuWPHTmzfnl3ntcrK\nSvbs2XWhm3BOCgIRB3l6GPLVV19DYWEBa9ceH3hUW1vL3/8+ny+/XOHybVNnoYiDPD0M2cfHh5de\nWsDzz6ewaNHr+Pn5cfXV13D33Wc+ZNVZCgIRB3l6GDJA69atef75l50r3AEKAhEHaRiyiGgYsohc\n3BQEIqIgEBEFgYigzkJpwr7s+keXLm/4rrddujxnnfo0ZABfX1/+8Ie77Zclu5KCQKQRO/VpyPv2\n5TN58mNMmzabrl0vc+l6FAQiDvL205CjoqIZO/YeUlP/xaRJU126beojEHGQp4chn0337lewd+/P\nrticOhwKgtmzZ5OYmEhSUhKZmZlnneell17iD3/4g0uLE2lMvPE05NNVVFTg4+OFG5Ns3LiRnJwc\nli1bRkpKCikpKWfMs2vXLjZt2uTy4kQaE28/DRlgx47tXH55twbnO18NBkFGRgbx8fEAxMTEUF5e\njs1mqzPP3Llzeeyxx1xenEhj4u2nIe/bl8/SpR8wZsydrticOhrsLCwuLiY2NtY+HR4ejtVqJTg4\nGIDU1FQGDBhAVFSUQysMCwvCbPa9wHLP306Prck7IiJCvF2CW9W3/zz9dZ87hiH7+Bg8/fRECgoK\neOGFF+rsz2PHmpOXl8Pjjz9IZWUlNTU1zJgxjV69XPuNAVzAtwaGcfK45sCBA6SmprJo0SIKCwsd\nen9ZWcX5rlLqYbWe/ZNJXM8dw5D797+uzjDkU/dnQEAoX3xx5tOQL3Sf1/eh0WAQWCwWiouL7dNF\nRUVEREQAsGHDBkpLS7nzzjuprKwkNzeX2bNnM2XKlAsqVKQxu6SHIcfFxTF//nySkpLIzs7GYrHY\nTwtGjhzJyJEjAcjPz+epp55SCMhF62IehtxgEPTt25fY2FiSkpIwmUwkJyeTmppKSEgICQkJnqhR\nRNzMoT6CiRMn1pnu3v3Mq5+io6NZvHixa6oSEY/SlYUioiAQEQ06kiYs8KEuLl3e0YV7XLo8Z50+\nDPmE2bNfoEWLUJeuS0Eg0oidOgzZnRQEIg7y9jBkd1IfgYiDGsMwZHfREYGIgwoqj9mHGF8V3ILP\nSk5ecXvqMORbI9oCx4chf1xSfxCcOgz5H/+Yf0Z7bm4OEyY8YJ/u0KGjy29KAgoCEYd5Yxiyp/oI\ndGog4iBvD0N2Jx0RSJPl6a/7PP00ZDjz1ADgwQcfpkePni7dNgWBiIM8/TTkdu0iWbHizGHI7qAg\nEHHQJT0MWUSOu5iHIauzUEQUBCKiIBARFAQigjoLpZF75Q6Lt0twq4XeLuBXOiIQEQWBiCgIRIRL\noI9A55giDdMRgYgoCEREQSAiKAhEBAWBiKAgEBEUBCKCgkBEUBCICAoCEcHBS4xnz57Ntm3bMJlM\nTJkyhd69e9vbNmzYwLx58/Dx8aFz586kpKTg46N8EWlKGvwfu3HjRnJycli2bBkpKSmkpKTUaX/2\n2Wd59dVXWbp0KYcPH2bNmjVuK1ZE3KPBIMjIyCA+Ph6AmJgYysvLsdls9vbU1FTatj3+rLfw8HDK\nysrcVKqIuEuDpwbFxcXExsbap8PDw7FarQQHBwPY/y0qKmLdunU88sgj9S4vLCwIs9nXmZrlFBER\nId4uQZzQWPbfeQ9DNgzjjNdKSkoYP348ycnJhIWF1fv+srKK812l1MNqPfsz+KRp8OT+qy90Gjw1\nsFgsFBeffPxzUVERERER9mmbzcb999/Po48+yqBBg5wsVUS8ocEgiIuLIy0tDYDs7GwsFov9dABg\n7ty5jBs3jt/85jfuq1JE3KrBU4O+ffsSGxtLUlISJpOJ5ORkUlNTCQkJYdCgQXz44Yfk5OSwfPly\nAEaNGkViYqLbCxcR13Goj2DixIl1prt3727/OSsry7UViYjH6cofEVEQiIiCQERQEIgICgIRQUEg\nIigIRAQFgYigIBARFAQigoJARFAQiAgKAhHhAu5QJOJJRzaO9HYJ7jXM2wUcpyMCEVEQiIiCQERQ\nEIgICgIRQUEgIigIRIRL4DoCfQ8t0jAdEYiIgkBEFAQigoJARFAQiAgKAhFBQSAiKAhEBAWBiKAg\nEBEUBCKCg0Ewe/ZsEhMTSUpKIjMzs07b+vXrue2220hMTGThwoVuKVJE3KvBINi4cSM5OTksW7aM\nlJQUUlJS6rTPmjWL+fPns2TJEtatW8euXbvcVqyIuEeDQZCRkUF8fDwAMTExlJeXY7PZAMjLyyM0\nNJR27drh4+PD4MGDycjIcG/FIuJyDQ5DLi4uJjY21j4dHh6O1WolODgYq9VKeHh4nba8vLx6lxcR\nEeJEuefvk5f+x6PrE9fS/vOM8+4sNAzDHXWIiBc1GAQWi4Xi4mL7dFFREREREWdtKywsxGKxuKFM\nEXGnBoMgLi6OtLQ0ALKzs7FYLAQHBwMQHR2NzWYjPz+f6upqVq5cSVxcnHsrFhGXMxkOHOu/+OKL\nfPvtt5hMJpKTk9m+fTshISEkJCSwadMmXnzxRQBGjBjBvffe6/aiRcS1HAoCEbm46cpCEVEQiIiC\nQERQEIgAUF1d7e0SvEpB4KTq6mo+/fRT3nzzTQB27txJVVWVl6sSR23YsIGbb76ZUaNGAfDyyy+z\nZs0aL1fleQoCJz3zzDP88MMPfP7558DxQVqTJ0/2clXiqPnz5/POO+/YL5IbO3YsCxYs8HJVnqcg\ncFJBQQFPPvkkgYGBANx1110UFRV5uSpxlNlsJiwsDJPJBECrVq3sP19KLvpnH7pbVVUVBw8etP/x\n7N69m8rKSi9XJY6Kjo7mlVdeoaysjP/+97+kp6fTtWtXb5flcbqgyEnffvstKSkp7N27lzZt2mAy\nmZg1axb9+vXzdmnigNraWj755BO+++47/Pz8uPLKK7nxxhvx9fX1dmkepSBwkZKSEvz8/GjRooW3\nSxEHrF69ut72wYMHe6iSxkGnBhfo1ltvrfdccvny5R6sRs7Xic7dc7nUgkBHBBdo375952yz2Wx0\n69bNg9WIq1RVVTF9+nRmzZrl7VI8SkcEFygqKgqAgwcP8sknn1BWVgYc/0P68MMPGzz0lMZh+fLl\n9s5Cf39/amtrGTJkiLfL8jh9feikRx55hJKSEj755BOCgoLYunUrzzzzjLfLEgctXbqU9PR0+vTp\nw5YtW3jppZfo06ePt8vyOAWBk2pra3n44YexWCzcc889vP7666Smpnq7LHFQQEAAAQEBVFVVUVtb\ny/Dhw0lPT/d2WR6nUwMnVVVVsWPHDgIDA1m3bh3t27cnNzfX22WJg3r16sV7773HoEGDGDduHG3b\ntuXYsWPeLsvj1FnopB07dlBaWkqrVq1ISUnhwIED3HXXXYwZM8bbpYkDMjMz+fe//01lZSX79u0j\nKyuLuLg45s+f7+3SPEpB4AI2m41Dhw5hGAaGYWAymYiMjPR2WeKAG264gfvvv5/WrVvXef1S6zDU\nqYGTJk6cyObNm2nVqhWAPQh0HUHT0KVLlwavCbkUKAiclJOTw8qVK71dhlygUaNGMXr0aLp161bn\nsuI5c+Z4sSrPUxA4aeTIkXzxxRdcccUVdf6QdGrQNPz1r3/lgQcesA9DvlQpCJyUnZ3N4sWL7acG\ngE4NmpCYmBhuv/12b5fhdQoCJ+Xk5LBq1SpvlyEXKCwsjDvvvJOePXvWOaKbNGmSF6vyPAWBk264\n4QYyMjLo1atXnT+kZs2aebEqcdSAAQMYMGCAt8vwOn196KSEhARqamrqvGYymfjyyy+9VJHI+VMQ\niIjGGjhr586d3HPPPSQmJgLw9ttvk52d7eWqRM6PgsBJM2fOZOrUqfj7+wMwaNCgS24suzR9CgIn\nmc1mYmJi7NNdu3bFx0e/Vmla9K2Bk0JCQli+fDlHjhxh27ZtrFixos41BSJNgT66LtBTTz0FQPPm\nzbFarYSFhfHaa6/RokUL5s6d6+XqRM6PvjW4QGPGjKGqqorc3Fw6depUp01XFkpToyC4QNXV1RQV\nFTF37tyzPuLsxD0NRZoCBYGIqI9ARBQEIoKCQJyUk5PDsGHDvF2GOElBICK6oOhSYhgGM2bMYNu2\nbbRu3Zq2bdsSFhbGwIEDWbhwIYZhYDabmTlzJu3bt2fYsGGMHTuWr7/+mvz8fKZPn87AgQPZsmUL\nycnJhIeHExsba19+eXk5ycnJlJaWYrPZuPvuu7npppuYP38++fn57N+/n8mTJ9OzZ08v/hbkrAy5\nZKxbt8645ZZbjOrqauPw4cNGQkKCMXv2bGPEiBFGWVmZYRiGsWLFCmPChAmGYRjG0KFDjQ8++MAw\nDMNITU01xo8fbxiGYSQmJhqrVq0yDMMw3nrrLWPo0KGGYRjGtGnTjOXLlxuGYRiHDx824uPjjZKS\nEuPVV1817rjjDqO2ttaj2yuO0xHBJeSHH36gf//++Pr6EhQUxPXXX8+ePXuwWq38+c9/BqCmpqbO\nHX1P3LQjMjKS8vJyAH788Uf69esHwLXXXsvixYsB+Oabb/j+++/58MMPgePjMPLz8wG48sorL/k7\nBTdmCoJLSG1tbZ0BUT4+Pvj7+xMZGWn/z3w6s/nkn4hxyiUnJ5Zz6k1Z/P39SU5OplevXnWWsXr1\navz8/FyyDeIe6iy8hHTp0oWtW7diGAZHjhxh7dq1tG/fnrKyMnbu3AnApk2bWLZsWb3LiYmJYevW\nrQCsX7/e/nq/fv347LPPADh69CjTpk2jurraTVsjrqQjgkvI4MGD+c9//sOtt95Ku3bt6NOnD82b\nN+eFF15g6tSpBAQEADBjxox6l/Pkk08yc+ZM2rVrR48ePeyvT5gwgaeffprf//73VFZWkpiYWOeI\nQhovXWJ8CTl06BDp6emMHj0ak8nE+PHjGTVqFKNGjfJ2aeJliutLSPPmzdmyZQvvvvsuAQEBdO7c\nmZEjR3q7LGkEdEQgIuosFBEFgYigIBARFAQigoJARID/A08VdAFtIKSSAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
- ]
- },
- {
- "metadata": {
- "id": "oM5B03VaXH2f",
- "colab_type": "code",
- "outputId": "5bdb1a15-0aaa-4874-ff09-27b2b7adc182",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 324
- }
- },
- "cell_type": "code",
- "source": [
- "# comparison of race/ethnicity and parental level of education\n",
- "\n",
- "x = pd.crosstab(data['race/ethnicity'], data['parental level of education'])\n",
- "x.div(x.sum(1).astype(float), axis = 0).plot(kind = 'bar', stacked = 'True', figsize = (7, 4) )"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 182
- },
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEgCAYAAAAOk4xLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlAFPX7wPH37C73jYAoeOGNR2qa\nZ2leWXZYmZKVpqZdluaRiSWWilpmGh559fMqs76S3VqWaZ6oeKHiAYp4IaDc57L7+4NcJUBwRXaA\n5/XX7s7OZ559ZOZxZmc/j2I0Go0IIYQQKqSxdABCCCFEcaRICSGEUC0pUkIIIVRLipQQQgjVkiIl\nhBBCtaRICSGEUC1deW8wPj61vDdZam5u9ly/nmHpMCocyZv5JHfmkbyZR8158/R0KvJ1OZO6hU6n\ntXQIFZLkzXySO/NI3sxTEfMmRUoIIYRqSZESQgihWlKkhBBCqJYUKSGEEKolRUoIIYRqlapInTp1\nip49e7J27dpCy3bt2kX//v0ZOHAgCxcuLPMAhRBCVF0lFqmMjAymTZtGx44di1w+ffp0QkJCWLdu\nHTt37uTMmTNlHqQQQoiqqcQiZW1tzbJly/Dy8iq0LDY2FhcXF2rUqIFGo6Fr167s3r37ngQqhBA3\nfPvttyW+Jzx8PwMH9iv163fr119/YvToN+5onWPHInjmmb68++47Zm938+ZfGTVqpNnr386PP35v\nejxo0LNcu5Z4T7ZzOyXOOKHT6dDpin5bfHw87u7upufu7u7Exsbedjw3N/sy/UHZiF/Dy2yssrbs\nsTaWDqFYkjfzSN7MU5Z5y0lJ4lDIQv5wbHDb9yWduUhidi6B+07f9vWyypuTky3W1tpiZ04oyrFj\n4XTo0J5PPvmkyOWlyVtc9BWupGYW+px3KycliUNfrmBPjeYA1H1nFnOirkHUNaD8/t7KfVoktU7J\ncS+oeQooNZO8mac88xYevp/58+fQtm17du36B71eT1DQDJo3b0FWVhbBwR9y+vRJ9Ho9Xbt2h/Z9\nATi84COc6zUm4UgYjQJexcHbhzMbVpJ6/gzGPAO1ez+Nd/tuAGx/53kaD3qDC9t+ITclGd/uT+Db\n7TEOzQ8iOzmRfTPHcf+E2aRdiObMhpXk5WSjKAr1nx6CW+MWpfocBn0ukydPYc+e3ej1uTz55NMM\nHjyMRYvmk52dzTvvvAtAUlIS/fs/zsaNm4iPv8qnn84iISEBa2srAgODaNLEn9TULHJy8or8d/ju\nu2/44YcNGAwGateuw8SJH3Do0AFWrVpFXl4eQ4YMZc6czwusc/ZsNIcXfEhOShKKzorGAa/iVLs+\nRoOBqO9XkRhxAGtnV1zqNzWtc3jBR3h3eJjqbR8s9PzaiUNE/7AWoyEPO88aNB70BlYOjiRG7Ofs\nr99i1OvR2tjSKGAkjj51C+V5x4SXaB+0ABvXalzcvolH5gcW+Dxubm7MmDEVb+8aHD16mNjY89Sq\nVZtZs+Zia2tb4r/FPZkWycvLi4SEBNPzuLi4Ii8LCiEqn3PnzuLv34x160IZPHgYn346E4Dvv/8f\nGRnpfP31BlasWMtvv/1EcnSkab20C9G0nfgJLvUaEfXDWlAU2r73Ka3emUbMpv+Rfvnm1ZiMKxe4\nf/wsmr0ynnO/foPRYKDR869i4+ZBu0mfotHpOPXtcnwffpx2kz6lVo8nOf2/FaX+DLF//cTZs2dZ\nvfob1qz5lr///pOdO/+hW7ce7Nz5j+l9O3du5/7722Fvb8+kSePp0+cxvvkmlPHjJ/Hee+PQ6/XF\nbiMi4ijr1q0hJGQJX3+9gerVvVmyZAEPP9yTZ54ZQLduPQoVKIPBwKRJ4/Fq+xDtAj+jYf/hHPvy\nU4x5eVyPPMz1k0do+94cWr45heSoEyV+zrzsLCLXLqTpkNG0C/wMO4/qnPvtW4x5eZz8+gsaDRhB\nu8C5VGt+P9E/fAVQKM83pJw7TezWnwp9nhu2bt3CRx/NZP36jSQlJbF9+9ZS/3sU5a6KlK+vL2lp\naVy4cAG9Xs/WrVvp3LnzXQUkhKgY7Ozs6N69FwBdu3bn9OlTZGVl8fzzLzJr1lwURcHZ2Zl69eqT\nlXjVtJ5709YomvxDz7Vj4fg89CiKRoO1ozMeLduRcCTM9F6vtl0AcPSthyE3l5zU5EJx3D9+Fp6t\nOgDg7NekwLZKcu1YOM880x9ra2vs7Ozo06cv27b9hb9/c4xGI6dPnwJg+/atdO/ei5iYcyQlXaNv\n36cAaNmyFa6ubkREHCl2G7t376Bbt+64ueV/NfL44/0IC9tz27hubOfGWaWLX2OsHJxJPneK5KhI\n3Ju2Rmtji9ba2vTZbyf57ClsXKvhUKMWAPWeeIH6/QajaLV0mPYFznUb/rudkvN37fhBPFu2L/bz\ndOzYBWdnF3Q6HfXr1ycu7kqJ8d1OiZf7IiIimD17NhcvXkSn07F582a6d++Or68vvXr1YurUqYwb\nNw6Axx57jHr16t1VQEKIisHJyRlFUf59nH+pJi0tlfj4q4SEfMb58+fQaDRcvRpH7aYPmNbT2TuY\nHusz0zmxej6KJv97akNuDp73tb/5Xjt7AFNRw2goFMfVAzu4uH0TedlZGI0GMBpL/Rn0mel8/vlc\nlizJ//lMbm4uTZs2A6Bbt+7s3LkdX99aHDlymKCg6URFnSErK4sXXuhvGiM9PZ3k5MLF84akpOt4\neHianjs5OZOUdP22caWlpZKVlcX+WeNNr+VlZaBPTyM3Iw1rFzfT67fms9jPmZ5qyiVQ4Mzo0vZN\nxO3bjkGvx6DPLXGs3LSUAtv/7+dxcLgZj0ajJS8vr8Qxb6fEItW8eXPWrFlT7PJ27dqxfv36uwpC\nCFHx3HpgTk1NAfIPWDNmTKVx46bMnDkHrVbL668PI7uYMayd3Wg2bJzpf/h3KjvpGqfWL6P1O9Nw\n9KlLZvxl9gWPLfX61s5ujB05ks6dHyy0rFu3Hsyf/yn16vnRqlUb7O0d8PDwxMHBga+/3lDo/b/+\n+lOR23B3r1YgVykpSaazkOLc2M59kz4ttCwl5jR5mTe/289Nu/kdmKLRYDTcLOT6zHQAdA5O5Kbf\nfF9eTjb6jDSyricS+9dPtH5nOrbunlw/eYRT65fdNjYrJxdy09Pu6PPcDZlxQghhluzsLLZv/xuA\nrVv/pEkTf2xsbLh+/ToNGzZGq9Wyb98eYmNjycvOKnKMas3bcnnXFgCMeXlEfb+a1Nizt92uotHm\nnzXl5ZGbnoLWxgZ7r5oY8/K4vPsvgGK3V9T2f/55I3l5eRiNRlauXM6ePbsAaN68JdeuJfLrrz/R\nvXtPALy9a+DpWZ2tW/NjTkpKIigokMzMzGK30bFjZ7Zv30pychIAP/wQSseOXW4b143txB/aC+Sf\nvZxY/Tl52Vk4123I9ZNHyMvJJi8nm/hDNy+1WTu7kn7pPAAp506RGX8ZyL9cmJOaROr5KADO/x5K\nzOZQctOSsXJ0xsa1Gnk52flnVDnZGI3GAnm+lbt/axKOht3R57kb5X53nxCicvD2rsGRI4dYtOhz\n9Ppcpk2bBcCQIcMICfmMlSuX8eCD3Rg6dAQhSxbh6FO30Bh1H3uOM//7P9PZj1uTljjWrH3b7TrU\nrI2VvSO7g16jzdhg3Ju2Yl/wWKycXPB76kWSo09yeMFH+D31YomfoWaX3lTf+wsvvTQAo9FIkyb+\nDBgwCABFUXjooW789NNGgoJmmF778MNgPvkkmGXLFqPRaBg48AXs7OyK3Ya/f3NeeGEIb745AoPB\nQMOGjRg3btJt47qxnTemfMC5375FURR8uj2G1saWas3u59rxg+ybORZrJ1fc/Vubbp7w6dqXyDUh\nXDtxCNcG/rg1bgmA1toG/5ffIXLtQsCInYc3jQe9jtbGlks7/iBsxhhsXNyp3+8lUmLOcGLlPBo9\n/9rNPI+baYrNuU4Davd46o4+z91QjMY7uIBbBsr6Ntmy/m1AWQpu19DSIRRL8mYeyVu+8PD9zJ49\nnfXrN5bq/ZI381SlvElnXiGEEBWOFCkhhBCqJUVKCHHH2rRpW+pLfULcDSlSQgghVEuKlBBCCNWS\nIiWEEEK1pEgJIYRQLSlSQghxl/bs2cX33/+v2OVXrlzh+PGIYpeHh+9nxYold7TNxGPhnPx68R2t\nUxHJjBNCiHJz5c/bN0W9U949zJvzr6x16NDptsvDw/eRmZmBv3/zcoqo8pAiJYSotPRZGUSuWUBe\nTjaGnGzqP/MyznUaEPvnj/ktQRQNqx/pxeDBw1i7diXbtm1Fo9HQufODDB48jPDw/SxdugidToen\npxeTJk1Bo9EwfXoQcXGXsba24f33P2Tfvr1ER0cxatQYQkLmcvz4MXJycujX71m6dOnKl18uRafT\nUb26Nz4+tfjss49RFAV7e3sCA6fi798cP78GXLlyhWnTPkCj0ZCXl4ftU8Owdb85g3r6pfNEfr0I\nK3tHbKtVN71+acfvXD2wExQFjxZt8X34cbKTEjm+cj4anRYXv6YkR0dy36gphM14Byffurg2bolz\n3Yac2fB/KIqC1saOxoNeQ2fnUOR4liJFSghRaeWkJOPd4WE8WrTj+ukILvz1E/5D3+HC1p/p8OFi\n0GhwupjfC+qbb9ayceMmtFotGzfmz3I+Z85MPvtsIdWrezN37mz++GMTBoOBatWqMXXqDLZs2cyO\nHduxsbEBIDs7G2/vmrz11liys7MYMKAfTzzRj0cffRxXV1e6dOnK6NGvM2FCILVq1SY09DtCQ79l\nyJDh2Nra8s03a2nXrj0vv/wKJ09GEnIkukCRivk9lDqP9MejRVtOf7cCYx5kJl4l/vBe7nt7KgCH\nPw/Co1UHLm7/Dc9WHfDt9hjRP35lGiMrMY5mw8biUKMWRxZNp9GAV7DzrMGlHb9zacfveLbpXOR4\ntm4e5fAvVpgUKSFEpWXt5ML530O5sPUXDPpctNb5xcTjvvYcWTwDrzad6f1K/kS03br1YMyYN+jV\nqw+9e/chJSUZRVGoXt0byP8B86FD4ej1ebRt2w6Anj0fAW626bCxsSElJZnXXhuGTqcrsm/U8ePH\nmD17OnCjf5W/adkDD3QgMHACqampPPxwD1Mzwhsy4i7iXK8RAC4N/Ll+4hCp56PIjL/CkYXTANBn\nZ5F1LZ6MuEt4tuoIQLXm95tmQNda25pao6SejzK15jDo9TjV9it2PClSQghRxi5u+xUbF3eavPgm\nqeejTGcUDZ8bTkbcReIP7eGtt15l6dJVjB8/iZiYc/z11x+89darfPrpAm6dfzs3NxdF0aDVGjEY\nip6X++DBA4SH72fBgvzLe716Fe5TZWtrS0jIElPDyFv5+TVg5cp1hIXt4YsvFpDp357q7R66+Qaj\n8eZ6/zaA1Gh1uPu3ptGAVwqMFbvlh1u2cXNbik5reqyxsqblmx8UiCXhyL4ix7MUubtPCFFp5aan\nYuvhBUDC0f0Y8/ToMzOI2bwB++o+1HnkWZycXEhIiOf//m8ZderUZejQETg5uaDValAUhStX8tuf\nHzoUTpMmTWnSxJ/w8H0A7Nz5D6tXf2naXnJyEl5e1dHpdOzYsY28PAO5ubmm75gAGjRoaOpZtWXL\nZvbvDzOtv2XLZqKjz/DQQ90YMeINUmOjC3weO6+apteSTh8HwLFWPZLPHCPv3z5QZ0JXkZeTg51H\nddN7r0UeKjI/DjXrcD3yMABXw3dx/VREseNZipxJCSEqrertHiLyq0XEH9qLz4O9iQ/fRcKRMHLT\nUjj42ftorG14qlMHvL1rkJR0nREjBmNnZ0/z5i1xdnbh3Xff58MPJ6PVavHx8aVHj94YjUb27w9j\n1KiRaLU63n9/Kvv25TcnbNu2PV99tYpRo0by4INd6dSpC3PmzKRnz95Mnz4VV1c3Ro8ez8cfz+Cr\nr1ZhbW3D1KnTTfHWqlWHOXOCsbOzR6PRULPngAKfp3avpzn1zRdc3L4Ju2pe5OXpsXXzwOehRzkc\n8iGKRkO1Fm3RWlvj81Afjq+aT8LhMJzqNEDRFD4nafDMEE6tX0bsnz+gsbKmyYtvYeXgWOR4liL9\npO4h6VNjHsmbeSRv5qmseUu/HIs+MwMXv8ZcDd9J0unjNBo4osxiK69+UnImJYQQlZDW1o7T360A\nQNEoNAp4zcIRmUeKlBBCVEK2bh60+vc28opMipQQQqjUa7p1lg7hNqaUy1bk7j4hhBCqJUVKCCGE\nakmREkIIoVpSpIQQldaVsG1E/7DW7PXDw/fz/vvvluq9ly9fYvjwl0o97p225giPuMIXaw7e0TqV\ngdw4IcQdkC+y705y6rIyHc/Fqex+9yPUSYqUEKJSy7oWz9Gls8lOSsS366N4t3+YuAM7uPTPZhRF\nw+wWzZg4cTJ6vb5QCw6AjIxMPvroA86cOcXDD/dk6NARnD0bXajdxq2KavGxZctm9uzZRUJCPB9+\nGFxka44pU6bh7V3DNM75SyksXhOOo701Xh4Optd/336WXfsvoCgKbVt607dHAxKvZzL/y/3odBqa\n1K/GyahEPhjdmXc++pN6vi60aOpJw7rurPzuKIoCtjY6XnuxNQ72VkWOpxZSpIQQlVpG/GXajAsm\nLyuTA5+8R/UHumHIzqbFq++hs3Pg/MqPiYo6w/HjEYVacNSpU5dz56L5+usNGAwGBgx4kqFDRzBv\n3ieF2m307v2oaZtFtfhQFIW4uCt88cWXpgld/9uaIyEhoUCR+n7TKZ59tDFtW9ZgxfrD5AFXE9IJ\nO3SJoHe6ADD1sx20b12TTX9H06F1TR7rXp+vNx4zjXE1IZ1xI9rhW8OZGSG7GB7Qkhpejvyx/Sx/\n/HOWTvf7FDmeh7t9OfzrlEyKlBCiUnOp1xiNVofGwQmdrR369FR09o4cWzEHACXxCsnJSZw8GVmo\nBUd4+H4aN26Cra0tgGlW9Nu12yiuxUejRk1o2tS/wIzj/23N0bx5ywKxX7ySSqN67gD4N/Dg8PGr\nRMUkcSU+nemf509Sm5WlJ/5aJhfj0ujQxid/my28iYpJAvLPmHxrOAMQFXOd5evyJ5TN1RuoX8e1\n2PGkSAkhRHn4T0cMo9HAmQ1fcv+E2Vg7u6L/biEAWq2myBYcWq220GtFtdu4fPmSaYNFtfgA0Oms\nCozz39Ycffs+yaOP3uyCazTmT2mU/9j47xgaWjWrzisB9xUY68ffT6P59723dgHRam/eH2dtreX9\ntzsViHvf4ctFjqcWcnefEKJSSzl3GqPBQE5aCnk52SgaLYpWi7WzK1nXE4mMPIFer79tC47/ul27\nDWdn5yJbfBTlv605Tp48UWB5TS8Hos/nnxEdO50IQL1aLhw/lUB2jh6j0ciq/x0lJycPLw9703sP\nH79a5Pbq+LiYlu06cJGIk/HFjqcWpTqTCg4O5vDhwyiKQmBgIC1b3jwl/eqrr/jxxx/RaDQ0b96c\nyZMn37NghRDiTtl71eT4ynlkJVyh7mMDsHJwwq1RC8LnTsaxZh0GDXqJzz+fy5dfri3UgiM29nyR\nYxbVbiM9Pd20vKgWH7///luhcf7bmmPMmAkFlvfr04glaw+x6e9ovKrZk6cHD3d7Hu3mx0fzdqLR\nKLRtWQNray19uvnx+f/tZ+/BSzSo62Y6q7rV4Gebs3zdYX7ccgZrKw2jhtyPo4N1keOpRYmtOsLC\nwlixYgVLliwhKiqKwMBA1q9fD0BaWhpPPvkkv//+OzqdjmHDhvH222/TqlWrYseTVh3qIHkzz/mD\nH1k6hGLVbq3eW9Dl7808d/L3duFyCumZuTT2q8au/Rc4djqREc/fu0t4Zf33Znarjt27d9OzZ08A\n6tevT3JyMmlpaTg6OmJlZYWVlRUZGRnY29uTmZmJi4tLmQYuhKj45Pdl956tjY7l3xxBIf97rFdf\nKP5koSIpsUglJCTQrFkz03N3d3fi4+NxdHTExsaGN998k549e2JjY0Pfvn2pV6/ePQ1YCCFEYR7u\n9kz99zbyyuSO7+679epgWloaS5YsYdOmTTg6OjJkyBAiIyNp0qRJseu7udmj06nneue9VNzpqxqo\n+X+2np6fWDqEYhX9DYU6qPnvTfJmHslbKYqUl5cXCQkJpudXr17F09MTgKioKGrVqoW7e/59/G3b\ntiUiIuK2Rer69Yy7jbnCKOvv36oKyZt5JG/mkbyZp6zzVlzRK/EW9M6dO7N582YAjh07hpeXF46O\njgD4+PgQFRVFVlYWABEREdStW7eMQhZCCFHVlXgm1aZNG5o1a0ZAQACKohAUFERoaChOTk706tWL\n4cOHM3jwYLRaLa1bt6Zt27blEbcQQogqoFTfSY0fP77A81sv5wUEBBAQEFC2UQkhRBk4fjqB37ef\nZczwdgVeX70hgj5d6xWYtPVW/fs/werV67G3v7upgVasWIKrqyvPPjvQ7DFGvreJpbP63FUcFZlM\niySEKDdZC6PLdDzbN/3MWm/ws83LNA5x70iREkJUalnZehauOsD5iym0b12TZx5tzLT5O3n5uRbY\n21kx49WhWFlZcd99rTl8+CALFiwFYMOGb9mzZyd5eXnMnRuCvf3Ns66wsD0sW7YIGxtb3NzcCQqa\nTkJCPNOnB2EwGPD2rsHkyVMBiI6O4t13xxAbe57Ro8fToUMn/vzzD9av/wqtVkvjxk0ZM2Y8aWlp\nzJgxlbS0VPR6PWPGTMDOEglTGZm7TwhRqV28ksYrz9/Hh+MeZPP2swWW/bY1iu7de7JgwVJyc3MK\nLPPzq8/ChcuoXt2b/fv3FVi2YcN6Ro16hwULltKzZ2+Sk5NYunQRAQEvsGjRcjw8PIiMzJ+HLzk5\niY8/nseYMRP44YcNZGRksHTpQubNW8TixSu4dOki4eH7+e67dTRr1pyQkCWMHj2OkJC59zYxFYQU\nKSFEpVbX1wUbax22Njr+Owncxbg0WrTInzqoc+euBZa1bJk/Y4Onpxfp6WkFlj38cE8++WQmq1d/\nScOGjalWzYNTpyJNY73xxmiaNWv+n3E8SUtLIzb2PL6+tU3fd7VufT+nTkUSGXmc1q3zbzxr0sSf\nCxdiyzALFZcUKSFEpabVFp5o1cQIGk3+YVD5z9tubdHx3ylO+/TpS0jIF7i4uDJx4jvExJxDoym5\n1YfRaERRCo6n1+ei0WhQlIItPgwGQ6k+X2UnRUoIUWV5edgTGXkcwNR6ozRWrlyOVqvjqaeeoUeP\n3pw7F12g1cfy5V+wb9/eItetVasOFy6cJyMjf9b0gwfDadzYnyZN/Dl4cD8AERFHqVev/t18tEpD\nbpwQQlRZfbr58cU3oWzd+hf+/s2KbHBYlOrVvRkz5g2cnJxxcnIiIOBFmjTxJzj4I77//n9Ur16d\noUNHcOTIoULr2tnZ8eaboxk37i0URUPLlq24775WNGzYkODgD3n77dcwGAyMHTsRkr8q649c4ZTY\nqqOsSasOdZCWE+aRvJlHrXm7cDkFR98XadmyFX/8sYnw8ANMnKiennhqzRuoqFWHEEJUVrY2OhYv\nDkFRFDQaDZMmqbfQV1UVvkipeTbvytKnRojKysPdnsWLV1g6DHEbcuOEEEII1ZIiJYQQQrWkSAkh\nhFAtKVJCCCFUS4qUEEKUwpUrVzh+PKLU7x81auQdjZ+RkUH//k/caViVXoW/u08IUXH8svmhMh2v\n7yPby3S82wkP30dmZgb+/tLmozxJkRJCVFrb9pznxJlEUtNzuHA5lYGPN2HXgYtcvJLKm0Pup0Fd\nN0JC5nL8+DFycnLo1+9ZnniiX6FWHGPHTuTLL5ei0+moXt0bH59afPbZxyiKgr29PYGB+S02Pvro\nA+zs7Hn22QG8//5H6PV6PvroAxITE8jJyWH48Ffp0KGTKb709DQmT36XnJwc00S0AIcPH2TJkoXo\nMy9Qzc2WEc+3AgUWrQon4XomDeu5sffgJRZM6820+TvxrZH/Q9iAJ/1Z8tVB0jNyyTMYebl/c2r7\nuBB5JpH1P51Aq9WYxtPpKsaFNClSQohK7Up8OkFjOrN113l++OM0Myd2Y9ve8+w6cJHaPs54e9fk\nrbfGkp2dxYAB/XjiiX6mVhz33deabdv+wmDI49FHH8fV1ZUuXboyevTrTJgQSK1atQkN/Y7Q0G/p\n3ftRTp8+yYYNP+Pi4grAyZORJCcnsXDhMlJTU9m9e2eB2DZv/g0/v/q8/fY4/vzzd7Zs2QzAvHmf\nMH/+YpKi5vP1xmPsOXgJO1sduXoDH417kPCIK2z6+2YDyVo1nenZpS6hm05yX1MvHu5UhwuXU1m9\n4SiBozqxasNRJo/qhKODtWm8Lu18y+8f4S5IkRJCVGp+tV1RFAVXFxtq13RGo1FwcbLhZOY1rK20\npKQk89prw9DpdCQlXQdutuLo3bsPPXs+QrVqHgXGPH78GLNnTwcgNzeXpk39AfDx8TUVKIA6deqS\nkZHOtGkf8NBDD9OzZ+8C45w7F02rVvcD+S07AK5dS+TChVgCAyeQnRZDdk4eTo7WXE+GRn5uALTy\nr45Gc3Pa9vp18rd5Ovo6KWnZ7Nh3AYDsnDySU7K4cjWdz5bvM73m5GhdBpktH1KkhBCVmvaWg7lW\nc8slLiOcOJ1AeHgsCxbkX8rr1etBIL8VR/v2Hdm+/W8mTnyH6dM/LjCmra0tISFLUG7p73H58iV0\nOqtC71uyZCVHjx7ht99+YufOfwgMDLoZghFTsbnR5kOns8LDw5MFC5YWmLvvxz9Om96rKBTYtk6r\n+XddDUOea0Gjeu6mZWkZObi72vLB6M53kDX1qBgXJYUQ4h5ITc/By6s6Op2OHTu2kZdnIDc3t8hW\nHBqNhry8PAAaNGhoau2xZctm9u8PK3L8kycj+eOPTdx3XyvGj5/EuXMFOwPXrl3H1ME3PDy/TYez\nszMAZ8/mX87bvC2a8xeTqe7hQPT5JACORMaTl1e431T9Oq4cOHIFgAuXU/nlrygc7a1Nz28dr6KQ\nMykhRJXVvLEnm3fFMGrUSB58sCudOnVhzpyZtGrVplArDnt7e6ZPn4qrqxujR4/n449n8NVXq7C2\ntmHq1Omkp6cXGr9GjZosWbKQH34IRaPRMGjQSwWW9+nTl8DA8Ywe/TotW7YynR29994UgoM/xJB9\nGTcXW7p3qoO3lyN/7znP1M9VknTTAAAexUlEQVR24N+wGk4OhS/ZPdLVjy/WHuTDz3ZgMBoZ0r8F\nACMGtWLJVwfRaTWm8SqKCt+qoypNZV+WJG/mkbyZR/Jmnlvzlpaew/HTCTzQqibXkjKZEbKbTz/o\nbrHYpFWHEEIIE1tbHXvCL/Hzn1EYDEZeeqaZpUMqF1KkhBCiAtBpNbw9rK2lwyh3cuOEEEII1ZIi\nJYQQQrWkSAkhhFAtKVJCCCFUS4qUEEKUs1GjRhIdfYYVK5awYcN6S4ejanJ3nxB3oKxbTZSl11tb\nOgIhyp4UKSFEpZVwLYNFq8PRaBTy8oy8MaQNbi62LF93mKuJGej1Bt54ew8PPNCBAQOe4oknnubv\nv//E19eXxo2bsnXrFnx9axMUNJ2EhHhmzpyGXp+LRqNh4sQP8Pb2LrC9efPmcPx4BFqtlgkTJuHn\n14BFi+Zz9Ohh9Po8nn12AH369C0y1iVLFnLkyCEMhjyeeWYAvXr14fzFZBavPYiDnRX1aruSmprD\nay+15vftZ9m1/wKKotC2pTd9ezQoj3RaRKmKVHBwMIcPH0ZRFAIDA2nZsqVp2eXLlxk7diy5ubn4\n+/vz0Ufq/WW5EKJq2XvoMs2bePJMn8acjU0iKTmLE6cTsbLSMGV0Z64nZzFz7sd8800oBoOBxo2b\n8OKLQ3j22cfp2rUHy5at5pln+pKamsqyZYsJCHiBdu3as3v3DlatWs7Eie+btrVv316uXo1j6dKV\nHDoUzp9//kFKSgrR0VEsXvwlmZmZDBkSwEMPdSsU5+HDB4mLu8LChcvIyclh2LAXeeihbixceY16\nPk9Tq0YL/jmwGp3WjfXfN2PP4WP06BAIwOZtC0hPbYGDnVt5pRUovzP3EotUWFgYMTExrF+/nqio\nKAIDA1m//uY11FmzZjFs2DB69erFhx9+yKVLl6hZs+Y9DVoIIUqjZRNP5i7fR0ZGLg+0rkmjeu7s\nOnAR/wb5rTfcXGyxtrYiJSV/wtWmTZuhKApubu40atQ4/z1u7qSnpxERcYTz52NYtWoFBoMBV9eC\nReHUqUhatLgPgFat2tCqVRu++WYtrVq1AcDOzo66df2IjY0tFOfRo4c5duyoqeW80WggISGB5LQ4\nPN3rAuBbvRlXEk6TkBRLSnoCW3YvBiBXn01axrVyL1LlpcQitXv3bnr27AlA/fr1SU5OJi0tDUdH\nRwwGAwcOHGDu3LkABAUF3W4oIYQoV7VqOjPrva4cORHP+h9P0LVDbQBunbA0NzcXRcm/h0yr1Zpe\nv/Wx0WhEp7Ni2rTZeHgU7C11g0ajxWgsODO5oijcOjtq/qVChf+ysrLi8cef4qWXhhYeWLlxf1v+\nelpFi49XU9q37F/cx65USixSCQkJNGt2c44od3d34uPjcXR05Nq1azg4ODBz5kyOHTtG27ZtGTdu\n3D0NWJQNuQFAVAW7DlzEq5o97e6rgZOjNXsPXqJ+HVeOn06g0/0+JF7PRKPR4ORU9OSmt/L3b84/\n//zN00/358CBfSQmJtK7dx/T8qZN/Vm7diWDBg3m1KlIfvrpB3r2fIRVq1bw0ksvk5GRwcWLF/D1\nrV3k2AsXzueFF4aQm5vLokXzeeedd3G0r8a1pFhqejXhUnwkGkWDu6svByN/QZ+Xg1ZjxYFjP9Cq\naV90WqtC41YGd3zjxK2TphuNRuLi4hg8eDA+Pj6MHDmSv//+m27duhW7vpubPTqdttjld+p8mY1U\n9oqb1VfcnuTNPGrOm6X20xpeDqz45gi2Njo0GhjSvwXeng4cP53I9M93otcbmDEjBE9PJ7RaDR4e\njjg4OKDTaXB3d8DT08n0eMKEdwgMDGTbti0oisLMmTML5LxXr64cOLCb0aNfBfKvLDVu3JijR/cz\nZsxr6PV63n13ArVre2FtrcPNzQEHBxscHW3p3r0Lhw/vY9SoVzAajQwaNAhPTydaNOzJniPfEnl2\nOy6O3uTqs3Cwc6NJvQf5Y9ciFEXB17u5RQpUef29ldiqIyQkBE9PTwICAgDo0aMHP/zwA46Ojuj1\nep588kl+/fVXAJYvX47RaGTEiBHFjietOtRh8ay/LR1CsV5/r5ulQyiW5M08sp+aZ9rEVWi1Vrg5\n1yTizJ9ghOYNe1g6LKDs/96KK3ol/pi3c+fObN68GYBjx47h5eWFo6MjADqdjlq1anHu3DnT8nr1\n6pVRyEIIUbVpNDr2HP6W33ct5GpiNA3rdLR0SOWuxMt9bdq0oVmzZgQEBKAoCkFBQYSGhuLk5ESv\nXr0IDAzkvffew2g00qhRI7p3t1wTLiGEqEzcXXx49MExlg7Dokr1ndT48eMLPG/SpInpcZ06dVi3\nbl3ZRiWEEEIgc/cJIYRQMZkWqYrqcWalpUO4jW6WDqBYkjchypecSQkhhFAtOZMSQogycPnyJd5/\nfyIrVqwp8PqaNStp3boNzZu3LHK9UaNGMnbsu/j5FZ4k9k7O3HckXediThYDvWrcUdy3mnDmJNP8\nGmCrKc1vWbuZvZ07IUVKCFFuvtA/X6bjvaZT/01bL730sqVDqNCkSAkh7jnTNFxl/DvUkqb3Ss+8\nzs6DX6NRNBiMBjq1eh57Wxf2HvmOtIxr5Bn0TJ5Sdq06jEYDc+bM5PjxYzRu3JSJEyczY8ZUunXr\nwX33teb9998lOzubjh0789NPG/nuux8B+OuvLcyf/ynJycnMmjW3wLgxWZmsvXIJnaKg02h4vWYt\nAJZeiiXTYMBOo+U1H18AkvR6Fl44z6WcbPq4e/CgqxuR6WlsSIhDi4K7lRVDvX1QFIVVVy4Sn5OD\n3mikn6cXzR3UOWOJfCclhKi0zl8+Qg2PRvTs+Dptmz1FVnYq5y4dRKu1olenN3io7RDmzv0YwNSq\nY/ny1Rw9egRv75osW7aaw4cPFmjVMX/+YgYMeJ5Vq5YX2l5s7HmGDh3B8uWr2bNnJ6mpN2fY2bTp\nZ+rW9WPx4hU4OjoVmGLOzc2N+fMX06FDJ7Zv/6vAmDuSr/OwmzsT6/jxmLsHyXo9m64l0MzBiUl1\n/PB3cOB4ejoA8Tk5vO5Ti1E+tdlyPRGA1XGXeL1mLd6r44e9RsuelGT2piRhpWh4r44fb/rU5qsr\nl8s892VFzqSEEJVWDY9GbN+/ihx9JrVrtMTTrS7nLh7Eq1p9AOxtXcqsVQeAj08tqlXLnyXd3b0a\n6elppmXnzp2jdev7AejS5SG+/nq1aVnLlq0A8PT0JDk5ucCYrR2dWXPlEldycnjA2YUaNjbEZGXy\ntGd1AHq7529vR9J1/Ozs0SgKblY6Mg15pOXpUVBwt7IGoIm9Aycz002PAdysrNBpFNLy9Gbn+V6S\nIiWEqLRcnWvwWNexXI4/xaETv1K/9gP5C245iymrVh3/XefGerc8M7XpUJSC7Tr+u61b+Ts48kHd\n+hxOS2XFpQsM8PJGg1LofQDaW4Y1GkFBwXhLYxI9RpR/W34UeN1oREPhFiJqIJf7hBCV1rmLB0lK\nuUIt7+bc1+RRriVdoJprLeISowBIz0y641YdAAcO7OP33zfdUSw1a/oSGXkCgD17dpV6vT+vJ5Ke\nl0dHF1d6u3twPjuLenZ2nMjIPyP6+/o1diZfL3JdB60WBYXE3BwATmWkU8/Wjnq2dkT+u/613Bw0\nKNhry647RVmq8GdS0hdJCFEcZ0dPwo5sQKezRlE0tG3WDycHD+ISo9iyezF5hjymTgss1VjDh48k\nOPhDtmzZjKIoBAbeWZPXxx57gkmTxjJq1EjatWuPRlO6cwQvK2sWXTqPvUaLTlEYVsMXK0Vh+eUL\nzI6JxlajZWRNXw6kphS5/hDvmiy5dAEt4GltzQPOLgBEZqTz8fmz6I1GBnurt5t6ia06ylpZt+qQ\n1gnmOfXKy5YOoViNlq+0dAjFkryZR/ZTuHLlMjEx52jfviMREUdYsWIJn3228LbrVKW/t+JadVT4\nMykhhKgIHBwcWb/+K1auXIbRCGPGjC95JSFFSgghyoOTkxNz5y6wdBgVjtw4IYQQQrWkSAkhhFAt\nKVJCCCFUq8J/JyX9fYQQovKSMykhhBCqJUVKCCGEakmREkIIoVpSpIQQQqiWFCkhhBCqVeHv7hNC\nqJ/chSvMJWdSQgghVEuKlBBCCNWSIiWEEEK1pEgJIYRQLSlSQgghVEuKlBBCCNWSIiWEEEK1pEgJ\nIYRQLSlSQgghVKtURSo4OJiBAwcSEBDAkSNHinzPp59+yksvvVSmwQkhhKjaSixSYWFhxMTEsH79\nembMmMGMGTMKvefMmTPs27fvngQohBCi6ipx7r7du3fTs2dPAOrXr09ycjJpaWk4Ojqa3jNr1ize\neecdFixYcO8iFUKIKmb+IC9Lh1CsheW0nRLPpBISEnBzczM9d3d3Jz4+3vQ8NDSUBx54AB8fn3sT\noRBCiCrrjmdBNxqNpsdJSUmEhobyf//3f8TFxZVqfTc3e3Q67Z1utlinymyksufp6WTpEIoleTOP\n5M08krfKp7zyVmKR8vLyIiEhwfT86tWreHp6ArBnzx6uXbvGCy+8QE5ODufPnyc4OJjAwMBix7t+\nPaMMwq4Y4uNTLR1ChSR5M4/kzTySN/OUdd6KK3olXu7r3LkzmzdvBuDYsWN4eXmZvo/q06cPv/76\nK99++y0LFiygWbNmty1QQgghxJ0o8UyqTZs2NGvWjICAABRFISgoiNDQUJycnOjVq1d5xCiEEKKK\nKtV3UuPHjy/wvEmTJoXe4+vry5o1a8omKiGEEAKZcUIIIYSK3fHdfUJUZfK7FSHKl5xJCSGEUC0p\nUkIIIVRLipQQQgjVkiIlhBBCtaRICSGEUC0pUkIIIVRLipQQQgjVkiIlhBBCtaRICSGEUC2ZcaKK\nkpkThBAVgZxJCSGEUC0pUkIIIVRLipQQQgjVkiIlhBBCteTGCSHEPSc36ghzVfgiJX/8QghRecnl\nPiGEEKolRUoIIYRqVfjLfUIIUVllhvWxdAjF614+m5EzKSGEEKolRUoIIYRqSZESQgihWlKkhBBC\nqJYUKSGEEKolRUoIIYRqyS3oQtwBuSVYiPIlZ1JCCCFUS4qUEEII1ZIiJYQQQrWkSAkhhFCtUt04\nERwczOHDh1EUhcDAQFq2bGlatmfPHubOnYtGo6FevXrMmDEDjUZqnxBCiLtXYpEKCwsjJiaG9evX\nExUVRWBgIOvXrzctnzJlCqtXr8bb25u3336bf/75h65du97ToMXdk7vUhBAVQYmnPLt376Znz54A\n1K9fn+TkZNLS0kzLQ0ND8fb2BsDd3Z3r16/fo1CFEEJUNSUWqYSEBNzc3EzP3d3diY+PNz13dHQE\n4OrVq+zcuVPOooQQQpSZO/4xr9FoLPRaYmIir732GkFBQQUKWlHc3OzR6bR3utkKydPTydIhVEiS\nN/NI3swjeTNPeeWtxCLl5eVFQkKC6fnVq1fx9PQ0PU9LS2PEiBGMGTOGLl26lLjB69czzAy14omP\nT7V0CBWS5M08kjfzSN7MU9Z5K67olVikOnfuTEhICAEBARw7dgwvLy/TJT6AWbNmMWTIEB566KGy\ni1YIUanIjTrCXCUWqTZt2tCsWTMCAgJQFIWgoCBCQ0NxcnKiS5cubNy4kZiYGP73v/8B8PjjjzNw\n4MB7HrgQQojKr1TfSY0fP77A8yZNmpgeR0RElG1EQgghxL/kV7dCCCFUS4qUEEII1ZIiJYQQQrWk\nSAkhhFCtCt+ZV25tFUKIykvOpIQQQqiWFCkhhBCqJUVKCCGEakmREkIIoVpSpIQQQqiWFCkhhBCq\nJUVKCCGEakmREkIIoVpSpIQQQqiWFCkhhBCqJUVKCCGEakmREkIIoVpSpIQQQqiWFCkhhBCqJUVK\nCCGEakmREkIIoVpSpIQQQqiWFCkhhBCqJUVKCCGEakmREkIIoVpSpIQQQqiWFCkhhBCqJUVKCCGE\nakmREkIIoVpSpIQQQqiWFCkhhBCqJUVKCCGEakmREkIIoVqlKlLBwcEMHDiQgIAAjhw5UmDZrl27\n6N+/PwMHDmThwoX3JEghhBBVU4lFKiwsjJiYGNavX8+MGTOYMWNGgeXTp08nJCSEdevWsXPnTs6c\nOXPPghVCCFG1lFikdu/eTc+ePQGoX78+ycnJpKWlARAbG4uLiws1atRAo9HQtWtXdu/efW8jFkII\nUWWUWKQSEhJwc3MzPXd3dyc+Ph6A+Ph43N3di1wmhBBC3C3dna5gNBrvaoOenk53tf5//fTpU2U6\nXlUheTOP5M08kjfzSN5KcSbl5eVFQkKC6fnVq1fx9PQscllcXBxeXl73IEwhhBBVUYlFqnPnzmze\nvBmAY8eO4eXlhaOjIwC+vr6kpaVx4cIF9Ho9W7dupXPnzvc2YiGEEFWGYizF9bs5c+awf/9+FEUh\nKCiI48eP4+TkRK9evdi3bx9z5swBoHfv3gwfPvyeBy2EEKJqKFWREkIIISxBZpwQQgihWlKkhBBC\nqJYUqVvExsayZMkSS4dRYRgMBi5evIher7d0KEKIW6SkpBS77OjRo+UYyd2r8kXq6tWrrFy5kgED\nBvDKK69gMBgsHZJqhYeHM3z4cCZPnkxUVBRPPfUUY8aMoVevXmzdutXS4alWTk4O8+bNIzc31/Ta\n6dOn+fzzzy0YVcVx6tQppkyZwosvvsjgwYOZNWsWV65csXRYqjZq1KgCz4OCgkyPP/nkk/IO567c\n8Y95K4OkpCQ2b97Mzz//TExMDL179yYlJcV0q70o2scff8z48eOJj4/nlVdeYcWKFfj5+ZGUlMRr\nr73Gww8/bOkQVenjjz8GCv4Qvk6dOqSlpbFgwYJCBxRx0+7du5k+fTqvv/46Q4cOJT09nYiICF5+\n+WWCgoLo2LGjpUNUpf/eDxcdHV3sMrWrkkWqS5cu1K5dm4kTJ/Lggw+i0Wjo16+fpcNSPWtra9q2\nbQvAypUr8fPzA8DV1RUrKytLhqZqBw8eZMOGDQVes7a25r333uOFF16QInUbS5cu5YsvvqBWrVqm\n15o3b06nTp0YP368FKliKIpi1jI1qpKX+2bNmkXt2rWZPHkyQUFBMimuGWxsbAo8r2h/+OVJq9UW\n+bpGoylwCVAUptfrCxSoG2rXro1GUyUPX2apyPtnlTyTevzxx3n88cdJTk5m06ZNLFq0iOjoaGbP\nns2zzz5LgwYNLB2iKkVERNC/f3+MRiNnz56lf//+QP7lg3Pnzlk2OBVzc3Nj//79prPQG/7++288\nPDwsFFXFcLuDq7W1dTlGUrHc2FeBAvtrRdxX5ce8/4qLi+Pnn3/ml19+ITQ01NLhqNLFixdvu9zH\nx6ecIqlYYmJieOutt6hfvz5NmzYlLy+Pw4cPc/nyZVasWCGF6jbatGljuqx8qxsH2wMHDlggKvWr\nTPuqFCkhyoHBYGDnzp1ER0ejKAp+fn507ty5Ql+GKQ+V6WArzCNFSgghhGrJN49CCCFUq0reOHFD\nZGQkCxYs4Ny5cyiKQv369XnzzTdp2LChpUNTNcmbEBVDZdhXq/Tlvqeffpq3336bVq1aYTQaOXjw\nICEhIWzcuNHSoama5M08leGAYSmSO/NUhn21Sp9Jubq6FpgloUePHnz33XcWjKhikLyZZ9KkSYUO\nGBMmTKhQBwxLkdyZpzLsq1W6SPn5+TF16lQ6deqEwWBg//79eHl5sW3bNgC6du1q4QjVSfJmnspw\nwLAUyZ15KsO+WqWLVEZGBkChyVE3bdoEVIx/QEuQvJmnMhwwLEVyZ57KsK9W6e+kLl26VOTrNWvW\nLOdIKhbJm3kmTZp02+UzZ84sp0gqHsmdeSrDvlqli9Szzz5r+jFlbm4usbGxNGvWjDVr1lg4MnWT\nvJmnMhwwLEVyZ57KsK9W6ct9/52ZOj4+nvnz51somopD8maet956q8IfMCxFcmeeyrCvVuki9V+e\nnp5ERkZaOowKR/JWOpXhgGEpkruyURH31SpdpG49FTYajSQmJtKpUycLR6V+kreyUREPGGohuSud\nyrCvVunvpG6dvFJRFBwdHXF2drZgRBWD5M08xR0wgoODLRyZ+knuzFMZ9tUqX6RCQkI4ceIEGo2G\n5s2b89Zbb+Hl5WXp0FRN8maeynDAsBTJnXkqw75apYvUyy+/zPPPP0/79u3Jzc0lLCyMjRs3smzZ\nMkuHpmqSN/NUhgOGpUjuzFMZ9tUqPQt6Xl4ejzzyCK6urnh6etK3b19ycnIsHZbqSd7MM3nyZB5+\n+GFWrVrF0qVL6dChA5MnT7Z0WBWC5M48lWFfrdJFytramt9++41r166RmJjIL7/8Ii2pS0HyZp7K\ncMCwFMmdeSrDvlql7+4LDg5m/vz5LF68GI1GQ4sWLZgxY4alw1I9yZt5bhww2rdvj9FoZM+ePRXu\ngGEpkjvzVIZ9tUp/J7VkyRJeffVVS4dR4UjezBMXF8f8+fOJiIgwHTDke5XSkdyZpzLsq1X6TCox\nMZGdO3fSokULrKysTK/b2dlZMCr1k7yZZ+PGjXLLtJkkd+apDPtqlS5S27ZtY8uWLQVeUxSFP//8\n00IRVQySN/NUhgOGpUjuzFMZ9tUqfblPiPL0yCOPkJubW+C1inbAsBTJXdVVpYtUjx49Cr2m1Wqp\nVasWY8eOpVmzZhaISv0kb0JUDJVhX63Sl/sGDBiAk5OT6R9y+/btXLt2jfbt2zN9+nTWrVtn4QjV\nSfJmnspwwLAUyZ15KsO+WqWL1Pbt2/nqq69Mz5977jkGDx5c4e+Gudckb+apDAcMS5Hcmacy7KtV\nukjZ2NgQHBxMmzZt0Gg0REREkJuby86dO7G3t7d0eKoleTNPZThgWIrkzjyVYV+t0t9JpaWlsXHj\nRqKiojAajdSuXZunn36azMxMnJyccHJysnSIqiR5M8+wYcNo0KBBgQPGvn37GDVqFF9++SUrVqyw\ndIiqJbkzT2XYV6t0kRKiPFWGA4alSO6qLilSQgghVKtKTzArhBBC3aRICSGEUC0pUkLcA6tWrWLN\nmjXFLo+Li2P37t0AhISE8Nlnn5V67BMnTjBt2rRSLT9z5gzHjh0r9dhCqI0UKSHugR07dtC5c+di\nl+/du5c9e/aYNXbTpk354IMPSrX8jz/+4Pjx42ZtRwg1qNK/kxJi7969LFq0CBsbG9q2bcuePXvQ\n6/WkpaUxePBg+vXrh8FgYPr06URERAAwdOhQHn30USIjI5k9ezZ6vZ7c3FymTJmCv78/OTk5XLx4\nET8/Py5dusSHH35IZmYmGRkZjB07llq1ajFv3jyMRiOurq5A/pnV22+/TXR0NA888ABTpkwhNDSU\nXbt2YTAYOHv2LD4+PoSEhBAWFsa8efNYt24d586d44MPPsBgMGBjY8PMmTM5d+4c8+bN491332Xt\n2rU4OjoSFxfHxo0b+eOPP1AUhatXr/Lcc8/x119/odVqLflPIMRtSZESVV5ERAR//vknly5don79\n+vTo0YOrV6/yxBNP0K9fP3788UcSEhL49ttvSUlJYfz48fTu3ZsJEyawcOFCateuTWRkJIGBgYSG\nhnLgwAHatGkDwNSpUxk2bBgdOnQgPj6egQMH8vvvv/P000+j1+sZOnQoISEhxMTEsGbNGvLy8ujQ\noQNvvfUWAAcPHuSXX37BxsaGXr16ceLEiQKxBwUFMXz4cLp168Yvv/zCb7/9RtOmTQFo3bo1Dz74\nIPfffz/PPfccYWFhhIWF0b59ezZv3sxTTz0lBUqonhQpUeXVq1cPV1dX9Ho9y5cvZ/ny5Wi1WpKS\nkgA4cuQI7du3B8DZ2ZmlS5eSmJjI2bNnmTx5smmctLQ0DAZDgUt9e/fuJT09nYULFwKg0+lITEws\nFMP999+PTqdDp9Ph5uZGamoqAC1btsTW1haAGjVqkJycjEZz8yr9kSNHeOCBBwDo27evaZtFCQgI\n4PvvvzcVqYrWoVVUTVKkRJV3oz/RvHnzqFOnDnPnziU9Pd10NqQoCgaDocA61tbWWFlZFXlzxO7d\nuxk5cqTpfSEhIbi7u982hv+e0dz4+WJxr9/qv7EVp2fPnsydO5dz586h1WqpU6dOqdYTwpLkxgkh\n/pWQkEDDhg0B+Pnnn9FoNOTk5NC6dWv++ecfIP9s6bnnnsPGxgZfX1+2bdsGwNmzZ1mwYAEJCQlY\nWVnh4uIC5J8h/fbbbwBcu3bNdPaiKAp6vf6uY27Tpo0ptl9//ZW5c+cWWK4oiqkPk7W1NY888giT\nJk3imWeeuettC1EepEgJ8a8XX3yR+fPnM3ToUBwcHOjYsSPjxo3j0UcfxdfXl4CAAIYOHcrQoUOx\ntrZm9uzZLFmyhBdeeIH33nuPzp07s2PHDjp27Ggac/LkyWzZsoVBgwYxcuRIOnToAEDbtm0JDQ1l\n3rx5dxXzBx98wNdff81LL73Ed999x/PPP19geYcOHVi4cKFpctann36aM2fO0KdPn7varhDlRaZF\nEqIKWb58OSkpKYwdO9bSoQhRKvKdlBBVgMFgYNCgQTg7OzN//nxLhyNEqcmZlBBCCNWS76SEEEKo\nlhQpIYQQqiVFSgghhGpJkRJCCKFaUqSEEEKolhQpIYQQqvX/Nrsw2kVHoXcAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
- ]
- },
- {
- "metadata": {
- "id": "hw0nW8fYZbkB",
- "colab_type": "code",
- "outputId": "62244083-effc-4763-cfb8-c042f64a7b7c",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 418
- }
- },
- "cell_type": "code",
- "source": [
- "# comparison of parental degree and test course\n",
- "\n",
- "sns.countplot(x = 'parental level of education', data = data, hue = 'test preparation course', palette = 'dark')\n",
- "plt.show()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "/usr/local/lib/python3.6/dist-packages/seaborn/categorical.py:1468: FutureWarning: remove_na is deprecated and is a private function. Do not use.\n",
- " stat_data = remove_na(group_data[hue_mask])\n"
- ],
- "name": "stderr"
- },
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFYCAYAAAClCA4fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlcVOX+B/DPwDAiiGwCigtZpqSg\niaRXzQzB5ZaWdc0FwUzNHe2mgrK44UaaC2q5L4GWXpc00zBNsxRxQcElN9wQlEXZkW14fn/w4vxA\nQIeEGTh93n/BmXOe5zvPnDMfzpnhPAohhAARERHVanq6LoCIiIheHgOdiIhIBhjoREREMsBAJyIi\nkgEGOhERkQww0ImIiGRAqesC/o6kpAxdl0BERKQ1VlYmL1yHZ+hEREQywEAnIiKSAQY6ERGRDDDQ\niYiIZICBTkREJAMMdCIiIhlgoBMREckAA52IiEgGGOhERCQ7W7ZswK1bN3VdhlYx0ImI/uFSUp4g\nKGh+pbbZtm0roqIuVlNFf09BQQH8/KYBAIYPH4UWLV7XcUXaVStv/UpERFVn48a1iI6+gBMnjqNe\nvXrYsWMbzMzMYWpqhvHjJ+HcuTPYs+d/MDY2hhACo0aNw4ED+3D5cjSaNm0KCwtLqZ3Y2Pto2LAR\nbt+OwdixE5CamorvvtsEE5P6mDZtBrZt+w5JSYnIz8/HRx8NgJOTM4YOHQBX117IyspESkoK/P3n\n4Nq1q9i8eT3q1Su65WlAwFxs3rwesbH3YWZmjhEjPseCBXNgYlIfSUmJCAiYi0OHDuDq1Ss4cOBH\nREVdRN++/WFtbY0VK5bAzMwc6enp8Pb2w6lTf+DUqT/RvPmruHr1Cjw8PkX79h2k8YiPj8Py5Yth\nYGAAY+N68PHxx+HDh3DixHHUqVMHdnav4LPPPsfEiaMxc2YgrK1tMH/+bPTt2x/nzkVINfbr1x8b\nNnyL+vVNkZWVCV/f2Xj4MB7r1q2GhUUDKBTAl1/6QKmsmihmoBMR/cP16NETBQUFeOeddzFixFCs\nWLEGJiYmWLBgDq5evYzw8D/h6toTrq69cPfuHVhaWsLBoS369u0vhXmxxo2b4PPPx+HixUjs3Pk9\nevX6NwoKChAYuAjXrl1FfHwcAgMXIScnB15eY7B+/Vbk5uaid+/30LhxEyxYMAeXLkUjLy8HX3wx\nDY0bN4G39xd48OA+AKBp02YYOXIM7t+/i4ED3eHk5Izt20Pwxx+/w9W1F86ePYO+fftLVw+2bduK\njz8eiI4d/4WffvoR+/fvQYMGVqhfvz5GjhyD8PA/cfz40VKBHhKyGYMHe8DJyRlHjoQhPT0doaFb\nEBKyE3p6epgw4XO8//4HFY5ncY3/+98PcHRshyFDPBEfHwdAYO3aVRg3bhKaN38Vmzevx++/H4Or\na88qeR0Z6EREJElMTEBw8NcAii7FP3nyBJ6eIxASsgl79+6Cg0NbjB49vsLtGzWyBQBYWjbA48fJ\nAIpCHgDi4h4gNvY+5s+fDQDQ19dHYWEhFAoFGjZsVGo7CwsLbN26EcbG9RAX9wC5ubml2qpTxxC/\n/voLTpw4jrt3b6NLl7fLrSc+Pl7aplEjW1y7dhUNGljB2tpGaqe47WIJCY+ketzceuPx42SYmZlD\nT6/oU+qGDRsiMTGxwjEo7q9fv/4IDd2CSZPGws7uFXh5/Rfx8XHYvv07AEBmZgbMzS0qbKeyGOj/\nYC27Buik3xsnA3XSLxGVT6FQoLCwEABga9sEX37pg7p16yIu7gGsrKzx119XMXasFwwMDDBnjj9u\n3rwBhUIBIQrLtBUX9wAA8OhRPKysrKX2gaKga9myFXx9Z0EIgbt370BPTw9CCMTHx6Fp02Z49Ogh\nunbthq+/XoQlS4JhadkA48aNRGGhKNXWjh3b4OzcEa6uvbBu3TfSHwbP1mRr2xhxcQ/QuHETxMU9\ngK1t4xeOh61tY8TG3oetbWMcOLAPzs4dkZaWCrVaDX19fTx8+BANGzaCSqVCfn4+gKI/hEqOJwDc\nu3cXgwYNxahRY7F27WqcPn0KtraNMXLkGDRs2AgJCY9gYvLiWdQ0xUAnIvqHa9y4CaKjo/Dzz/sx\nduxEzJ0bACOjuigoUGPGjJlISHiE7du3wtTUDAqFAq+80hwtW7bCmjWr4O8/B02aNJXaevAgFsuX\nL0ZMzC18+aUPUlKeSI/Z27eGmZkZ5s2bhczMDHTq1AXNm78KfX19hIUdRGJiAgoLC9GmjSP+9a+u\nWLx4AaytbdC6tQNCQ7fglVeaS221b98B338fiosXL8DGxgaHDx/Cu++64smTxwgJ2SKt5+ExHMHB\nX+PYsaPIzMyAj48/Tpw49tzx8PAYjqVLg7B//x7UrWuEf/+7L4YNG4FZs3yhVCrx9tvd0aBBA/Ts\n2QerVi1HixavS38QlZSZmYE5c/xgYWGJ7OwsDBo0FI0bN8WKFV/D2NgYWVmZ8Pb2g5GR8Uu8ev9P\nIYQQVdKSFnE+9KrBM3QiqkobN65FkyZN0bv3e5XabtCg/tix48dqqkoeOB86ERHRPwQvuRMRUZUY\nOXLM39qOZ+dVg2foREREMsBAJyIikgEGOhERkQww0ImIiGSAgU5ERCQD/JY7ERFprKrvX8H7UlQd\nBjoREdVoBw/+hOjoi0hNTcH9+/fg7u4JW9smWLfuGyiVSlhZWWPGjJk4ciSszHpFE7VcwNq1q6FU\nKmFtbQMfH38YGBjo+mlVOQY6ERHVeDExt7BmzSY8eBCLWbN8kZeXi2XLVsPGpiGWLg3Cr7/+AoVC\nUWa9vn37Y/nyxVixomga02++WYFjx46gV69/6/opVTkGOhER1XgODm2hr68PKytrZGVlQqVSwcam\nIQDAyckZFy9GomVL+zLrPXnyGA8exMLXdxoAICcnB6amZrp8KtWmWgP9xo0bGD9+PIYPHw4PDw9p\n+R9//IFRo0bh+vXrAID9+/dj69at0NPTw8CBA/HJJ59UZ1lERFTL6OvrSz+np6fB0rKB9Ht+fj4U\nCr0y6wkhoFQaoEEDK6xatU57xepItX3LPTs7G4GBgejcuXOp5bm5uVi3bh2srKyk9VavXo0tW7Yg\nJCQEW7duRWpqanWVRUREtZyJSX0oFAo8evQIAHDxYiTs7d8od9369esDAO7cuQ0A2LXrB9y6dVM7\nhWpZtQW6SqXC+vXrYW1tXWr5mjVr4O7uDpVKBQCIioqCo6MjTExMYGhoCCcnJ0RGRlZXWUREJAPe\n3v6YM8cPEyeORkFBAVxde1W47vTpM7FgwRyMHz8K0dFRaNbMTouVak+1XXJXKpVQKks3f+fOHVy7\ndg2TJ0/G4sWLAQDJycmwsLCQ1rGwsEBSUtJz2zY3N4JSqf/cdajm0mQaQKqdzFt+ofU+U24s13qf\nL0sX4wRUzVjpYrw//dS9xG8m+P334wAAN7duGq/37LpypNUvxS1cuBD+/v7PXUeT6dlTUrKrqiTS\nAc5nT1WJ+5PmOFa1V42aDz0hIQG3b9/G1KlTMXDgQCQmJsLDwwPW1tZITk6W1ktMTCxzmZ6IiIie\nT2tn6DY2Njhy5Ij0e48ePRAaGoqcnBz4+/sjPT0d+vr6iIyMhK+vr7bKIiIikoVqC/TLly8jKCgI\ncXFxUCqVCAsLw8qVK2FmVvr//wwNDTFlyhSMHDkSCoUCEyZMgIkJP2MlIiKqjGoLdAcHB4SEhFT4\n+G+//Sb93KdPH/Tp06e6SiEiIpI9zrZGREQkAwx0IiL6x3r4MB4jR3o+d51jx4489/GSdu/egY0b\n175sWX8L7+VOREQaa+nftkrbuzEvukrbq2r5+fnYsWM7XFzcdF3KCzHQiYioRisoKMC8ebOQkPAQ\nKlUdzJgxE5s2rUN8fBzy8vIwatRYdOz4Lwwc+CH69fsIx48fRZMmTdCq1Rs4duwImjRphlmz5mH+\n/NmoW7cu7t27h7S0VPj6zoSJSX2pn/KmWQ0OXoqYmFtYsmQR/vvfafjqq/mIj49DQUEBRo0aiw4d\n3sK5c2cQHPw1LCwsYWnZALa2jXUyTrzkTkRENdqhQwdgaWmJb7/dhH79+uPgwZ+gUqmwatU6LFiw\nGEuXfgUAKCwsRKtW9tiw4TtcuhSNhg1tsX79d4iKuoCMjKKb6qjVaqxY8Q1GjRqLzZs3lOpn+fLF\nWLToawQHr4GFhQWOHTsCd3dPNGtmh6lTp+PXX3+BpWUDrFy5FgsXfo3g4K8BAGvXrkJAQCCWL/8G\naWm6m4uEZ+hERFSjXb9+Dc7ObwEA3Nx6Y/nyxWjfvgMAoEEDK6hUBkhPTwMAvPFGGygUCpibW6Bl\ny1YAAHNzC2RlZQIAnJ07AiiajnXNmpVSH5pMs3r5cjSioi4gOvoigKLJxvLz8/Hw4UO8/npLAMCb\nbzohNze3WsbhRRjoRERUo+nr66GwsORtwRWlbhNe0fSpz06lCkBqp+h3hfR4RdOsPnwYX2qdYcNG\noGfP0v9mraf3/xe7Nbl9eXXhJXciIqrR7O1bIzLyLADg5Mk/YGpqisjIcwCAhIRH0NPT0/iGZNHR\nFwAAV65E45VXmkvLK5pmVaHQg1qtBgC0bu2AP//8HQCQkvIEa9euBlB0leD+/bsQQuDChfMv+3T/\nNp6hExFRjebm1hvnzp3BxImjoa+vxIwZAdiyZQO8vMagoCAf06ZpfrvwvLw8eHt/gYSEBMycGVjq\nseJpVg0Mis7WP/jgY+jp6aGgIB/+/j6YPXs+IiPPYuzYEVCr1RgxYjQAYPTo8fD390HDho1gbW1T\npc+9MhRCl9cH/ibOGFQ1WnYN0Em/N04GvnglqpV0sU/Vxv2Jx55uzJ8/G+++64quXWvfVKo1arY1\nIiIiqj685E5ERP8Ifn6zdV1CteIZOhERkQww0ImIiGSAgU5ERCQDDHQiIiIZYKATERHJAAOdiIhI\nBhjoREREMsBAJyIikgEGOhERkQww0ImIiGSAgU5ERCQDDHQiIiIZYKATERHJAAOdiIhIBhjoRERE\nMsBAJyIikgEGOhERkQxUa6DfuHEDbm5uCA0NBQA8fPgQw4cPh4eHB4YPH46kpCQAwP79+/Gf//wH\nn3zyCf73v/9VZ0lERESyVG2Bnp2djcDAQHTu3Flatnz5cgwcOBChoaHo2bMnNm/ejOzsbKxevRpb\ntmxBSEgItm7ditTU1Ooqi4iISJaqLdBVKhXWr18Pa2tradmsWbPQu3dvAIC5uTlSU1MRFRUFR0dH\nmJiYwNDQEE5OToiMjKyusoiIiGRJWW0NK5VQKks3b2RkBABQq9XYvn07JkyYgOTkZFhYWEjrWFhY\nSJfiK2JubgSlUr/qiyatsLIy0XUJJCPcnzTHsZK3agv0iqjVanh7e+Nf//oXOnfujJ9++qnU40KI\nF7aRkpJdXeWRFiQlZei6BJIR7k+a41jVXpr8Mab1b7nPmDEDdnZ2mDhxIgDA2toaycnJ0uOJiYml\nLtMTERHRi2k10Pfv3w8DAwNMmjRJWtauXTtcunQJ6enpyMrKQmRkJJydnbVZFhERUa1XbZfcL1++\njKCgIMTFxUGpVCIsLAyPHz9GnTp14OnpCQB47bXXMHv2bEyZMgUjR46EQqHAhAkTYGLCz3mIiIgq\no9oC3cHBASEhIRqt26dPH/Tp06e6SiEiIpI93imOiIhIBhjoREREMsBAJyIikgEGOhERkQww0ImI\niGSAgU5ERCQDDHQiIiIZYKATERHJAAOdiIhIBhjoREREMsBAJyIikgEGOhERkQww0ImIiGSAgU5E\nRCQDDHQiIiIZYKATERHJAAOdiIhIBhjoREREMsBAJyIikgEGOhERkQww0ImIiGSAgU5ERCQDDHQi\nIiIZYKATERHJAAOdiIhIBhjoREREMsBAJyIikgEGOhERkQww0ImIiGRAWZ2N37hxA+PHj8fw4cPh\n4eGBhw8fwtvbG2q1GlZWVli8eDFUKhX279+PrVu3Qk9PDwMHDsQnn3xSnWUREVEt0bJrgNb7vHEy\nUOt9VoVqO0PPzs5GYGAgOnfuLC0LDg6Gu7s7tm/fDjs7O+zatQvZ2dlYvXo1tmzZgpCQEGzduhWp\nqanVVRYREZEsVVugq1QqrF+/HtbW1tKyiIgIuLq6AgBcXFwQHh6OqKgoODo6wsTEBIaGhnByckJk\nZGR1lUVERCRL1XbJXalUQqks3fzTp0+hUqkAAJaWlkhKSkJycjIsLCykdSwsLJCUlFRdZREREclS\ntX6G/jxCiEotL8nc3AhKpX5Vl0RaYmVlousSSEa4P2mOY6WZ2jpOWg10IyMj5OTkwNDQEAkJCbC2\ntoa1tTWSk5OldRITE/Hmm28+t52UlOzqLpWqUVJShq5LIBnh/qQ5jpVmauI4afJHhlb/ba1Lly4I\nCwsDABw+fBjdunVDu3btcOnSJaSnpyMrKwuRkZFwdnbWZllERES1XrWdoV++fBlBQUGIi4uDUqlE\nWFgYlixZgunTp2PHjh2wtbVF//79YWBggClTpmDkyJFQKBSYMGECTExq5+UOIiIiXam2QHdwcEBI\nSEiZ5Zs3by6zrE+fPujTp091lUJERCR7vFMcERGRDDDQiYiIZICBTkREJAMMdCIiIhlgoBMREckA\nA52IiEgGGOhEREQywEAnIiKSAQY6ERGRDDDQiYiIZICBTkREJAMMdCIiIhlgoBMREckAA52IiEgG\nGOhEREQywEAnIiKSAQY6ERGRDDDQiYiIZICBTkREJAMMdCIiIhlgoBMREckAA52IiEgGGOhEREQy\nwEAnIiKSAQY6ERGRDGgU6NOnTy+zbOTIkVVeDBEREf09yuc9uH//fvzwww+4efMmhg4dKi3Pz89H\ncnJytRdHREREmnluoH/wwQfo1KkTpk6dCi8vL2m5np4eWrRoUe3FERERkWaeG+gAYGNjg5CQEGRk\nZCA1NVVanpGRATMzs2otjoiIiDTzwkAHgHnz5mH37t2wsLCAEAIAoFAocPTo0Up1lpWVBR8fH6Sl\npSE/Px8TJkyAlZUVZs+eDQBo1aoV5syZU7lnQET/aC392+qk3xvzonXSL1FFNAr0iIgInD59GnXq\n1Hmpzvbu3YvmzZtjypQpSEhIwKeffgorKyv4+vqibdu2mDJlCn7//Xd07979pfohIiL6p9HoW+52\ndnYvHeYAYG5uLl22T09Ph5mZGeLi4tC2bdFf2C4uLggPD3/pfoiIiP5pNDpDb9iwIYYOHYoOHTpA\nX19fWj558uRKdfb+++9jz5496NmzJ9LT0/Htt99i7ty50uOWlpZISkqqVJtERESkYaCbmZmhc+fO\nL93Zvn37YGtri40bN+LatWuYMGECTExMpMeLP59/EXNzIyiV+i9ekWokKyuTF69EVMPVxv24Ntas\nC7V1nDQK9PHjx1dJZ5GRkXj77bcBAPb29sjNzUVBQYH0eEJCAqytrV/YTkpKdpXUQ7qRlJSh6xKI\nXlpt3I9rY826UBPHSZM/MjQK9NatW0OhUEi/KxQKmJiYICIiolIF2dnZISoqCr1790ZcXByMjY3R\nuHFjnDt3Ds7Ozjh8+DA8PT0r1SYRERFpGOjXrl2Tfs7Ly0N4eDiuX79e6c4GDRoEX19feHh4oKCg\nALNnz4aVlRVmzpyJwsJCtGvXDl26dKl0u0RERP90GgV6SSqVCt27d8emTZswevToSm1rbGyMFStW\nlFm+ffv2ypZBREREJWgU6Lt27Sr1+6NHj5CQkFAtBREREVHlaRTo58+fL/V7vXr1sHz58mopiORP\nF3f24l29iEhTtfXugxoF+sKFCwEAqampUCgUMDU1falOiYiIqGppFOiRkZHw9vZGVlYWhBAwMzPD\n4sWL4ejoWN31ERERkQY0CvSvv/4a33zzDVq2bAkAuHr1KubPn49t27ZVa3FERESkGY3u5a6npyeF\nOVD0f+klbwFLREREuqVxoIeFhSEzMxOZmZk4ePAgA52IiKgG0eiS+5w5cxAYGAh/f3/o6enB3t4e\n8+bNq+7aiIiISEManaGfPHkSKpUKZ8+eRUREBIQQ+P3336u7NiIiItKQRoG+f/9+rFq1Svp906ZN\nOHDgQLUVRURERJWj0SV3tVpd6jNzhUKh8VSnutCya4DW+7xxMlDrfRIRERXTKNB79OiBwYMHo0OH\nDigsLMTp06fRq1ev6q6NiIiINKTxfOgdO3ZEdHQ0FAoFZs2ahTfffLO6ayMiIiINaTzbmrOzM5yd\nnauzFiIiIvqbNPpSHBEREdVsDHQiIiIZYKATERHJAAOdiIhIBhjoREREMsBAJyIikgEGOhERkQww\n0ImIiGSAgU5ERCQDDHQiIiIZYKATERHJAAOdiIhIBhjoREREMsBAJyIikgEGOhERkQww0ImIiGRA\nqe0O9+/fjw0bNkCpVGLSpElo1aoVvL29oVarYWVlhcWLF0OlUmm7LCIiolpNq2foKSkpWL16NbZv\n3441a9bg6NGjCA4Ohru7O7Zv3w47Ozvs2rVLmyURERHJglYDPTw8HJ07d0a9evVgbW2NwMBARERE\nwNXVFQDg4uKC8PBwbZZEREQkC1q95P7gwQPk5ORg7NixSE9Ph5eXF54+fSpdYre0tERSUtIL2zE3\nN4JSqV/d5VaKlZWJrkug5+DrQ1WtNu5TtbHmf5KXfX20/hl6amoqVq1ahfj4eAwbNgxCCOmxkj8/\nT0pKdnWV97clJWXougR6Dr4+VNVq4z5VG2v+J3ne66NJ2Gv1krulpSXat28PpVKJZs2awdjYGMbG\nxsjJyQEAJCQkwNraWpslERERyYJWA/3tt9/G6dOnUVhYiJSUFGRnZ6NLly4ICwsDABw+fBjdunXT\nZklERESyoNVL7jY2NujduzcGDhwIAPD394ejoyN8fHywY8cO2Nraon///tosiYiISBa0/hn64MGD\nMXjw4FLLNm/erO0yiIiIZIV3iiMiIpIBBjoREZEMaP2SOxER6UZL/7Y66ffGvGid9PtPwzN0IiIi\nGWCgExERyQADnYiISAYY6ERERDLAQCciIpIBBjoREZEMMNCJiIhkgIFOREQkAwx0IiIiGWCgExER\nyQADnYiISAYY6ERERDLAQCciIpIBBjoREZEMMNCJiIhkgIFOREQkAwx0IiIiGWCgExERyYBS1wXI\nRUv/tjrp98a8aJ30S0RENQvP0ImIiGSAgU5ERCQDDHQiIiIZYKATERHJAAOdiIhIBhjoREREMsBA\nJyIikgGdBHpOTg7c3NywZ88ePHz4EJ6ennB3d8fkyZORl5eni5KIiIhqNZ0E+rfffgtTU1MAQHBw\nMNzd3bF9+3bY2dlh165duiiJiIioVtN6oMfExODWrVt49913AQARERFwdXUFALi4uCA8PFzbJRER\nEdV6Wr/1a1BQEAICAvDjjz8CAJ4+fQqVSgUAsLS0RFJS0gvbMDc3glKpX6111hZWVia6LqFW4DhR\nVeM+pTmOlWZedpy0Gug//vgj3nzzTTRt2rTcx4UQGrWTkpJdlWXVaklJGbouoVbgOFFV4z6lOY6V\nZp43TpqEvVYD/fjx44iNjcXx48fx6NEjqFQqGBkZIScnB4aGhkhISIC1tbU2SyJ6oZZdA3TS742T\ngTrpl4hqJ60G+vLly6WfV65cicaNG+PChQsICwvDhx9+iMOHD6Nbt27aLImIiEgWdP5/6F5eXvjx\nxx/h7u6O1NRU9O/fX9clERER1To6mw/dy8tL+nnz5s26KoOIiEgWdH6GTkRERC+PgU5ERCQDDHQi\nIiIZYKATERHJAAOdiIhIBhjoREREMsBAJyIikgEGOhERkQww0ImIiGSAgU5ERCQDDHQiIiIZYKAT\nERHJAAOdiIhIBhjoREREMsBAJyIikgEGOhERkQww0ImIiGSAgU5ERCQDDHQiIiIZYKATERHJAAOd\niIhIBhjoREREMsBAJyIikgEGOhERkQww0ImIiGSAgU5ERCQDDHQiIiIZYKATERHJAAOdiIhIBpTa\n7vCrr77C+fPnUVBQgDFjxsDR0RHe3t5Qq9WwsrLC4sWLoVKptF0WERFRrabVQD99+jRu3ryJHTt2\nICUlBR999BE6d+4Md3d3/Pvf/8bSpUuxa9cuuLu7a7MsIiKiWk+rl9zfeustrFixAgBQv359PH36\nFBEREXB1dQUAuLi4IDw8XJslERERyYJWA11fXx9GRkYAgF27duGdd97B06dPpUvslpaWSEpK0mZJ\nREREsqD1z9AB4MiRI9i1axc2bdqEXr16ScuFEBptb25uBKVSv7rKq1WsrEx0XUKtUBvHqaV/W530\nm7L2jk76rW1q4z6lKxwrzbzsOGk90P/44w+sWbMGGzZsgImJCYyMjJCTkwNDQ0MkJCTA2tr6hW2k\npGRrodLaISkpQ9cl1AocJ81xrDTDcdIcx0ozzxsnTcJeq5fcMzIy8NVXX2Ht2rUwMzMDAHTp0gVh\nYWEAgMOHD6Nbt27aLImIiEgWtHqGfvDgQaSkpOCLL76Qli1atAj+/v7YsWMHbG1t0b9/f22WRERE\nJAtaDfRBgwZh0KBBZZZv3rxZm2UQERHJDu8UR0REJAMMdCIiIhlgoBMREckAA52IiEgGGOhEREQy\nwEAnIiKSAQY6ERGRDDDQiYiIZICBTkREJAMMdCIiIhlgoBMREckAA52IiEgGGOhEREQywEAnIiKS\nAQY6ERGRDDDQiYiIZICBTkREJAMMdCIiIhlgoBMREckAA52IiEgGGOhEREQywEAnIiKSAQY6ERGR\nDDDQiYiIZICBTkREJAMMdCIiIhlgoBMREckAA52IiEgGGOhEREQyoNR1AcUWLFiAqKgoKBQK+Pr6\nom3btrouiYiIqNaoEYF+5swZ3Lt3Dzt27EBMTAx8fX2xY8cOXZdFRERUa9SIS+7h4eFwc3MDALz2\n2mtIS0tDZmamjqsiIiKqPWpEoCcnJ8Pc3Fz63cLCAklJSTqsiIiIqHZRCCGErosICAhA9+7dpbP0\nIUOGYMGCBWjevLmOKyMiIqodasQZurW1NZKTk6XfExMTYWVlpcOKiIiIapcaEehdu3ZFWFgYAODK\nlSuwtrZGvXr1dFwVERFR7VEjvuXu5OSENm3aYPDgwVAoFJg1a5auSyIiIqpVasRn6ERERPRyasQl\ndyIiIno5DHQiIiIZqFWBvmdt0g6yAAAZWElEQVTPHgQFBf3t7SMiIjBp0iSN1n3w4AE+/vhjjdtd\nuXJlpWo5duwYpk+fXqlt/ik8PT1x48YNrFy5EqGhobou52+Lj49HdHS0xut7enpWqv2srCz06NGj\nsmXVSCdOnMD27dsrfPxFYymHY7Ci96f58+cjNja2wu169OiBrKysl+6/Ko63Tp06vXQd1aGi9/N1\n69bhwoULFW5X/F70sl42uwDNXuca8aU4Ijk6ffo0srOzOS+BBt55553nPv5PHks/Pz9dlyBbo0eP\n1nUJVarWBfqDBw/w+eef49GjR/j0008xYMAA7N+/H6GhodDT08Prr7+OwMBA5OfnY/r06YiLi0Od\nOnXw1VdfASg6q5k6dSquX7+O3r17Y+LEibh16xbmzp0LhUIBY2NjLFq0qFSfERERWLZsGZRKJWxs\nbLBw4UIcOHAAJ06cQGJiIpYtW4bXX38d8fHxmDZtGvT09KBWq7F48WI0btxYauf69evw8fGBqakp\nmjVrJi3ftm0bfvrpJ+jp6cHNzQ0jRozAo0ePMHnyZBgYGMDZ2Rnnz59HSEgIevXqhdatW6Nr165o\n3759mbrr169fbnvlKa9ea2trzJw5E7GxscjLy8OkSZPw9ttvw83NDQMHDsQvv/wCOzs7tGnTRvr5\n66+/RkJCAvz8/JCfnw99fX3MmzcPtra2pfqbN28eoqOjoa+vjzlz5qBly5b46quvEBkZCbVajaFD\nh6J///7l1rps2TKcO3cOarUaHh4e6Nu3L65du4bp06fDxMQEDg4OSElJwaJFizR+/uXZs2cPzp49\ni5SUFNy8eRP//e9/ceDAAcTExGDJkiVo164dFi5ciOjoaOTm5mLIkCH45JNP8Oeff2L58uUwNDSE\npaUlZs2ahVWrVkGpVKJRo0aws7Mr81qlp6dj2rRpMDIygoeHB4KCgpCfn49p06YhKSkJeXl58PLy\nKhV2mZmZ8PLyQm5uLjp06CAtP3fuHJYuXSr1FxgYCIVCgWnTpiE+Ph7t27fHoUOHcOLECXh6euL1\n118HAHz55Zfw9fVFWloa1Go1/P39YW9vL7UHFB1zzZo1Q25uLgICAtC2bVusW7cOv/76K/T09ODi\n4oKxY8eWu6y8Y0ehUJQ5Nk+ePImbN2/Cx8enzPi6urq+cCzbtm1bK4/BZ5X3/uTp6YmAgADUr1+/\n3HqK6//999+hVquxYcOGUv/2++y+uWTJEiQmJmL69OlQq9WwtbWVzh5v3LiBMWPG4O7du/Dz88M7\n77yDgwcPYsuWLdDX10ebNm3g7++PjIwMTJ8+Henp6SgoKIC/vz/atGmj8XEGaP/9RwiBWbNm4dKl\nS2jTpg0CAwMxffp09O7dG87Ozpg0aRJycnLQvXt37Ny5E7/99hsA4NChQ5g/fz5SU1Px7bfflmr3\n6tWrmDNnDlQqFVQqFZYtWwYAmDp1KjIzM2FiYiIdR4mJifDy8sKtW7cwcuRIDBgwoMLjo7wx0Iio\nRXbv3i369u0r8vLyxJMnT0S3bt1EYWGh+OGHH0RaWpoQQgh3d3dx7do1sXPnTrFgwQIhhBAHDhwQ\n27ZtE6dPnxbdu3cX2dnZIjMzU3Tq1EkIIcSwYcPEnTt3hBBChIaGim+++UbExsaKjz76SAghRO/e\nvUV8fLwQQog5c+aIXbt2id27d4uBAweKwsJCqb5NmzaJVatWCSGEuHz5srhw4UKp+idNmiR+/fVX\nIYQQM2fOFD4+PuL+/fvCw8NDFBYWisLCQjFo0CARFxcnFi5cKDZv3iyEECIoKEh4eHgIIYSwt7cX\nN27cqLDuitorT3n17t27V8ycOVMIIcSjR49Er169hBBCuLi4iD/++EMUFhaKd955Rxw8eFAIIUT3\n7t1FWlqamDFjhjh58qQQQojjx48LPz+/Un2dPHlSTJgwQQghxJkzZ8SyZcvEmTNnxKhRo4QQQmRl\nZQlXV1eRkZEhPDw8xPXr10VwcLAICQkRZ8+eFVOmTBFCCJGbmyvee+898fTpUzFx4kRx+PBhaWyf\nN56a2r17txg8eLAoLCwUO3bsEH379hUFBQVi586dYt68eSInJ0ds3bpVCCHE06dPRdeuXYUQQowZ\nM0acPXtWCCFEWFiYSExMlOqv6LWKjY0V7dq1E0+ePJH6v3z5shg2bJgQQoi0tDSxf//+UvWFhoaK\n+fPnCyGE+Pnnn4WLi4sQQogPP/xQpKSkCCGK9pd9+/aJo0ePirFjxwohhPjtt99Eq1athBBCeHh4\niO3btwshhFi1apXYuXOnEEKImzdviuHDh5dq7/bt22LcuHFi37594tSpU2LixIlCCCE6deok8vPz\nRWFhodi2bVuFy8o7dso7Nnfv3i0WLVpU4fi+aCyL1bZjsKSK3p+Kj4eK6nFxcRG//fabEEKI//73\nv9LzK1bevjllyhRx5MgRqa2LFy+K4OBg4eXlJYQQ4sSJE2LcuHEiMzNTuLm5iczMTKmt8PBwsXLl\nSrF27VohhBDR0dFi6NChQgghOnbs+MLnWUyb7z+xsbHizTffFImJiUKtVotu3bqJtLQ04ePjI377\n7Tfx3XfficDAQCFE0etYfFx5eHhI+92SJUuk8S8WGBgo9u7dK4QQ4tSpU+LWrVti6dKl0j68efNm\n8euvv4rdu3eLTz75RBQUFIiYmBjxwQcfCCHKPz6eNwbFr0NFat0ZupOTEwwMDGBubo569eohJSUF\npqamGD9+PAAgJiYGqampuHLlCjp37gwAeP/99wEUnWm3bt0adevWBVD0FxsAREdHIyAgAACQl5cH\nR0dHqb/U1FQoFAo0atQIQNFnRGfPnkXr1q3h6OgIhUIhrdu1a1dMnDgRGRkZ6N27N9q3b1+q9piY\nGDg5OUntnDhxApcuXcK9e/cwbNgwAEV/ocfFxSEmJgbvvfcegKLPTi5dugQAqFu3rnR2VV7dFbX3\n7F+rFdV74MAB6XMwGxsbqFQqpKamAgDatm0LhUIBS0tLtG7dGkDRffczMjJw4cIF3LlzB99++y3U\najUsLCxK9XXlyhXpub/11lt46623sHnzZrz11lsAACMjI7Ro0QL37t0rU2dkZCSioqKkz5gLCwuR\nlJRUajx79OiB8PDwSj3/ijg4OEChUMDKygqtWrWCvr4+GjRogMjISNSpUwdpaWkYPHgwDAwMkJKS\nAgDo06cPZs2ahX79+uH9998vc6fDivaxpk2blprH4NVXX0VWVhamTZuGnj17SvtusZiYGGnMOnbs\nCKBoLoR79+7By8sLAJCdnQ1zc3MkJCRI49O9e3colf9/uBdfur5w4QKePHmC/fv3AwCePn1aqr2C\nggLExMTg2rVrMDc3h5GREQCgd+/e+Oyzz9C3b1988MEH5S6r6NgpKCgoc2zu2bMHACocX03GEqh9\nx+Czynt/Kll7efUAkK7W2NjYICMjo9R25e2bV69elS7le3t7Ayj6HkPx2BS3c/fuXdjZ2cHY2BhA\n0T73119/4fLlyxg3bhwAwNHRsdzj9kW0+f4DAM2aNZOOywYNGpQap5iYGOl4cnV1xcaNG8sd2+Ja\nirm6umL27Nm4e/cu3nvvPbz22mu4evUqJk+eDAAYPnw4gKL9u127dtDX15fGtqLjo/jn8sbgRWpd\noJcMUKDozX3u3LnYt28frKysMGbMGACAvr4+CgsLy2xf8k2tWN26dfHdd9+VavvBgwdSfyUPrPz8\nfGk9AwODUu20bNkS+/btw8mTJ7F06VL85z//KXUJWQghbVtcm4GBAd59913MnTu3VFtr166V1i1Z\nV8k+y6v7119/Lbe98pRXb3GdxfLy8qCnV/TdSX19fWl5yZ+FEDAwMMCKFStgbW1dbl/lvR7Pvpb5\n+flSXyWpVCoMGDBAem1L9vvsGFU0npVRch8p+bMQAmfOnMHp06cREhICAwMDKTD69++Pbt264ciR\nIxg3bhxWrFhRqs2K9rFn96G6deti586diIyMxN69e3Hs2DEsXLiwVA3FY1RyH7K2tpYuvxZbt26d\n9Do9O9bF/RoYGCAgIKBU8KWlpUntrVq1Ch06dMDUqVNx6dIl6aOrOXPmICYmBocOHYKnpyf+97//\nlVm2cePGco+dio5NABWO74vGslhtOwafVd77U3m1P/vcnz0eSypv39TX1y+zXnn9l/f+V6dOnTLL\nK3o9n0eb7z/PbvNsPyWPq8qMbefOnbFr1y7pC5be3t4aZ09F2SKEqHAMXqRWfcsdAC5evAi1Wo0n\nT57g6dOn0NfXh76+PqysrPDw4UNcvnwZ+fn5cHR0xOnTpwEUfZt1zZo1FbZpb2+PEydOAAB+/vln\nhIeHS4+ZmppCoVAgPj4eQNEbjoODQ7nt/Pzzz7h58ybc3NwwefJkXL58udTjzZs3l5ZFREQAANq0\naYOIiAg8ffoUQgjMmzcPOTk5aNasmbRucW2a1F1Re5rW6+joKNX28OFD6OnpoX79+hWOXbF27drh\nyJEjAIqmw/3pp59KPV6y3eLPnRwcHKRlWVlZuH//Puzs7Mq03bZtWxw7dgyFhYXIzc1FYGAgAJQ7\nRpV5/n9HSkoKGjZsCAMDAxw9ehRqtRp5eXlYvXo1lEolBg0ahPfeew8xMTFQKBQoKCgA8Px9rKQr\nV67gp59+grOzM2bPno2YmJhSj5e3D5mamgIAbt26BQAICQnBtWvXSo3Pn3/+CbVaXaa/kq/brVu3\nsHnz5lLtpaSkIC4uDteuXcORI0eQn5+PjIwMrFq1Cq+99homTpwIU1NTJCQklFmmp6dX7rHzvGOz\novHVdCxr2zFYGZrUU57y9k0HBwfpNVixYgVOnTpV7ravvPIK7t27J01nXfI1LB6/ixcvSlcsKkOb\n7z8v8nfHNjQ0FKmpqfjggw/w6aef4q+//io1tj/88AP27t1b7rYVZcvfHQOgFp6hv/rqq5g8eTLu\n3buHL774Aubm5ujatSv+85//wN7eHqNGjcLChQuxd+9enDp1Ch4eHlAqlQgKCsLdu3fLbdPPzw8B\nAQFYv3496tSpg6+//rrUfOyBgYGYMmUKlEolmjZtivfff1+6RFnSK6+8glmzZsHIyAj6+vrw9/cv\n9fi4ceMwY8YMfPfdd2jatCny8/Nha2uLYcOGYejQodDX14ebmxsMDQ0xbNgwfPHFFwgLC0O7du3K\n/QutvLrNzMzKba885dVrZ2eHM2fOwNPTE/n5+RqfZUycOBG+vr74+eefoVAoSp1VAkWX2Y8ePQp3\nd3cAwKxZs9CqVSs4ODhg6NChKCgowJQpU6RLuiU5OTmhU6dOGDRoEIQQUhvjxo2Dv78/tm7dihYt\nWiAjI6PC8awqXbp0wfr16+Hh4QE3Nze8++67mD17Nt566y189tlnqF+/PurXr4/PPvsMxsbG8PHx\ngYWFxQv3sWJNmjTB0qVLsWPHDujr62PkyJGlHu/fvz8mTJiATz/9tNSX4ubPn48ZM2ZIZ+uDBg1C\n8+bNsXv3bgwZMgQdO3aEmZlZmf48PDwwY8YMuLu7o7CwULoMW9xeXl4eYmNjkZKSAk9PTxw4cACH\nDx9GSkoKBgwYACMjI7Rv3x6NGzcus8zMzKzcY6ewsLDMsXny5Mnnju/777//3LEsVtuOwcrQpJ7y\n2Nraltk3HR0dMWPGDGzfvh2NGjXCxIkTcf78+TLbGhkZwdvbG6NGjYKenh46dOgAZ2dn2Nvbw9fX\nF8OGDYMQAjNnzqz089Hm+8+LfPTRRxg/fjw8PT3RpUsXjce2WbNmmDx5MkxMTKBSqbBw4ULUqVMH\n3t7e8PT0hLGxMZYsWYLDhw+Xu315xweAvzUGAG/9WmPdvHkT6enp6NChAw4cOICIiAjpzJSKXLx4\nEYaGhrC3t8fatWshhMDYsWN1XVaNkZqaioiICPTu3RsJCQn49NNP8csvv+i6rFqjph2DNa0eOYmL\ni8Pt27fRrVs3XLhwAStXrsSmTZt0XVal1boz9H8KY2NjzJw5EwqFAnp6epX+i/OfQKVSwc/PD4aG\nhjA0NCx1pkZF+9ChQ4ewceNGFBYWYsaMGbouqVapacdgTatHTkxMTLBlyxasXr0aQO3933+eoRMR\nEclArftSHBEREZXFQCciIpIBBjoREZEMMNCJarjff//9hXeK8vT0LPO/xBERERgyZEiV1tKqVSvp\n/8FfRK1WY8iQIRg0aBDy8/Mr3deyZcsqPYPai+zbtw8AkJSUpPHMi0S1BQOdqIbbsmUL0tLSdF1G\npSUmJuLevXvYsWNHmTvi6YJarcY333wDALCyskJwcLCOKyKqWvy3NaJKiIiIwPLly2Fra4u4uDiY\nmJhg2bJlqFevHlasWCHdtaxhw4ZYvHgxDAwM4OTkhAEDBqCwsBD+/v4ICQnBoUOHoFar8eqrr2LW\nrFlITk7GuHHj8PbbbyM6OhpZWVlYu3Ytjh49inPnzmHq1KlYuHAh7ty5gw0bNkClUkGtVuOrr75C\nkyZNXlh3fHw85syZg6dPnyI7OxtffvklrKysMHHiRISFhQEouivVwIEDcfz4cYSFhSE0NBRCCFhY\nWGDevHml7jlfUnZ2NgICAvDo0SMUFBTgww8/hLu7O2bMmIH09HTpNrAqlUraprwxMDQ0xLJly3Ds\n2DE0atQIdevWxWuvvQag6MrAlStXoFQqsWfPHpw6dQpLlixBVFQUFixYAAMDA5iamiIoKAh6enrw\n8fFBamoqsrKy0KdPH4wePRq+vr6Ii4vDiBEjMHfuXLi7u+PEiRNITk6Gn58fsrOzkZeXh1GjRqFn\nz55YuXIlUlNT8ejRI9y7dw+dOnWS7ttOVCM9d+oWIirl9OnTwtHRUTx69EgIIcTUqVPF1q1bRX5+\nvli7dq1Qq9VCCCFGjBghzYDVqlUr8eeffwohhIiKihKenp7SLH3z588X3333nYiNjRVvvPGGNIvX\n9OnTpZmdXFxcxN27d4UQQuzatUuauWvNmjVi0aJFQoiiWaGKZ5sqWevgwYOFEEJ8/vnnIjw8XAgh\nRGJionBxcRH5+fnigw8+EH/99ZcQQoiNGzeKRYsWifj4eNGvXz+Rm5srhBBiy5YtYuHChUIIIVq2\nbCny8/NL9bNmzRoxe/ZsIUTRDGkuLi7i/v37IjY2VnTr1q3MGFY0Brdv3xYuLi4iNzdX5Ofni/79\n+4vg4OAy/e7evVuafa9nz57i+vXrQoiima0OHDgg7t+/L82AlZubK5ycnERGRkapekr+HBAQINav\nXy+EECI5OVl06dJFZGRkiODgYDF48GBRUFAgnj59Kt58802Rmppa5vkQ1RQ8QyeqpBYtWsDGxgZA\n0W1p//rrLyiVSujp6cHd3R1KpRK3b9+WZgoTQkizWEVEROD+/fvSTFzZ2dnSpA3m5ubSPbFtbW3L\n/dy8QYMG8PHxgRACSUlJ5U5eUp6IiAhkZWVJN85QKpV4/Pgx+vXrh7CwMNjb2+PgwYMIDAzEhQsX\nkJSUJN12Ni8v77lXAaKiovDxxx8DAAwNDeHg4IArV65UOOdBRWNw48YNtGnTRjqTd3Z2fu5zevLk\nCdLT09GyZUsA/z+zVXZ2Ns6fP48ffvgBBgYGyM3Nfe53EKKioqTvGlhaWsLGxgZ37twBUDTTVvF8\nEebm5khLS5PudU9U0zDQiSpJPDNLk0KhwPnz57F7927s3r0bRkZGZb5wVfwZskqlQo8ePcrc+/rB\ngwfPnQ0KKJqN6YsvvsDevXvxyiuvIDQ0tMzkIxVRqVRYuXJlmWkl+/bti1GjRuHjjz9Gbm4u3njj\nDcTFxaFt27ZYu3atRm0/OzuVKDErWEW1lDcGv/zyS6ntKprBq/gLds/OVlVs69atyMvLw/fffw+F\nQiFNRalp/SWXveg1IapJ+KU4okq6ffs2EhMTAQDnz59Hq1at8PjxYzRu3BhGRkaIi4vDxYsXkZeX\nV2ZbJycnnDhxAllZWQCAbdu24cKFC8/tr3imsaysLOjp6aFx48bIzc3F0aNHy+2jPB06dMChQ4cA\nFJ3Zzp8/H0DRZ/3m5ubYuHGjNK+5o6MjoqOjkZSUBAA4dOiQNJNVedq1a4c//vgDQNHZ8ZUrV9Cm\nTZsK169oDIrnks7Ly0N+fj7OnDkjbVOvXj08fPgQwP/PkmZubg4zMzNER0cDADZt2oRt27bh8ePH\neO2116BQKHD06FHk5ORIU1CW9w39kvUnJCQgMTERzZs3f9GQEtU4PEMnqqQWLVpg6dKluHfvHkxN\nTdG/f38IIbBp0yYMGTIEr7/+Ory8vLB69eoyZ4eOjo4YOnQoPD09UadOHVhbW+Pjjz/G48ePK+zv\n7bffxtixYxEUFIS+fftiwIABsLW1xciRI+Ht7S0F9fP4+flh5syZ+Pnnn5GXl4dx48ZJj/Xr1w9z\n586VQtvGxgZ+fn4YM2YM6tatC0NDQwQFBVXYtqenJwICAjB06FDk5eVh/PjxaNKkCR48eFDu+hWN\nQd26deHm5oaBAwfC1tYWb7zxhrTN6NGjMXLkSNjZ2cHe3l4K98WLF2PBggVQKpUwMTHB4sWLERsb\niy+//BJ//vknXF1d0a9fP0ydOhU7d+5EgwYN8PHHH5d6PpMmTYKfnx88PT2l6XmNjY1fOKZENQ3v\n5U5UCcXfcv/+++91XQoRUSm85E5ERCQDPEMnIiKSAZ6hExERyQADnYiISAYY6ERERDLAQCciIpIB\nBjoREZEMMNCJiIhk4P8A8uyvYM1bcn0AAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
- ]
- },
- {
- "metadata": {
- "id": "SG8Eojinal_D",
- "colab_type": "code",
- "outputId": "c886e57c-ba8a-46ba-ae31-21a465328cb0",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 418
- }
- },
- "cell_type": "code",
- "source": [
- "# comparison of race/ethnicity and test preparation course\n",
- "\n",
- "sns.countplot(x = 'race/ethnicity', data = data, hue = 'test preparation course', palette = 'bright')\n",
- "plt.show()"
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "G7ZVqj3wV1Ry"
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 225
+ },
+ "colab_type": "code",
+ "id": "RiBBc-sEWTN5",
+ "outputId": "f0b50be4-b473-4383-d381-33c057fb8fb6"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(1000, 8)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " gender | \n",
+ " race/ethnicity | \n",
+ " parental level of education | \n",
+ " lunch | \n",
+ " test preparation course | \n",
+ " math score | \n",
+ " reading score | \n",
+ " writing score | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " female | \n",
+ " group B | \n",
+ " bachelor's degree | \n",
+ " standard | \n",
+ " none | \n",
+ " 72 | \n",
+ " 72 | \n",
+ " 74 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " female | \n",
+ " group C | \n",
+ " some college | \n",
+ " standard | \n",
+ " completed | \n",
+ " 69 | \n",
+ " 90 | \n",
+ " 88 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " female | \n",
+ " group B | \n",
+ " master's degree | \n",
+ " standard | \n",
+ " none | \n",
+ " 90 | \n",
+ " 95 | \n",
+ " 93 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " male | \n",
+ " group A | \n",
+ " associate's degree | \n",
+ " free/reduced | \n",
+ " none | \n",
+ " 47 | \n",
+ " 57 | \n",
+ " 44 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " male | \n",
+ " group C | \n",
+ " some college | \n",
+ " standard | \n",
+ " none | \n",
+ " 76 | \n",
+ " 78 | \n",
+ " 75 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "/usr/local/lib/python3.6/dist-packages/seaborn/categorical.py:1468: FutureWarning: remove_na is deprecated and is a private function. Do not use.\n",
- " stat_data = remove_na(group_data[hue_mask])\n"
- ],
- "name": "stderr"
- },
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAFYCAYAAACoFn5YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl4jXf+//HXSU4iQsgiQWxVQ9HQ\nIk0tX53a6VQHraW2H02Lqq1U7NvYqzWxdexLgzZtxnQylkZVF22JVlqkrVFFkRAJQUjJdn5/uJwR\nKglylvt4Pq7LdTn3fZ/Ped+fnOR17s99n/tjslgsFgEAAENyc3QBAADg3hHkAAAYGEEOAICBEeQA\nABgYQQ4AgIER5AAAGJjZ0QXci9TUDEeXAACA3QQG+txxHUfkAAAYGEEOAICBEeQAABgYQQ4AgIER\n5AAAGBhBDgCAgRHkAAAYGEEOAICBEeQAAJezdu1KHTnyi6PLsAuCHAAecOnp5zV37sy7es6GDeu0\nf/8PNqro3uTk5GjChNGSpH79Xtaf/lTTwRXZhyFv0QoAKD6rVi3TgQPf68svP1fp0qUVHb1Bvr5+\nKlvWV4MHD9N33+3Vpk0fqlSpUrJYLHr55Ve1efO/lZh4QFWqVJG/f4C1nZMnT6hChYo6evRXDRr0\nmi5cuKB3310tH58yGj16nDZseFepqWeVnZ2tzp1fUMOGoerV6wW1atVWV65cVnp6uiZOnKZDh37S\nmjUrVLr09VuTTpr0N61Zs0InT56Qr6+fXnrpFc2aNU0+PmWUmnpWkyb9Tdu2bdZPP/2ozZs/0v79\nP+jZZzspKChICxa8JV9fP126dEkRERP0zTe79M03X6l69Yf1008/qnfv/6cGDRpZ+yM5OUmRkfPk\n4eGhUqVKa8yYidq+fZu+/PJzlShRQtWqPaT+/V/RkCEDNHnydAUFldfMmVP17LOd9N138dYaO3bs\npJUr/6EyZcrqypXLGj9+qk6fTtby5Uvk719OJpM0cuQYmc33F8UEOQA84Fq2bKOcnBw99dTTeuml\nXlqwYKl8fHw0a9Y0/fRTonbv/kqtWrVRq1Ztdfz4MQUEBCgkpL6efbaTNcRvqFSpsl555VX98EOC\nPvjgPbVt20E5OTmaPn2ODh36ScnJSZo+fY6uXr2qoUMHasWKdbp27ZratXtGlSpV1qxZ03Tw4AFl\nZV3ViBGjValSZUVEjNCpUyckSVWqVFV4+ECdOHFc3br1VMOGodq4MUq7dn2hVq3a6ttv9+rZZztZ\nRws2bFinLl26KSyssf7zn48UG7tJ5coFqkyZMgoPH6jdu7/S559/mi/Io6LWqEeP3mrYMFQ7dsTp\n0qVLWr9+raKiPpCbm5tee+0V/eUvz92xP2/U+OGH76tevcf04ot9lJycJMmiZcsW69VXh6l69Ye1\nZs0KffHFZ2rVqs19/fxsGuRvvvmm9u3bp5ycHA0cOFD16tVTRESEcnNzFRgYqHnz5snT01OxsbFa\nt26d3Nzc1K1bN3Xt2tWWZQEA7uDs2RQtXPi2pOtD7ufPn1efPi8pKmq1/vWvGIWE1NeAAYPv+PyK\nFYMlSQEB5XTuXJqk6+EuSUlJp3Ty5AnNnDlVkuTu7q68vDyZTCZVqFAx3/P8/f21bt0qlSpVWklJ\np3Tt2rV8bZUo4aVPPvlYX375uY4fP6qmTf/vD+tJTk62PqdixWAdOvSTypULVFBQeWs7N9q+ISXl\njLWe1q3b6dy5NPn6+snN7frZ6AoVKujs2bN37IMbr9exYyetX79Ww4YNUrVqD2no0NeVnJykjRvf\nlSRdvpwhPz//O7ZTVDYL8j179uiXX35RdHS00tPT1blzZzVp0kQ9e/ZUhw4dNH/+fMXExKhTp05a\nsmSJYmJi5OHhoRdeeEFt2rSRr6+vrUpDMQl75ZyjS8hn74qAwjcCcBuTyaS8vDxJUnBwZY0cOUYl\nS5ZUUtIpBQYG6eeff9KgQUPl4eGhadMm6pdfDstkMsliybutraSkU5KkM2eSFRgYZG1fuh5wtWo9\novHjp8hisej48WNyc3OTxWJRcnKSqlSpqjNnTqtZs+Z6++05euuthQoIKKdXXw1XXp4lX1vR0RsU\nGhqmVq3aavnyd6wfCG6tKTi4kpKSTqlSpcpKSjql4OBKhfZHcHAlnTx5QsHBlbR5878VGhqmixcv\nKDc3V+7u7jp9+rQqVKgoT09PZWdnS7r+Aejm/pSk3347ru7de+nllwdp2bIl2rPnGwUHV1J4+EBV\nqFBRKSln5ONz51nNispmQf7EE0+ofv36kqQyZcro999/V3x8vKZNmyZJatGihVavXq3q1aurXr16\n1p1p2LChEhIS1LJlS1uVBgC4SaVKlXXgwH5t2RKrQYOG6G9/myRv75LKycnVuHGTlZJyRhs3rlPZ\nsr4ymUx66KHqqlXrES1dulgTJ05T5cpVrG2dOnVSkZHz9OuvRzRy5Bilp5+3rqtdu658fX01Y8YU\nXb6coSefbKrq1R+Wu7u74uK26uzZFOXl5enRR+upceNmmjdvloKCyqtu3RCtX79WDz1U3dpWgwaN\n9N576/XDD9+rfPny2r59m55+upXOnz+nqKi11u169+6nhQvf1meffarLlzM0ZsxEffnlZwX2R+/e\n/TR//lzFxm5SyZLe6tDhWfXt+5KmTBkvs9ms//u/P6tcuXJq06a9Fi+O1J/+VNP6Qehmly9naNq0\nCfL3D1Bm5hV1795LlSpV0YIFb6tUqVK6cuWyIiImyNu71H389CSTxWKx3FcLRRAdHa3vvvtOX331\nlXbv3i1JOnHihCIiItSrVy8dPHhQ48ePlyRFRkaqYsWK6t69+x3bYz5y58AROYCbrVq1TJUrV1G7\nds/c1fO6d++k6OiPbFSVayhoPnKbX+y2Y8cOxcTEaPXq1Wrbtq11+Z0+PxTlc4Wfn7fMZvdiqxH3\nyrmCvKA3OgDbK1WqhHx8vO76d9Hd3Y3f3/tg0yDftWuXli5dqpUrV8rHx0fe3t66evWqvLy8lJKS\noqCgIAUFBSktLc36nLNnz+rxxx8vsN309Exblg2DYqQGcKwePfpJuvvfxY0bN/H7W4iCPujY7IYw\nGRkZevPNN7Vs2TLrhWtNmzZVXFycJGn79u1q3ry5HnvsMR08eFCXLl3SlStXlJCQoNDQUFuVBQCA\nS7HZEfnWrVuVnp6uESNGWJfNmTNHEydOVHR0tIKDg9WpUyd5eHho1KhRCg8Pl8lk0muvvVYsV/EB\nAPAgsMvFbsWNIRjnwMVuAGAfDhlaBwAAtkeQAwBgYNxrHQBQZMV9So1TYvePIAcAOLWtW/+jAwd+\n0IUL6Tpx4jf17NlHwcGVtXz5OzKbzQoMDNK4cZO1Y0fcbdtdn0Dley1btkRms1lBQeU1ZsxEeXh4\nOHq3ig1BDgBwer/+ekRLl67WqVMnNWXKeGVlXdPf/75E5ctX0Pz5c/XJJx/LZDLdtt2zz3ZSZOQ8\nLVhwfTrRd95ZoM8+26G2bTs4epeKDUEOAHB6ISH15e7ursDAIF25clmenp4qX76CJKlhw1D98EOC\natWqfdt258+f06lTJzV+/GhJ0tWrV1W2rGtNykWQAwCcnrv7/27LfenSRQUElLM+zs7Olsnkdtt2\nFotFZrOHypUL1OLFy+1XrJ1x1ToAwFB8fMrIZDLpzJkzkqQffkhQ7dp1/nDbMmXKSJKOHTsqSYqJ\neV9Hjvxin0LthCNyAIDhRERM1LRpE+Tu7q5KlSqrVau22r592x9uO3bsZM2aNU0eHtePzp97roud\nq7Ut7uyGe8ad3QDAPrizGwAALoogBwDAwAhyAAAMjCAHAMDACHIAAAyMIAcAwMAIcgDAA+v06WSF\nh/cpcJvPPttR5Pb++c9orVq17H7LuivcEAYAUGRhyT2Ktb29we8Xa3vFLTs7W9HRG9WiRWtHl3JH\nBDkAwKnl5ORoxowpSkk5LU/PEho3brJWr16u5OQkZWVl6eWXByksrLG6dfurOnbsrM8//1SVK1fW\nI4/U0Wef7VDlylU1ZcoMzZw5VSVLltRvv/2mixcvaPz4yfLxKWN9nT+a7nThwvn69dcjeuutOXr9\n9dF6882ZSk5OUk5Ojl5+eZAaNXpC3323VwsXvi1//wAFBJRTcHAlu/YPQ+sAAKe2bdtmBQQE6B//\nWK2OHTtp69b/yNPTU4sXL9esWfM0f/6bkqS8vDw98khtrVz5rg4ePKAKFYK1YsW72r//e2VkXL8j\naG5urhYseEcvvzxIa9aszPc6kZHzNGfO21q4cKn8/f312Wc71LNnH1WtWk1vvDFWn3zysQICymnR\nomWaPfttLVz4tiRp2bLFmjRpuiIj39HFixfs2zniiBwA4OT++99DCg19QpLUunU7RUbOU4MGjSRJ\n5coFytPTQ5cuXZQk1anzqEwmk/z8/FWr1iOSJD8/f125clmSFBoaJun6tKhLly6yvkZRpjtNTDyg\n/fu/14EDP0iSrl27puzsbJ0+fVo1a9aSJD3+eENdu3bNJv1wJwQ5AMCpubu7KS/v5mlBTLp5mpA7\nTWN665SmkqztXH9ssq6/03Snp08n59umb9+X1KZN+3zbuLn9b3DbEdOXMLQOAHBqtWvXVULCt5Kk\nr7/epbJlyyoh4TtJUkrKGbm5ucnH586TitzswIHvJUk//nhADz1U3br8TtOdmkxuys3NlSTVrRui\nr776QpKUnn5ey5YtkXR9VODEieOyWCz6/vt997u7d40jcgAPPGbyc26tW7fTd9/t1ZAhA+Tubta4\ncZO0du1KDR06UDk52Ro9enyR28rKylJExAilpKRo8uTp+db90XSnbm5uysnJ1sSJYzR16kwlJHyr\nQYNeUm5url56aYAkacCAwZo4cYwqVKiooKDyxbrvRcE0prhn/PGDq+C9/GCYOXOqnn66lZo1a+7o\nUu4a05gCAOCibDq0fvjwYQ0ePFj9+vVT7969NWzYMKWnp0uSLly4oMcff1wDBw5Ux44dFRISIkny\n8/PTwoULbVkWAOABNGHCVEeXYBM2C/LMzExNnz5dTZo0sS67OaDHjRunrl27SpKqV6+uqKgoW5UC\nAIDLstnQuqenp1asWKGgoKDb1h09elQZGRmqX7++rV4eAIAHgs2C3Gw2y8vL6w/Xvfvuu+rdu7f1\ncVpamoYNG6YePXooNjbWViUBAOBy7P71s6ysLO3bt09Tp06VJPn6+mr48OF67rnnlJGRoa5du6px\n48Z/eCR/g5+ft8xm9zuuh70415W+BV3VCRSM9zKMy+5B/u233+YbUi9durSef/55SZK/v79CQkJ0\n9OjRAoM8PT3T5nXCePhaIlwF72Xcyqm+fnbw4EHVrl3b+njPnj2aPXu2pOsXyB06dEjVq1e/09MB\nAMBNbHZEnpiYqLlz5yopKUlms1lxcXFatGiRUlNTVbVqVet2oaGh+uijj9S9e3fl5uZqwIABKl/e\n/nfGAQDAiLizG+4Zd8OCq+C9DGfnVEPrAACg+BDkAAAYGEEOAICBEeQAABgYQQ4AgIER5AAAGBhB\nDgCAgRHkAAAYGEEOAICBEeQAABgYQQ4AgIER5AAAGBhBDgCAgRHkAAAYGEEOAICBEeQAABgYQQ4A\ngIER5AAAGBhBDgCAgRHkAAAYGEEOAICBEeQAABgYQQ4AgIER5AAAGBhBDgCAgRHkAAAYGEEOAICB\n2TTIDx8+rNatW2v9+vWSpLFjx6pjx47q06eP+vTpo88//1ySFBsbq+eff15du3bVhx9+aMuSAABw\nKWZbNZyZmanp06erSZMm+ZaPHDlSLVq0yLfdkiVLFBMTIw8PD73wwgtq06aNfH19bVUaAAAuw2ZH\n5J6enlqxYoWCgoIK3G7//v2qV6+efHx85OXlpYYNGyohIcFWZQEA4FJsdkRuNptlNt/e/Pr167Vm\nzRoFBARo0qRJSktLk7+/v3W9v7+/UlNTC2zbz89bZrN7sdeMu3XO0QXkExjo4+gSYFi8l2FcNgvy\nP/LXv/5Vvr6+qlOnjpYvX67FixerQYMG+baxWCyFtpOenmmrEmFgqakZji4BKBa8l3Grgj7c2fWq\n9SZNmqhOnTqSpJYtW+rw4cMKCgpSWlqadZuzZ88WOhwPAACus2uQDx06VCdPnpQkxcfHq2bNmnrs\nscd08OBBXbp0SVeuXFFCQoJCQ0PtWRYAAIZls6H1xMREzZ07V0lJSTKbzYqLi1Pv3r01YsQIlSxZ\nUt7e3po9e7a8vLw0atQohYeHy2Qy6bXXXpOPD+eHAAAoCpOlKCelnQznj5xD2CvOdYHQ3hUBji4B\nBsV7Gc7Oac6RAwCA4kWQAwBgYAQ5AAAGRpADAGBgBDkAAAZGkAMAYGAEOQAABkaQAwBgYAQ5AAAG\nRpADAGBgBDkAAAZGkAMAYGAEOQAABkaQAwBgYAQ5AAAGRpADAGBgBDkAAAZGkAMAYGAEOQAABkaQ\nAwBgYAQ5AAAGRpADAGBgBDkAAAZGkAMAYGAEOQAABkaQAwBgYGZbNn748GENHjxY/fr1U+/evXX6\n9GmNGzdOOTk5MpvNmjdvngIDA/Xoo4+qYcOG1uetXbtW7u7utiwNAACXYLMgz8zM1PTp09WkSRPr\nssjISHXr1k3PPPOMNmzYoDVr1igiIkKlS5dWVFSUrUoBAMBl2Wxo3dPTUytWrFBQUJB12ZQpU9Su\nXTtJkp+fny5cuGCrlwcA4IFgsyA3m83y8vLKt8zb21vu7u7Kzc3Vxo0b1bFjR0lSVlaWRo0apR49\nemjNmjW2KgkAAJdj03PkfyQ3N1cRERFq3Lixddg9IiJCzz33nEwmk3r37q3Q0FDVq1fvjm34+XnL\nbOYcuuOdc3QB+QQG+ji6BBgW72UYl92DfNy4capWrZqGDBliXfbiiy9a/9+4cWMdPny4wCBPT8+0\naY0wptTUDEeXABQL3su4VUEf7uz69bPY2Fh5eHho2LBh1mVHjx7VqFGjZLFYlJOTo4SEBNWsWdOe\nZQEAYFg2OyJPTEzU3LlzlZSUJLPZrLi4OJ07d04lSpRQnz59JEk1atTQ1KlTVaFCBb3wwgtyc3NT\ny5YtVb9+fVuVBQCAS7FZkIeEhBT5K2WjR48u9tcPe8W5znntXRHg6BIAAC6IO7sBAGBgBDkAAAZG\nkAMAYGAEOQAABkaQAwBgYAQ5AAAGZvc7uwG2Epbcw9El5LM3+H1HlwDgAcAROQAABkaQAwBgYAQ5\nAAAGVqQgHzt27G3LwsPDi70YAABwdwq82C02Nlbvv/++fvnlF/Xq1cu6PDs7W2lpaTYvDgAAFKzA\nIH/uuef05JNP6o033tDQoUOty93c3PSnP/3J5sUBAICCFfr1s/LlyysqKkoZGRm6cOGCdXlGRoZ8\nfX1tWhwAAChYkb5HPmPGDP3zn/+Uv7+/LBaLJMlkMunTTz+1aXEAAKBgRQry+Ph47dmzRyVKlLB1\nPQAA4C4U6ar1atWqEeIAADihIh2RV6hQQb169VKjRo3k7u5uXT58+HCbFQYAAApXpCD39fVVkyZN\nbF0LAAC4S0UK8sGDB9u6DgAAcA+KFOR169aVyWSyPjaZTPLx8VF8fLzNCgMAAIUrUpAfOnTI+v+s\nrCzt3r1b//3vf21WFAAAKJq7njTF09NTf/7zn/X111/boh4AAHAXinREHhMTk+/xmTNnlJKSYpOC\nAABA0RUpyPft25fvcenSpRUZGWmTggAAQNEVKchnz54tSbpw4YJMJpPKli1r06IAAEDRFOkceUJC\nglq3bq0OHTqoXbt2at++vQ4ePFjo8w4fPqzWrVtr/fr1kqTTp0+rT58+6tmzp4YPH66srCxJ16dL\nff7559W1a1d9+OGH97E7AAA8WIoU5G+//bbeeecd7d69W3v27NH8+fM1Z86cAp+TmZmp6dOn57uR\nzMKFC9WzZ09t3LhR1apVU0xMjDIzM7VkyRKtXbtWUVFRWrduXb5Z1gAAwJ0VKcjd3NxUq1Yt6+O6\ndevmu1XrH/H09NSKFSsUFBRkXRYfH69WrVpJklq0aKHdu3dr//79qlevnnx8fOTl5aWGDRsqISHh\nXvYFAIAHTpGDPC4uTpcvX9bly5e1devWQoPcbDbLy8sr37Lff/9dnp6ekqSAgAClpqYqLS1N/v7+\n1m38/f2Vmpp6t/sBAMADqUgXu02bNk3Tp0/XxIkT5ebmptq1a2vGjBn39cI35jUv6vKb+fl5y2wu\n+IOEdO4eqrKdwEAfR5dgA87Vx87GNX/mrsq53su8d3A3ihTkX3/9tTw9PfXtt99Kkvr27asvvvhC\nvXv3vqsX8/b21tWrV+Xl5aWUlBQFBQUpKChIaWlp1m3Onj2rxx9/vMB20tMz7+p1nUFqaoajS4Cd\n8TPHveK9g1sV9OGuSEPrsbGxWrx4sfXx6tWrtXnz5rsupGnTpoqLi5Mkbd++Xc2bN9djjz2mgwcP\n6tKlS7py5YoSEhIUGhp6120DAPAgKtIReW5ubr5z4iaTqdAh8MTERM2dO1dJSUkym82Ki4vTW2+9\npbFjxyo6OlrBwcHq1KmTPDw8NGrUKIWHh8tkMum1116Tjw/DSgAAFEWRgrxly5bq0aOHGjVqpLy8\nPO3Zs0dt27Yt8DkhISGKioq6bfmaNWtuW9a+fXu1b9++iCUDAIAbijwfeVhYmA4cOCCTyaQpU6YU\neh4bAADYXpGCXJJCQ0M5dw0AgJO562lMAQCA8yDIAQAwMIIcAAADI8gBADAwghwAAAMjyAEAMDCC\nHAAAAyPIAQAwMIIcAAADI8gBADAwghwAAAMjyAEAMDCCHAAAAyPIAQAwMIIcAAADI8gBADAwghwA\nAAMjyAEAMDCzowsAAOQXltzD0SVY7Q1+39EloBAckQMAYGAEOQAABsbQOgDA5sJeOefoEvLZuyLA\n0SUUG47IAQAwMIIcAAADs+vQ+ocffqjY2Fjr48TERIWEhCgzM1Pe3t6SpDFjxigkJMSeZQEAYFh2\nDfKuXbuqa9eukqS9e/dq27ZtOnLkiGbPnq1atWrZsxQAAFyCw4bWlyxZosGDBzvq5QEAcAkOuWr9\nwIEDqlixogIDAyVJCxcuVHp6umrUqKHx48fLy8vLEWUBAGA4DgnymJgYde7cWZLUt29fPfLII6pa\ntaqmTJmiDRs2KDw8vMDn+/l5y2x2L+RVnOurDoGBPo4uwQacq4+djWv+zF0V7+U7Kb73sXP1sSv9\nfjokyOPj4zVx4kRJUps2bazLW7Zsqa1btxb6/PT0TJvVZiupqRmOLgF2xs8crsBV38dG26+CPnjY\n/Rx5SkqKSpUqJU9PT1ksFvXr10+XLl2SdD3ga9asae+SAAAwLLsfkaempsrf31+SZDKZ1K1bN/Xr\n108lS5ZU+fLlNXToUHuXBACAYdk9yENCQrRy5Urr42eeeUbPPPOMvcsAAMAlcGc3AAAMjCAHAMDA\nCHIAAAyMIAcAwMAIcgAADMwhN4R5EIUl93B0CVZ7g993dAkAgGLCETkAAAZGkAMAYGAEOQAABkaQ\nAwBgYAQ5AAAGRpADAGBgBDkAAAZGkAMAYGAEOQAABkaQAwBgYNyiFQDwwHGm22ZL93frbI7IAQAw\nMIIcAAADY2gdcHJhr5xzdAlWe1cEOLoEALfgiBwAAAMjyAEAMDCCHAAAAyPIAQAwMIIcAAADI8gB\nADAwghwAAAOz6/fI4+PjNXz4cNWsWVOSVKtWLb388suKiIhQbm6uAgMDNW/ePHl6etqzLAAADMvu\nN4QJCwvTwoULrY/HjRunnj17qkOHDpo/f75iYmLUs2dPe5cFAIAhOXxoPT4+Xq1atZIktWjRQrt3\n73ZwRQAAGIfdj8iPHDmiQYMG6eLFixoyZIh+//1361B6QECAUlNTC23Dz89bZrN7IVs5z20tnU1g\noE8xtUQfF8QV+7n49snZOE8fOxtXfB87o/vpZ7sG+UMPPaQhQ4aoQ4cOOnnypPr27avc3FzreovF\nUqR20tMzbVXiAyE1NcPRJTwQXLGfXXGfUDB+5vZRWD8XFPR2HVovX768nnnmGZlMJlWtWlXlypXT\nxYsXdfXqVUlSSkqKgoKC7FkSAACGZtcgj42N1apVqyRJqampOnfunLp06aK4uDhJ0vbt29W8eXN7\nlgQAgKHZdWi9ZcuWeuONN/Tpp58qOztbU6dOVZ06dTRmzBhFR0crODhYnTp1smdJAAAYml2DvHTp\n0lq6dOlty9esWWPPMgAAcBkO//oZAAC4dwQ5AAAGRpADAGBgBDkAAAZGkAMAYGAEOQAABkaQAwBg\nYAQ5AAAGRpADAGBgBDkAAAZGkAMAYGAEOQAABkaQAwBgYAQ5AAAGRpADAGBgBDkAAAZGkAMAYGAE\nOQAABkaQAwBgYAQ5AAAGRpADAGBgZkcXAMA4wpJ7OLqEfPYGv+/oEgCH44gcAAADI8gBADAwghwA\nAAMjyAEAMDC7X+z25ptvat++fcrJydHAgQO1c+dO/fjjj/L19ZUkhYeH6+mnn7Z3WQAAGJJdg3zP\nnj365ZdfFB0drfT0dHXu3FmNGzfWyJEj1aJFC3uWAgCAS7BrkD/xxBOqX7++JKlMmTL6/ffflZub\na88SAABwKXY9R+7u7i5vb29JUkxMjJ566im5u7tr/fr16tu3r15//XWdP3/eniUBAGBoDrkhzI4d\nOxQTE6PVq1crMTFRvr6+qlOnjpYvX67Fixdr8uTJBT7fz89bZrN7Ia9yrvgKdjGBgT7F1BJ9XBD6\n2fboY9ujj+3jfvrZ7kG+a9cuLV26VCtXrpSPj4+aNGliXdeyZUtNnTq10DbS0zNtWKHrS03NcHQJ\nDwT62fboY9ujj+2jsH4uKOjtOrSekZGhN998U8uWLbNepT506FCdPHlSkhQfH6+aNWvasyQAAAzN\nrkfkW7duVXp6ukaMGGFd1qVLF40YMUIlS5aUt7e3Zs+ebc+SAAAwNLsGeffu3dW9e/fblnfu3Nme\nZQAA4DK4sxsAAAZGkAMAYGAEOQAABkaQAwBgYAQ5AAAGRpADAGBgBDkAAAZGkAMAYGAEOQAABkaQ\nAwBgYAQ5AAAGRpADAGBgBDkAAAZGkAMAYGAEOQAABkaQAwBgYAQ5AAAGRpADAGBgBDkAAAZGkAMA\nYGAEOQAABkaQAwBgYAQ5AACabHGCAAAK4klEQVQGRpADAGBgBDkAAAZGkAMAYGBmRxdww6xZs7R/\n/36ZTCaNHz9e9evXd3RJAAA4PacI8r179+q3335TdHS0fv31V40fP17R0dGOLgsAAKfnFEPru3fv\nVuvWrSVJNWrU0MWLF3X58mUHVwUAgPNziiBPS0uTn5+f9bG/v79SU1MdWBEAAMbgFEPrt7JYLAWu\nDwz0KbSNYx8Vvo19bXF0AcWOPrYP5+pn+tg+XK+f6WPbcYoj8qCgIKWlpVkfnz17VoGBgQ6sCAAA\nY3CKIG/WrJni4uIkST/++KOCgoJUunRpB1cFAIDzc4qh9YYNG+rRRx9Vjx49ZDKZNGXKFEeXBACA\nIZgshZ2QBgAATssphtYBAMC9IcgBADAwpzhHjv85deqUOnbsqJCQEElSVlaWRo8erdDQUAdX5lqO\nHz+uWbNm6fz588rLy1ODBg00ZswYeXp6Oro0l7N582aNGTNGu3btkr+/v6PLcSk3/72wWCxyd3fX\noEGD1KRJE0eX5jJu/Zt8w6JFi+Tr6+ugqvIjyJ1Q9erVFRUVJUn69ttv9Y9//EOrVq1ycFWuIzc3\nV0OHDtWkSZMUFhYmi8WiGTNmaMmSJXr99dcdXZ7L2bx5s6pUqaK4uDi9+OKLji7H5dz89+LEiRMa\nNGiQ5s+fr9q1azu4Mtdxcx87I4K8EBkZGRo2bJiuXr2qP//5z/rggw+0c+dOtW3bVk899ZQCAgLU\nuXNnjR8/XtnZ2TKZTJo5c6ZMJpOGDRumTZs2SZK6dOmihQsXavHixfL29tbRo0eVnp6u2bNnq27d\nund8/bS0NAUFBdlrdx3C3n389ddf6+GHH1ZYWJgkyWQyafTo0XJzc+0zTY54L1+4cEEHDhzQrFmz\ntHLlSpcPckf/vahataoGDRqkjRs36m9/+5u9dtuuHN3Hzsi1/3IVg48++kg1atTQe++9Jx+f/92Z\nKCcnR0899ZReffVVLViwQC+88IKioqLUs2dPLV68uMA2c3JytHbtWg0fPlxLliy5bf2xY8fUp08f\ndevWTXPmzFF4eHix75czsXcfHz16VHXq1Mm3zMvLy+WH1R3xXv7444/19NNPq3nz5jp+/LhSUlKK\nfb+ciSP6+FYhISE6cuTIfe+Ls3KGPnY2BHkhfv31VzVs2FCS1KpVq3zrbky1mpiYaD26e/LJJ/XT\nTz8V2GbTpk0lSY8//riOHTt22/obwzgffPCBVq9erddff105OTn3vS/Oyt59bDKZlJubWyy1G4kj\n3subN2/Ws88+K3d3d7Vv315bt2697/1wZo7o41tduXJF7u7ud127UTiij28cXN34N3ny5Pvej+LE\n0HohLBaLdcjVZDLlW+fh4WFdfuPr+NnZ2XJzc7tt25uDOC8vz/r/W7e7VY0aNVSiRAmdPn1aVapU\nufcdcWL27uOHH35YGzZsyLcsKytLx48fV61ate5zb5yXvfv5zJkz2r9/v+bMmSOTyaSrV6/Kx8dH\n/fv3L76dcjKO/nshXQ+xW0ecXIkj+tjZz5FzRF6IqlWrKjExUZL05Zdf/uE29erVU3x8vKTrF6eF\nhISodOnSOnfunCwWi1JTU3Xy5Enr9vv27ZMkff/996pRo0aBr3/hwgWlpqaqfPnyxbE7Tsnefdys\nWTMlJSVp586dkq7/Es+bN8/ljxbt3c+bN29Wr169FBsbq3//+9/6+OOPdfHiRZ04ccIWu+cUHP33\n4sSJE1q7dq369etXDHvjnBzdx86II/JCdO7cWYMHD1afPn3UtGnTP7wgatiwYZowYYI++OADeXh4\naNasWSpbtqyaNm2q559/XrVr1873CfnatWsaOHCgTp8+rXnz5t3W3o1hnBvbTpo0yaXP39q7j93c\n3LRq1SpNnjxZixcvlqenp5o2baohQ4bYfF8dyd79vGXLFs2dO9f62GQyqVOnTtqyZYteffVV2+2o\nAzny70VWVpZyc3M1efJkBQcH23Q/HcnRf5NvGD16tHUo3+EsKNCpU6csX375pcVisVgSEhIs/fv3\nv6/2xowZY9m5c2dxlOYy6GP7oJ9tjz62Pfr4dhyRF8LHx0dr1661Xsk4YcIEB1fkeuhj+6CfbY8+\ntj36+HZMmgIAgIFxsRsAAAZGkAMAYGAEOQAABkaQA9C6desKvOFFSkqKdu/eLen6rE9///vfi9z2\nzz//rOnTpxdp/ZEjR/Tjjz8WuW0ABDkASV999ZWaNWt2x/Xx8fHas2fPPbVdp04dTZo0qUjrP/nk\nk0JvpwkgP75+BhhIfHy83nnnHZUoUUKhoaHas2ePcnJydPnyZfXt21edOnVSXl6eZsyYYb37Vf/+\n/dWhQwcdOnRIc+fOVU5OjrKzszV58mTVrVtXWVlZSkpK0sMPP6zk5GRNmzZNv//+uzIzMzVy5EhV\nqVJFkZGRslgs1vmXU1JSNGzYMB09elRhYWGaPHmyNm3apG+++UZ5eXk6duyYKlWqpEWLFmnv3r2K\njIzUe++9p+PHj2vSpEnKy8tTiRIlNHv2bB0/flyRkZGKiIjQ+vXrVbp0aaWkpOijjz7SJ598IpPJ\npLNnz6pr167auXOnS99HHLgXBDlgMImJifr000+VnJysGjVqqFWrVjp79qw6duyoTp06KTY2Vmlp\nafrggw906dIlvfHGG2rbtq1Gjx6tJUuWqGrVqjp06JDGjx+vTZs2ad++fdZJKKZOnaqXXnpJjRs3\nVmpqqrp3767t27erc+fOysnJUf/+/bVo0SL99ttvioqKUm5urho3bqyhQ4dKun6Lyy1btqhEiRJq\n06aNfv7553y1T5kyReHh4Xr66ae1ZcsWbdu2zXqHrQYNGqh58+Zq1KiRunbtqr1792rv3r168skn\nFRcXp7/+9a+EOPAHCHLAYKpXry5fX1/l5ORo5cqVWrlypdzd3XXhwgVJ0oEDB/Tkk09KksqUKaPl\ny5fr3LlzOnbsWL6bZ1y+fFl5eXn5htXj4+N15coV6802zGazzp07d1sNjRo1ktlsltlslp+fnzIy\nMiRdn33Ky8tLklSxYkVdvHgx3y00Dxw4YJ2V6i9/+Yv1Nf9Ijx499K9//csa5DNnzrz3TgNcGEEO\nGMyNGZ4iIyNVrVo1zZ8/X1euXLEeVZtMpnyzOUmSp6enPDw8/vCCtt27d2vAgAHW7RYtWiR/f/8C\na7j1yPjGfaXutPxmt9Z2J61bt9b8+fN1/Phxubu7q1q1akV6HvCg4WI3wKDS0tJUs2ZNSddnGnNz\nc1NWVpYaNGigXbt2Sbp+1N21a1eVKFFClStX1hdffCHp+iQQixcvVlpamjw8PFS2bFlJ14+0t23b\nJkk6f/689SjYZDLlm/bxXjVs2NBa29atWzV//vx8600mk7KzsyVd/1DRrl07jRs3Tl26dLnv1wZc\nFUEOGFTv3r21YMEC9e/fX6VKlVKTJk00atQodejQQZUrV1aPHj3Uv39/9e/fX56enpo7d66WLVum\nXr16aezYsWrWrJm++uorNWnSxNrmhAkTtGPHDvXs2VMDBgxQ48aNJUmhoaHatGmTIiMj76vmSZMm\naePGjerTp48+/PBDvfjii/nWN27cWEuWLLHOF9+5c2cdOXJE7du3v6/XBVwZ91oH4LRWrlypS5cu\naeTIkY4uBXBanCMH4HTy8vLUs2dPlSlTRgsWLHB0OYBT44gcAAAD4xw5AAAGRpADAGBgBDkAAAZG\nkAMAYGAEOQAABkaQAwBgYP8fUyF79ksBpHIAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
+ "text/plain": [
+ " gender race/ethnicity parental level of education lunch \\\n",
+ "0 female group B bachelor's degree standard \n",
+ "1 female group C some college standard \n",
+ "2 female group B master's degree standard \n",
+ "3 male group A associate's degree free/reduced \n",
+ "4 male group C some college standard \n",
+ "\n",
+ " test preparation course math score reading score writing score \n",
+ "0 none 72 72 74 \n",
+ "1 completed 69 90 88 \n",
+ "2 none 90 95 93 \n",
+ "3 none 47 57 44 \n",
+ "4 none 76 78 75 "
]
- },
- {
- "metadata": {
- "id": "5vtrMoiVb2KB",
- "colab_type": "code",
- "outputId": "fd215592-6b92-4974-dbc2-a83aa0c9c6a9",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 252
- }
- },
- "cell_type": "code",
- "source": [
- "# feature engineering on the data to visualize and solve the dataset more accurately\n",
- "\n",
- "# setting a passing mark for the students to pass on the three subjects individually\n",
- "passmarks = 40\n",
- "\n",
- "# creating a new column pass_math, this column will tell us whether the students are pass or fail\n",
- "data['pass_math'] = np.where(data['math score']< passmarks, 'Fail', 'Pass')\n",
- "data['pass_math'].value_counts(dropna = False).plot.bar(color = 'black', figsize = (5, 3))\n",
- "\n",
- "plt.title('Comparison of students passed or failed in maths')\n",
- "plt.xlabel('status')\n",
- "plt.ylabel('count')\n",
- "plt.show()"
+ },
+ "execution_count": 168,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = pd.read_csv('drive/My Drive/Projects/Students Performance/StudentsPerformance.csv')\n",
+ "\n",
+ "print(data.shape)\n",
+ "\n",
+ "data.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 223
+ },
+ "colab_type": "code",
+ "id": "EGC_GP4-Wll0",
+ "outputId": "5236fee8-f525-40ab-8cbd-aa8f9dee483d"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " gender | \n",
+ " race/ethnicity | \n",
+ " parental level of education | \n",
+ " lunch | \n",
+ " test preparation course | \n",
+ " math score | \n",
+ " reading score | \n",
+ " writing score | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 995 | \n",
+ " female | \n",
+ " group E | \n",
+ " master's degree | \n",
+ " standard | \n",
+ " completed | \n",
+ " 88 | \n",
+ " 99 | \n",
+ " 95 | \n",
+ "
\n",
+ " \n",
+ " | 996 | \n",
+ " male | \n",
+ " group C | \n",
+ " high school | \n",
+ " free/reduced | \n",
+ " none | \n",
+ " 62 | \n",
+ " 55 | \n",
+ " 55 | \n",
+ "
\n",
+ " \n",
+ " | 997 | \n",
+ " female | \n",
+ " group C | \n",
+ " high school | \n",
+ " free/reduced | \n",
+ " completed | \n",
+ " 59 | \n",
+ " 71 | \n",
+ " 65 | \n",
+ "
\n",
+ " \n",
+ " | 998 | \n",
+ " female | \n",
+ " group D | \n",
+ " some college | \n",
+ " standard | \n",
+ " completed | \n",
+ " 68 | \n",
+ " 78 | \n",
+ " 77 | \n",
+ "
\n",
+ " \n",
+ " | 999 | \n",
+ " female | \n",
+ " group D | \n",
+ " some college | \n",
+ " free/reduced | \n",
+ " none | \n",
+ " 77 | \n",
+ " 86 | \n",
+ " 86 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADrCAYAAAA/ks7bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XtcVGX+B/DPXEVkQAYZyEuu0qpp\niCm+/ImSIV5XS0xFlzBN27JczBUDJVCMVMLSTMl8Ke2yWKuFSLi5aq6XTQXMcNU0N1Mr0BUY5Cq3\nYXh+f/hyVuI2HGVmwM/7L+bMuXwP5/DheZ5zzoxMCCFAREQtJrd2AUREbRUDlIhIIgYoEZFEDFAi\nIokYoEREEjFAiYgkeqgCVAiBP//5z5g8eTLGjx+PMWPGIDo6GqWlpdYurY4dO3bg/ffft9r2S0tL\nMWXKFIwbNw6FhYVmLXP16lV88803Ld7W3LlzkZKS0uLl7ne7tqR///7Iycl5YOs7dOgQRo4ciZUr\nVzY5X1hYGA4fPoycnBz079+/xdsZO3YsMjMz602fM2cOLly40OL13a/PPvvM9PPo0aNx+vTpVt+m\nstW3YEPeffddnDp1CgkJCXBzc0N5eTlWr16NV155BZ988glkMpm1SwQABAcHW3X7//nPf1BUVIRj\nx46ZvcyhQ4dQU1ODoUOHtmJltrNdW3b48GFMnz4dixcvbnK+uLg4AHig4Q0AiYmJD3R95sjPz8f2\n7dsRGBho0e0+NAFaVFSEpKQk7NmzB25ubgAAe3t7rFixAidOnIAQAtXV1Vi9ejUyMzMhl8sxatQo\nvPHGG1AoFBg9ejRefPFFpKSkIDc3F9HR0UhPT8fXX38NrVaLbdu2wcnJCX379sWbb76J3bt3Iy8v\nD4sWLcLvf/97AEB8fDzS0tJgNBrh4eGBdevWwdHREZs2bUJubi4uXbqEyZMno7S0FDdv3sTq1avx\nj3/8A/Hx8TAajVAqlYiMjMSwYcNw48YNREVFIScnByqVCi+99BICAgKQk5ODWbNm4eWXX8bnn3+O\noqIiLF++HL/73e/q/U4yMzMRGxuLiooKaDQarFixAi4uLli6dCkKCgowYcIEfPrpp9BqtaZlTp06\nhbVr16KqqgpCCCxatAgdOnTA1q1boVKpUFJSgj59+iAtLQ1/+ctfAAApKSmm19nZ2ViyZAkKCwvh\n5eUFo9FoWve3336LNWvWoKSkBM7OznjvvffQo0cPpKSk4OjRo3BwcMC3334LhUKBjRs3Ijs7u852\nQ0JCEBYWhqtXr6K6uhrDhw/HypUroVKp6uy3lGP0ww8/ICoqCmVlZTAYDHjhhRcQHBzc6PTq6mrE\nxcXh66+/hsFgQGBgIBYsWAAAOHbsGN5++20olUpMmzat0XP20qVLiI6ORlFRETp06IClS5fC19cX\nmZmZ2LBhA9zc3KBUKvHee++ZlklMTMSBAwegUqmg1+vx1ltvISYmBidPnoTBYMCQIUOwZs0aqFQq\nzJ49G9OnT8eQIUNMywshEB8fj71796K6uhr+/v5Yvnw5FAoFvvvuO4SHh6OmpgajRo1qtO7Ro0cj\nLi4O7u7uZp+Lffv2RUxMDJKSklBSUoLY2Fh8/vnnOHPmDDw8PPDRRx9BqVTin//8J95//31UV1ej\nU6dOWL16NR5//HHMmjULubm5mDBhAtLS0gAA3333HeLi4nDjxg1MmjQJy5cvR01NDVauXInTp0+j\ntrYWffv2RWxsLBwcHBrdnyaJh8TRo0fF2LFjm5xn69at4g9/+IMwGAyioqJCTJs2TaSmpgohhPDz\n8xNRUVFCCCGSkpKEl5eXyMjIELW1tWLatGnis88+E0II0adPH/HWW28JIYS4cuWKeOKJJ8StW7fE\n+fPnxfDhw0VpaakwGo1i7ty5Ij4+XgghxAcffCBGjhwpCgoKTK8jIiKEEEIMGzZM5OTkCCGE+Oab\nb8SaNWuEEELMmzdPfPTRR0IIIXJycsSQIUNEdna2yM7OFv379xdJSUlCCCH27dvX4H6XlZWJYcOG\nidOnTwshhNi/f78YN26cMBqNIiMjQ4wZM6bB39Fzzz0nMjMzhRBCXLt2TSxZskQIIUR4eLhpf3bv\n3i3mzJljWube14sWLRLvvfeeEEKIs2fPiv79+4vdu3eL0tJSMXToUHH8+HEhhBB79+4VU6dONS3v\n5eUlzp8/L4QQIjo6Wrz55pv1trtjxw6xbNkyIYQQBoNBrFixQly8eLHePkg5RiEhISIlJUUIIURB\nQYF49dVXRVVVVaPTN2/eLObMmSOqqqrE7du3RUBAgDh8+LCoqakRI0aMEF9//bUQQoiEhATRp08f\nkZ2dXadGo9EoJk6cKPbu3SuEEOLcuXNi6NChorS0VGRkZAhPT09x8uTJBo/Rvb+T/fv3i8mTJ4vq\n6mpRWVkpJk6caDqng4ODRWpqqsjOzhaPP/64EEKIPXv2iEmTJomSkhJhMBjEyy+/bDqXpk2bJnbu\n3CmEuHNe9evXT2RkZNTbvp+fn/jmm2/MPhfvHpO753NsbKzw9vYWV69eFVVVVcLX11ecPHlSGAwG\n4e3tLc6cOSOEEGLTpk2m8+rX56yfn58IDQ0VNTU14ubNm2LAgAHixo0b4siRI+KFF14QtbW1ora2\nVmzYsEH861//arAmczw0Y6BFRUVwcXFpcp6jR48iMDAQSqUSdnZ2eOaZZ3DixAnT+/7+/gCAPn36\noEOHDhg2bBhkMhl++9vfIi8vzzTf3VZF79690atXL5w7dw5PPPGEqRUll8vx5JNPIjs727SMl5dX\nnZbeXS4uLti5cyeuX78Ob29vLF++HAaDASdPnkRQUBAAoFu3bhg2bBgyMjIAADU1NXjuuecAAAMG\nDMCNGzfqrffcuXNwd3c3tT7Gjx+PwsJCXL9+vcnfkYuLC1JTU3HlyhX85je/qdP6Mcfp06dNLZCB\nAweid+/eAO60Pt3c3DBixAgAwOTJk/HLL7+Yavfw8MATTzwB4M6Y4X//+99669ZqtThz5gyOHz+O\n2tparFq1Co8//niDdbT0GLm4uODAgQO4cOECnJ2d8eGHH0KtVjc6/ciRIwgKCoJarYa9vT2mTJmC\ngwcP4qeffkJ1dTVGjhwJAJg6dWqD9eXk5ECv12PSpEkAAE9PT3Tt2hXnz58HANjZ2WH48OHN/r7H\njx+P3bt3Q6VSoUOHDvD09Kxz3v3akSNHMG3aNGg0GiiVSsyYMQMHDx5EVVUVzp8/bzp2EyZMQMeO\nHZvdvjnn4l1jxowBcOfvq0ePHujVqxfUajV69uyJ3NxcKJVKnDx5EoMGDQIAeHt7N7kvzzzzDBQK\nBdzc3ODi4oKbN29Cq9XiypUr+Oqrr1BRUYHFixfD19e32f1ozEPThXd2dkZubm6T89y6dQtOTk6m\n105OTigoKDC97tSpEwBALpebfr77ura2ts5y9/5cUlKCiooKrF271jToXlxcjKeffrrBZe61ZcsW\nbNmyBc899xweeeQRREREoFevXhBCQKPRmOZzdHTErVu3AAAKhQL29vYN1nbvvjo6OtaZptFo6uxv\nQ9asWYMtW7bgxRdfhJ2dHZYsWYIJEyY0ucy9iouL63SX7tZQUlKC7OzsOutSq9Wmfbp3XxUKRZ2u\n/10TJ05EcXExNm7ciKtXr+LZZ5/F8uXLoVar683b0mO0dOlSbN26FYsXL0ZVVRVeeeUVPP/8841O\nLy0txdq1a7F+/XoAQHV1NQYOHFhv/xs77rdu3YJGo6kzLn/3GHfp0qXR5RpaT0xMDC5evAiZTAa9\nXo85c+Y0On9paSkSEhKwa9cuAIDRaIRWq0VRUREAmGqXyWT1zp+GmHMu3tXY35dCoTAtd3cYrrq6\nGtXV1U1et/j1OoxGI5588klERkYiKSkJ4eHhGD16NFauXGnWvjTkoQnQQYMGoaCgABcuXMCAAQNM\n0w0GAzZv3owFCxagS5cuphMFuNNq7dKlS4u3VVhYiG7dupnW4eTkhMTERPz0009ISUlBp06dsGHD\nhmYDHQAeffRRrF27FrW1tUhNTUVoaCiOHDkCuVyO4uJi0x+SOS3se7m4uNTZVyEEiouL4eLi0mQr\noUuXLoiKikJUVBSOHz+OkJCQev/B5XJ5nYArKSkx/ezo6IiysjLT67sBqdPp0Lt37wavyP/www9m\n79esWbNM42EhISFITU1t8MJCS49Rp06dsGTJEixZsgTnzp3DH/7wB/j4+KBXr14NTtfpdJg3bx78\n/PzqbPfKlSsN7v+vubi4oLi4GEIIU0i09BgDwIYNG6BUKrF3716o1WqEhoY2Ob9Op8Po0aPrXcis\nrKwEAJSVlUGj0aC2thbFxcUtquV+ZWVlYdu2bfj888/RvXt3nDhxAlFRUS1ez4QJEzBhwgQUFRUh\nIiICCQkJ+NOf/iSppoemC+/o6IiXXnoJ4eHh+PnnnwEAFRUVWLFiBS5evIiOHTvi6aefRnJyMoxG\nI8rLy/HFF180OVjemC+//BLAnT+Wn3/+GV5eXigoKEDv3r3RqVMnXL9+HceOHUN5eXmT67l16xZe\nfPFFlJWVQS6Xw8vLCzKZDEqlEiNHjjS1En755RecPn0aPj4+Ztc4cOBA6PV6nDlzxlSzu7s7unfv\n3ugyBoMBs2fPNg1XDBgwAEqlEnK5HEql0nQ7mE6nw7Vr11BVVYWKigrs37/ftI5Bgwbhq6++AnDn\nD+KXX34BcGcIIz8/H2fPngUAZGdn44033oBo5sPC7t1ufHw8kpOTAQBubm7o3r17oy2Ulh6jBQsW\n4PLlywDudDEdHBwgk8kane7v74/PP/8cRqMRQgh8+OGH+Ne//oVHH30UCoXC1MpNSUlpsMbu3bvD\n3d0d+/btM/2u9Ho9Bg4c2OTv49cKCgrQp08fqNVqXLp0CWfOnGnyvPP398cXX3yBiooKAMDOnTux\nZ88e2NnZoV+/fqZj9+WXX6KqqqpFtdyvW7duwcXFBV27dkVFRQX27NmD8vJyCCGgVCpRXl6Ompqa\nJtexe/duxMfHAwA6d+5sGkKS6qFpgQJASEgInJyc8Oqrr8JoNEIul8Pf3x/R0dEAgNmzZyM7OxuT\nJk2CTCbDhAkTMHHixBZvR6vVYsqUKcjNzUVkZCScnJwwa9YsLFq0COPHj0ffvn2xbNkyhISEmK5U\nN7YeX19fTJs2DQqFAiqVCqtXrwYArFq1CpGRkUhJSYFKpcLbb7+NRx55xOxbUuzt7fH+++8jJiYG\n5eXl0Gq1WL9+fZNdIpVKhenTp2Pu3LkA7rQ0IyMj0bFjR/j5+WHp0qW4fv06NmzYAC8vL4wfPx7d\nu3eHv7+/aSz5jTfeQGhoKL744gt4eXmZQt/Ozg4ffPABYmJicPv2bahUKrz++uvN3lp273bDwsKw\nfPlybNu2DTKZDF5eXpgyZUqjv9uWHKPg4GCEhobCYDAAAIKCgvCb3/ym0elBQUHIycnBpEmTIITA\nE088gTlz5kClUiEmJgYRERFQq9V47rnnTF3ce8lkMqxfvx4rV67E5s2b0bFjR2zcuLHBeZsyb948\nhIeHIyUlBd7e3ggPD8ebb77ZaBCPGTMGly9fNo3NPvroo6ZzLjo6GhEREdi6dSueeuopeHh4tKiW\n++Xr64tPP/0UY8aMgZubGyIiInD27FksWrQIa9euhZOTE0aMGIE9e/Y0ug5/f39ERERg3LhxUCgU\n6NmzJ2JjYyXXJBPN/YunFunbty+OHTsGd3d3a5dCjeAxogfloenCExE9aAxQIiKJWrUL/8MPP+C1\n117D3LlzERwcjP/+978ICwuD0WiEq6sr1q1bB7VajbS0NCQmJkIulyMwMBAzZsyAwWDAsmXLcOPG\nDSgUCqxduxY9evRorVKJiFqs1Vqg5eXliImJqXOz7wcffICgoCB8+umn6NmzJ5KTk1FeXo74+Hj8\n5S9/QVJSEhITE1FUVIS///3vcHR0xN/+9jcsWLCgxTdsExG1tla7Cq9Wq7Ft2zZs27bNNC0zMxOr\nVq0CcOfq6ccff4xevXrB09PTdKP04MGDkZWVhfT0dAQEBAAAfHx8EBER0ew28/Nt61OVbIGzsz0K\nC5u+XYroLp4vDXN11TQ4vdVaoHcfh7xXRUWF6akQFxcX5OfnQ6/X13mEUavV1psul8shk8lQXV3d\nWuW2W0qlwtolUBvC86VlrHYfaGNDry2dfi9nZ3ueAA1o7L8nUUN4vpjPogFqb2+PyspK2NnZITc3\nFzqdDjqdDnq93jRPXl4eBg0aBJ1Oh/z8fPTr1w8GgwFCiAafab4Xux71ubpqOLRBZuP50jCLd+Eb\n4uPjgwMHDgAADh48CF9fX3h5eeH8+fMoKSnB7du3kZWVBW9vb4wYMcL0COCRI0cwbNgwS5ZKRNSs\nVruN6bvvvsM777yD69evQ6lUws3NDe+++y6WLVuGqqoqdO3aFWvXroVKpcL+/fuRkJAAmUyG4OBg\nPPvsszAajYiMjMRPP/0EtVqN2NhYPPLII01uk/8562OLglqC50vDGmuBtqtHOXng6+MfBLUEz5eG\n2UQXnoioPXmoPo3JknQ6aR/Q2p7l5ZU0PxNRG8IWKBGRRAxQIiKJGKBERBIxQImIJGKAEhFJxAAl\nIpKIAUpEJBEDlIhIIgYoEZFEDFAiIokYoEREEjFAiYgkYoASEUnEACUikogBSkQkEQOUiEgiBigR\nkUQMUCIiiRigREQSMUCJiCRigBIRScQAJSKSyKJfa3z79m2Eh4ejuLgYBoMBCxcuhKurK6KjowEA\nffv2xapVqwAA27dvx/79+yGTyfDHP/4Ro0aNsmSpRETNsmiA7tmzB7169UJoaChyc3MxZ84cuLq6\nIiIiAgMHDkRoaCiOHTuG3r17Y9++fdi5cyfKysoQFBSEkSNHQqFQWLJcIqImWbQL7+zsjKKiIgBA\nSUkJOnfujOvXr2PgwIEAAD8/P6SnpyMzMxO+vr5Qq9XQarXo1q0bfvzxR0uWSkTULIu2QCdNmoSU\nlBSMHTsWJSUl2LJlC9566y3T+y4uLsjPz0fnzp2h1WpN07VaLfLz89G3b98m1+/sbA+lkq1UW+Xq\nqrF2CWQGHifzWTRAv/jiC3Tt2hUJCQm4dOkSFi5cCI3mfwdLCNHgco1N/7XCwvIHUie1jvz8UmuX\nQM1wddXwODWgsX8qFu3CZ2VlYeTIkQCAfv36oaqqCoWFhab3c3NzodPpoNPpoNfr600nIrIlFg3Q\nnj174uzZswCA69evo1OnTvDw8MDp06cBAAcPHoSvry/+7//+D0ePHkV1dTVyc3ORl5eHxx57zJKl\nEhE1y6Jd+JkzZyIiIgLBwcGoqalBdHQ0XF1dsWLFCtTW1sLLyws+Pj4AgMDAQAQHB0MmkyE6Ohpy\nOW9ZJSLbIhPmDjC2AbY0dqPTOVq7BJuTl1di7RKoGRwDbZhNjIESEbUnDFAiIokYoEREEjFAiYgk\nYoASEUnEACUikogBSkQkEQOUiEgiBigRkUQMUCIiiRigREQSMUCJiCRigBIRScQAJSKSiAFKRCQR\nA5SISCIGKBGRRAxQIiKJGKBERBIxQImIJGKAEhFJxAAlIpKIAUpEJJHS0htMS0vD9u3boVQqsWjR\nIvTt2xdhYWEwGo1wdXXFunXroFarkZaWhsTERMjlcgQGBmLGjBmWLpWIqEkyIYSw1MYKCwsxa9Ys\n7N69G+Xl5di0aRNqamrw1FNPYeLEiVi/fj3c3d0REBCAqVOnIjk5GSqVCtOnT8eOHTvQuXPnJtef\nn19qoT1pnk7naO0SbE5eXom1S6BmuLpqbOrvyFa4umoanG7RLnx6ejqGDx8OBwcH6HQ6xMTEIDMz\nE/7+/gAAPz8/pKen4+zZs/D09IRGo4GdnR0GDx6MrKwsS5ZKRNQsi3bhc3JyUFlZiQULFqCkpAQh\nISGoqKiAWq0GALi4uCA/Px96vR5arda0nFarRX5+frPrd3a2h1KpaLX66f409l+cbAuPk/ksPgZa\nVFSEzZs348aNG3jhhRdw7whCY6MJ5o4yFBaWP5AaqXWwa2j72IVvmE104V1cXPDkk09CqVTi0Ucf\nRadOndCpUydUVlYCAHJzc6HT6aDT6aDX603L5eXlQafTWbJUIqJmWTRAR44ciYyMDNTW1qKwsBDl\n5eXw8fHBgQMHAAAHDx6Er68vvLy8cP78eZSUlOD27dvIysqCt7e3JUslImqWRbvwbm5uGD9+PAID\nAwEAkZGR8PT0RHh4OHbt2oWuXbsiICAAKpUKoaGhmD9/PmQyGRYuXAiNhuMyRGRbzLqNadmyZYiN\nja0zbf78+UhISGi1wqSwpbEb3sZUH29jsn0cA21YY2OgTbZA09LSsHPnTly+fBnPP/+8abrBYKgz\nRklE9DBqMkCfffZZDBs2DEuXLkVISIhpulwux2OPPdbqxRER2TKzn0QqLS1FUVFRnWk9evRolaKk\nsqWuB7vw9bELb/vYhW+YpC78XW+//TZ2794NrVZruidTJpPhn//854OrkIiojTErQDMzM5GRkYEO\nHTq0dj1ERG2GWfeB9uzZk+FJRPQrZrVA3d3d8fzzz2PIkCFQKP73rPnrr7/eaoUREdk6swK0c+fO\nGD58eGvXQkTUppgVoK+99lpr10FE1OaYFaD9+/eHTCYzvZbJZNBoNMjMzGy1woiIbJ1ZAXrp0iXT\nz9XV1UhPT8d//vOfViuKiKgtaPGnManVaowaNQonTpxojXqIiNoMs1qgycnJdV7fvHkTubm5rVIQ\nEVFbYVaAfvvtt3VeOzg44P3332+VgoiI2ooWfStnUVERZDIZnJycWrMmyWzpGV4+C18fn4W3fXwW\nvmH39Sx8VlYWwsLCcPv2bQgh0LlzZ6xbtw6enp4PtEgiorbErAB977338OGHH6JPnz4AgIsXL2L1\n6tX45JNPWrU4IiJbZtZVeLlcbgpP4M59ofc+0klE9DAyO0APHDiAsrIylJWVYd++fQxQInromXUR\n6aeffkJMTAzOnTsHuVyOfv364e233+YHKjeBF5Hq40Uk28eLSA27r++FP3HiBNRqNb755htkZmZC\nCIFjx4490AKJiNoaswI0LS0NmzdvNr3++OOP8fe//73ViiIiagvMClCj0VhnzFMmk6EFt48SEbVL\nZt3GNHr0aMyaNQtDhgxBbW0tMjIyMG7cuNaujYjIppn9JNLp06dx7tw5yGQyPPnkkxg0aJDkjVZW\nVmLy5Ml47bXXMHz4cISFhcFoNMLV1RXr1q2DWq1GWloaEhMTIZfLERgYiBkzZjS7Xlsa/OZFpPp4\nEcn28SJSw+7rSSQA8Pb2hre39wMpZsuWLabHQT/44AMEBQVh4sSJWL9+PZKTkxEQEID4+HgkJydD\npVJh+vTpGDt2LDp37vxAtk9E9CC0+OPs7teVK1fw448/4umnnwZw5xs//f39AQB+fn5IT0/H2bNn\n4enpCY1GAzs7OwwePBhZWVmWLpWIqElmt0AflHfeeQdRUVFITU0FAFRUVECtVgMAXFxckJ+fD71e\nD61Wa1pGq9UiPz+/2XU7O9tDqeQN/raqsW4Q2RYeJ/NZNEBTU1MxaNCgRm/Ab2w41twr/oWF5ZJr\no9bHsTXbxzHQht33GOiDcPToUWRnZ+Po0aO4efMm1Go17O3tUVlZCTs7O+Tm5kKn00Gn00Gv15uW\ny8vLu6+LVkRErcGiAXrvhzBv2rQJ3bp1w5kzZ3DgwAFMmTIFBw8ehK+vL7y8vBAZGYmSkhIoFApk\nZWUhIiLCkqUSETXL4mOgvxYSEoLw8HDs2rULXbt2RUBAAFQqFUJDQzF//nzIZDIsXLgQGg3HZYjI\ntrToE+ltnS2N3fA+0Pp4H6jt4xhow+7rw0SIiKg+BigRkUQMUCIiiRigREQSMUCJiCRigBIRScQA\nJSKSiAFKRCQRA5SISCIGKBGRRAxQIiKJGKBERBIxQImIJGKAEhFJxAAlIpKIAUpEJBEDlIhIIgYo\nEZFEDFAiIokYoEREEjFAiYgkYoASEUnEACUikkhp6Q3GxcXh22+/RU1NDV555RV4enoiLCwMRqMR\nrq6uWLduHdRqNdLS0pCYmAi5XI7AwEDMmDHD0qUSETXJogGakZGBy5cvY9euXSgsLMTUqVMxfPhw\nBAUFYeLEiVi/fj2Sk5MREBCA+Ph4JCcnQ6VSYfr06Rg7diw6d+5syXKJiJpk0S780KFDsXHjRgCA\no6MjKioqkJmZCX9/fwCAn58f0tPTcfbsWXh6ekKj0cDOzg6DBw9GVlaWJUslImqWRVugCoUC9vb2\nAIDk5GQ89dRTOH78ONRqNQDAxcUF+fn50Ov10Gq1puW0Wi3y8/ObXb+zsz2USkXrFE/3zdVVY+0S\nyAw8Tuaz+BgoABw6dAjJycn4+OOPMW7cONN0IUSD8zc2/dcKC8sfSH3UOvLzS61dAjXD1VXD49SA\nxv6pWPwq/Ndff42PPvoI27Ztg0ajgb29PSorKwEAubm50Ol00Ol00Ov1pmXy8vKg0+ksXSoRUZMs\nGqClpaWIi4vD1q1bTReEfHx8cODAAQDAwYMH4evrCy8vL5w/fx4lJSW4ffs2srKy4O3tbclSiYia\nZdEu/L59+1BYWIjFixebpsXGxiIyMhK7du1C165dERAQAJVKhdDQUMyfPx8ymQwLFy6ERsNxGSKy\nLTJh7gBjG2BLYzc6naO1S7A5eXkl1i6BmsEx0IbZzBgoEVF7wQAlIpKIAUpEJBEDlIhIIgYoEZFE\nDFAiIokYoEREEjFAiYgkYoASEUnEACUikogBSkQkEQOUiEgiBigRkUQMUCIiiRigREQSMUCJiCRi\ngBIRScQAJSKSiAFKRCQRA5SISCKLfisnEdXHLyBsWFv4EkK2QImIJGKAEhFJZNNd+DVr1uDs2bOQ\nyWSIiIjAwIEDrV0SEZGJzQboqVOn8PPPP2PXrl24cuUKIiIisGvXLmuXRURkYrNd+PT0dIwZMwYA\n4OHhgeLiYpSVlVm5KiKi/7HZANXr9XB2dja91mq1yM/Pt2JFRER12WwX/teEEM3O4+qqsUAl5jGn\nXiKA50pbZrMtUJ1OB71eb3qdl5cHV1dXK1ZERFSXzQboiBEjcODAAQDAhQsXoNPp4ODgYOWqiIj+\nx2a78IMHD8aAAQMwa9YsyGTbbSOTAAAFnUlEQVQyrFy50tolERHVIRMcgCEiksRmu/BERLaOAUpE\nJBEDlIhIIgYoEZFENnsVnoha1yeffNLk+88//7yFKmm7GKDt0PHjx1FcXIxJkyYhIiICV69exfz5\n8zF27Fhrl0Y2pLCw0NoltHkM0HZo06ZNSEhIwFdffQWFQoEdO3Zg3rx5DFCqY+rUqejWrRt+/PFH\na5fSZjFA2yG1Wg0HBwccOnQIM2fOhFKphNFotHZZZGP++te/Yvny5Vi1alW992QyGf76179aoaq2\nhQHaDnXp0gVz585FeXk5Bg8ejLS0NHTs2NHaZZGNWb58OQAgKSmp3nvx8fGWLqdN4pNI7VBNTQ1+\n+OEH9O7dG3Z2dvj+++/RrVs3ODryy8uovmPHjmHjxo0oLi4GABgMBri7u+Ozzz6zcmW2j7cxtUMZ\nGRm4du0a7OzsEBERgVWrVuHUqVPWLots1KZNm7Bx40a4u7sjOTkZCxcuxAsvvGDtstoEBmg7tGnT\nJowaNarORSSOZ1FjOnbsiB49eqC2thbOzs6YOXMmdu/ebe2y2gSOgbZDvIhELeHm5obU1FT0798f\nS5cuRffu3VFQUGDtstoEtkDbobsXka5du8aLSNSotWvXAgDeeecdPPXUU3B2dsbIkSPh5OSELVu2\nWLm6toEt0HZo3bp1potIAPDYY49hwYIFVq6KbM33338PAFAoFNBqtTh16hT++Mc/WrmqtoUB2g6V\nl5fjzJkzOHz4MIA7V1VTU1Nx7NgxK1dGtuTXN+DwhpyWYxe+HXr99ddRUFCAvXv3wt7eHv/+978R\nFRVl7bLIxshksiZfU/N4H2g7NGfOHCQmJmL27NlISkpCdXU1Fi9ejA8//NDapZENGTx4sGmYRwiB\na9euoXfv3hBCQCaTITk52coV2j524dshg8GAS5cuwc7ODidOnECPHj3wyy+/WLsssjF79+61dglt\nHlug7Ux1dTWuXr2KwsJCaLVarF69GkVFRQgODkZgYKC1yyNqVxig7cihQ4ewZs0auLq6oqioCHFx\ncfDy8rJ2WUTtFrvw7cj27duxZ88eODk5IScnB9HR0di+fbu1yyJqt3gVvh1RqVRwcnICAHTv3h1V\nVVVWroiofWOAtiO8LYXIsjgG2o7wthQiy2KAtiPXr19v8v1u3bpZqBKihwMDlIhIIo6BEhFJxAAl\nIpKIAUrtzo8//ogLFy40OU9FRQUOHjxooYqovWKAUrvz1Vdf4eLFi03Oc/HiRQYo3Tc+iURtWm5u\nLpYuXQoAqKysxOjRo7Fjxw44ODjAzs4O/fv3x8qVK6FQKFBWVobFixdj6NChePPNN1FSUoK4uDg8\n9thjOHnyJN59910AwOzZs/Hqq6/Cw8OjzrpnzpyJ6dOnW21fyfawBUpt2j/+8Q/07t0bSUlJ2LFj\nBzQaDXx9ffHSSy/hmWeegV6vx+uvv47ExERERkZiw4YNsLOzw8svvwwfHx+EhYWZve7KykoL7hm1\nBQxQatN8fX2Rnp6OZcuW4fDhw5g5c2ad911dXZGQkICgoCCsWbMGRUVFD2zdRAxQatM8PDzw5Zdf\n4tlnn0V6ejpmz55d5/2YmBiMGTMGn376KVavXt3gOn79yKvBYDBr3UQcA6U2be/evejWrRt8fHww\nbNgwjB49Gr169TKFoF6vx29/+1sAwL59+1BdXQ0AkMvlqKmpAQA4ODjg5s2bAICCggJcvny50XXX\n1NRAqeSfDd3BJ5GoTfv++++xcuVKqNVqCCEwceJEaDQaxMXF4bXXXoO9vT0++ugjdO/eHXPnzkVs\nbCx8fX0xY8YMzJkzB76+voiKisK8efNQW1sLDw8P5OfnY968eXB2dq637uDgYGvvMtkQBigRkUQc\nAyUikogBSkQkEQOUiEgiBigRkUQMUCIiiRigREQSMUCJiCT6fwsvxLjkAelAAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
+ "text/plain": [
+ " gender race/ethnicity parental level of education lunch \\\n",
+ "995 female group E master's degree standard \n",
+ "996 male group C high school free/reduced \n",
+ "997 female group C high school free/reduced \n",
+ "998 female group D some college standard \n",
+ "999 female group D some college free/reduced \n",
+ "\n",
+ " test preparation course math score reading score writing score \n",
+ "995 completed 88 99 95 \n",
+ "996 none 62 55 55 \n",
+ "997 completed 59 71 65 \n",
+ "998 completed 68 78 77 \n",
+ "999 none 77 86 86 "
]
- },
- {
- "metadata": {
- "id": "qsOJMDZkg3K5",
- "colab_type": "code",
- "outputId": "0069d22e-e62a-4b34-ff0f-3f4a5d6cca1e",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 73
- }
- },
- "cell_type": "code",
- "source": [
- "data['pass_math'].value_counts()"
+ },
+ "execution_count": 169,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.tail()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 261
+ },
+ "colab_type": "code",
+ "id": "yQEEsbpSWpdG",
+ "outputId": "c664fcb3-0563-483a-8b79-d2f072a9f47e"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 1000 entries, 0 to 999\n",
+ "Data columns (total 8 columns):\n",
+ "gender 1000 non-null object\n",
+ "race/ethnicity 1000 non-null object\n",
+ "parental level of education 1000 non-null object\n",
+ "lunch 1000 non-null object\n",
+ "test preparation course 1000 non-null object\n",
+ "math score 1000 non-null int64\n",
+ "reading score 1000 non-null int64\n",
+ "writing score 1000 non-null int64\n",
+ "dtypes: int64(3), object(5)\n",
+ "memory usage: 62.6+ KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "data.info()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 300
+ },
+ "colab_type": "code",
+ "id": "p8qPdumvWsFi",
+ "outputId": "7e538d81-7631-42b2-875f-b053da212534"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " math score | \n",
+ " reading score | \n",
+ " writing score | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | count | \n",
+ " 1000.00000 | \n",
+ " 1000.000000 | \n",
+ " 1000.000000 | \n",
+ "
\n",
+ " \n",
+ " | mean | \n",
+ " 66.08900 | \n",
+ " 69.169000 | \n",
+ " 68.054000 | \n",
+ "
\n",
+ " \n",
+ " | std | \n",
+ " 15.16308 | \n",
+ " 14.600192 | \n",
+ " 15.195657 | \n",
+ "
\n",
+ " \n",
+ " | min | \n",
+ " 0.00000 | \n",
+ " 17.000000 | \n",
+ " 10.000000 | \n",
+ "
\n",
+ " \n",
+ " | 25% | \n",
+ " 57.00000 | \n",
+ " 59.000000 | \n",
+ " 57.750000 | \n",
+ "
\n",
+ " \n",
+ " | 50% | \n",
+ " 66.00000 | \n",
+ " 70.000000 | \n",
+ " 69.000000 | \n",
+ "
\n",
+ " \n",
+ " | 75% | \n",
+ " 77.00000 | \n",
+ " 79.000000 | \n",
+ " 79.000000 | \n",
+ "
\n",
+ " \n",
+ " | max | \n",
+ " 100.00000 | \n",
+ " 100.000000 | \n",
+ " 100.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "Pass 960\n",
- "Fail 40\n",
- "Name: pass_math, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 186
- }
+ "text/plain": [
+ " math score reading score writing score\n",
+ "count 1000.00000 1000.000000 1000.000000\n",
+ "mean 66.08900 69.169000 68.054000\n",
+ "std 15.16308 14.600192 15.195657\n",
+ "min 0.00000 17.000000 10.000000\n",
+ "25% 57.00000 59.000000 57.750000\n",
+ "50% 66.00000 70.000000 69.000000\n",
+ "75% 77.00000 79.000000 79.000000\n",
+ "max 100.00000 100.000000 100.000000"
]
- },
- {
- "metadata": {
- "id": "YlFzqNvVeaeS",
- "colab_type": "code",
- "outputId": "b4740ae9-6131-422f-addf-2029630cac13",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 252
- }
- },
- "cell_type": "code",
- "source": [
- "# creating a new column pass_math, this column will tell us whether the students are pass or fail\n",
- "data['pass_reading'] = np.where(data['reading score']< passmarks, 'Fail', 'Pass')\n",
- "data['pass_reading'].value_counts(dropna = False).plot.bar(color = 'brown', figsize = (5, 3))\n",
- "\n",
- "plt.title('Comparison of students passed or failed in maths')\n",
- "plt.xlabel('status')\n",
- "plt.ylabel('count')\n",
- "plt.show()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADrCAYAAAA/ks7bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XtcVGX+B/DPXEVkRAZnMC+ZUloa\nYoproqSIeFktLRVdwjRty3JRf2KihIKRl7A0L2i+0jbCWk1Ew81EzcuWAma4aJqbqRXoijPIVS4D\nw/P7w5ezolyGU8wM9Hn/xTlzLt8z5/DheZ5zZpAJIQSIiKjB5PYugIioqWKAEhFJxAAlIpKIAUpE\nJBEDlIhIIgYoEZFEf6gAFULg73//O8aMGYMRI0Zg2LBhiI6ORlFRkb1Lq2bbtm1477337Lb/oqIi\njB07FsOHD0deXp5V61y+fBnffvttg/c1bdo0JCUlNXi937pfR9KjRw9kZ2f/bts7dOgQBg0ahKio\nqDqXW7BgAQ4fPozs7Gz06NGjwfsJDAxEenr6ffOnTp2Kc+fONXh7v9Vnn31m+Xno0KE4depUo+9T\n2eh7cCDvvPMOTp48ia1bt8LDwwMlJSVYtmwZXnnlFXzyySeQyWT2LhEAEBISYtf9/+c//0F+fj6O\nHTtm9TqHDh1CZWUl+vXr14iVOc5+Hdnhw4cxYcIEzJ07t87lYmNjAeB3DW8AiI+P/123Zw2DwYAt\nW7YgKCjIpvv9wwRofn4+EhISsHv3bnh4eAAAnJ2dsWTJEhw/fhxCCJhMJixbtgzp6emQy+UYPHgw\nXn/9dSgUCgwdOhQvvvgikpKSkJOTg+joaKSmpuLrr7+GVqvFBx98AFdXV3Tv3h1vvPEGdu3ahRs3\nbmD27Nn4y1/+AgCIi4tDcnIyzGYzPD09sWrVKrRu3Rrr169HTk4OLly4gDFjxqCoqAjXr1/HsmXL\n8OWXXyIuLg5msxlKpRKRkZHo378/rl27hsWLFyM7OxsqlQovvfQSxo0bh+zsbEyePBkvv/wydu7c\nifz8fCxatAh//vOf73tP0tPTsXLlSpSWlkKj0WDJkiVwd3fH/PnzkZubi5EjR+LTTz+FVqu1rHPy\n5EmsWLEC5eXlEEJg9uzZaNGiBTZv3gyVSoXCwkJ069YNycnJ+OijjwAASUlJlumsrCzMmzcPeXl5\n8Pb2htlstmz7u+++w/Lly1FYWAg3Nze8++676NSpE5KSknD06FG4uLjgu+++g0KhwNq1a5GVlVVt\nv6GhoViwYAEuX74Mk8mEAQMGICoqCiqVqtpxSzlHP/74IxYvXozi4mJUVFTghRdeQEhISK3zTSYT\nYmNj8fXXX6OiogJBQUGYOXMmAODYsWN46623oFQqMX78+Fqv2QsXLiA6Ohr5+flo0aIF5s+fDz8/\nP6Snp2PNmjXw8PCAUqnEu+++a1knPj4eKSkpUKlUMBqNePPNNxETE4MTJ06goqICffv2xfLly6FS\nqTBlyhRMmDABffv2tawvhEBcXBz27t0Lk8mEgIAALFq0CAqFAt9//z3Cw8NRWVmJwYMH11r30KFD\nERsbi3bt2ll9LXbv3h0xMTFISEhAYWEhVq5ciZ07d+L06dPw9PTE+++/D6VSia+++grvvfceTCYT\nWrVqhWXLluGxxx7D5MmTkZOTg5EjRyI5ORkA8P333yM2NhbXrl3D6NGjsWjRIlRWViIqKgqnTp1C\nVVUVunfvjpUrV8LFxaXW46mT+IM4evSoCAwMrHOZzZs3i7/+9a+ioqJClJaWivHjx4s9e/YIIYTw\n9/cXixcvFkIIkZCQILy9vUVaWpqoqqoS48ePF5999pkQQohu3bqJN998UwghxKVLl8Tjjz8ubt68\nKc6ePSsGDBggioqKhNlsFtOmTRNxcXFCCCHWrVsnBg0aJHJzcy3TERERQggh+vfvL7Kzs4UQQnz7\n7bdi+fLlQgghpk+fLt5//30hhBDZ2dmib9++IisrS2RlZYkePXqIhIQEIYQQ+/btq/G4i4uLRf/+\n/cWpU6eEEELs379fDB8+XJjNZpGWliaGDRtW43v03HPPifT0dCGEEFeuXBHz5s0TQggRHh5uOZ5d\nu3aJqVOnWta5e3r27Nni3XffFUIIkZmZKXr06CF27dolioqKRL9+/cQ333wjhBBi79694tlnn7Ws\n7+3tLc6ePSuEECI6Olq88cYb9+1327ZtYuHChUIIISoqKsSSJUvE+fPn7zsGKecoNDRUJCUlCSGE\nyM3NFa+++qooLy+vdf6GDRvE1KlTRXl5ubh165YYN26cOHz4sKisrBQDBw4UX3/9tRBCiK1bt4pu\n3bqJrKysajWazWYxatQosXfvXiGEEGfOnBH9+vUTRUVFIi0tTXh5eYkTJ07UeI7ufk/2798vxowZ\nI0wmkygrKxOjRo2yXNMhISFiz549IisrSzz22GNCCCF2794tRo8eLQoLC0VFRYV4+eWXLdfS+PHj\nxfbt24UQt6+rRx99VKSlpd23f39/f/Htt99afS3eOSd3rueVK1cKHx8fcfnyZVFeXi78/PzEiRMn\nREVFhfDx8RGnT58WQgixfv16y3V17zXr7+8vwsLCRGVlpbh+/bro2bOnuHbtmjhy5Ih44YUXRFVV\nlaiqqhJr1qwR//rXv2qsyRp/mDHQ/Px8uLu717nM0aNHERQUBKVSCScnJzz99NM4fvy45fWAgAAA\nQLdu3dCiRQv0798fMpkMjzzyCG7cuGFZ7k6romvXrujSpQvOnDmDxx9/3NKKksvleOKJJ5CVlWVZ\nx9vbu1pL7w53d3ds374dV69ehY+PDxYtWoSKigqcOHECwcHBAIAOHTqgf//+SEtLAwBUVlbiueee\nAwD07NkT165du2+7Z86cQbt27SytjxEjRiAvLw9Xr16t8z1yd3fHnj17cOnSJTz00EPVWj/WOHXq\nlKUF0qtXL3Tt2hXA7danh4cHBg4cCAAYM2YMfv31V0vtnp6eePzxxwHcHjP873//e9+2tVotTp8+\njW+++QZVVVVYunQpHnvssRrraOg5cnd3R0pKCs6dOwc3Nzds3LgRarW61vlHjhxBcHAw1Go1nJ2d\nMXbsWBw4cAA///wzTCYTBg0aBAB49tlna6wvOzsbRqMRo0ePBgB4eXmhffv2OHv2LADAyckJAwYM\nqPf9HjFiBHbt2gWVSoUWLVrAy8ur2nV3ryNHjmD8+PHQaDRQKpWYOHEiDhw4gPLycpw9e9Zy7kaO\nHImWLVvWu39rrsU7hg0bBuD271enTp3QpUsXqNVqdO7cGTk5OVAqlThx4gR69+4NAPDx8anzWJ5+\n+mkoFAp4eHjA3d0d169fh1arxaVLl3Dw4EGUlpZi7ty58PPzq/c4avOH6cK7ubkhJyenzmVu3rwJ\nV1dXy7Srqytyc3Mt061atQIAyOVyy893pquqqqqtd/fPhYWFKC0txYoVKyyD7gUFBRgyZEiN69xt\n06ZN2LRpE5577jk88MADiIiIQJcuXSCEgEajsSzXunVr3Lx5EwCgUCjg7OxcY213H2vr1q2rzdNo\nNNWOtybLly/Hpk2b8OKLL8LJyQnz5s3DyJEj61znbgUFBdW6S3dqKCwsRFZWVrVtqdVqyzHdfawK\nhaJa1/+OUaNGoaCgAGvXrsXly5fxzDPPYNGiRVCr1fct29BzNH/+fGzevBlz585FeXk5XnnlFTz/\n/PO1zi8qKsKKFSuwevVqAIDJZEKvXr3uO/7azvvNmzeh0WiqjcvfOcdt27atdb2athMTE4Pz589D\nJpPBaDRi6tSptS5fVFSErVu3YseOHQAAs9kMrVaL/Px8ALDULpPJ7rt+amLNtXhHbb9fCoXCst6d\nYTiTyQSTyVTnfYt7t2E2m/HEE08gMjISCQkJCA8Px9ChQxEVFWXVsdTkDxOgvXv3Rm5uLs6dO4ee\nPXta5ldUVGDDhg2YOXMm2rZta7lQgNut1rZt2zZ4X3l5eejQoYNlG66uroiPj8fPP/+MpKQktGrV\nCmvWrKk30AHgwQcfxIoVK1BVVYU9e/YgLCwMR44cgVwuR0FBgeUXyZoW9t3c3d2rHasQAgUFBXB3\nd6+zldC2bVssXrwYixcvxjfffIPQ0ND7/oLL5fJqAVdYWGj5uXXr1iguLrZM3wlIvV6Prl271nhH\n/scff7T6uCZPnmwZDwsNDcWePXtqvLHQ0HPUqlUrzJs3D/PmzcOZM2fw17/+Fb6+vujSpUuN8/V6\nPaZPnw5/f/9q+7106VKNx38vd3d3FBQUQAhhCYmGnmMAWLNmDZRKJfbu3Qu1Wo2wsLA6l9fr9Rg6\ndOh9NzLLysoAAMXFxdBoNKiqqkJBQUGDavmtMjIy8MEHH2Dnzp3o2LEjjh8/jsWLFzd4OyNHjsTI\nkSORn5+PiIgIbN26Ff/3f/8nqaY/TBe+devWeOmllxAeHo5ffvkFAFBaWoolS5bg/PnzaNmyJYYM\nGYLExESYzWaUlJTg888/r3OwvDZffPEFgNu/LL/88gu8vb2Rm5uLrl27olWrVrh69SqOHTuGkpKS\nOrdz8+ZNvPjiiyguLoZcLoe3tzdkMhmUSiUGDRpkaSX8+uuvOHXqFHx9fa2usVevXjAajTh9+rSl\n5nbt2qFjx461rlNRUYEpU6ZYhit69uwJpVIJuVwOpVJpeRxMr9fjypUrKC8vR2lpKfbv32/ZRu/e\nvXHw4EEAt38hfv31VwC3hzAMBgMyMzMBAFlZWXj99dch6vmysLv3GxcXh8TERACAh4cHOnbsWGsL\npaHnaObMmbh48SKA211MFxcXyGSyWucHBARg586dMJvNEEJg48aN+Ne//oUHH3wQCoXC0spNSkqq\nscaOHTuiXbt22Ldvn+W9MhqN6NWrV53vx71yc3PRrVs3qNVqXLhwAadPn67zugsICMDnn3+O0tJS\nAMD27duxe/duODk54dFHH7Wcuy+++ALl5eUNquW3unnzJtzd3dG+fXuUlpZi9+7dKCkpgRACSqUS\nJSUlqKysrHMbu3btQlxcHACgTZs2liEkqf4wLVAACA0NhaurK1599VWYzWbI5XIEBAQgOjoaADBl\nyhRkZWVh9OjRkMlkGDlyJEaNGtXg/Wi1WowdOxY5OTmIjIyEq6srJk+ejNmzZ2PEiBHo3r07Fi5c\niNDQUMud6tq24+fnh/Hjx0OhUEClUmHZsmUAgKVLlyIyMhJJSUlQqVR466238MADD1j9SIqzszPe\ne+89xMTEoKSkBFqtFqtXr66zS6RSqTBhwgRMmzYNwO2WZmRkJFq2bAl/f3/Mnz8fV69exZo1a+Dt\n7Y0RI0agY8eOCAgIsIwlv/766wgLC8Pnn38Ob29vS+g7OTlh3bp1iImJwa1bt6BSqTBnzpx6Hy27\ne78LFizAokWL8MEHH0Amk8Hb2xtjx46t9b1tyDkKCQlBWFgYKioqAADBwcF46KGHap0fHByM7Oxs\njB49GkIIPP7445g6dSpUKhViYmIQEREBtVqN5557ztLFvZtMJsPq1asRFRWFDRs2oGXLlli7dm2N\ny9Zl+vTpCA8PR1JSEnx8fBAeHo433nij1iAeNmwYLl68aBmbffDBBy3XXHR0NCIiIrB582Y89dRT\n8PT0bFAtv5Wfnx8+/fRTDBs2DB4eHoiIiEBmZiZmz56NFStWwNXVFQMHDsTu3btr3UZAQAAiIiIw\nfPhwKBQKdO7cGStXrpRck0zU9yeeGqR79+44duwY2rVrZ+9SqBY8R/R7+cN04YmIfm8MUCIiidiF\nJyKSiC1QIiKJmtVdeIPBsb5VyRG4uTkjL6/ux6WI7uD1UjOdTlPj/EZtgf74448YNmwYtm3bBgD4\n73//iylTpiA4OBhz5syByWQCACQnJ2P8+PGYOHEidu7cCeD2M4dhYWH4y1/+gpCQkDo/skW1UyoV\n9i6BmhBeLw3TaAFaUlKCmJiYap/XXbduHYKDg/Hpp5+ic+fOSExMRElJCeLi4vDRRx8hISEB8fHx\nyM/Pxz//+U+0bt0a//jHPzBz5swGf+aaiKixNVqAqtVqfPDBB9Dr9ZZ56enpli/k8Pf3R2pqKjIz\nM+Hl5QWNRgMnJyf06dMHGRkZSE1NRWBgIADA19cXGRkZjVUqEZEkjTYGqlQqoVRW33xpaanlix3c\n3d1hMBhgNBqrfQuRVqu9b75cLodMJoPJZKrxiyHucHNzZhekBrWN3xDVhNeL9ex2E6m2p6caOv9u\nHPy+n06n4c01shqvl5rZ5SbSvZydnS3f6pKTkwO9Xg+9Xg+j0WhZ5saNG5b5BoMBwO0bSkKIOluf\nRES2ZtMA9fX1RUpKCgDgwIED8PPzg7e3N86ePYvCwkLcunULGRkZ8PHxwcCBAy3f4nPkyBH079/f\nlqUSEdWr0T6J9P333+Ptt9/G1atXoVQq4eHhgXfeeQcLFy5EeXk52rdvjxUrVkClUmH//v3YunUr\nZDIZQkJC8Mwzz8BsNiMyMhI///wz1Go1Vq5ciQceeKDOfTpS1+PgkCftXYLDCTyaZu8SqB7swtes\nti58s/oopyOdeAbo/Rigjo8BWjOHGAMlImpOGKBERBIxQImIJGKAEhFJxAAlIpKIAUpEJBEDlIhI\nIgYoEZFEDFAiIokYoEREEjFAiYgkYoASEUnEACUikogBSkQkEQOUiEgiBigRkUQMUCIiiRigREQS\nMUCJiCRigBIRScQAJSKSiAFKRCQRA5SISCKlLXd269YthIeHo6CgABUVFZg1axZ0Oh2io6MBAN27\nd8fSpUsBAFu2bMH+/fshk8nwt7/9DYMHD7ZlqURE9bJpgO7evRtdunRBWFgYcnJyMHXqVOh0OkRE\nRKBXr14ICwvDsWPH0LVrV+zbtw/bt29HcXExgoODMWjQICgUCluWS0RUJ5t24d3c3JCfnw8AKCws\nRJs2bXD16lX06tULAODv74/U1FSkp6fDz88ParUaWq0WHTp0wE8//WTLUomI6mXTFujo0aORlJSE\nwMBAFBYWYtOmTXjzzTctr7u7u8NgMKBNmzbQarWW+VqtFgaDAd27d69z+25uzlAq2Up1VDqdxt4l\nkBV4nqxn0wD9/PPP0b59e2zduhUXLlzArFmzoNH872QJIWpcr7b598rLK/ld6qTGYTAU2bsEqodO\np+F5qkFtf1Rs2oXPyMjAoEGDAACPPvooysvLkZeXZ3k9JycHer0eer0eRqPxvvlERI7EpgHauXNn\nZGZmAgCuXr2KVq1awdPTE6dOnQIAHDhwAH5+fnjyySdx9OhRmEwm5OTk4MaNG3j44YdtWSoRUb1s\n2oWfNGkSIiIiEBISgsrKSkRHR0On02HJkiWoqqqCt7c3fH19AQBBQUEICQmBTCZDdHQ05HI+skpE\njkUmrB1gbAIcaezm4JAn7V2Cwwk8mmbvEqgeHAOtmUOMgRIRNScMUCIiiRigREQSMUCJiCRigBIR\nScQAJSKSiAFKRCQRA5SISCIGKBGRRAxQIiKJGKBERBIxQImIJGKAEhFJxAAlIpKIAUpEJBEDlIhI\nIgYoEZFEDFAiIokYoEREEjFAiYgkYoASEUnEACUikogBSkQkkdLWO0xOTsaWLVugVCoxe/ZsdO/e\nHQsWLIDZbIZOp8OqVaugVquRnJyM+Ph4yOVyBAUFYeLEibYulYioTjYN0Ly8PMTFxWHXrl0oKSnB\n+vXrkZKSguDgYIwaNQqrV69GYmIixo0bh7i4OCQmJkKlUmHChAkIDAxEmzZtbFkuEVGdbNqFT01N\nxYABA+Di4gK9Xo+YmBikp6cjICAAAODv74/U1FRkZmbCy8sLGo0GTk5O6NOnDzIyMmxZKhFRvWza\nAs3OzkZZWRlmzpyJwsJChIaGorS0FGq1GgDg7u4Og8EAo9EIrVZrWU+r1cJgMNS7fTc3ZyiVikar\nn34bnU5j7xLICjxP1rP5GGh+fj42bNiAa9eu4YUXXoAQwvLa3T/frbb598rLK/ldaqTGYTAU2bsE\nqodOp+F5qkFtf1Rs2oV3d3fHE088AaVSiQcffBCtWrVCq1atUFZWBgDIycmBXq+HXq+H0Wi0rHfj\nxg3o9XpblkpEVC+rAnThwoX3zZsxY0aDdzZo0CCkpaWhqqoKeXl5KCkpga+vL1JSUgAABw4cgJ+f\nH7y9vXH27FkUFhbi1q1byMjIgI+PT4P3R0TUmOrswicnJ2P79u24ePEinn/+ecv8ioqKai1Ea3l4\neGDEiBEICgoCAERGRsLLywvh4eHYsWMH2rdvj3HjxkGlUiEsLAwzZsyATCbDrFmzoNFwXIaIHItM\n1DPAmJOTg/nz5yM0NNQyTy6X4+GHH3a4x4ocaezm4JAn7V2Cwwk8mmbvEqgeHAOtWW1joPXeRPLw\n8EBCQgKKioqQn59vmV9UVORwAUpEZEtW3YV/6623sGvXLmi1WssdcZlMhq+++qpRiyMicmRWBWh6\nejrS0tLQokWLxq6HiKjJsOoufOfOnRmeRET3sKoF2q5dOzz//PPo27cvFIr/fdJnzpw5jVYYEZGj\nsypA27RpgwEDBjR2LURETYpVAfraa681dh1ERE2OVQHao0cPyGQyy7RMJoNGo0F6enqjFUZE5Ois\nCtALFy5YfjaZTEhNTcV//vOfRiuKiKgpaPCXiajVagwePBjHjx9vjHqIiJoMq1qgiYmJ1aavX7+O\nnJycRimIiKipsCpAv/vuu2rTLi4ueO+99xqlICKipsKqAF2xYgWA21+GLJPJ4Orq2qhFERE1BVYF\naEZGBhYsWIBbt25BCIE2bdpg1apV8PLyauz6iIgcllUB+u6772Ljxo3o1q0bAOD8+fNYtmwZPvnk\nk0YtjojIkVl1F14ul1vCE7j9XOjdH+kkIvojsjpAU1JSUFxcjOLiYuzbt48BSkR/eFZ14ZcuXYqY\nmBhERkZCLpfj0UcfxVtvvdXYtREROTSrWqDHjx+HWq3Gt99+i/T0dAghcOzYscaujYjIoVkVoMnJ\nydiwYYNl+sMPP8Q///nPRiuKiKgpsCpAzWZztTFPmUyGev4XHRFRs2fVGOjQoUMxefJk9O3bF1VV\nVUhLS8Pw4cMbuzYiIodm9feB/ulPf8KZM2cgk8kQFRWF3r17S95pWVkZxowZg9deew0DBgzAggUL\nYDabodPpsGrVKqjVaiQnJyM+Ph5yuRxBQUGYOHGi5P0RETUGqwIUAHx8fODj4/O77HTTpk2Wj4Ou\nW7cOwcHBGDVqFFavXo3ExESMGzcOcXFxSExMhEqlwoQJExAYGMh/o0xEDqXBX2f3W126dAk//fQT\nhgwZAuD2f/wMCAgAAPj7+yM1NRWZmZnw8vKCRqOBk5MT+vTpg4yMDFuXSkRUJ5sH6Ntvv42FCxda\npktLS6FWqwEA7u7uMBgMMBqN0Gq1lmW0Wi0MBoOtSyUiqpPVXfjfw549e9C7d2906tSpxtdru7Nv\n7R1/NzdnKJX8hJSj0uk09i6BrMDzZD2bBujRo0eRlZWFo0eP4vr161Cr1XB2dkZZWRmcnJyQk5MD\nvV4PvV4Po9FoWe/GjRtW3bTKyytpzPLpNzIYiuxdAtVDp9PwPNWgtj8qNg3Qu7+Eef369ejQoQNO\nnz6NlJQUjB07FgcOHICfnx+8vb0RGRmJwsJCKBQKZGRkICIiwpalEhHVy6YBWpPQ0FCEh4djx44d\naN++PcaNGweVSoWwsDDMmDEDMpkMs2bNgkbDbgURORaZaEYfKXKkrsfBIU/auwSHE3g0zd4lUD3Y\nha9ZbV14m9+FJyJqLhigREQSMUCJiCRigBIRScQAJSKSiAFKRCQRA5SISCIGKBGRRAxQIiKJGKBE\nRBIxQImIJGKAEhFJxAAlIpKIAUpEJBEDlIhIIgYoEZFEDFAiIokYoEREEjFAiYgkYoASEUnEACUi\nkogBSkQkEQOUiEgipa13GBsbi++++w6VlZV45ZVX4OXlhQULFsBsNkOn02HVqlVQq9VITk5GfHw8\n5HI5goKCMHHiRFuXSkRUJ5sGaFpaGi5evIgdO3YgLy8Pzz77LAYMGIDg4GCMGjUKq1evRmJiIsaN\nG4e4uDgkJiZCpVJhwoQJCAwMRJs2bWxZLhFRnWzahe/Xrx/Wrl0LAGjdujVKS0uRnp6OgIAAAIC/\nvz9SU1ORmZkJLy8vaDQaODk5oU+fPsjIyLBlqURE9bJpgCoUCjg7OwMAEhMT8dRTT6G0tBRqtRoA\n4O7uDoPBAKPRCK1Wa1lPq9XCYDDYslQionrZfAwUAA4dOoTExER8+OGHGD58uGW+EKLG5Wubfy83\nN2colYrfpUb6/el0GnuXQFbgebKezQP066+/xvvvv48tW7ZAo9HA2dkZZWVlcHJyQk5ODvR6PfR6\nPYxGo2WdGzduoHfv3vVuOy+vpDFLp9/IYCiydwlUD51Ow/NUg9r+qNi0C19UVITY2Fhs3rzZckPI\n19cXKSkpAIADBw7Az88P3t7eOHv2LAoLC3Hr1i1kZGTAx8fHlqUSEdXLpi3Qffv2IS8vD3PnzrXM\nW7lyJSIjI7Fjxw60b98e48aNg0qlQlhYGGbMmAGZTIZZs2ZBo2G3gogci0xYO8DYBDhS1+PgkCft\nXYLDCTyaZu8SqB7swtfMIbrwRETNCQOUiEgiBigRkUQMUCIiiRigREQSMUCJiCRigBIRScQAJSKS\niAFKRCQRA5SISCIGKBGRRAxQIiKJGKBERBIxQImIJGKAEhFJxAAlIpKIAUpEJBEDlIhIIgYoEZFE\nDFAiIokYoEREEjFAiYgksun/hSei+/FfYNesKfwbbIcO0OXLlyMzMxMymQwRERHo1auXvUsiIrJw\n2AA9efIkfvnlF+zYsQOXLl1CREQEduzYYe+yiIgsHHYMNDU1FcOGDQMAeHp6oqCgAMXFxXauiojo\nfxw2QI1GI9zc3CzTWq0WBoPBjhUREVXnsF34ewkh6l1Gp9PYoBLrBJ87Z+8SqIngtdJ0OWwLVK/X\nw2g0WqZv3LgBnU5nx4qIiKpz2AAdOHAgUlJSAADnzp2DXq+Hi4uLnasiIvofh+3C9+nTBz179sTk\nyZMhk8kQFRVl75KIiKqRCWsGF4mI6D4O24UnInJ0DFAiIokYoEREEjFAiYgkcti78ETUuD755JM6\nX3/++edtVEnTxQBthr755hsVi8ffAAAFWklEQVQUFBRg9OjRiIiIwOXLlzFjxgwEBgbauzRyIHl5\nefYuocljgDZD69evx9atW3Hw4EEoFAps27YN06dPZ4BSNc8++yw6dOiAn376yd6lNFkM0GZIrVbD\nxcUFhw4dwqRJk6BUKmE2m+1dFjmYjz/+GIsWLcLSpUvve00mk+Hjjz+2Q1VNCwO0GWrbti2mTZuG\nkpIS9OnTB8nJyWjZsqW9yyIHs2jRIgBAQkLCfa/FxcXZupwmiZ9EaoYqKyvx448/omvXrnBycsIP\nP/yADh06oHXr1vYujRzQsWPHsHbtWhQUFAAAKioq0K5dO3z22Wd2rszx8TGmZigtLQ1XrlyBk5MT\nIiIisHTpUpw8edLeZZGDWr9+PdauXYt27dohMTERs2bNwgsvvGDvspoEBmgztH79egwePLjaTSSO\nZ1FtWrZsiU6dOqGqqgpubm6YNGkSdu3aZe+ymgSOgTZDvIlEDeHh4YE9e/agR48emD9/Pjp27Ijc\n3Fx7l9UksAXaDN25iXTlyhXeRKJarVixAgDw9ttv46mnnoKbmxsGDRoEV1dXbNq0yc7VNQ1sgTZD\nq1atstxEAoCHH34YM2fOtHNV5Gh++OEHAIBCoYBWq8XJkyfxt7/9zc5VNS0M0GaopKQEp0+fxuHD\nhwHcvqu6Z88eHDt2zM6VkSO59wEcPpDTcOzCN0Nz5sxBbm4u9u7dC2dnZ/z73//G4sWL7V0WORiZ\nTFbnNNWPz4E2Q1OnTkV8fDymTJmChIQEmEwmzJ07Fxs3brR3aeRA+vTpYxnmEULgypUr6Nq1K4QQ\nkMlkSExMtHOFjo9d+GaooqICFy5cgJOTE44fP45OnTrh119/tXdZ5GD27t1r7xKaPLZAmxmTyYTL\nly8jLy8PWq0Wy5YtQ35+PkJCQhAUFGTv8oiaFQZoM3Lo0CEsX74cOp0O+fn5iI2Nhbe3t73LImq2\n2IVvRrZs2YLdu3fD1dUV2dnZiI6OxpYtW+xdFlGzxbvwzYhKpYKrqysAoGPHjigvL7dzRUTNGwO0\nGeFjKUS2xTHQZoSPpRDZFgO0Gbl69Wqdr3fo0MFGlRD9MTBAiYgk4hgoEZFEDFAiIokYoNTs/PTT\nTzh37lydy5SWluLAgQM2qoiaKwYoNTsHDx7E+fPn61zm/PnzDFD6zfhJJGrScnJyMH/+fABAWVkZ\nhg4dim3btsHFxQVOTk7o0aMHoqKioFAoUFxcjLlz56Jfv3544403UFhYiNjYWDz88MM4ceIE3nnn\nHQDAlClT8Oqrr8LT07PatidNmoQJEybY7VjJ8bAFSk3al19+ia5duyIhIQHbtm2DRqOBn58fXnrp\nJTz99NMwGo2YM2cO4uPjERkZiTVr1sDJyQkvv/wyfH19sWDBAqu3XVZWZsMjo6aAAUpNmp+fH1JT\nU7Fw4UIcPnwYkyZNqva6TqfD1q1bERwcjOXLlyM/P/932zYRA5SaNE9PT3zxxRd45plnkJqaiilT\nplR7PSYmBsOGDcOnn36KZcuW1biNez/yWlFRYdW2iTgGSk3a3r170aFDB/j6+qJ///4YOnQounTp\nYglBo9GIRx55BACwb98+mEwmAIBcLkdlZSUAwMXFBdevXwcA5Obm4uLFi7Vuu7KyEkolf23oNn4S\niZq0H374AVFRUVCr1RBCYNSoUdBoNIiNjcVrr70GZ2dnvP/+++jYsSOmTZuGlStXws/PDxMnTsTU\nqVPh5+eHxYsXY/r06aiqqoKnpycMBgOmT58ONze3+7YdEhJi70MmB8IAJSKSiGOgREQSMUCJiCRi\ngBIRScQAJSKSiAFKRCQRA5SISCIGKBGRRP8PLfOBnKhXtawAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
+ },
+ "execution_count": 171,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 186
+ },
+ "colab_type": "code",
+ "id": "2t2utISaWuH0",
+ "outputId": "c9c4dcd2-1b0b-49f5-9c57-15d93c8f874c"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "gender 0\n",
+ "race/ethnicity 0\n",
+ "parental level of education 0\n",
+ "lunch 0\n",
+ "test preparation course 0\n",
+ "math score 0\n",
+ "reading score 0\n",
+ "writing score 0\n",
+ "dtype: int64"
]
- },
- {
- "metadata": {
- "id": "HyHpREyVhBdM",
- "colab_type": "code",
- "outputId": "99f80a0c-b1c9-4d6c-8baa-5b6cbe7aee52",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 73
- }
- },
- "cell_type": "code",
- "source": [
- "data['pass_reading'].value_counts(dropna = False)"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "Pass 974\n",
- "Fail 26\n",
- "Name: pass_reading, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 188
- }
+ },
+ "execution_count": 172,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.isnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 396
+ },
+ "colab_type": "code",
+ "id": "b-u05ntqWw2y",
+ "outputId": "7efae39c-7258-47de-976f-941f969144bc"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAF7CAYAAAApLgnAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XtYVVX+x/HP4SZhqICQl5wulpfU\n8DY5VIwpXrCcokhT02bMLk5pzq9UvKZlppNTORqZ01iZTSNF6lA5ajbpmIN0odScysZ+mZjCAUFA\nQBDW748ez09GRTS2h3V4v56n5+Hsc/Y+373by89ea1+OyxhjBAAArOTn7QIAAMC5I8gBALAYQQ4A\ngMUIcgAALEaQAwBgMYIcAACLEeSwmjFGL7/8sgYPHqyBAweqX79+mj17toqKirxdWjWvvfaaFi5c\n6LXvLyoq0i233KIBAwYoPz+/2nuLFy9W+/bttXv37mrTDxw4oA4dOmjx4sVnXH779u118ODBOq35\np+jfv78yMjJOmj5lyhT94he/UHx8fLX/du3a5Wg9WVlZuuqqqxz9DjRcAd4uAPgp/vCHP+ijjz7S\nsmXLdNFFF6mkpERz587V/fffr7/85S9yuVzeLlGSNHLkSK9+/9dff62CggJt3rz5lO+3bNlS77zz\njh5++GHPtHfffVctWrQ4XyWeN3fddZceeOABb5cB1BmCHNYqKCjQihUrtHr1al100UWSpJCQED36\n6KPaunWrjDEqLy/X3LlzlZGRIT8/P/Xu3VuTJk2Sv7+/+vbtq9GjR2vVqlXKzs7W7NmzlZ6eri1b\ntig8PFwvvviimjZtqvbt22v69Ol66623lJOTo4ceekjDhw+XJCUnJystLU2VlZVq27atFixYoCZN\nmmjx4sXKzs7WV199pcGDB6uoqEgHDx7U3Llz9fe//13JycmqrKxUQECAZsyYoV69eumHH37QzJkz\nlZWVpcDAQN1zzz1KSEhQVlaWhg0bpvvuu09vvvmmCgoKNHXqVN14440nbZOMjAzNnz9fpaWlCg0N\n1aOPPqqIiAhNnDhReXl5io+P1+uvv67w8PBq811//fVau3ZttSBfu3atrr32Ws/r3NxcJSUlaf/+\n/SovL9eoUaM0evTok2pISUnRyy+/rPLycnXt2lVPPvmkgoOD9dFHH2nevHk6evSojDF66KGHNGjQ\noJPmr2mb5ufne7ZrWFiYnn/+eUVFRemLL75QUlKSjh07pt69e5/T/mSMUXJyst5++22Vl5crLi5O\nU6dOlb+/v0aNGqXY2Fi9//772rt3r8aPH6/Dhw8rLS1Nfn5+Wrp0qdq0aaNvv/1W06dPV0FBgY4d\nO6YJEyZo8ODBtf6e0+0bQI0MYKlNmzaZ/v371/iZpUuXmnvvvddUVFSY0tJSk5iYaNasWWOMMaZP\nnz5m5syZxhhjVqxYYaKjo822bdtMVVWVSUxMNG+88YYxxph27dqZxx9/3BhjzJ49e0znzp3NoUOH\nzM6dO01MTIwpKioylZWV5je/+Y1JTk42xhizaNEic/3115u8vDzP62nTphljjOnVq5fJysoyxhjz\n8ccfmyeffNIYY8zdd99tXnjhBWOMMVlZWaZHjx5m3759Zt++feaqq64yK1asMMYYs3bt2lOud3Fx\nsenVq5f55JNPjDHGrFu3zgwYMMBUVlaabdu2mX79+p1yGy1atMgsWrTIDB8+3GRmZhpjjPn222/N\n0KFDPe8ZY8zjjz9uHn30UWOMMd9//73p1KmT+eGHHzzb6MCBA+bjjz82MTEx5uDBg8YYY2bOnGnm\nz59vjDHmtttuMxkZGcYYY/73f//XPPzwwyfVcqZtGhMTY7KyskxVVZW57777zPPPP2+MMSYxMdGs\nXLnSs306dOhgtm3bdtLyk5KSPMv7b6tXrzY33XSTKSwsNBUVFea+++7zbPORI0eae+65x1RUVJh/\n/OMfJjo62rz11lvGGGPGjx9vnn32WWOMMffff79ZunSpMcaYjz76yFx99dWmvLzc7Nu3z3Ts2PGM\n33O6fQOoCefIYa2CggJFRETU+JlNmzZp6NChCggIUHBwsH71q19p69atnvfj4uIkSe3atVOjRo3U\nq1cvuVwuXXnllcrJyfF8LjExUZJ0+eWX67LLLtOOHTvUuXNnbdq0SRdeeKH8/PzUrVs37du3zzNP\ndHT0ST1fSYqIiNDKlSu1f/9+9ezZU1OnTlVFRYX+9a9/acSIEZKk1q1bq1evXtq2bZsk6dixY7rt\nttskSZ06ddIPP/xw0nJ37NihFi1aqEePHpKkgQMHKj8/X/v37z/zxpR000036Z133pH047D6f/eW\nZ8yYoZkzZ0qS2rRpo8jISGVlZVX7zD/+8Q/deOONnhGS4cOHa8OGDZ71XrNmjfbs2aNLL71UTz/9\n9Ek1nGmb9uzZU61bt5bL5VLHjh114MABHT16VDt37vSMUMTHx+uCCy447Xq++uqrJ50jP3TokD74\n4AMlJiYqNDRUAQEBGjJkiKd2SerTp48CAgLUrl07lZaWauDAgZJ+3HeO7yvPP/+8xowZI0nq0aOH\njh49KrfbXe37a/qeU+0bwJkwtA5rhYWFKTs7u8bPHDp0SE2bNvW8btq0qfLy8jyvGzduLEny8/Pz\n/H38dVVVVbX5Tvy7sLBQpaWlmjdvnueiqsOHD+uGG2445TwnWrJkiZYsWaLbbrtNLVu21LRp03TZ\nZZfJGKPQ0FDP55o0aaJDhw5Jkvz9/RUSEnLK2k5c1yZNmlSbFhoaWm19axIfH6+EhARNmzZN69at\n07Jly/TGG2943t+5c6eefvppHThwQH5+fnK73SfVUVRUpPfee08ffvihpB+HkSsqKiRJTz75pJYs\nWaLRo0crODhYDz/8sOLj46vNf6ZteuL28ff3V2VlpQoKCiRJF154oSTJ5XKdtB1OdLpz5EVFRVq2\nbJlSUlIkSZWVldUOxI7vH/7+/tVen/j/Y8uWLVqyZIny8/PlcrlkjDnlNjrd95xq37jmmmtOuy6A\nRJDDYl27dlVeXp527dqlTp06eaZXVFToueee09ixY9W8eXPPP/TSj7345s2bn/V35efnq3Xr1p5l\nNG3aVMuXL9d3332nVatWqXHjxnr22WfPeGAhST/72c80b948VVVVac2aNXrkkUf0wQcfyM/PT4cP\nH/YcANRmxOFEERER1dbVGKPDhw8rIiLilD34U81/5ZVX6q9//auaNWvm6VUfN2nSJP3617/W8OHD\n5XK5FBsbe9IyoqKidOuttyopKemk95o3b66ZM2dq5syZ+vDDDzV+/HjFxsZWO4A6l216fHsVFxcr\nNDRUVVVVOnz48BnX91S19+3b95wvTKyoqNDvfvc7LVy4UL1791Z5ebmuvvrqs/qeU+0bW7ZsOad6\n0HAwtA5rNWnSRPfcc4+SkpK0d+9eST/26B599FH9+9//1gUXXKAbbrhBqampqqysVElJif72t7+d\n08VQ7777riRpz5492rt3r6Kjo5WXl6fLL79cjRs31v79+7V582aVlJTUuJxDhw5p9OjRKi4ulp+f\nn6Kjo+VyuRQQEKDrr7/e00v7/vvv9cknn1S72OxMrr76auXm5uqzzz7z1NyiRQtdfPHFtV7GTTfd\npCVLlpzyIrS8vDx17txZLpdLq1evVmlp6Unr27dvX23YsMEzkrBx40b96U9/UkVFhUaNGuUZgu7U\nqZMCAgLk5+d30nec7TYNDg5Whw4d9N5773nW++jRo7Ve5+Pi4uL0t7/9TaWlpZKklStXavXq1bWe\n//j26Ny5s6QfD0oCAwNPqv9033O6fQM4E3rksNr48ePVtGlT/fa3v1VlZaX8/PwUFxen2bNnS5JG\njRqlffv26aabbpLL5VJ8fPwpQ+pMwsPDdcsttyg7O1szZsxQ06ZNNWzYMD300EMaOHCg2rdvrylT\npmj8+PF65ZVXalxObGysEhMT5e/vr8DAQM2dO1eS9Nhjj2nGjBlatWqVAgMD9cQTT6hly5YnnYc+\nnZCQEC1cuFBz5sxRSUmJwsPD9cwzz5xVGAwYMEBz5sw5achbkiZMmKAHH3xQzZo107Bhw3THHXdo\n5syZev311z2f6dSpk8aOHatRo0apqqpKEREReuyxxxQYGKjbb79dv/nNbyT9OBw9Y8aMk85ln8s2\nlaTZs2dr2rRpWrp0qX75y1+qbdu2tV7n4/r166dvvvlGt956q6Qfe8fH/9/UxvEDy4SEBEVEROi3\nv/2t+vXrp7Fjx2rp0qVn/J6a9g2gJi5j+D1yoCbt27fX5s2bffKeagD2Y2gdAACLEeQAAFiMoXUA\nACxGjxwAAIsR5AAAWMzK28/c7vr1E5U4O2FhIcrPr/neYAB1j7Znr8jI0NO+R48c511AgL+3SwAa\nJNqebyLIAQCwGEEOAIDFCHIAACxGkAMAYDGCHAAAixHkAABYjCAHAMBiBDkAABYjyAEAsBhBDgCA\nxQhyAAAsRpADAGAxK3/9zNdFRp3+V258RaR8cx3dOfwyH4Dzix45AAAWI8gBALAYQQ4AgMUIcgAA\nLEaQAwBgMceuWs/IyNCECRN05ZVXSpLatWune+65R5MnT1ZlZaUiIyO1YMECBQUFKS0tTcuXL5ef\nn5+GDh2qIUOGOFUWAAA+xdHbz6655hotWrTI83rq1KkaMWKEBg0apGeeeUapqalKSEhQcnKyUlNT\nFRgYqNtvv139+/dXs2bNnCwNAACfcF6H1jMyMhQXFydJ6tOnj9LT07V9+3Z16dJFoaGhCg4OVvfu\n3ZWZmXk+ywIAwFqO9sj/85//aOzYsTp8+LDGjRun0tJSBQUFSZIiIiLkdruVm5ur8PBwzzzh4eFy\nu91OlgUAgM9wLMgvvfRSjRs3ToMGDdK+fft01113qbKy0vO+MeaU851u+onCwkIUEOBfZ7UCdSUy\n0jefWAffwT7qexwL8osuukg33nijJOlnP/uZmjdvrp07d6qsrEzBwcHKzs5WVFSUoqKilJub65kv\nJydHXbt2rXHZ+fklTpVdL/jq40sbArebR7Si/oqMDGUftVRNB2COnSNPS0vTsmXLJElut1t5eXm6\n7bbbtH79eknShg0bFBsbq+joaO3cuVOFhYU6cuSIMjMz1bNnT6fKAgDAp7hMbcayz0FxcbEmTpyo\nwsJCVVRUaNy4cerYsaOSkpJ09OhRtWrVSvPmzVNgYKDWrVunZcuWyeVyaeTIkbr55ptrXLavH1E2\nhB9N8VX8aArqM3rk9qqpR+5YkDvJ13dEgtxeBDnqM4LcXl4ZWgcAAM4jyAEAsBhBDgCAxQhyAAAs\nRpADAGAxRx/RCgA2aQh3jPjyA6ca6l0j9MgBALAYQQ4AgMUIcgAALEaQAwBgMYIcAACLEeQAAFiM\nIAcAwGIEOQAAFiPIAQCwGEEOAIDFCHIAACxGkAMAYDGCHAAAixHkAABYjCAHAMBiBDkAABYjyAEA\nsBhBDgCAxQhyAAAsRpADAGAxghwAAIsR5AAAWIwgBwDAYgQ5AAAWI8gBALAYQQ4AgMUIcgAALEaQ\nAwBgMYIcAACLEeQAAFiMIAcAwGIEOQAAFiPIAQCwGEEOAIDFCHIAACxGkAMAYDGCHAAAixHkAABY\njCAHAMBiBDkAABZzNMjLysrUr18/rVq1SgcOHNCoUaM0YsQITZgwQeXl5ZKktLQ0JSYmasiQIXrz\nzTedLAcAAJ/jaJAvWbJETZs2lSQtWrRII0aM0Ouvv65LLrlEqampKikpUXJysl555RWtWLFCy5cv\nV0FBgZMlAQDgUxwL8j179ug///mPbrjhBklSRkaG4uLiJEl9+vRRenq6tm/fri5duig0NFTBwcHq\n3r27MjMznSoJAACf41iQ//73v9eUKVM8r0tLSxUUFCRJioiIkNvtVm5ursLDwz2fCQ8Pl9vtdqok\nAAB8ToATC12zZo26du2qNm3anPJ9Y8xZTf9vYWEhCgjwP+f6AKdERoZ6uwSgwWqo7c+RIN+0aZP2\n7dunTZs26eDBgwoKClJISIjKysoUHBys7OxsRUVFKSoqSrm5uZ75cnJy1LVr1zMuPz+/xImy641I\nNcyd0Re43UXeLgE/AW3Pbr7c/mo6SHEkyBcuXOj5e/HixWrdurU+++wzrV+/Xrfccos2bNig2NhY\nRUdHa8aMGSosLJS/v78yMzM1bdo0J0oCAMAnORLkpzJ+/HglJSUpJSVFrVq1UkJCggIDA/XII49o\nzJgxcrlcevDBBxUayhExAAC15TK1PTFdj/jy8IkkRUZxMGMrd45v75u+jrZnN19ufzUNrfNkNwAA\nLEaQAwBgMYIcAACLEeQAAFiMIAcAwGIEOQAAFiPIAQCwGEEOAIDFCHIAACxGkAMAYDGCHAAAixHk\nAABYjCAHAMBiBDkAABYjyAEAsBhBDgCAxQhyAAAsRpADAGAxghwAAIsR5AAAWIwgBwDAYgQ5AAAW\nI8gBALAYQQ4AgMUIcgAALEaQAwBgMYIcAACLEeQAAFiMIAcAwGIEOQAAFiPIAQCwGEEOAIDFCHIA\nACxGkAMAYDGCHAAAixHkAABYjCAHAMBiBDkAABYjyAEAsBhBDgCAxQhyAAAsRpADAGAxghwAAIsR\n5AAAWIwgBwDAYgQ5AAAWC3BqwaWlpZoyZYry8vJ09OhRPfDAA+rQoYMmT56syspKRUZGasGCBQoK\nClJaWpqWL18uPz8/DR06VEOGDHGqLAAAfIpjQf7BBx+oc+fOuvfee7V//37dfffd6t69u0aMGKFB\ngwbpmWeeUWpqqhISEpScnKzU1FQFBgbq9ttvV//+/dWsWTOnSgMAwGc4NrR+44036t5775UkHThw\nQBdddJEyMjIUFxcnSerTp4/S09O1fft2denSRaGhoQoODlb37t2VmZnpVFkAAPgUx3rkxw0bNkwH\nDx7UCy+8oNGjRysoKEiSFBERIbfbrdzcXIWHh3s+Hx4eLrfb7XRZAAD4BMeDfOXKlfryyy81adIk\nGWM800/8+0Snm36isLAQBQT411mNQF2JjAz1dglAg9VQ259jQf7FF18oIiJCLVu2VMeOHVVZWanG\njRurrKxMwcHBys7OVlRUlKKiopSbm+uZLycnR127dq1x2fn5JU6VXS9EqmHujL7A7S7ydgn4CWh7\ndvPl9lfTQYpj58g/+eQTvfTSS5Kk3NxclZSU6Nprr9X69eslSRs2bFBsbKyio6O1c+dOFRYW6siR\nI8rMzFTPnj2dKgsAAJ/iMrUZyz4HZWVlmj59ug4cOKCysjKNGzdOnTt3VlJSko4ePapWrVpp3rx5\nCgwM1Lp167Rs2TK5XC6NHDlSN998c43L9uWjLkmKjKJXYCt3jm/vm76Otmc3X25/NfXIaxXkU6ZM\n0fz586tNGzNmjJYtW/bTqzsHBDnqK1/+h6QhoO3ZzZfbX01BXuM58rS0NK1cuVLffPON7rzzTs/0\nioqKaue1AQCAd9QY5DfffLN69eqliRMnavz48Z7pfn5+uuKKKxwvDgAA1KzW58iLiopUUFBQbVqb\nNm0cKepMGFpHfeXLQ3sNAW3Pbr7c/s55aP24J554Qm+99ZbCw8M993m7XC69//77dVMhAAA4J7UK\n8oyMDG3btk2NGjVyuh4AAHAWanUf+SWXXEKIAwBQD9WqR96iRQvdeeed6tGjh/z9///RqBMmTHCs\nMAAAcGa1CvJmzZopJibG6VoAAMBZqlWQP/DAA07XAQAAzkGtgvyqq66Sy+XyvHa5XAoNDVVGRoZj\nhQEAgDOrVZB/9dVXnr/Ly8uVnp6ur7/+2rGiAABA7Zz1r58FBQWpd+/e2rp1qxP1AACAs1CrHnlq\namq11wcPHlR2drYjBQEAgNqrVZB/+umn1V5feOGFWrhwoSMFAQCA2jur3yMvKCiQy+VS06ZNnazp\njHjWOuorX37Wc0NA27ObL7e/n/ys9czMTE2ePFlHjhyRMUbNmjXTggUL1KVLlzorEgAAnL1aBfnT\nTz+t559/Xu3atZMk/fvf/9bcuXP1l7/8xdHiAABAzWp11bqfn58nxKUf7ys/8VGtAADAO2od5OvX\nr1dxcbGKi4u1du1aghwAgHqgVhe7fffdd5ozZ4527NghPz8/dejQQU888YTatGlzPmo8CRe7ob7y\n5YttGgLant18uf3VdLFbrXrkW7duVVBQkD7++GNlZGTIGKPNmzfXWYEAAODc1CrI09LS9Nxzz3le\nv/TSS3rnnXccKwoAANROrYK8srKy2jlxl8uls7j9HAAAOKRWt5/17dtXw4YNU48ePVRVVaVt27Zp\nwIABTtcGAADOoNZPdvvkk0+0Y8cOuVwudevWTV27dnW6ttPiYjfUV758sU1DQNuzmy+3v5/8ZDdJ\n6tmzp3r27FknBQEAgLpx1j9jCgAA6g+CHAAAixHkAABYjCAHAMBiBDkAABYjyAEAsBhBDgCAxQhy\nAAAsRpADAGAxghwAAIsR5AAAWIwgBwDAYgQ5AAAWI8gBALAYQQ4AgMUIcgAALEaQAwBgMYIcAACL\nEeQAAFiMIAcAwGIBTi78qaee0qeffqpjx47p/vvvV5cuXTR58mRVVlYqMjJSCxYsUFBQkNLS0rR8\n+XL5+flp6NChGjJkiJNlAQDgMxwL8m3btumbb75RSkqK8vPzdeuttyomJkYjRozQoEGD9Mwzzyg1\nNVUJCQlKTk5WamqqAgMDdfvtt6t///5q1qyZU6UBAOAzHBta//nPf64//vGPkqQmTZqotLRUGRkZ\niouLkyT16dNH6enp2r59u7p06aLQ0FAFBwere/fuyszMdKosAAB8imNB7u/vr5CQEElSamqqfvnL\nX6q0tFRBQUGSpIiICLndbuXm5io8PNwzX3h4uNxut1NlAQDgUxw9Ry5JGzduVGpqql566SUNGDDA\nM90Yc8rPn276icLCQhQQ4F9nNQJ1JTIy1NslAA1WQ21/jgb5li1b9MILL+jPf/6zQkNDFRISorKy\nMgUHBys7O1tRUVGKiopSbm6uZ56cnBx17dq1xuXm55c4WbbXRaph7oy+wO0u8nYJ+Aloe3bz5fZX\n00GKY0PrRUVFeuqpp7R06VLPhWvXXnut1q9fL0nasGGDYmNjFR0drZ07d6qwsFBHjhxRZmamevbs\n6VRZAAD4FMd65GvXrlV+fr5+97vfeabNnz9fM2bMUEpKilq1aqWEhAQFBgbqkUce0ZgxY+RyufTg\ngw8qNJSjYgAAasNlanNSup7x5eETSYqM4kDGVu4c3943fR1tz26+3P68MrQOAACcR5ADAGAxghwA\nAIsR5AAAWIwgBwDAYgQ5AAAWI8gBALAYQQ4AgMUIcgAALEaQAwBgMYIcAACLEeQAAFiMIAcAwGIE\nOQAAFiPIAQCwGEEOAIDFCHIAACxGkAMAYDGCHAAAixHkAABYjCAHAMBiBDkAABYjyAEAsBhBDgCA\nxQhyAAAsRpADAGAxghwAAIsR5AAAWIwgBwDAYgQ5AAAWI8gBALAYQQ4AgMUIcgAALEaQAwBgMYIc\nAACLEeQAAFiMIAcAwGIEOQAAFiPIAQCwGEEOAIDFCHIAACxGkAMAYDGCHAAAixHkAABYjCAHAMBi\nBDkAABZzNMh3796tfv366bXXXpMkHThwQKNGjdKIESM0YcIElZeXS5LS0tKUmJioIUOG6M0333Sy\nJAAAfIpjQV5SUqI5c+YoJibGM23RokUaMWKEXn/9dV1yySVKTU1VSUmJkpOT9corr2jFihVavny5\nCgoKnCoLAACf4liQBwUF6cUXX1RUVJRnWkZGhuLi4iRJffr0UXp6urZv364uXbooNDRUwcHB6t69\nuzIzM50qCwAAnxLg2IIDAhQQUH3xpaWlCgoKkiRFRETI7XYrNzdX4eHhns+Eh4fL7XY7VRYAAD7F\nsSA/E2PMWU0/UVhYiAIC/Ou6JOAni4wM9XYJQIPVUNvfeQ3ykJAQlZWVKTg4WNnZ2YqKilJUVJRy\nc3M9n8nJyVHXrl1rXE5+fonTpXpVpBrmzugL3O4ib5eAn4C2Zzdfbn81HaSc19vPrr32Wq1fv16S\ntGHDBsXGxio6Olo7d+5UYWGhjhw5oszMTPXs2fN8lgUAgLUc65F/8cUX+v3vf6/9+/crICBA69ev\n1x/+8AdNmTJFKSkpatWqlRISEhQYGKhHHnlEY8aMkcvl0oMPPqjQUI6KAQCoDZepzUnpesaXh08k\nKTKKAxlbuXN8e9/0dbQ9u/ly+6s3Q+sAAKBuEeQAAFiMIAcAwGIEOQAAFiPIAQCwGEEOAIDFCHIA\nACxGkAMAYDGCHAAAixHkAABYjCAHAMBiBDkAABYjyAEAsBhBDgCAxQhyAAAsRpADAGAxghwAAIsR\n5AAAWIwgBwDAYgQ5AAAWI8gBALAYQQ4AgMUIcgAALEaQAwBgMYIcAACLEeQAAFiMIAcAwGIEOQAA\nFiPIAQCwGEEOAIDFCHIAACxGkAMAYDGCHAAAixHkAABYjCAHAMBiBDkAABYjyAEAsBhBDgCAxQhy\nAAAsRpADAGAxghwAAIsR5AAAWIwgBwDAYgQ5AAAWI8gBALAYQQ4AgMUCvF3AcU8++aS2b98ul8ul\nadOm6eqrr/Z2SQAA1Hv1Isg/+ugj7d27VykpKdqzZ4+mTZumlJQUb5cFAEC9Vy+G1tPT09WvXz9J\nUtu2bXX48GEVFxd7uSoAAOq/ehHkubm5CgsL87wODw+X2+32YkUAANihXgyt/zdjTI3vR0aGnqdK\nvKTm1Uc9Fikf3zd9HW3Pag21/dWLHnlUVJRyc3M9r3NychQZGenFigAAsEO9CPLrrrtO69evlyTt\n2rVLUVFRuvDCC71cFQAA9V+9GFrv3r27OnXqpGHDhsnlcmnWrFneLgkAACu4zJlOSAMAgHqrXgyt\nAwCAc0OQAwBgMYIcAACLEeQAAFiMIIfjjh07pnfeeUfLli2TJO3evVsVFRVergpoWI4dO+btEuAQ\nghyOmzlzpr788kutW7dO0o8/kpOUlOTlqoCGYdu2bbr55ps1ePBgSdKzzz6rLVu2eLkq1CWCHI47\ncOCAJk2apODgYEnSyJEjlZOT4+WqgIZh8eLFWr58uedpmXfddZeee+45L1eFukSQw3EVFRUqLCyU\ny+WSJO3Zs0fl5eVergpoGAK9ZSQyAAAGwElEQVQCAhQWFuZpfxEREZ6/4RvqxZPd4Nv+53/+R7/+\n9a/13XffKT4+Xi6XS0888YS3ywIahIsvvlh//OMflZ+fr7Vr12rjxo264oorvF0W6hBPdsN5k5eX\np8DAQDVp0sTbpQANRlVVld5++2199tlnCgwMVHR0tAYNGiR/f39vl4Y6QpDDMYmJiTUO4aWmpp7H\naoCGZfPmzTW+37t37/NUCZzG0Docs2jRotO+V1xcfB4rARqe43eJnA5B7jvokcNxhYWFevvtt5Wf\nny/px4vf1qxZc8YeA4C6V1FRoccee4zrVHwIV63DcRMmTFBeXp7efvtthYSE6PPPP9fMmTO9XRbQ\nIKSmpio2NladO3dW9+7d9fOf/5wRMR9DkMNxVVVVeuihhxQVFaW7775bL774olatWuXtsoAGYeXK\nldq4caO6deumzMxMPf300+rWrZu3y0IdIsjhuIqKCn311VcKDg7W1q1bdfDgQX3//ffeLgtoEBo1\naqRGjRqpoqJCVVVViouL08aNG71dFuoQ58jhuK+++kqHDh1SRESE5s6dq4KCAo0cOVJDhw71dmmA\nz5s/f74uvvhiFRQUKCMjQy1atNDevXv1xhtveLs01BGCHOdFcXGxioqKZIyRMUYul0utWrXydlmA\nz9uxY4feeustlZeXa//+/friiy903XXXafHixd4uDXWE28/guIkTJ+rTTz9VRESEJHmCnPvIAedN\nmjRJ9957r5o3b+7tUuAQghyO27t3rz744ANvlwE0SJdffvkZH84EuxHkcFx8fLw2bNigjh07Vnss\nJEPrgPMGDx6shIQEtW/fvlr7mzdvnherQl0iyOG4Xbt2acWKFZ6hdUkMrQPnycKFC3Xfffd5fsYU\nvocgh+P27t2rTZs2ebsMoEFq27athgwZ4u0y4CCCHI4bOHCg0tPT1aVLl2pDexdccIEXqwIahrCw\nMN15553q3LlztfY3efJkL1aFusTtZ3Bc//79VVlZWW2ay+XS+++/76WKgIZj9erVp5x+6623nudK\n4BSCHAAAi/GIVjhu9+7duvvuu3XHHXdIkl555RXt2rXLy1UBgG8gyOG4OXPmaPr06QoKCpIkXX/9\n9fyEIgDUEYIcjgsICFDbtm09r6+44gr5+bHrAUBd4Kp1OC40NFSpqakqLS3V9u3b9d5771W7pxwA\ncO7oFsExU6dOlSQ1btxYbrdbYWFh+tOf/qQmTZpo/vz5Xq4OAHwDV63DMUOHDlVFRYW+//57XXrp\npdXe48luAFA3CHI45tixY8rJydH8+fOVlJR00vutW7f2QlUA4FsIcgAALMY5cgAALEaQAwBgMYIc\nwE+yd+9e9e3b19tlAA0WQQ4AgMV4IAzQgBhj9Pjjj2v79u1q3ry5WrRoobCwMMXExCg5OVnGGAUE\nBGjOnDlq06aN+vbtq7vuukv//Oc/lZWVpccee0wxMTHKzMzUrFmzFB4erk6dOnmWf/jwYc2aNUuH\nDh1ScXGxRo8erV/96ldavHixsrKy9MMPPygpKUmdO3f24lYAfAtBDjQg6enp2rFjh958800dPXpU\nCQkJ6tOnj2bNmqWUlBQ1a9ZMGzdu1FNPPaXFixdLkho1aqSXXnpJq1ev1quvvqqYmBg99dRTmjhx\nonr37q2XX37Zs/yFCxcqNjZWiYmJKikp0S233KLrrrtOkpSVlaXXXntNLpfLK+sO+CqCHGhAvvzy\nS/Xs2VP+/v4KCQlRbGysvv32W7ndbo0fP16SVFlZWS1sr7nmGklSq1atdPjwYUnS119/rR49ekiS\nfvGLX2jFihWSpIyMDO3cuVNr1qyR9ONz9rOysiRJ0dHRhDjgAIIcaECqqqqq/WCNn5+fgoKC1KpV\nK08Y/7eAgP//Z+LEx04cX05lZaVnWlBQkGbNmqUuXbpUW8bmzZsVGBhYJ+sAoDoudgMakMsvv1yf\nf/65jDEqLS3Vhx9+qDZt2ig/P1+7d++WJH388cdKSUmpcTlt27bV559/Lkn617/+5Zneo0cP/f3v\nf5cklZWVafbs2Tp27JhDawNAokcONCi9e/fWu+++q8TERLVs2VLdunVT48aNtWDBAk2fPl2NGjWS\nJD3++OM1LmfSpEmaM2eOWrZsqauuusozfdy4cZoxY4aGDx+u8vJy3XHHHdV69ADqHo9oBRqQoqIi\nbdy4UQkJCXK5XBo7dqwGDx6swYMHe7s0AOeIQ2WgAWncuLEyMzP16quvqlGjRrrssssUHx/v7bIA\n/AT0yAEAsBgXuwEAYDGCHAAAixHkAABYjCAHAMBiBDkAABYjyAEAsNj/AQjZFk1dPMGQAAAAAElF\nTkSuQmCC\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "e_GAFUo0gZLF",
- "colab_type": "code",
- "outputId": "910f6067-933c-40a1-cd22-356a8c951005",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 252
- }
- },
- "cell_type": "code",
- "source": [
- "# creating a new column pass_math, this column will tell us whether the students are pass or fail\n",
- "data['pass_writing'] = np.where(data['writing score']< passmarks, 'Fail', 'Pass')\n",
- "data['pass_writing'].value_counts(dropna = False).plot.bar(color = 'blue', figsize = (5, 3))\n",
- "\n",
- "plt.title('Comparison of students passed or failed in maths')\n",
- "plt.xlabel('status')\n",
- "plt.ylabel('count')\n",
- "plt.show()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADrCAYAAAA/ks7bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlcVOX+B/DPrCIyIoMM5JIppqUh\npvjyJ0qGuF4tNRW9hGnaYhnmFUMlUIxcwtJM0Xyp3QjraiESlqmZS6mAGV40zTK1Ak2YQVbZhuH5\n/eHLuSLbcJRhwM/7L+bMWb5nzuHD8zznnEEmhBAgIqJ6kzd2AURETRUDlIhIIgYoEZFEDFAiIokY\noEREEjFAiYgkuq8CVAiBf//73xgzZgxGjBiBoUOHIiIiAgUFBY1dWiXbtm3D+++/32jbLygowNix\nYzF8+HDk5ORYtMylS5fw448/1ntb06dPR3x8fL2Xu9vt2pIePXogIyPjnq3vwIEDGDRoEJYsWVLr\nfCEhITh48CAyMjLQo0ePem9n2LBhSElJqTJ92rRpOHv2bL3Xd7c+//xz889DhgzByZMnG3ybygbf\ngg159913ceLECWzduhWurq4oKirCsmXL8PLLL+PTTz+FTCZr7BIBAIGBgY26/V9//RW5ubk4cuSI\nxcscOHAA5eXl6NevXwNWZjvbtWUHDx7ExIkTMXfu3Frni4qKAoB7Gt4AEBMTc0/XZwm9Xo8tW7bA\n39/fqtu9bwI0NzcXsbGx2LVrF1xdXQEA9vb2WLx4MY4dOwYhBMrKyrBs2TKkpKRALpdj8ODBeOON\nN6BQKDBkyBA8//zziI+PR2ZmJiIiIpCUlIQffvgBWq0WmzdvhqOjI7p3744333wTO3fuRFZWFubM\nmYN//vOfAIDo6GgkJibCZDLB3d0dq1atQuvWrbFu3TpkZmbi/PnzGDNmDAoKCnDt2jUsW7YM33zz\nDaKjo2EymaBUKhEWFob+/fvj6tWrCA8PR0ZGBlQqFV544QWMGzcOGRkZmDJlCl566SV88cUXyM3N\nxaJFi/CPf/yjymeSkpKClStXori4GBqNBosXL4azszPmz5+P7OxsjBw5Ep999hm0Wq15mRMnTmDF\nihUoLS2FEAJz5sxBixYtsGnTJqhUKuTn56Nbt25ITEzExx9/DACIj483v05PT8e8efOQk5MDT09P\nmEwm87p/+uknLF++HPn5+XBycsJ7772Hjh07Ij4+HocPH4aDgwN++uknKBQKrF27Funp6ZW2GxQU\nhJCQEFy6dAllZWUYMGAAlixZApVKVWm/pRyj3377DeHh4SgsLITRaMRzzz2HwMDAGqeXlZUhKioK\nP/zwA4xGI/z9/TFr1iwAwJEjR/D2229DqVRiwoQJNZ6z58+fR0REBHJzc9GiRQvMnz8fPj4+SElJ\nwZo1a+Dq6gqlUon33nvPvExMTAz27dsHlUoFg8GAt956C5GRkTh+/DiMRiP69u2L5cuXQ6VSYerU\nqZg4cSL69u1rXl4IgejoaOzevRtlZWXw8/PDokWLoFAo8PPPP2PBggUoLy/H4MGDa6x7yJAhiIqK\ngpubm8XnYvfu3REZGYnY2Fjk5+dj5cqV+OKLL3Dq1Cm4u7vjww8/hFKpxHfffYf3338fZWVlaNWq\nFZYtW4ZHH30UU6ZMQWZmJkaOHInExEQAwM8//4yoqChcvXoVo0ePxqJFi1BeXo4lS5bg5MmTqKio\nQPfu3bFy5Uo4ODjUuD+1EveJw4cPi2HDhtU6z6ZNm8SLL74ojEajKC4uFhMmTBAJCQlCCCF8fX1F\neHi4EEKI2NhY4enpKZKTk0VFRYWYMGGC+Pzzz4UQQnTr1k289dZbQgghLl68KB577DFx/fp1cebM\nGTFgwABRUFAgTCaTmD59uoiOjhZCCPHBBx+IQYMGiezsbPPr0NBQIYQQ/fv3FxkZGUIIIX788Uex\nfPlyIYQQM2bMEB9++KEQQoiMjAzRt29fkZ6eLtLT00WPHj1EbGysEEKIPXv2VLvfhYWFon///uLk\nyZNCCCH27t0rhg8fLkwmk0hOThZDhw6t9jN65plnREpKihBCiMuXL4t58+YJIYRYsGCBeX927twp\npk2bZl7m9tdz5swR7733nhBCiLS0NNGjRw+xc+dOUVBQIPr16yeOHj0qhBBi9+7dYvz48eblPT09\nxZkzZ4QQQkRERIg333yzyna3bdsmFi5cKIQQwmg0isWLF4tz585V2QcpxygoKEjEx8cLIYTIzs4W\nr7zyiigtLa1x+vr168W0adNEaWmpuHHjhhg3bpw4ePCgKC8vFwMHDhQ//PCDEEKIrVu3im7duon0\n9PRKNZpMJjFq1Cixe/duIYQQp0+fFv369RMFBQUiOTlZeHh4iOPHj1d7jG7/TPbu3SvGjBkjysrK\nRElJiRg1apT5nA4MDBQJCQkiPT1dPProo0IIIXbt2iVGjx4t8vPzhdFoFC+99JL5XJowYYLYvn27\nEOLmefXII4+I5OTkKtv39fUVP/74o8Xn4q1jcut8XrlypfDy8hKXLl0SpaWlwsfHRxw/flwYjUbh\n5eUlTp06JYQQYt26debz6s5z1tfXVwQHB4vy8nJx7do10bNnT3H16lVx6NAh8dxzz4mKigpRUVEh\n1qxZI77//vtqa7LEfTMGmpubC2dn51rnOXz4MPz9/aFUKmFnZ4ennnoKx44dM7/v5+cHAOjWrRta\ntGiB/v37QyaT4eGHH0ZWVpZ5vlutii5duqBz5844ffo0HnvsMXMrSi6X4/HHH0d6erp5GU9Pz0ot\nvVucnZ2xfft2XLlyBV5eXli0aBGMRiOOHz+OgIAAAED79u3Rv39/JCcnAwDKy8vxzDPPAAB69uyJ\nq1evVlnv6dOn4ebmZm59jBgxAjk5Obhy5Uqtn5GzszMSEhJw8eJFPPTQQ5VaP5Y4efKkuQXSq1cv\ndOnSBcDN1qerqysGDhwIABgzZgz++usvc+3u7u547LHHANwcM/z777+rrFur1eLUqVM4evQoKioq\nsHTpUjz66KPV1lHfY+Ts7Ix9+/bh7NmzcHJywoYNG6BWq2ucfujQIQQEBECtVsPe3h5jx47F/v37\n8ccff6CsrAyDBg0CAIwfP77a+jIyMmAwGDB69GgAgIeHB9q1a4czZ84AAOzs7DBgwIA6P+8RI0Zg\n586dUKlUaNGiBTw8PCqdd3c6dOgQJkyYAI1GA6VSiUmTJmH//v0oLS3FmTNnzMdu5MiRaNmyZZ3b\nt+RcvGXo0KEAbv5+dezYEZ07d4ZarUanTp2QmZkJpVKJ48ePo3fv3gAALy+vWvflqaeegkKhgKur\nK5ydnXHt2jVotVpcvHgR3377LYqLizF37lz4+PjUuR81uW+68E5OTsjMzKx1nuvXr8PR0dH82tHR\nEdnZ2ebXrVq1AgDI5XLzz7deV1RUVFru9p/z8/NRXFyMFStWmAfd8/Ly8OSTT1a7zO02btyIjRs3\n4plnnsEDDzyA0NBQdO7cGUIIaDQa83ytW7fG9evXAQAKhQL29vbV1nb7vrZu3brSNI1GU2l/q7N8\n+XJs3LgRzz//POzs7DBv3jyMHDmy1mVul5eXV6m7dKuG/Px8pKenV1qXWq0279Pt+6pQKCp1/W8Z\nNWoU8vLysHbtWly6dAlPP/00Fi1aBLVaXWXe+h6j+fPnY9OmTZg7dy5KS0vx8ssv49lnn61xekFB\nAVasWIHVq1cDAMrKytCrV68q+1/Tcb9+/To0Gk2lcflbx7ht27Y1LlfdeiIjI3Hu3DnIZDIYDAZM\nmzatxvkLCgqwdetW7NixAwBgMpmg1WqRm5sLAObaZTJZlfOnOpaci7fU9PulUCjMy90ahisrK0NZ\nWVmt1y3uXIfJZMLjjz+OsLAwxMbGYsGCBRgyZAiWLFli0b5U574J0N69eyM7Oxtnz55Fz549zdON\nRiPWr1+PWbNmoW3btuYTBbjZam3btm29t5WTk4P27dub1+Ho6IiYmBj88ccfiI+PR6tWrbBmzZo6\nAx0AHnzwQaxYsQIVFRVISEhAcHAwDh06BLlcjry8PPMvkiUt7Ns5OztX2lchBPLy8uDs7FxrK6Ft\n27YIDw9HeHg4jh49iqCgoCp/weVyeaWAy8/PN//cunVrFBYWml/fCkidTocuXbpUe0X+t99+s3i/\npkyZYh4PCwoKQkJCQrUXFup7jFq1aoV58+Zh3rx5OH36NF588UV4e3ujc+fO1U7X6XSYMWMGfH19\nK2334sWL1e7/nZydnZGXlwchhDkk6nuMAWDNmjVQKpXYvXs31Go1goODa51fp9NhyJAhVS5klpSU\nAAAKCwuh0WhQUVGBvLy8etVyt1JTU7F582Z88cUX6NChA44dO4bw8PB6r2fkyJEYOXIkcnNzERoa\niq1bt+Jf//qXpJrumy5869at8cILL2DBggX4888/AQDFxcVYvHgxzp07h5YtW+LJJ59EXFwcTCYT\nioqK8OWXX9Y6WF6Tr7/+GsDNX5Y///wTnp6eyM7ORpcuXdCqVStcuXIFR44cQVFRUa3ruX79Op5/\n/nkUFhZCLpfD09MTMpkMSqUSgwYNMrcS/vrrL5w8eRLe3t4W19irVy8YDAacOnXKXLObmxs6dOhQ\n4zJGoxFTp041D1f07NkTSqUScrkcSqXSfDuYTqfD5cuXUVpaiuLiYuzdu9e8jt69e+Pbb78FcPMX\n4q+//gJwcwhDr9cjLS0NAJCeno433ngDoo4vC7t9u9HR0YiLiwMAuLq6okOHDjW2UOp7jGbNmoUL\nFy4AuNnFdHBwgEwmq3G6n58fvvjiC5hMJgghsGHDBnz//fd48MEHoVAozK3c+Pj4amvs0KED3Nzc\nsGfPHvNnZTAY0KtXr1o/jztlZ2ejW7duUKvVOH/+PE6dOlXreefn54cvv/wSxcXFAIDt27dj165d\nsLOzwyOPPGI+dl9//TVKS0vrVcvdun79OpydndGuXTsUFxdj165dKCoqghACSqUSRUVFKC8vr3Ud\nO3fuRHR0NACgTZs25iEkqe6bFigABAUFwdHREa+88gpMJhPkcjn8/PwQEREBAJg6dSrS09MxevRo\nyGQyjBw5EqNGjar3drRaLcaOHYvMzEyEhYXB0dERU6ZMwZw5czBixAh0794dCxcuRFBQkPlKdU3r\n8fHxwYQJE6BQKKBSqbBs2TIAwNKlSxEWFob4+HioVCq8/fbbeOCBByy+JcXe3h7vv/8+IiMjUVRU\nBK1Wi9WrV9faJVKpVJg4cSKmT58O4GZLMywsDC1btoSvry/mz5+PK1euYM2aNfD09MSIESPQoUMH\n+Pn5mceS33jjDQQHB+PLL7+Ep6enOfTt7OzwwQcfIDIyEjdu3IBKpcLrr79e561lt283JCQEixYt\nwubNmyGTyeDp6YmxY8fW+NnW5xgFBgYiODgYRqMRABAQEICHHnqoxukBAQHIyMjA6NGjIYTAY489\nhmnTpkGlUiEyMhKhoaFQq9V45plnzF3c28lkMqxevRpLlizB+vXr0bJlS6xdu7baeWszY8YMLFiw\nAPHx8fDy8sKCBQvw5ptv1hjEQ4cOxYULF8xjsw8++KD5nIuIiEBoaCg2bdqEJ554Au7u7vWq5W75\n+Pjgs88+w9ChQ+Hq6orQ0FCkpaVhzpw5WLFiBRwdHTFw4EDs2rWrxnX4+fkhNDQUw4cPh0KhQKdO\nnbBy5UrJNclEXX/iqV66d++OI0eOwM3NrbFLoRrwGNG9ct904YmI7jUGKBGRROzCExFJxBYoEZFE\nDXoV/rfffsOrr76K6dOnIzAwEH///TdCQkJgMpng4uKCVatWQa1WIzExETExMZDL5fD398ekSZNg\nNBqxcOFCXL16FQqFAitWrEDHjh1r3Z5eb1vfqmQLnJzskZNT++1SRLfwfKmei4um2ukN1gItKipC\nZGRkpcfNPvjgAwQEBOCzzz5Dp06dEBcXh6KiIkRHR+Pjjz9GbGwsYmJikJubi6+++gqtW7fGf/7z\nH8yaNavejwzSTUqlorFLoCaE50v9NFiAqtVqbN68GTqdzjwtJSXF/Dy5r68vkpKSkJaWBg8PD2g0\nGtjZ2aFPnz5ITU1FUlIShg0bBgDw9vZGampqQ5VKRCRJg3XhlUollMrKqy8uLjY/l+zs7Ay9Xg+D\nwVDpSzS0Wm2V6XK5HDKZDGVlZdU+13yLk5M9/4JWo6buB1F1eL5YrtGeRKrp4n99p9+OYzdVubho\nODZMFuP5Uj2rj4FWx97e3vylBJmZmdDpdNDpdDAYDOZ5srKyzNP1ej2Am89gCyFqbX0SEVmbVQPU\n29sb+/btAwDs378fPj4+8PT0xJkzZ5Cfn48bN24gNTUVXl5eGDhwoPlLKA4dOoT+/ftbs1Qiojo1\n2I30P//8M9555x1cuXIFSqUSrq6uePfdd7Fw4UKUlpaiXbt2WLFiBVQqFfbu3YutW7dCJpMhMDAQ\nTz/9NEwmE8LCwvDHH39ArVZj5cqVeOCBB2rdJrseVbFLRvXB86V6NXXhm9WTSLZ04HU6DsTfKSvL\ndo4PVY8BWj2bGAMlImpOGKBERBIxQImIJGKAEhFJxAAlIpKIAUpEJBEDlIhIIgYoEZFEDFAiIokY\noEREEjFAiYgkYoASEUnEACUikogBSkQkEQOUiEgiBigRkUQMUCIiiRigREQSMUCJiCRigBIRScQA\nJSKSiAFKRCQRA5SISCKlNTd248YNLFiwAHl5eTAajZg9ezZcXFwQEREBAOjevTuWLl0KANiyZQv2\n7t0LmUyG1157DYMHD7ZmqUREdbJqgO7atQudO3dGcHAwMjMzMW3aNLi4uCA0NBS9evVCcHAwjhw5\ngi5dumDPnj3Yvn07CgsLERAQgEGDBkGhUFizXCKiWlm1C+/k5ITc3FwAQH5+Ptq0aYMrV66gV69e\nAABfX18kJSUhJSUFPj4+UKvV0Gq1aN++PX7//XdrlkpEVCertkBHjx6N+Ph4DBs2DPn5+di4cSPe\neust8/vOzs7Q6/Vo06YNtFqtebpWq4Ver0f37t1rXb+Tkz2USrZSbZWLi6axSyAL8DhZzqoB+uWX\nX6Jdu3bYunUrzp8/j9mzZ0Oj+d/BEkJUu1xN0++Uk1N0T+q8N3gS3kmvL2jsEqgOLi4aHqdq1PRH\nxapd+NTUVAwaNAgA8Mgjj6C0tBQ5OTnm9zMzM6HT6aDT6WAwGKpMJyKyJVYN0E6dOiEtLQ0AcOXK\nFbRq1Qru7u44efIkAGD//v3w8fHB//3f/+Hw4cMoKytDZmYmsrKy0LVrV2uWSkRUJ6t24SdPnozQ\n0FAEBgaivLwcERERcHFxweLFi1FRUQFPT094e3sDAPz9/REYGAiZTIaIiAjI5bxllYhsi0xYOsDY\nBNjS2I1OxzHQO2Vl2c7xoepxDLR6NjEGSkTUnDBAiYgkYoASEUnEACUikogBSkQkEQOUiEgiBigR\nkUQMUCIiiRigREQSMUCJiCRigBIRScQAJSKSiAFKRCQRA5SISCIGKBGRRAxQIiKJGKBERBIxQImI\nJGKAEhFJxAAlIpKIAUpEJBEDlIhIIgYoEZFESmtvMDExEVu2bIFSqcScOXPQvXt3hISEwGQywcXF\nBatWrYJarUZiYiJiYmIgl8vh7++PSZMmWbtUIqJayYQQwloby8nJwZQpU7Bz504UFRVh3bp1KC8v\nxxNPPIFRo0Zh9erVcHNzw7hx4zB+/HjExcVBpVJh4sSJ2LZtG9q0aVPr+vX6AivtSd10Ok1jl2Bz\nsrJs5/hQ9VxcNDb1e2QrXFyq/322ahc+KSkJAwYMgIODA3Q6HSIjI5GSkgI/Pz8AgK+vL5KSkpCW\nlgYPDw9oNBrY2dmhT58+SE1NtWapRER1smoXPiMjAyUlJZg1axby8/MRFBSE4uJiqNVqAICzszP0\nej0MBgO0Wq15Oa1WC71eX+f6nZzsoVQqGqx+ujs1/RUn28LjZDmrj4Hm5uZi/fr1uHr1Kp577jnc\nPoJQ02iCpaMMOTlF96TGe4Mn4Z3YNbR97MJXzya68M7Oznj88cehVCrx4IMPolWrVmjVqhVKSkoA\nAJmZmdDpdNDpdDAYDOblsrKyoNPprFkqEVGdrBqggwYNQnJyMioqKpCTk4OioiJ4e3tj3759AID9\n+/fDx8cHnp6eOHPmDPLz83Hjxg2kpqbCy8vLmqUSEdXJogBduHBhlWkzZ86s98ZcXV0xYsQI+Pv7\n48UXX0RYWBiCgoKQkJCAgIAA5ObmYty4cbCzs0NwcDBmzpyJ559/HrNnz4ZGwy4xEdmWWm9jSkxM\nxPbt23HhwgV069bNPN1oNMJgMODgwYNWKdJStjR2w9uYquJtTLaPY6DVq2kMtNaLSE8//TT69++P\n+fPnIygoyDxdLpeja9eu97ZCIqImxuIb6QsKCpCbm1tpWseOHRukKKls6S8nW6BVsQVq+9gCrZ6k\nFugtb7/9Nnbu3AmtVmu+pUgmk+G77767dxUSETUxFgVoSkoKkpOT0aJFi4auh4ioybDoKnynTp0Y\nnkREd7CoBerm5oZnn30Wffv2hULxv0clX3/99QYrjIjI1lkUoG3atMGAAQMauhYioibFogB99dVX\nG7oOIqImx6IA7dGjB2Qymfm1TCaDRqNBSkpKgxVGRGTrLArQ8+fPm38uKytDUlISfv311wYrioio\nKaj3l4mo1WoMHjwYx44da4h6iIiaDItaoHFxcZVeX7t2DZmZmQ1SEBFRU2FRgP7000+VXjs4OOD9\n999vkIKIiJqKev1TudzcXMhkMjg6OjZkTZLZ0jO8fBa+Kj4Lb/v4LHz17upZ+NTUVISEhODGjRsQ\nQqBNmzZYtWoVPDw87mmRRERNiUUB+t5772HDhg3m7wQ9d+4cli1bhk8//bRBiyMismUWXYWXy+WV\nvlC5R48elR7pJCK6H1kcoPv27UNhYSEKCwuxZ88eBigR3fcsuoj0xx9/IDIyEqdPn4ZcLscjjzyC\nt99+m1+oXAteRKqKF5FsHy8iVe+u/q3xsWPHoFar8eOPPyIlJQVCCBw5cuSeFkhE1NRYFKCJiYlY\nv369+fVHH32Er776qsGKIiJqCiwKUJPJVGnMUyaToR63jxIRNUsW3cY0ZMgQTJkyBX379kVFRQWS\nk5MxfPjwhq6NiMimWfwk0smTJ3H69GnIZDI8/vjj6N27t+SNlpSUYMyYMXj11VcxYMAAhISEwGQy\nwcXFBatWrYJarUZiYiJiYmIgl8vh7++PSZMm1bleWxr85kWkqngRyfbxIlL17upJJADw8vKCl5fX\nPSlm48aN5sdBP/jgAwQEBGDUqFFYvXo14uLiMG7cOERHRyMuLg4qlQoTJ07EsGHD0KZNm3uyfSKi\ne6HeX2d3ty5evIjff/8dTz75JICb//HTz88PAODr64ukpCSkpaXBw8MDGo0GdnZ26NOnD1JTU61d\nKhFRrSxugd4r77zzDsLDw5GQkAAAKC4uhlqtBgA4OztDr9fDYDBAq9Wal9FqtdDr9XWu28nJHkol\nb/C3VTV1g8i28DhZzqoBmpCQgN69e9d4A35Nw7GWXvHPySmSXNu9x5PwThxbs30cA63eXY+B3guH\nDx9Geno6Dh8+jGvXrkGtVsPe3h4lJSWws7NDZmYmdDoddDodDAaDebmsrKy7umhFRNQQrBqgt38J\n87p169C+fXucOnUK+/btw9ixY7F//374+PjA09MTYWFhyM/Ph0KhQGpqKkJDQ61ZKhFRnaw+Bnqn\noKAgLFiwADt27EC7du0wbtw4qFQqBAcHY+bMmZDJZJg9ezY0GnaJici21Osb6W2dLY3d8D7Qqngf\nqO3jGGj17urLRIiIqCoGKBGRRAxQIiKJGKBERBIxQImIJGKAEhFJxAAlIpKIAUpEJBEDlIhIIgYo\nEZFEDFAiIokYoEREEjFAiYgkYoASEUnEACUikogBSkQkEQOUiEgiBigRkUQMUCIiiRigREQSMUCJ\niCRigBIRScQAJSKSSGntDUZFReGnn35CeXk5Xn75ZXh4eCAkJAQmkwkuLi5YtWoV1Go1EhMTERMT\nA7lcDn9/f0yaNMnapRIR1cqqAZqcnIwLFy5gx44dyMnJwfjx4zFgwAAEBARg1KhRWL16NeLi4jBu\n3DhER0cjLi4OKpUKEydOxLBhw9CmTRtrlktEVCurduH79euHtWvXAgBat26N4uJipKSkwM/PDwDg\n6+uLpKQkpKWlwcPDAxqNBnZ2dujTpw9SU1OtWSoRUZ2s2gJVKBSwt7cHAMTFxeGJJ57A0aNHoVar\nAQDOzs7Q6/UwGAzQarXm5bRaLfR6fZ3rd3Kyh1KpaJji6a65uGgauwSyAI+T5aw+BgoABw4cQFxc\nHD766CMMHz7cPF0IUe38NU2/U05O0T2p797gSXgnvb6gsUugOri4aHicqlHTHxWrX4X/4Ycf8OGH\nH2Lz5s3QaDSwt7dHSUkJACAzMxM6nQ46nQ4Gg8G8TFZWFnQ6nbVLJSKqlVUDtKCgAFFRUdi0aZP5\ngpC3tzf27dsHANi/fz98fHzg6emJM2fOID8/Hzdu3EBqaiq8vLysWSoRUZ2s2oXfs2cPcnJyMHfu\nXPO0lStXIiwsDDt27EC7du0wbtw4qFQqBAcHY+bMmZDJZJg9ezY0GnaJici2yISlA4xNgC2N3eh0\nDPw7ZWXZzvGh6nEMtHo2MwZKRNRcMECJiCRigBIRScQAJSKSiAFKRCQRA5SISCIGKBGRRAxQIiKJ\nGKBERBIxQImIJGKAEhFJxAAlIpKIAUpEJBEDlIhIIgYoEZFEDFAiIokYoEREEjFAiYgkYoASEUnE\nACUikogBSkQkkVX/rTERVWV7/8HVNuppCv/FlS1QIiKJbLoFunz5cqSlpUEmkyE0NBS9evVq7JKI\niMxsNkBPnDiBP//8Ezt27MDFixcRGhqKHTt2NHZZRERmNtuFT0pKwtChQwEA7u7uyMvLQ2FhYSNX\nRUT0PzYboAaDAU5OTubXWq0Wer2+ESsiIqrMZrvwdxJC1DmPi4ttXD0EAAvKvQ/ZzvGxJTxXamL7\n54vNtkB1Oh0MBoP5dVZWFlxcXBqxIiKiymw2QAcOHIh9+/YBAM6ePQudTgcHB4dGroqI6H9stgvf\np08f9OzZE1OmTIFMJsOSJUsd2OpyAAAFnUlEQVQauyQiokpkwpLBRSIiqsJmu/BERLaOAUpEJBED\nlIhIIgYoEZFENnsVnoga1qefflrr+88++6yVKmm6GKDN0NGjR5GXl4fRo0cjNDQUly5dwsyZMzFs\n2LDGLo1sSE5OTmOX0OQxQJuhdevWYevWrfj222+hUCiwbds2zJgxgwFKlYwfPx7t27fH77//3til\nNFkM0GZIrVbDwcEBBw4cwOTJk6FUKmEymRq7LLIxn3zyCRYtWoSlS5dWeU8mk+GTTz5phKqaFgZo\nM9S2bVtMnz4dRUVF6NOnDxITE9GyZcvGLotszKJFiwAAsbGxVd6Ljo62djlNEp9EaobKy8vx22+/\noUuXLrCzs8Mvv/yC9u3bo3Xr1o1dGtmgI0eOYO3atcjLywMAGI1GuLm54fPPP2/kymwfb2NqhpKT\nk3H58mXY2dkhNDQUS5cuxYkTJxq7LLJR69atw9q1a+Hm5oa4uDjMnj0bzz33XGOX1SQwQJuhdevW\nYfDgwZUuInE8i2rSsmVLdOzYERUVFXBycsLkyZOxc+fOxi6rSeAYaDPEi0hUH66urkhISECPHj0w\nf/58dOjQAdnZ2Y1dVpPAFmgzdOsi0uXLl3kRiWq0YsUKAMA777yDJ554Ak5OThg0aBAcHR2xcePG\nRq6uaWALtBlatWqV+SISAHTt2hWzZs1q5KrI1vzyyy8AAIVCAa1WixMnTuC1115r5KqaFgZoM1RU\nVIRTp07h4MGDAG5eVU1ISMCRI0cauTKyJXfegMMbcuqPXfhm6PXXX0d2djZ2794Ne3t7/Pe//0V4\neHhjl0U2RiaT1fqa6sb7QJuhadOmISYmBlOnTkVsbCzKysowd+5cbNiwobFLIxvSp08f8zCPEAKX\nL19Gly5dIISATCZDXFxcI1do+9iFb4aMRiPOnz8POzs7HDt2DB07dsRff/3V2GWRjdm9e3djl9Dk\nsQXazJSVleHSpUvIycmBVqvFsmXLkJubi8DAQPj7+zd2eUTNCgO0GTlw4ACWL18OFxcX5ObmIioq\nCp6eno1dFlGzxS58M7Jlyxbs2rULjo6OyMjIQEREBLZs2dLYZRE1W7wK34yoVCo4OjoCADp06IDS\n0tJGroioeWOANiO8LYXIujgG2ozwthQi62KANiNXrlyp9f327dtbqRKi+wMDlIhIIo6BEhFJxAAl\nIpKIAUrNzu+//46zZ8/WOk9xcTH2799vpYqouWKAUrPz7bff4ty5c7XOc+7cOQYo3TU+iURNWmZm\nJubPnw8AKCkpwZAhQ7Bt2zY4ODjAzs4OPXr0wJIlS6BQKFBYWIi5c+eiX79+ePPNN5Gfn4+oqCh0\n7doVx48fx7vvvgsAmDp1Kl555RW4u7tXWvfkyZMxceLERttXsj1sgVKT9s0336BLly6IjY3Ftm3b\noNFo4OPjgxdeeAFPPfUUDAYDXn/9dcTExCAsLAxr1qyBnZ0dXnrpJXh7eyMkJMTidZeUlFhxz6gp\nYIBSk+bj44OkpCQsXLgQBw8exOTJkyu97+Ligq1btyIgIADLly9Hbm7uPVs3EQOUmjR3d3d8/fXX\nePrpp5GUlISpU6dWej8yMhJDhw7FZ599hmXLllW7jjsfeTUajRatm4hjoNSk7d69G+3bt4e3tzf6\n9++PIUOGoHPnzuYQNBgMePjhhwEAe/bsQVlZGQBALpejvLwcAODg4IBr164BALKzs3HhwoUa111e\nXg6lkr82dBOfRKIm7ZdffsGSJUugVqshhMCoUaOg0WgQFRWFV199Ffb29vjwww/RoUMHTJ8+HStX\nroSPjw8mTZqEadOmwcfHB+Hh4ZgxYwYqKirg7u4OvV6PGTNmwMnJqcq6AwMDG3uXyYYwQImIJOIY\nKBGRRAxQIiKJGKBERBIxQImIJGKAEhFJxAAlIpKIAUpEJNH/AwJ5w/AqUuhpAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# visualising the number of male and female in the dataset\n",
+ "\n",
+ "data['gender'].value_counts(normalize = True)\n",
+ "data['gender'].value_counts(dropna = False).plot.bar(color = 'magenta')\n",
+ "plt.title('Comparison of Males and Females')\n",
+ "plt.xlabel('gender')\n",
+ "plt.ylabel('count')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 401
+ },
+ "colab_type": "code",
+ "id": "NQiPqVqiW4Wa",
+ "outputId": "e5a583af-483d-4e11-e649-94feaf2a5b3a"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAGACAYAAABWe+AaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X94jHe+//HXTJKRhon8kLC2pavV\nrvpNWqVsmwTBcsTP2ij9Eb1av8opS7Z+dqkqrdMqu9SlWLbL2azjOGrFpS3tcSKq6dHoVutoEbTJ\nJBIJiYq4v3/0Ml8pIrq5Z3zG83Fde12ZOzN33vOK7Sv3575nxmFZliUAAGAkp78HAAAAPx1FDgCA\nwShyAAAMRpEDAGAwihwAAINR5AAAGIwixy3HsiytWrVKffv2VVJSkrp3767Zs2ertLTU36NVsW7d\nOr3++ut++/mlpaXq37+/evbsqaKiolrf/+OPP67PP/+81vcL3GocvI4ct5qFCxdq7969WrJkiRo2\nbKiysjK99NJL+uabb/TnP/9ZDofD3yPeFPbt26dJkyZp165d/h4FQDU4Isctpbi4WGvXrtX8+fPV\nsGFDSVJYWJhmzpypUaNGybIsff/995o5c6aSkpLUu3dvzZ8/X5WVlZKkhIQErV27VgMGDFCXLl20\nfft2vfjii+revbuGDh2q06dPS5Luvfde/elPf1L//v3VuXNn/eUvf/HOsHTpUu9KwDPPPKOSkhJJ\n0ptvvqnp06dr8ODBWr16td58801NmzZNkvT3v/9dffv2Ve/evdWvXz9lZWVJkk6ePKnU1FQlJSWp\nb9++2rRpkyTp+PHj6tq1q/70pz+pX79+6tatm7Zu3XrVTLKysjRgwAD16tVLQ4YMUU5Ojk6ePKnJ\nkyersLBQvXr10qlTp7z337Vrl/r161dlH/3799eHH36ogoICpaamqlevXkpISNCqVau890lISNCS\nJUuUlJSkkydPKiEhQfv27avy/Hr16qWRI0fq2LFjkqS0tDT94Q9/8O7j8tvr1q1T79691atXLw0e\nPFiHDh266u975MiReuSRR/Tcc89p2rRpevPNN686z7WyzMrKUo8eParkdel2Wlqa5s2bpxEjRqhb\nt2569tlnVV5eXuP5gFphAbeQnTt3Wj169Kj2PsuXL7eefvppq6KiwiovL7cGDRpkbdq0ybIsy4qP\nj7dmzJhhWZZlrV271mrbtq21Z88e6+LFi9agQYOsf//3f7csy7Luuece6/e//71lWZZ1+PBhq1Wr\nVtapU6esnJwcq3PnzlZpaalVWVlpPfHEE9bSpUsty7KsxYsXW127drUKCwu9t1944QXLsiyrU6dO\n1vHjxy3LsqyPP/7YmjdvnmVZlvXUU09Zy5YtsyzLso4fP2517NjRys3NtXJzc6377rvPWrt2rWVZ\nlrV169arPu8zZ85YnTp1svbt22dZlmVt27bN6tmzp1VZWWnt2bPH6t69+xWP+f777624uDjr2LFj\nlmVZ1rFjx6wHHnjAqqiosH7/+99bM2fO9G5v2bKldfLkSW9206dP9+4nPj7e+vjjj60TJ05YHTt2\ntI4cOWJZlmWtXLnSevzxxy3LsqypU6d687n8dmlpqRUXF2eVlpZ6n99bb711xazz58+3JkyYYFmW\nZeXk5Fht27a1Fi9efNV5rpXlj3O4/PbUqVOt+Ph469SpU1ZlZaU1fPhwa/Xq1TWeD6gNHJHjllJc\nXKzo6Ohq77Nz504NHTpUwcHBCg0NVb9+/bR7927v9xMTEyVJ99xzj+rUqaNOnTrJ4XCoefPmys/P\n995v0KBBkqRmzZrpF7/4hT777DO1atVKO3fuVL169eR0OtW+fXvl5uZ6H9O2bVtFRUVdMVN0dLTW\nr1+vEydOKC4uTr/73e9UUVGh//mf/1FKSook6ec//7k6deqkPXv2SJIuXLiggQMHSpJatmypkydP\nXrHfzz77TI0aNVLHjh0lSUlJSSoqKtKJEyeumY/L5VJ8fLzef/99SdKOHTvUvXt3BQcHa/r06Zox\nY4Yk6Y477lBMTIyOHz/ufewjjzxyxf52796tTp06qWnTppKkIUOGKCsrSxcuXLjmDHXq1JHD4VB6\neroKCgrUu3dvPf3001fcb9++ferbt68kqVWrVmrTpk2V71+a53pZVichIUGRkZFyOp3q3r27Pv30\n0xrPB9QGihy3lMjISOXl5VV7n1OnTql+/fre2/Xr11dhYaH3dt26dSVJTqfT+/Wl2xcvXqzyuMu/\nLikpUXl5uebOnaukpCQlJSXpnXfekXXZZSqXP+Zyf/zjH1VQUKCBAwcqOTlZe/fuVXFxsSzLktvt\n9t4vPDzcuwweFBSksLCwq852+XMNDw+vss3tdld5vleTlJRUpcj79OkjScrJyVFqaqp69uypXr16\nyePxXDOTS4qKiqrM4Ha7ZVlWtRfYhYSEaPXq1crOzlZSUpJSUlL05ZdfXnG/kpKSKj/z0umUH89z\nvSyrExERUeUxJSUlNZ4PqA0UOW4p7dq1U2Fh4RVXS1dUVOjf/u3fVF5ergYNGqi4uNj7veLiYjVo\n0OCGf9blRVRcXKz69etrzZo1OnLkiDZu3KiMjAw9+uijNdpXkyZN9PLLLyszM1MjR47UpEmTvEeB\nl87LX/o511txuFx0dHSV52pZlk6fPn3dfXTr1k0HDx7UkSNHdOTIET344IOSpN/+9rdKSkpSRkaG\ntm3bpsjIyBue4fTp03I6nd7nd/kfApc/1/vuu0+LFy9WZmamunbtqlmzZl2x77p166qsrMx72+Px\nXHWG6rIMCgryXiMhyXtNwyWX/55Pnz7t/eOgJvMBtYEixy0lPDxco0aN0tSpU3X06FFJUnl5uWbO\nnKl//OMfuu222/TII48oPT1dlZWVKisr03/+53/q4YcfvuGf9e6770qSDh8+rKNHj6pt27YqLCxU\ns2bNVLduXZ04cUK7du2qUjRXc+rUKT355JM6c+aMnE6n2rZtK4fDoeDgYHXt2lUbNmyQJB07dkz7\n9u1Tly5dajxjmzZtVFBQoE8//dQ7c6NGjXT77bdX+ziXy6WuXbtq4cKFSkxMVFBQkCSpsLBQrVq1\nksPh0H/8x3+ovLz8us/voYce0r59+7ynGNavX6+HHnpIwcHBiomJ0cGDByVJubm5ys7OliR9+eWX\neu6553T+/Hm5XC7vz7za89u2bZsk6YsvvtBnn3121RmqyzImJkYej0eFhYWqrKzUf/3Xf1V57Ecf\nfaSSkhJVVlZqx44diouLq/F8QG0I9vcAgK+NHz9e9evX1+jRo1VZWSmn06nExETNnj1bkjRixAjl\n5ubq17/+tRwOh3r16qXevXvf8M+JiopS//79lZeXp+nTp6t+/foaNmyYnnvuOSUlJenee+9VWlqa\nxo8fr9WrV1e7n27dumnQoEEKCgpSSEiIXnrpJUnSiy++qOnTp2vjxo0KCQnR3Llz9bOf/azKeenq\nhIWF6fXXX9ecOXNUVlamqKgoLVq0qEalk5SUdMXsEyZM0NixYxUREaFhw4bp0Ucf1YwZM/TOO+9c\ncz+NGjXS3LlzNWbMGFVUVOj222/XnDlzJElDhw7VuHHj1LNnT913331KSkqS9MP1Cbfffrv69u2r\nkJAQ1a1bVzNnzrxi36NHj9aECRPUo0cPtWvXTomJidd8btfKUvrheofk5GQ1btxY/fv31xdffOF9\n3IMPPqhx48bp66+/VuvWrTVo0CDVqVOnRvMBtYHXkQM2uPfee7Vr1y41atTI36Pc8izL8pb3c889\np44dO+rxxx+vlX2npaWpSZMmGjNmTK3sD/gpWFoHELDWrVun0aNH6+LFiyosLNTevXvVvn17f48F\n1CqW1gEErAEDBmjv3r3q2bOnnE6nnnrqqSteggaYjqV1AAAMxtI6AAAGo8gBADCYkefIPZ6b6+Mm\nayIyMkxFRdW/nhb/HDK2Hxn7Bjnbz7SMY2Lc1/weR+Q+Ehwc5O8RAh4Z24+MfYOc7RdIGVPkAAAY\njCIHAMBgFDkAAAajyAEAMBhFDgCAwShyAAAMRpEDAGAwihwAAINR5AAAGIwiBwDAYBQ5AAAGo8gB\nADCYkZ9+ZpfYaj5dplbYsP98Az8JDgBQezgiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBg\nMIocAACDUeQAABiMIgcAwGAUOQAABqPIAQAwGEUOAIDBbPvQlPLycqWlpamwsFDff/+9xowZo1/+\n8peaMmWKKisrFRMTo4ULF8rlcmnz5s1as2aNnE6nhg4dqiFDhtg1FgAAAcW2Iv/ggw/UqlUrPf30\n0zpx4oSeeuopdejQQSkpKerdu7cWLVqk9PR0JScna+nSpUpPT1dISIgGDx6sHj16KCIiwq7RAAAI\nGLYtrffp00dPP/20JOnbb79Vw4YNlZWVpcTERElSfHy8MjMztX//frVu3Vput1uhoaHq0KGDsrOz\n7RoLAICAYvvnkQ8bNkzfffedli1bpieffFIul0uSFB0dLY/Ho4KCAkVFRXnvHxUVJY/HY/dYAAAE\nBNuLfP369friiy/029/+VpZlebdf/vXlrrX9cpGRYQoODqq1GU0WE+P29wg3FfKwHxn7BjnbL1Ay\ntq3IDxw4oOjoaP3sZz9TixYtVFlZqbp16+rcuXMKDQ1VXl6eYmNjFRsbq4KCAu/j8vPz1a5du2r3\nXVRUZs/QBv5SPZ5Sf49w04iJcZOHzcjYN8jZfqZlXN0fHbadI9+3b5/efvttSVJBQYHKysrUpUsX\nZWRkSJK2b9+ubt26qW3btsrJyVFJSYnOnj2r7OxsxcXF2TUWAAABxbYj8mHDhmnatGlKSUnRuXPn\nNHPmTLVq1UpTp07Vhg0b1LhxYyUnJyskJESTJk1SamqqHA6Hxo4dK7fbvCNjAAD8wWHV5KT0Tcau\n5ZBYA5fW8w1aGrKbaUtlJiJj3yBn+5mWsV+W1gEAgP0ocgAADEaRAwBgMIocAACDUeQAABiMIgcA\nwGAUOQAABqPIAQAwGEUOAIDBKHIAAAxGkQMAYDCKHAAAg1HkAAAYjCIHAMBgFDkAAAajyAEAMBhF\nDgCAwShyAAAMRpEDAGAwihwAAINR5AAAGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBg\nMIocAACDUeQAABgs2N8D4NYTG+O2b+c27DvfU1rr+wSA2sIROQAABqPIAQAwGEUOAIDBKHIAAAxG\nkQMAYDCKHAAAg9n68rMFCxbok08+0YULF/TMM8/o/fff1+eff66IiAhJUmpqqh555BFt3rxZa9as\nkdPp1NChQzVkyBA7xwIAIGDYVuR79uzRoUOHtGHDBhUVFWnAgAF68MEH9fzzzys+Pt57v7KyMi1d\nulTp6ekKCQnR4MGD1aNHD2/ZAwCAa7OtyO+//361adNGkhQeHq7y8nJVVlZecb/9+/erdevWcrt/\neCOPDh06KDs7WwkJCXaNBgBAwLCtyIOCghQWFiZJSk9P169+9SsFBQVp3bp1WrVqlaKjozVjxgwV\nFBQoKirK+7ioqCh5PJ5q9x0ZGabg4CC7RjdKjJ3vkgZJZPxj5OEb5Gy/QMnY9rdo3bFjh9LT0/X2\n22/rwIEDioiIUIsWLfTWW29pyZIlat++fZX7W5Z13X0WFZXZM6yBv1SPiW8faljORmZsk5gYN3n4\nADnbz7SMq/ujw9ar1j/66CMtW7ZMK1askNvtVufOndWiRQtJUkJCgr766ivFxsaqoKDA+5j8/HzF\nxsbaORYAAAHDtiIvLS3VggULtHz5cu+Fa+PHj1dubq4kKSsrS82bN1fbtm2Vk5OjkpISnT17VtnZ\n2YqLi7NrLAAAAoptS+tbt25VUVGRJk6c6N02cOBATZw4UbfddpvCwsL08ssvKzQ0VJMmTVJqaqoc\nDofGjh3rvfANAABUz2HV5KT0Tcau8xq2frymTUz8iE3TcjYxY7uYdl7RVORsP9My9ts5cgAAYC+K\nHAAAg1HkAAAYjCIHAMBgFDkAAAajyAEAMBhFDgCAwShyAAAMRpEDAGAwihwAAINR5AAAGIwiBwDA\nYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBgMIocAACDUeQAABiMIgcAwGAUOQAABqPIAQAwGEUO\nAIDBKHIAAAxGkQMAYDCKHAAAg1HkAAAYjCIHAMBgFDkAAAajyAEAMBhFDgCAwShyAAAMRpEDAGAw\nihwAAINR5AAAGIwiBwDAYMF27nzBggX65JNPdOHCBT3zzDNq3bq1pkyZosrKSsXExGjhwoVyuVza\nvHmz1qxZI6fTqaFDh2rIkCF2jgUAQMCwrcj37NmjQ4cOacOGDSoqKtKAAQPUuXNnpaSkqHfv3lq0\naJHS09OVnJyspUuXKj09XSEhIRo8eLB69OihiIgIu0YDACBg2La0fv/99+uNN96QJIWHh6u8vFxZ\nWVlKTEyUJMXHxyszM1P79+9X69at5Xa7FRoaqg4dOig7O9uusQAACCi2HZEHBQUpLCxMkpSenq5f\n/epX+u///m+5XC5JUnR0tDwejwoKChQVFeV9XFRUlDweT7X7jowMU3BwkF2jGyUmxu3vEQIeGVdF\nHr5BzvYLlIxtPUcuSTt27FB6errefvtt9ezZ07vdsqyr3v9a2y9XVFRWa/NVYeAv1eMp9fcIN86w\nnI3M2CYxMW7y8AFytp9pGVf3R4etV61/9NFHWrZsmVasWCG3262wsDCdO3dOkpSXl6fY2FjFxsaq\noKDA+5j8/HzFxsbaORYAAAHDtiIvLS3VggULtHz5cu+Fa126dFFGRoYkafv27erWrZvatm2rnJwc\nlZSU6OzZs8rOzlZcXJxdYwEAEFBsW1rfunWrioqKNHHiRO+2+fPna/r06dqwYYMaN26s5ORkhYSE\naNKkSUpNTZXD4dDYsWPldpu19AoAgL84rJqclL7J2HVeI9awc7eSlG/QOZ5LTMvZxIztYtp5RVOR\ns/1My9hv58gBAIC9KHIAAAxGkQMAYDDbX0cOwPdsvQ7Bpn1zLQLw03BEDgCAwShyAAAMRpEDAGAw\nihwAAINR5AAAGIwiBwDAYBQ5AAAGo8gBADBYjYo8LS3tim2pqam1PgwAALgx1b6z2+bNm7V+/Xod\nOnRIw4cP926vqKhQQUGB7cMBAIDqVVvk//Iv/6JOnTpp8uTJGj9+vHe70+nU3XffbftwAACgetd9\nr/WGDRtq7dq1Ki0tVXFxsXd7aWmpIiIibB0OAABUr0YfmjJ37lz97W9/U1RUlCzLkiQ5HA699957\ntg4HAACqV6Miz8rK0p49e1SnTh275wEAADegRletN23alBIHAOAmVKMj8kaNGmn48OHq2LGjgoKC\nvNsnTJhg22AAAOD6alTkERER6ty5s92zAACAG1SjIh8zZozdcwAAgJ+gRkV+3333yeFweG87HA65\n3W5lZWXZNhgAALi+GhX5wYMHvV+fP39emZmZ+vLLL20bCgAA1MwNf2iKy+XSww8/rN27d9sxDwAA\nuAE1OiJPT0+vcvu7775TXl6eLQMBAICaq1GRf/LJJ1Vu16tXT6+//rotAwEAgJqrUZG//PLLkqTi\n4mI5HA7Vr1/f1qEAAEDN1KjIs7OzNWXKFJ09e1aWZSkiIkILFy5U69at7Z4PAABUo0ZF/tprr+kP\nf/iD7rnnHknSP/7xD7300kv685//bOtwAACgejW6at3pdHpLXPrhdeWXv1UrAADwjxoXeUZGhs6c\nOaMzZ85o69atFDkAADeBGi2tv/jii5ozZ46mT58up9OpX/7yl5o7d67dswEAgOuo0RH57t275XK5\n9PHHHysrK0uWZWnXrl12zwYAAK6jRkW+efNmLVmyxHv77bff1pYtW2wbCgAA1EyNiryysrLKOXGH\nwyHLsq77uK+++krdu3fXunXrJElpaWnq16+fRowYoREjRmjnzp2SfvhDYdCgQRoyZIj++te//oSn\nAQDAralG58gTEhI0bNgwdezYURcvXtSePXvUs2fPah9TVlamOXPmXPE55s8//7zi4+Or3G/p0qVK\nT09XSEiIBg8erB49eigiIuInPB0AAG4tNToiHzNmjCZPnqzo6GjFxsZq1qxZGj16dLWPcblcWrFi\nhWJjY6u93/79+9W6dWu53W6FhoaqQ4cOys7OrvkzAADgFlajI3JJiouLU1xcXM13HBys4OArd79u\n3TqtWrVK0dHRmjFjhgoKChQVFeX9flRUlDweT41/DgAAt7IaF3lt6N+/vyIiItSiRQu99dZbWrJk\nidq3b1/lPjU59x4ZGabgYF7HLkkxMW5/jxDwyNg3yLkq8rBfoGTs0yK//Hx5QkKCZs+eraSkJBUU\nFHi35+fnq127dtXup6iozJ4BDfylejyl/h7hxhmWMxn7hpE52yQmxk0eNjMt4+r+6KjROfLaMn78\neOXm5kqSsrKy1Lx5c7Vt21Y5OTkqKSnR2bNnlZ2dfUNL+AAA3MpsOyI/cOCAXnnlFZ04cULBwcHK\nyMjQY489pokTJ+q2225TWFiYXn75ZYWGhmrSpElKTU2Vw+HQ2LFj5XabdzQBAIA/OKyanJS+ydi1\nHBJr4HJkvkFLQ5eYljMZ+4aJOdvFtGVfE5mW8U2ztA4AAGoXRQ4AgMEocgAADEaRAwBgMJ++jhwA\nAoXtFxTasH8uKAxMHJEDAGAwihwAAINR5AAAGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaR\nAwBgMIocAACDUeQAABiMIgcAwGAUOQAABqPIAQAwGEUOAIDBKHIAAAxGkQMAYDCKHAAAg1HkAAAY\njCIHAMBgFDkAAAajyAEAMBhFDgCAwShyAAAMRpEDAGAwihwAAINR5AAAGIwiBwDAYBQ5AAAGo8gB\nADAYRQ4AgMFsLfKvvvpK3bt317p16yRJ3377rUaMGKGUlBRNmDBB58+flyRt3rxZgwYN0pAhQ/TX\nv/7VzpEAAAgothV5WVmZ5syZo86dO3u3LV68WCkpKXrnnXfUtGlTpaenq6ysTEuXLtXq1au1du1a\nrVmzRsXFxXaNBQBAQLGtyF0ul1asWKHY2FjvtqysLCUmJkqS4uPjlZmZqf3796t169Zyu90KDQ1V\nhw4dlJ2dbddYAAAElGDbdhwcrODgqrsvLy+Xy+WSJEVHR8vj8aigoEBRUVHe+0RFRcnj8VS778jI\nMAUHB9X+0AaKiXH7e4SAR8a+Qc72I+OqAiUP24r8eizLuqHtlysqKqvtcX5g4C/V4yn19wg3zrCc\nydg3jMuZjI0WE+M2Ko/q/ujw6VXrYWFhOnfunCQpLy9PsbGxio2NVUFBgfc++fn5VZbjAQDAtfm0\nyLt06aKMjAxJ0vbt29WtWze1bdtWOTk5Kikp0dmzZ5Wdna24uDhfjgUAgLFsW1o/cOCAXnnlFZ04\ncULBwcHKyMjQq6++qrS0NG3YsEGNGzdWcnKyQkJCNGnSJKWmpsrhcGjs2LFyu81bsgIAwB8cVk1O\nSt9k7DqvEWvgOa98g87xXGJazmTsG6blTMZm4xw5AAC4KVDkAAAYjCIHAMBgFDkAAAbz2xvCAABw\nPbZeVGjDvv1xQSFH5AAAGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBgMIocAACDUeQA\nABiMIgcAwGAUOQAABqPIAQAwGEUOAIDBKHIAAAxGkQMAYDCKHAAAg1HkAAAYjCIHAMBgFDkAAAaj\nyAEAMBhFDgCAwShyAAAMRpEDAGAwihwAAINR5AAAGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAA\nDEaRAwBgsGBf/rCsrCxNmDBBzZs3lyTdc889GjVqlKZMmaLKykrFxMRo4cKFcrlcvhwLAABj+bTI\nJemBBx7Q4sWLvbd/97vfKSUlRb1799aiRYuUnp6ulJQUX48FAICR/L60npWVpcTERElSfHy8MjMz\n/TwRAADm8PkR+f/93//p2Wef1enTpzVu3DiVl5d7l9Kjo6Pl8Xiuu4/IyDAFBwfZPaoRYmLc/h4h\n4JGxb5Cz/cjYfv7I2KdFfuedd2rcuHHq3bu3cnNzNXLkSFVWVnq/b1lWjfZTVFRmz4AG/iP3eEr9\nPcKNMyxnMvYN43ImY98wLGe7Mq7uDwSfLq03bNhQffr0kcPhUJMmTdSgQQOdPn1a586dkyTl5eUp\nNjbWlyMBAGA0nxb55s2btXLlSkmSx+NRYWGhBg4cqIyMDEnS9u3b1a1bN1+OBACA0Xy6tJ6QkKDJ\nkyfrvffeU0VFhWbPnq0WLVpo6tSp2rBhgxo3bqzk5GRfjgQAgNF8WuT16tXTsmXLrti+atUqX44B\nAEDA8PvLzwAAwE9HkQMAYDCKHAAAg1HkAAAYjCIHAMBgFDkAAAajyAEAMBhFDgCAwShyAAAMRpED\nAGAwihwAAINR5AAAGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBgMIocAACDUeQAABiM\nIgcAwGAUOQAABqPIAQAwGEUOAIDBKHIAAAxGkQMAYDCKHAAAg1HkAAAYjCIHAMBgFDkAAAajyAEA\nMBhFDgCAwShyAAAMRpEDAGAwihwAAIMF+3uAS+bNm6f9+/fL4XDohRdeUJs2bfw9EgAAN72bosj3\n7t2ro0ePasOGDTp8+LBeeOEFbdiwwd9jAQBw07spltYzMzPVvXt3SdJdd92l06dP68yZM36eCgCA\nm99NUeQFBQWKjIz03o6KipLH4/HjRAAAmOGmWFr/Mcuyqv1+TIzbnp9ry15tZlMWdjIuZzL2DcNy\nJmPfMC5nP2R8UxyRx8bGqqCgwHs7Pz9fMTExfpwIAAAz3BRF/tBDDykjI0OS9Pnnnys2Nlb16tXz\n81QAANz8boql9Q4dOqhly5YaNmyYHA6HZs2a5e+RAAAwgsO63glpAABw07opltYBAMBPQ5EDAGAw\nihwAAINR5LXs/Pnzev3111VRUeHddujQIS1evNiPUwWer776SjNnztRjjz2mkSNHav78+fruu+/8\nPVbAunjxok6cOKELFy74e5SAUlJScs3v5eTk+HCSW09ubq6WL1/u7zFqBUVeyxYsWKAzZ85UeVOb\npk2b6syZM1qyZIkfJwscmZmnsuZhAAAJIUlEQVSZ+td//Vc98MADmjNnjqZMmaI777xTTzzxhDIz\nM/09XkDIzs5Wamqqpk2bpsOHD6t///6aOHGievTooQ8++MDf4wWMcePGVbl9+St2Fi5c6OtxAl5+\nfr5Wr16toUOHatSoUbp48aK/R6oVN8XLzwLJp59+qr/97W9VtrlcLqWlpWn48OFX/B8XN+6tt97S\nsmXLdMcdd3i3tWrVSl26dNHkyZPVuXNnP04XGBYsWKDJkyfL4/Fo1KhRWrlypZo1a6bi4mI9++yz\nio+P9/eIAeHHLxr6+uuvr/k9/DTFxcXKyMjQli1bdPToUfXs2VMlJSXe9y4JBBR5LQsKCrrqdqfT\nWWW5HT/dhQsXqpT4JU2aNJHTySJTbXC5XIqLi5MkrV69Ws2aNZMkRUREKCQkxJ+jBRSHw/GTvoea\n69q1q5o0aaKpU6eqW7ducjqdSk5O9vdYtYr/6tWyyMhI7du374rtO3fuVIMGDfwwUeCp7j9wLpfL\nh5PcGurUqVPlNgVjH7KtffPnz1eTJk00bdo0zZo1KyBPv/GGMLXs6NGjGj9+vO666y61aNFClZWV\n2r9/v7799lutXLmSMq8FHTp08B4hXs6yLB05ckSffPKJH6YKLJcytixL33zzjTdvMq5dl/9bvjxr\ncq59p0+f1rZt27Rlyxbt379fw4cP16BBg3T33Xf7e7R/GkVug4sXL2r37t36+uuv5XA41KxZMz30\n0EP8tV1LTpw4Ue33f/7zn/toksBFxr5Bzv6Rl5enLVu26N1339XGjRv9Pc4/jSIHAMBgnCMHAMBg\nFDkAAAbj5Wc2OXjwoJYsWaIjR47I4XDorrvu0tixY9W8eXN/jxYwyNh+ZOwb5Gy/gM7Ygi2Sk5Ot\n999/3zp16pRVWFho7dixw+rfv7+/xwooZGw/MvYNcrZfIGfM0rpNIiIiFB8fr8jISEVFRSkxMVGN\nGjXy91gBhYztR8a+Qc72C+SMg2bPnj3b30MEopycHH3wwQc6f/68Dh06pPXr1ys0NFROp1NHjx7V\nnXfe6e8RjUfG9iNj3yBn+wVyxpwjt0lZWZkkXfEBE9u2bZMkPfzwwz6fKdCQsf3I2DfI2X6BnDGv\nI7fJyZMnr7q9cePGPp4kcJGx/cjYN8jZfoGcMUVuk0GDBnnfya2iokK5ublq2bKl1q5d6+fJAgcZ\n24+MfYOc7RfIGbO0bpMff5Spx+PRG2+84adpAhMZ24+MfYOc7RfIGXPVuo/ExMTo4MGD/h4joJGx\n/cjYN8jZfoGUMUfkNrl8GceyLBUWFqpLly5+niqwkLH9yNg3yNl+gZwx58htcvmnGjkcDtWrV0/h\n4eF+nCjwkLH9yNg3yNl+gZwxR+Q2evPNN/XFF1/I6XSqVatWGj9+vGJjY/09VkAhY/uRsW+Qs/0C\nNWOOyG3yxBNP6De/+Y06deqkiooK7d27V5s2bdKKFSv8PVrAIGP7kbFvkLP9AjljLnazSWVlpZKS\nkhQREaGYmBj9+te/1vnz5/09VkAhY/uRsW+Qs/0COWOK3CYul0t///vfderUKRUWFurdd9+Vy+Xy\n91gBhYztR8a+Qc72C+SMWVq3SV5ent544w0dOHBATqdTrVu3DpjzMTcLMrYfGfsGOdsvkDPmYjeb\nbNq0SfPmzfP3GAGNjO1Hxr5BzvYL5IxZWrdJYWGhdu/erZKSEpWXl3v/h9pDxvYjY98gZ/sFcsYs\nrdskKSlJFRUVVbY5HA699957fpoo8JCx/cjYN8jZfoGcMUUOAIDBOEduk8TExCu2BQUF6Y477tDz\nzz+vli1b+mGqwELG9iNj3yBn+wVyxhS5TYYOHSq32+39x/Phhx/q1KlT6tSpk+bOnau//OUvfp7Q\nfGRsPzL2DXK2XyBnzMVuNvnwww+VkpKihg0bqmHDhhoyZIh2796tdu3a+Xu0gEHG9iNj3yBn+wVy\nxhyR26ROnTqaN2+eOnToIKfTqQMHDqiiokK7d+9WWFiYv8cLCGRsPzL2DXK2XyBnzMVuNjlz5ow2\nbdqkw4cPy7IsNWnSRAMGDFB5ebncbrfcbre/RzQeGduPjH2DnO0XyBlT5AAAGIxz5AAAGIwiBwDA\nYFzsBtxCPB6PXn31VR08eFB169bV2bNnNXDgQD3++OP+Hg3AT0SRA7cIy7I0ZswYDRw4UK+88ook\nqaCgQE888YQaNWqkpKQkP08I4KegyIFbRGZmpoKCgvSb3/zGu61BgwbauHGjXC6X0tLS5HK59M03\n3+jVV1/Vd999p/nz5ys4OFgOh0MzZ87U3XffrREjRmj06NHq0qWLjh8/rpSUFH344YdKS0tTnTp1\ndPz4ceXn52vgwIF68skntWfPHr322msKDQ3V+fPnNW3aNLVp08aPSQCBhSIHbhGHDh1Sq1atrtju\ncrm8X5eVlWnt2rWSpJEjR2rhwoVq06aNPvjgA7344ove711LXl6eVq5cqZKSEnXv3l3Jyclas2aN\nnnzySfXp00dff/21vvnmm9p9YsAtjiIHbhFBQUGqrKz03t6wYYO2bNmi77//Xo0aNVJYWJjat28v\nSSopKVFhYaH3yPmBBx7Q888/f92f0bVrV0lSeHi47rzzTh09elT9+vXTokWL9NlnnykxMfGq73kN\n4KfjqnXgFnHvvffqf//3f723H330Ua1du1aTJk2Sx+OR9P+Pzh0OR5XHXuvtJn78sZAXL16s8hiH\nw6E+ffpo48aNatOmjZYuXapFixbVyvMB8AOKHLhF3H///YqIiNDy5cu92y69RWVoaGiV+7rdbsXE\nxGj//v2Sfji/fuk9qevVq6dvv/1WkrRnz54qj8vKypIknT59WseOHdMvfvELLV68WJWVlerTp4+m\nTZumTz/91LbnCNyKWFoHbiF//OMftWjRIvXv31/16tVTeXm5OnbsqNdee00LFiyoct9XXnlF8+fP\nV1BQkJxOp2bPni1JeuyxxzRr1ixt2bJF3bp1q/KY8PBwjRkzRrm5uRo/frzCw8PVtGlTPfXUUwoP\nD9fFixc1fvx4Xz1d4JbAW7QCqBVpaWnq2LGjhgwZ4u9RgFsKS+sAABiMI3IAAAzGETkAAAajyAEA\nMBhFDgCAwShyAAAMRpEDAGAwihwAAIP9PzE9EGvWEdsCAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "W5qlGHHJhUDP",
- "colab_type": "code",
- "outputId": "5b0b792e-c0c5-48df-c4c7-adb00bf14b80",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 539
- }
- },
- "cell_type": "code",
- "source": [
- "# computing the total score for each student\n",
- "\n",
- "data['total_score'] = data['math score'] + data['reading score'] + data['writing score']\n",
- "\n",
- "data['total_score'].value_counts(normalize = True)\n",
- "data['total_score'].value_counts(dropna = True).plot.bar(color = 'cyan', figsize = (40, 8))\n",
- "\n",
- "plt.title('comparison of total score of all the students')\n",
- "plt.xlabel('total score scored by the students')\n",
- "plt.ylabel('count')\n",
- "plt.show()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAACOYAAAH2CAYAAADeCBHRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XuYl2WdP/D3MONgHIQRB1zWn3Rw\nNY/ppWl4SOUgbLbparksotJ2Ra5ZebqUWAQMPOVKKh5S1uwS1mw9JZgyiqipKVdEV62aaWvuigcY\nBAQEBYb5/WFOTgwwY97DYK/XXzzP3M/7/ny/D/4j73meisbGxsYAAAAAAAAAAAAfqE5begAAAAAA\nAAAAAPgwUswBAAAAAAAAAIACFHMAAAAAAAAAAKAAxRwAAAAAAAAAAChAMQcAAAAAAAAAAApQzAEA\nAAAAAAAAgAIUcwAAAICt2sKFC/P5z39+i84wefLkHHroobnjjjs2+Nl//dd/tSqjNevmzp2bwYMH\nt3m+LW327Nk59NBDM378+FZfc+edd2bkyJFJkpNOOil33333BmteeOGF/OIXv0hS9rtZvHhxHnzw\nwTZf92//9m+ZMmVKu+8LAAAAdByKOQAAAMBWrU+fPrnnnnu26Az33ntvLrvsshx//PHNztfX1+c/\n/uM/Nnt9a9dtrebMmZMvfvGLueCCCz7Q3NmzZzcVc0qaO3du5syZU3yfjrIvAAAA8MGp2tIDAAAA\nAB3fT37yk1x33XVJkn322ScXXnhhqqurc9999+Waa67JunXr0rt370yaNCk777xzpkyZksWLF+e1\n117L008/nf79++dzn/tcpkyZkkWLFmXixIk58sgjM3r06Gy33Xb57W9/mxdffDF77rlnvve97+Uj\nH/lIfvWrX2XixIlZtWpVOnXqlLFjx+bggw/OggULMmzYsHzuc5/LM888k0suuSRHHXVUnnnmmSxc\nuDDnnntu6uvrs2bNmhx99NE588wzs379+lx55ZWpq6tLkuy7774ZN25cunTpkpNOOikDBgzI/fff\nnwULFuTTn/50Lr/88lRUVDT7DpYtW5bx48fn2WefTWVlZY499tiMGjUqZ599dl599dWMGTMm//qv\n/5oTTjih6Zphw4Zl4cKFGTp0aGbMmJEXXnghEyZMyLJly9K5c+ecc845OeywwzZY9/TTT7f42Tdm\n3bp1GT9+fObNm5f169dnt912yyWXXJJu3bq9r3u3cOHCPPvss/n85z+fU045Jddcc01mzpyZNWvW\nZODAgfn2t7+dysrKZjNs7Du+7bbbUldXl2222SaLFy/OpEmTml334IMP5oorrsiaNWvStWvXXHjh\nhdl99903+3dyzpw5uf7667PNNttk+fLlOfLII5Mk1113XWbMmJG1a9dm0qRJ+cxnPpM1a9bku9/9\nbh599NGsXbs2J5xwQk499dQNMp977rmcf/75WblyZdauXZuTTz45++23X77zne+koaEhq1atyrBh\nwzJ27Ng88MADSd4pz7x7vHTp0px99tl58cUXs8suu2TbbbfNjjvumCT5/e9/nwkTJqS+vj7V1dW5\n6KKLsvfee2fu3LmZPHlyDjzwwMyePTtvv/12LrnkknTt2rXZvpdddtlG7zEAAADQcXliDgAAALBJ\nCxYsyKWXXpqbb745s2bNyurVq3PzzTfnlVdeyfnnn59rrrkms2bNyhFHHJFx48Y1Xffwww/noosu\nysyZMzNr1qz87Gc/y5133plTTz01U6dObVo3e/bsXHXVVXnkkUeycuXKplc6jRs3Ll/5ylcya9as\njBo1qtlrkJYtW5bdd98906dPbzbrD3/4w3z605/Ovffem5kzZ+all17KokWLct999zXt/9Of/jTL\nly/PD3/4w6br5syZk5tuuil1dXV58sknM3/+/A2+h8mTJ6dHjx6pq6vLLbfckh/96EeZN29eLr/8\n8vTp0yeXXXZZs1JOklx00UX5m7/5m8yaNStVVVU566yzMmLEiMyaNSuTJk3K2WefnZUrVzZbV11d\nvcnP3pLHHnssCxYsyKxZs3L//fdnl112ya9+9av3fe8eeeSR3HDDDRk5cmTuvvvuzJo1K7fffnse\neOCBvPTSS/nRj360wQwb+45POeWUDB48OCeffPIGpZx169Zl9OjRmThxYurq6jJgwIBceumlm/ys\n7xowYEBT7ujRo5Mkr732Wnbdddfcd999+ed//uemQtLUqVPz+9//PjNnzsw999yTurq6PPTQQxtk\nXn311Rk2bFh++tOf5tZbb83Pf/7z/N3f/V1GjBiRIUOG5Hvf+94mZ5o6dWpqamoyZ86cjBs3Lo89\n9liSd0pLX//613PMMcekrq4uEyZMyGmnnZZ169YlSZ555pl86lOfyn333Zfhw4fnuuuuy5577tls\n343dYwAAAKBjU8wBAAAANunxxx/Pfvvtlz59+qSioiKXX355Ro4cmccffzwHHXRQ+vXrlyT50pe+\nlLlz5zaVDfbbb7/06tUrNTU1qa2tzWc/+9kkya677ppFixY15Q8YMCA1NTXp1KlTBg0a1FQ2+MlP\nfpK///u/T5Lsv//+eemll5quWbt2bQYPHrzBrL169cpjjz2WefPmpbq6OpMnT07v3r3z8MMP59hj\nj02XLl1SWVmZ4447Lo8//njTdUOHDs22226bLl265KMf/WheffXVDbIfeeSRDB8+PEnSs2fPDB48\nuFnG5ixYsCCLFy/O0UcfnSTZe++907dv3/z3f//3Bms39dlbsv322+d//ud/8sADD2T16tU544wz\ncthhh73ve/epT30q22+/fZLkoYceyvHHH5/u3bunqqoqX/rSl3L//fdvMMPmvuOWVFVV5ec//3n2\n3XffJMkBBxyw2c+6Kd26dcvAgQOTJHvssUdee+21ps8wfPjwVFdXp0uXLjnmmGNa/Ay9evVKXV1d\nnn766dTU1OTaa69NdXV1q/efN29e033baaedcuCBByZJXnjhhbz++uv54he/mOSde7r99ts3/V3v\n2rVrBg0alCTZc88988orr2yQvbF7DAAAAHRsXmUFAAAAbNLSpUuz3XbbNR137ty5xfPdu3dPY2Nj\nli5dmuSdssG7Kisr06VLlyRJp06dsn79+qaf9ezZs+nP2223XZYvX54kmTlzZm6++ea8+eabWb9+\nfRobG5vltfQKn5EjR2b9+vW54IILsmjRopx44on5xje+kSVLlqRHjx5N63r06JHXX3+96fi9WZWV\nlWloaNgge8mSJc0+73bbbdesYLQ5S5YsSffu3Zu9Imu77bbLkiVLssMOOzRbu6nP3pJ99tknY8eO\nzbRp03LeeedlwIABGT9+/Pu+d+/9rlasWJEbb7wxP/7xj5MkDQ0NTaWdP/98m/qON2batGm56667\nsmbNmqxZs2aDV4i1xXvv43v/nq1YsSIXX3xxJk+enCRZs2ZN9tlnnw2uP+ecc3L99dfnjDPOyNtv\nv52vfe1rOfHEE1u9/xtvvJHu3bs3Hb/7HS9fvjxvvfVWU2knSVauXJlly5Zlu+22a3bNn//38a6N\n3eP33kcAAACg41HMAQAAADappqam2StzVq5cmbfeeiu9evVqdv6NN95Ip06dUlNT06b8d8sg72b0\n6NEjCxcuzNixY3Pbbbdl9913z4svvpghQ4ZsNquqqiqjRo3KqFGj8oc//CFf/epXs//++2eHHXbI\nsmXLmtYtW7ZsgzLM5ryb0bdv3/eV0atXr7zxxhtpbGxsKp8sW7YsvXr1arbu/X72oUOHZujQoVm2\nbFnGjBmTG2+8MX379v2L713v3r0zYMCAjBgxYpP7v5/veP78+Zk6dWpuu+227LTTTnn88cdz/vnn\nb/aztlXv3r3zL//yLznyyCM3ua5r164566yzctZZZ+U3v/lNvvrVr+bggw9utubPi1vvFsmSd4o4\nK1asaDpesmRJ/t//+3/p3bt3unbtmlmzZm2w59y5c1v9OVq6x2eeeWarrwcAAADan1dZAQAAAJt0\n+OGHZ/78+VmwYEEaGxszfvz43H777TnkkEMyb968plcP3XrrrTnkkENSVdW23wN69NFHs3z58jQ0\nNGT27Nk54IADsmTJknTp0iUf//jHs27duqantbz55pubzBo3blzT65N23nnn7LDDDqmoqMgRRxyR\nGTNmZPXq1Vm3bl1uv/32HH744W2a84gjjmiaY8mSJXnggQdyxBFHbPKaqqqqrFq1KuvWrctOO+2U\nHXfcMffee2+Sd0opixcvzj777NNs3fv57HfccUeuueaaJO88gejjH/94kg/m3g0cODB33313Vq9e\n3bT2rrvuavH7aet3vGTJkvTq1St9+/bN6tWrc9ddd2XVqlWbfULQu6qqqpoVYTZm4MCBue2229LQ\n0JDGxsZce+21+dnPfrbBulNPPTXPP/98kndeudatW7dUVFQ026e2tjb19fV5/fXX09DQkJkzZzZd\nv++++2b27NlJkv/7v//LL3/5yyTJ3/7t32bHHXdsKuYsWbIkZ511VlatWtXqz7exewwAAAB0bJ6Y\nAwAAAGzSjjvumO985zs55ZRTUllZmb333jtf/vKX07lz50yaNCmnnXZa1q5dm5122ikTJ05sc/5n\nPvOZnH766XnhhRey99575/jjj0/nzp3z2c9+NkOGDEmvXr0yevTozJ8/PyeddFKuuuqqjWYNGzYs\n48aNy8SJE9PY2JgBAwakf//+SZLf/e53Oe6449LY2JiDDjooJ598cpvmPOOMMzJhwoQMHTo0nTp1\nyqhRo1p8HdJ77bbbbunRo0cOOeSQ3HXXXZk8eXLGjx+fq6++Oh/5yEdy5ZVXpkuXLs3W3XnnnRv9\n7Oedd16L+wwcODBjxozJUUcdlcrKyvTr1y+XXHJJevbs+Rffu0GDBuX555/PP/7jPyZ5p/B04YUX\nbrBu6NChbf6ODzvssNxyyy0ZNGhQ+vTpkzFjxuTXv/51vvnNb2726TZJcuSRR+acc87Jyy+/vMlX\nTg0fPjwLFizI0UcfncbGxuy111455ZRTNlg3YsSInH322Vm7dm3TdR/96EdzyCGH5Kabbsrxxx+f\nO+64I8cff3yOPfbY9O3bN8ccc0x++9vfJkm+9rWv5cwzz8yAAQPyiU98IkcddVSSpKKiIpMnT86E\nCRNyxRVXpFOnTvnyl7/c9Hq3jXnvvjfeeGOL9xgAAADo2CoaW/srSAAAAAAfsNGjR2fnnXfOaaed\ntqVHAQAAAIAPnFdZAQAAAAAAAABAAYo5AAAAAAAAAABQgFdZAQAAAAAAAABAAZ6YAwAAAAAAAAAA\nBSjmAAAAAAAAAABAAVVbeoBNqa9f0eL5mpouWbp0Vatz2rJetmzZsmXLli1b9l93dkeaRbZs2bJl\ny5YtW7Zs2bJly5Yt+8OQ3ZFmkS1btmzZsktk19Z23+j6rfKJOVVVlcXWy5YtW7Zs2bJly/7rzu5I\ns8iWLVu2bNmyZcuWLVu2bNmyZX8YsjvSLLJly5YtW3Z7ZidbaTEHAAAAAAAAAAA6OsUcAAAAAAAA\nAAAoQDEHAAAAAAAAAAAKUMwBAAAAAAAAAIACFHMAAAAAAAAAAKAAxRwAAAAAAAAAAChAMQcAAAAA\nAAAAAApQzAEAAAAAAAAAgAIUcwAAAAAAAAAAoADFHAAAAAAAAAAAKEAxBwAAAAAAAAAAClDMAQAA\nAAAAAACAAhRzAAAAAAAAAACgAMUcAAAAAAAAAAAoQDEHAAAAAAAAAAAKUMwBAAAAAAAAAIACFHMA\nAAAAAAAAAKAAxRwAAAAAAAAAAChAMQcAAAAAAAAAAAqo2tIDtFbv2u7NT/zxeFH9ii0wDQAAAAAA\nAAAAbJon5gAAAAAAAAAAQAGKOQAAAAAAAAAAUIBiDgAAAAAAAAAAFKCYAwAAAAAAAAAABSjmAAAA\nAAAAAABAAYo5AAAAAAAAAABQgGIOAAAAAAAAAAAUoJgDAAAAAAAAAAAFKOYAAAAAAAAAAEABijkA\nAAAAAAAAAFCAYg4AAAAAAAAAABSgmAMAAAAAAAAAAAUo5gAAAAAAAAAAQAGKOQAAAAAAAAAAUIBi\nDgAAAAAAAAAAFKCYAwAAAAAAAAAABSjmAAAAAAAAAABAAYo5AAAAAAAAAABQgGIOAAAAAAAAAAAU\noJgDAAAAAAAAAAAFKOYAAAAAAAAAAEABijkAAAAAAAAAAFCAYg4AAAAAAAAAABRQtJjz3HPPZdCg\nQZk+fXqz848++mh22223klsDAAAAAAAAAMAWVayYs2rVqkycODH9+/dvdv7tt9/ODTfckNra2lJb\nAwAAAAAAAADAFlesmFNdXZ2pU6emd+/ezc5///vfz/Dhw1NdXV1qawAAAAAAAAAA2OIqGhsbG0tu\nMGXKlNTU1GTEiBH5wx/+kO9+97u57rrrMmDAgMyZM2eT165b15Cqqsp3Bt3Imo0N35b1bc0GAAAA\nAAAAAIDNqWrPzS6++OKMHTu21euXLl31p4Pa7i2uqa9f0fLFbVnf1uz3XlrbvVXr2rpWtmzZsmXL\nli1b9pbJ7kizyJYtW7Zs2bJly5YtW7Zs2bJlfxiyO9IssmXLli1bdons2tqWeydJwVdZ/bmFCxfm\nhRdeyDnnnJMTTjghixYtyogRI9prewAAAAAAAAAAaFft9sScPn36ZPbs2U3HAwYMyPTp09trewAA\nAAAAAAAAaFfFijlPPfVULr300rz88supqqpKXV1dpkyZkp49e5baEgAAAAAAAAAAOoxixZy99tor\n06ZN2+jP58yZU2prAAAAAAAAAADY4jpt6QEAAAAAAAAAAODDSDEHAAAAAAAAAAAKUMwBAAAAAAAA\nAIACFHMAAAAAAAAAAKAAxRwAAAAAAAAAAChAMQcAAAAAAAAAAApQzAEAAAAAAAAAgAIUcwAAAAAA\nAAAAoADFHAAAAAAAAAAAKEAxBwAAAAAAAAAAClDMAQAAAAAAAACAAhRzAAAAAAAAAACgAMUcAAAA\nAAAAAAAoQDEHAAAAAAAAAAAKUMwBAAAAAAAAAIACFHMAAAAAAAAAAKAAxRwAAAAAAAAAAChAMQcA\nAAAAAAAAAApQzAEAAAAAAAAAgAIUcwAAAAAAAAAAoADFHAAAAAAAAAAAKEAxBwAAAAAAAAAACqja\n0gNsjXrXdm9+4o/Hi+pXbIFpAAAAAAAAAADoiDwxBwAAAAAAAAAAClDMAQAAAAAAAACAAhRzAAAA\nAAAAAACgAMUcAAAAAAAAAAAoQDEHAAAAAAAAAAAKUMwBAAAAAAAAAIACFHMAAAAAAAAAAKAAxRwA\nAAAAAAAAAChAMQcAAAAAAAAAAApQzAEAAAAAAAAAgAIUcwAAAAAAAAAAoADFHAAAAAAAAAAAKEAx\nBwAAAAAAAAAAClDMAQAAAAAAAACAAhRzAAAAAAAAAACgAMUcAAAAAAAAAAAoQDEHAAAAAAAAAAAK\nUMwBAAAAAAAAAIACFHMAAAAAAAAAAKAAxRwAAAAAAAAAAChAMQcAAAAAAAAAAApQzAEAAAAAAAAA\ngAIUcwAAAAAAAAAAoICixZznnnsugwYNyvTp05Mkr776akaOHJkRI0Zk5MiRqa+vL7k9AAAAAAAA\nAABsMcWKOatWrcrEiRPTv3//pnNXXHFFTjjhhEyfPj2DBw/OTTfdVGp7AAAAAAAAAADYoooVc6qr\nqzN16tT07t276dz48eMzZMiQJElNTU2WLVtWansAAAAAAAAAANiiihVzqqqqsu222zY716VLl1RW\nVqahoSG33HJL/uEf/qHU9gAAAAAAAAAAsEVVNDY2NpbcYMqUKampqcmIESOSJA0NDTn33HPzsY99\nLKeffvomr123riFVVZXvDLqRNRsbvi3rZbdvNgAAAAAAAADAX4Oq9t7w29/+dvr167fZUk6SLF26\n6k8Htd1bXFNfv6Lli9uyXnb7Zr/3strum13zftfLli1btmzZsmVv7bPIli1btmzZsmXLli1btmzZ\nsmV/GLI70iyyZcuWLVt2ieza2pY7E0nBV1m1ZMaMGdlmm23yzW9+sz23BQAAAAAAAACAdlfsiTlP\nPfVULr300rz88supqqpKXV1dXn/99XTu3DknnXRSkuQTn/hEJkyYUGoEAAAAAAAAAADYYooVc/ba\na69MmzatVDwAAAAAAAAAAHRo7foqKwAAAAAAAAAA+GuhmAMAAAAAAAAAAAUo5gAAAAAAAAAAQAGK\nOQAAAAAAAAAAUIBiDgAAAAAAAAAAFKCYAwAAAAAAAAAABSjmAAAAAAAAAABAAYo5AAAAAAAAAABQ\ngGIOAAAAAAAAAAAUoJgDAAAAAAAAAAAFKOYAAAAAAAAAAEABijkAAAAAAAAAAFCAYg4AAAAAAAAA\nABSgmAMAAAAAAAAAAAUo5gAAAAAAAAAAQAGKOQAAAAAAAAAAUIBiDgAAAAAAAAAAFKCYAwAAAAAA\nAAAABSjmAAAAAAAAAABAAYo5AAAAAAAAAABQgGIOAAAAAAAAAAAUoJgDAAAAAAAAAAAFVG3pAfjr\n07u2e/MTfzxeVL/iL17fkbIBAAAAAAAAgL9unpgDAAAAAAAAAAAFKOYAAAAAAAAAAEABijkAAAAA\nAAAAAFCAYg4AAAAAAAAAABSgmAMAAAAAAAAAAAUo5gAAAAAAAAAAQAGKOQAAAAAAAAAAUIBiDgAA\nAAAAAAAAFKCYAwAAAAAAAAAABSjmAAAAAAAAAABAAYo5AAAAAAAAAABQgGIOAAAAAAAAAAAUoJgD\nAAAAAAAAAAAFKOYAAAAAAAAAAEABijkAAAAAAAAAAFCAYg4AAAAAAAAAABSgmAMAAAAAAAAAAAUo\n5gAAAAAAAAAAQAGKOQAAAAAAAAAAUIBiDgAAAAAAAAAAFKCYAwAAAAAAAAAABSjmAAAAAAAAAABA\nAYo5AAAAAAAAAABQQNFiznPPPZdBgwZl+vTpSZJXX301J510UoYPH55vfetbWbNmTcntAQAAAAAA\nAABgiylWzFm1alUmTpyY/v37N5276qqrMnz48Nxyyy3p169fbr/99lLbAwAAAAAAAADAFlWsmFNd\nXZ2pU6emd+/eTefmzp2bgQMHJkmOPPLIPPHEE6W2BwAAAAAAAACALaqqWHBVVaqqmsevXr061dXV\nSZJevXqlvr6+1PYAAAAAAAAAALBFVTQ2NjaW3GDKlCmpqanJiBEj0r9//6an5Pzv//5vzjvvvNx6\n660bvXbduoZUVVW+M+hG1mxs+Lasly1bdsfLBgAAAAAAAICtXbEn5rSkS5cueeutt7Lttttm4cKF\nzV5z1ZKlS1f96aC2e4tr6utXtHxxW9bLli2742W/97La7ptd837Xy5YtW7Zs2R15FtmyZcuWLVu2\nbNmyZcuWLVu27A9DdkeaRbZs2bJlyy6RXVvb8r+FJ0mnVid/AA4++ODU1dUlSe6///4cdthh7bk9\nAAAAAAAAAAC0m2JPzHnqqady6aWX5uWXX05VVVXq6ury7//+7xk9enR+/OMfp2/fvjn22GNLbQ8A\nAAAAAAAAAFtUsWLOXnvtlWnTpm1w/qabbiq1JQAAAAAAAAAAdBjt+iorAAAAAAAAAAD4a6GYAwAA\nAAAAAAAABSjmAAAAAAAAAABAAYo5AAAAAAAAAABQgGIOAAAAAAAAAAAUoJgDAAAAAAAAAAAFKOYA\nAAAAAAAAAEABijkAAAAAAAAAAFCAYg4AAAAAAAAAABSgmAMAAAAAAAAAAAUo5gAAAAAAAAAAQAGK\nOQAAAAAAAAAAUIBiDgAAAAAAAAAAFKCYAwAAAAAAAAAABSjmAAAAAAAAAABAAYo5AAAAAAAAAABQ\ngGIOAAAAAAAAAAAUoJgDAAAAAAAAAAAFKOYAAAAAAAAAAEABijkAAAAAAAAAAFCAYg4AAAAAAAAA\nABSgmAMAAAAAAAAAAAVUbekBAFrSu7Z78xN/PF5Uv+IvXi/7w5O9wfotmA0AAAAAAADw5zwxBwAA\nAAAAAAAAClDMAQAAAAAAAACAAhRzAAAAAAAAAACgAMUcAAAAAAAAAAAoQDEHAAAAAAAAAAAKUMwB\nAAAAAAAAAIACFHMAAAAAAAAAAKAAxRwAAAAAAAAAAChAMQcAAAAAAAAAAApQzAEAAAAAAAAAgAIU\ncwAAAAAAAAAAoADFHAAAAAAAAAAAKEAxBwAAAAAAAAAAClDMAQAAAAAAAACAAhRzAAAAAAAAAACg\nAMUcAAAAAAAAAAAoQDEHAAAAAAAAAAAKUMwBAAAAAAAAAIACFHMAAAAAAAAAAKCAVhVzRo8evcG5\nr3zlKx/4MAAAAAAAAAAA8GFRtakfzpgxI7feemuef/75nHjiiU3n165dm8WLFxcfDgAAAAAAAAAA\ntlabLOZ84QtfyEEHHZRzzjkn3/jGN5rOd+rUKbvsskvx4QAAAAAAAAAAYGu1yWJOkvTp0yfTpk3L\nihUrsmzZsqbzK1asSM+ePYsOBwAAAAAAAAAAW6vNFnOSZNKkSbnjjjuy/fbbp7GxMUlSUVGRBx98\nsE2bvfnmmznvvPPyxhtvZO3atfn617+eww47rO1TAwAAAAAAAABAB9eqYs7cuXPz5JNPpnPnzn/R\nZnfddVc+9rGP5eyzz87ChQtzyimnZNasWX9RJgAAAAAAAAAAdESdWrOoX79+f3EpJ0lqamqaXoe1\nfPny1NTU/MWZAAAAAAAAAADQEbXqiTk77rhjTjzxxOy///6prKxsOv+tb32rTZsdffTRufPOOzN4\n8OAsX748119/fdumBQAAAAAAAACArURFY2Nj4+YWXX311S2eP/3009u02d1335158+Zl4sSJefbZ\nZzNmzJjceeedG12/bl1DqqreKQJVbGTNxoZvy3rZsmXLlr11Zm9svWzZsj/YbAAAAAAAAN6fVj0x\n57TTTvtANps/f34OPfTQJMknP/nJLFq0KA0NDc2ewvNeS5eu+tNBbfcW19TXr2h5s7asly1btmzZ\nW2f2RtbLli37A85+72W13Vu1rq1rO1J2R5pFtmzZsmXLli1btmzZsmXLli37w5DdkWaRLVu2bNmy\nS2TX1rb87zRJK4s5e+yxRyoq/vR71RUVFenevXvmzp3b6sGSpF+/fvn1r3+dIUOG5OWXX07Xrl03\nWsoBAAAAAAAAAICtWauKOc8mTlKrAAAgAElEQVQ++2zTn9esWZMnnngiv/vd79q82T/90z9lzJgx\nGTFiRNatW5cJEya0OQMAAAAAAAAAALYGrSrmvFd1dXUOP/zw/OAHP8ioUaPadG3Xrl1z5ZVXtnVL\nAAAAAAAAAADY6rSqmHP77bc3O37ttdeycOHCIgMBAAAAAAAAAMCHQauKOb/85S+bHXfr1i1XXHFF\nkYEAAAAAAAAAAODDoFXFnIsvvjhJsmzZslRUVKRHjx5FhwIAAAAAAAAAgK1dq4o58+fPz7nnnps3\n33wzjY2N6dmzZy677LLsvffepecDAAAAAAAAAICtUquKOZdffnmuvfba7LrrrkmSZ555JhdeeGH+\n8z//s+hwAAAAAAAAAACwterUqkWdOjWVcpJkjz32SGVlZbGhAAAAAAAAAABga9fqYk5dXV1WrlyZ\nlStX5t5771XMAQAAAAAAAACATWjVq6wuuOCCTJw4MWPHjk2nTp3yyU9+MpMmTSo9GwAAAAAAAAAA\nbLVa9cScxx9/PNXV1fnFL36RuXPnprGxMY888kjp2QAAAAAAAAAAYKvVqmLOjBkzcvXVVzcd/+AH\nP8g999xTbCgAAAAAAAAAANjataqY09DQkMrKyqbjioqKNDY2FhsKAAAAAAAAAAC2dlWtWTRgwIAM\nGzYs+++/f9avX58nn3wyRx11VOnZAAAAAAAAAABgq9WqYs5pp52WAw88ML/5zW9SUVGR8ePHZ999\n9y09GwAAAAAAAAAAbLVaVcxJkgMOOCAHHHBAyVkAAAAAAAAAAOBDo9OWHgAAAAAAAAAAAD6MFHMA\nAAAAAAAAAKAAxRwAAAAAAAAAAChAMQcAAAAAAAAAAApQzAEAAAAAAAAAgAIUcwAAAAAAAAAAoADF\nHAAAAAAAAAAAKEAxBwAAAAAAAAAAClDMAQAAAAAAAACAAqq29AAAAHRsvWu7Nz/xx+NF9Ss2v74t\naztS9h/Xf9iyAQAAAACA9uWJOQAAAAAAAAAAUIBiDgAAAAAAAAAAFKCYAwAAAAAAAAAABSjmAAAA\nAAAAAABAAYo5AAAAAAAAAABQgGIOAAAAAAAAAAAUoJgDAAAAAAAAAAAFKOYAAAAAAAAAAEABijkA\nAAAAAAAAAFCAYg4AAAAAAAAAABSgmAMAAAAAAAAAAAUo5gAAAAAAAAAAQAGKOQAAAAAAAAAAUIBi\nDgAAAAAAAAAAFKCYAwAAAAAAAAAABSjmAAAAAAAAAABAAYo5AAAAAAAAAABQgGIOAAAAAAAAAAAU\noJgDAAAAAAAAAAAFKOYAAAAAAAAAAEABijkAAAAAAAAAAFCAYg4AAAAAAAAAABTQ7sWcGTNm5Atf\n+EKOO+64PPzww+29PQAAAAAAAAAAtIt2LeYsXbo011xzTW655ZZ8//vfz4MPPtie2wMAAAAAAAAA\nQLupas/NnnjiifTv3z/dunVLt27dMnHixPbcHgAAAAAAAAAA2k27PjFnwYIFeeutt3Lqqadm+PDh\neeKJJ9pzewAAAAAAAAAAaDcVjY2Nje212Q033JD58+fn6quvziuvvJKTTz45Dz30UCoqKlpcv25d\nQ6qqKt8ZdCOZGxu+Letly5YtW/bWmb2x9bJly5YtW7Zs2R9kNgAAAADA+9Wur7Lq1atX9ttvv1RV\nVWXnnXdO165ds2TJkvTq1avF9UuXrvrTQW33FtfU169oebO2rJctW7Zs2Vtn9kbWy5YtW7Zs2bJl\nf6DZ772stnur1r2f9bJly5YtW7Zs2bJly5b9Yc3uSLPIli1btmzZJbJrN/L/J5N2fpXVoYcemief\nfDLr16/P0qVLs2rVqtTU1LTnCAAAAAAAAAAA0C7a9Yk5ffr0yZAhQ3LCCSckScaOHZtOndq1GwQA\nAAAAAAAAAO2iXYs5STJs2LAMGzasvbcFAAAAAAAAAIB25XE1AAAAAAAAAABQgGIOAAAAAAAAAAAU\noJgDAAAAAAAAAAAFKOYAAAAAAAAAAEABijkAAAAAAAAAAFCAYg4AAAAAAAAAABSgmAMAAAAAAAAA\nAAUo5gAAAAAAAAAAQAGKOQAAAAAAAAAAUIBiDgAAAAAAAAAAFKCYAwAAAAAAAAAABSjmAAAAAAAA\nAABAAYo5AAAAAAAAAABQgGIOAAAAAAAAAAAUoJgDAAAAAAAAAAAFKOYAAAAAAAAAAEABijkAAAAA\nAAAAAFCAYg4AAAAAAAAAABSgmAMAAAAAAAAAAAUo5gAAAAAAAAAAQAGKOQAAAAAAAAAA/5+9Ow+P\nujr7P/5JCCABZBECCiqiCIogRRQDooiUVoo8j0hBKmCLlbqhdceF1ZVFrUWsIi5FBVGKgBURqxJU\nMCqLAhori5RFthAgQBCSnN8f/maeTGYmmXuSEyb2/bour8tMTu7c37N/v3OYAB5wMAcAAAAAAAAA\nAAAAAADwgIM5AAAAAAAAAAAAAAAAgAcpRzsBAAAAAAASWVrD2qEv/P+vd+zMLXN5YhOb2PGXBwAA\nAAAAqAz4xBwAAAAAAAAAAAAAAADAAw7mAAAAAAAAAAAAAAAAAB5wMAcAAAAAAAAAAAAAAADwgIM5\nAAAAAAAAAAAAAAAAgAcczAEAAAAAAAAAAAAAAAA84GAOAAAAAAAAAAAAAAAA4AEHcwAAAAAAAAAA\nAAAAAAAPOJgDAAAAAAAAAAAAAAAAeMDBHAAAAAAAAAAAAAAAAMADDuYAAAAAAAAAAAAAAAAAHnAw\nBwAAAAAAAAAAAAAAAPCAgzkAAAAAAAAAAAAAAACABxzMAQAAAAAAAAAAAAAAADzgYA4AAAAAAAAA\nAAAAAADgAQdzAAAAAAAAAAAAAAAAAA84mAMAAAAAAAAAAAAAAAB4wMEcAAAAAAAAAAAAAAAAwAMO\n5gAAAAAAAAAAAAAAAAAecDAHAAAAAAAAAAAAAAAA8ICDOQAAAAAAAAAAAAAAAIAHHMwBAAAAAAAA\nAAAAAAAAPOBgDgAAAAAAAAAAAAAAAOABB3MAAAAAAAAAAAAAAAAAD47KwZxDhw6pe/fumj179tH4\n9QAAAAAAAAAAAAAAAIB3R+Vgzt/+9jfVqVPnaPxqAAAAAAAAAAAAAAAAoEJU+MGcdevWae3atera\ntWtF/2oAAAAAAAAAAAAAAACgwiQ551xF/sKhQ4dqxIgRmjNnjpo0aaI+ffpELZufX6CUlCqSpKQo\nZaIlbylPbGITm9jErpyxo5UnNrGJTWxiE5vYxE602NHKE5vYxCY2sYn9c4kNAAAAAIgspSJ/2Zw5\nc9SuXTudeOKJMZXPyTn4f180rB2xzM6duZF/2FKe2MQmNrGJXTljRylPbGITm9jEJjaxiZ1osaOW\nJzaxiU1sYhP75xK76I81rF1qmXjLE5vYxCY2sStn7ETKhdjEJjaxiU1sH7EbRrl/kir4YM6iRYu0\nadMmLVq0SNu2bVO1atXUuHFjderUqSLTAAAAAAAAAAAAAAAAALyr0IM5f/nLX4L/P2nSJDVp0oRD\nOQAAAAAAAAAAAAAAAPhZSj7aCQAAAAAAAAAAAAAAAAA/RxX6iTlFDRs27Gj9agAAAAAAAAAAAAAA\nAMA7PjEHAAAAAAAAAAAAAAAA8ICDOQAAAAAAAAAAAAAAAIAHHMwBAAAAAAAAAAAAAAAAPOBgDgAA\nAAAAAAAAAAAAAOABB3MAAAAAAAAAAAAAAAAADziYAwAAAAAAAAAAAAAAAHjAwRwAAAAAAAAAAAAA\nAADAAw7mAAAAAAAAAAAAAAAAAB5wMAcAAAAAAAAAAAAAAADwgIM5AAAAAAAAAAAAAAAAgAcczAEA\nAAAAAAAAAAAAAAA84GAOAAAAAAAAAAAAAAAA4AEHcwAAAAAAAAAAAAAAAAAPOJgDAAAAAAAAAAAA\nAAAAeMDBHAAAAAAAAAAAAAAAAMADDuYAAAAAAAAAAAAAAAAAHnAwBwAAAAAAAAAAAAAAAPCAgzkA\nAAAAAAAAAAAAAACABxzMAQAAAAAAAAAAAAAAADzgYA4AAAAAAAAAAAAAAADgAQdzAAAAAAAAAAAA\nAAAAAA84mAMAAAAAAAAAAAAAAAB4kHK0EwAAAAAAAAAAVG5pDWuHvvD/v96xM7fM5YldsbHDypdS\nFgAAAEDJ+MQcAAAAAAAAAAAAAAAAwAMO5gAAAAAAAAAAAAAAAAAecDAHAAAAAAAAAAAAAAAA8ICD\nOQAAAAAAAAAAAAAAAIAHHMwBAAAAAAAAAAAAAAAAPOBgDgAAAAAAAAAAAAAAAOABB3MAAAAAAAAA\nAAAAAAAADziYAwAAAAAAAAAAAAAAAHjAwRwAAAAAAAAAAAAAAADAAw7mAAAAAAAAAAAAAAAAAB5w\nMAcAAAAAAAAAAAAAAADwgIM5AAAAAAAAAAAAAAAAgAcczAEAAAAAAAAAAAAAAAA84GAOAAAAAAAA\nAAAAAAAA4AEHcwAAAAAAAAAAAAAAAAAPOJgDAAAAAAAAAAAAAAAAeMDBHAAAAAAAAAAAAAAAAMAD\nDuYAAAAAAAAAAAAAAAAAHnAwBwAAAAAAAAAAAAAAAPCAgzkAAAAAAAAAAAAAAACABxzMAQAAAAAA\nAAAAAAAAADzgYA4AAAAAAAAAAAAAAADgAQdzAAAAAAAAAAAAAAAAAA9SKvoXjh8/XsuWLVN+fr7+\n9Kc/qUePHhWdAgAAAAAAAAAAAAAAAOBdhR7M+fTTT/Xdd99p5syZysnJ0eWXX87BHAAAAAAAAAAA\nAAAAAPwsVejBnHPPPVdt27aVJB177LHKy8tTQUGBqlSpUpFpAAAAAAAAAAAAAAAAAN4lV+Qvq1Kl\nilJTUyVJs2bN0oUXXsihHAAAAAAAAAAAAAAAAPwsJTnnXEX/0n/961969tln9cILL6h27dpRy+Xn\nFygl5aeDO0lRykRL3lKe2MQmNrGJXTljRytPbGITm9jEJjaxiZ1osaOVJzaxiU1sYhOb2MROtNjR\nyhOb2MQmNrETPzYAIDFV6J+ykqSPPvpIzzzzjKZOnVrioRxJysk5+H9fNIxcdufO3Mg/bClPbGIT\nm9jErpyxo5QnNrGJTWxiE5vYxE602FHLE5vYxCY2sYlNbGInWuwo5YlNbGITm9iVIHbRH21YO6Zy\n1rLEJjaxiU3syOUbRpmzpQo+mJObm6vx48frpZdeUt26dSvyVwMAAAAAAAAAAAAAAAAVqkIP5syf\nP185OTn685//HHxt3LhxOuGEEyoyDQAAAAAAAAAAAAAAAMC7Cj2Y079/f/Xv378ifyUAAAAAAAAA\nAAAAAABwVCQf7QQAAAAAAAAAAAAAAACAnyMO5gAAAAAAAAAAAAAAAAAecDAHAAAAAAAAAAAAAAAA\n8ICDOQAAAAAAAAAAAAAAAIAHHMwBAAAAAAAAAAAAAAAAPOBgDgAAAAAAAAAAAAAAAOABB3MAAAAA\nAAAAAAAAAAAADziYAwAAAAAAAAAAAAAAAHjAwRwAAAAAAAAAAAAAAADAAw7mAAAAAAAAAAAAAAAA\nAB5wMAcAAAAAAAAAAAAAAADwgIM5AAAAAAAAAAAAAAAAgAcczAEAAAAAAAAAAAAAAAA84GAOAAAA\nAAAAAAAAAAAA4AEHcwAAAAAAAAAAAAAAAAAPOJgDAAAAAAAAAAAAAAAAeMDBHAAAAAAAAAAAAAAA\nAMADDuYAAAAAAAAAAAAAAAAAHnAwBwAAAAAAAAAAAAAAAPCAgzkAAAAAAAAAAAAAAACABxzMAQAA\nAAAAAAAAAAAAADzgYA4AAAAAAAAAAAAAAADgQcrRTgAAAAAAAAAAAAAAUDZpDWuHvtCwtnbszI25\nrCRTeWIT+2jHjlae2MQ+2rGL4xNzAAAAAAAAAAAAAAAAAA84mAMAAAAAAAAAAAAAAAB4wMEcAAAA\nAAAAAAAAAAAAwAMO5gAAAAAAAAAAAAAAAAAecDAHAAAAAAAAAAAAAAAA8ICDOQAAAAAAAAAAAAAA\nAIAHHMwBAAAAAAAAAAAAAAAAPOBgDgAAAAAAAAAAAAAAAOABB3MAAAAAAAAAAAAAAAAADziYAwAA\nAAAAAAAAAAAAAHjAwRwAAAAAAAAAAAAAAADAAw7mAAAAAAAAAAAAAAAAAB5wMAcAAAAAAAAAAAAA\nAADwgIM5AAAAAAAAAAAAAAAAgAcczAEAAAAAAAAAAAAAAAA84GAOAAAAAAAAAAAAAAAA4AEHcwAA\nAAAAAAAAAAAAAAAPOJgDAAAAAAAAAAAAAAAAeMDBHAAAAAAAAAAAAAAAAMADDuYAAAAAAAAAAAAA\nAAAAHnAwBwAAAAAAAAAAAAAAAPCAgzkAAAAAAAAAAAAAAACABxzMAQAAAAAAAAAAAAAAADxIqehf\n+PDDD+vLL79UUlKS7r33XrVt27aiUwAAAAAAAAAAAAAAAAC8q9CDOZ999pk2btyomTNnat26dbr3\n3ns1c+bMikwBAAAAAAAAAAAAAAAAqBAV+qesli5dqu7du0uSTj31VO3du1f79++vyBQAAAAAAAAA\nAAAAAACAClGhB3N27dqlevXqBb+uX7++du7cWZEpAAAAAAAAAAAAAAAAABUiyTnnKuqXjRgxQhdd\ndFHwU3MGDBighx9+WKecckpFpQAAAAAAAAAAAAAAAABUiAr9xJy0tDTt2rUr+PWOHTvUsGHDikwB\nAAAAAAAAAAAAAAAAqBAVejCnc+fOevfddyVJa9asUVpammrVqlWRKQAAAAAAAAAAAAAAAAAVIqUi\nf1n79u3VunVrXXnllUpKStKoUaMq8tcDAAAAAAAAAAAAAAAAFSbJOeeOdhIAAAAAAAAAAAAAAADA\nz02F/ikrAAAAAAAAAAAAAAAA4L8FB3MAAAAAAAAAAAAAAAAADziYAwAAAAAAAAAAAAAAAHjAwRwA\nAAAAAAAAAAAAAADAgyqjR48efbSTsHr++efVvn37iN/Lzs6Wc07VqlXT7t279dVXXyk5OVm1a9eO\nWH7dunXasGGDGjVqpOTk/zun9OGHH+qUU04Jfu2cU1JSUvDrNWvW6JNPPlF+fr4aNWoUMfa+ffu0\ndOlSff755/r666+1a9cuNWjQQNWqVQsru3PnTiUnJ6tq1arasmWLlixZovz8fDVo0CBi7MOHD2v5\n8uX66quv9N133ykvL08NGzYMyTHgxx9/VEpKSvB6P/vsMxUUFESMvXLlSjVu3Dji74xFSW1jqcN4\n8rDWoSV3S1ta+qC1X1lix1OH1vFTVEn1J9nax9Jnfda3ZZxZ846nfFHz5s1Ty5YtI35v586dqlmz\nZqkxSpOZmammTZuGvGatw1jn2HhyKWrXrl1avXq1qlatGvO1l9ZnA/bu3avvvvtO1apVU40aNcK+\nb+0n1nG2f/9+5eTkqFatWiGvr1q1Kur6I0kHDx5UVlZW1LyjiVbXzjmtXbtW3377rTZt2qQff/xR\n9evXjzluwLp160J+rqz9taR2jGcejHW+j2dfEE1p/TvestHKW8dlvOM4nnFZUt7WseNr3QnYunWr\nNmzYoO3btyslJUWpqalhZeLpg7GO+bLu2Uqa23z2b5/jsjjrPFhany3rmhbrupOfn6+tW7fqmGOO\nUZUqVcK+b61DX+tUPG1pqUNr3pby1ra0zCfWexJL/45nLMQyV0n2edBS39a2tFynz/23Ne/y2PdW\n9P7bOo4t/dvns4WSFN9rSrY+Za1v67gsy57aWifl9YwjnvKRRNvHluW+uLQ1M957Kan8nm/Fc42W\nfa91j2xtS0t8n/Om9TotuZRH/44090jx9+/S+rZUtuegJT1TCoh1D1GSst7rWtdWS31X9POtkurc\n5z7M2k8s12kZOz73BT73M5J9bzVr1iy98847WrRokb777jvVqVMn4vxgeR4Wzz26z3uYssw/pe1n\nfN5nxLoPK+szkZKet+Tn52vBggXatWuXTjzxRH344Yf65z//qe3bt+u0004L6WPWvCMZNGiQ+vTp\nE/F7hYWFmj9/vl588UW9/vrrmjdvnpYvX66kpCQ1a9YsrPxHH32k1157TXPmzNHChQu1cuVKJScn\n68QTTwwrm5GREYyxZ88eTZgwQVOnTtWaNWvUpk2bkHoZOXKkGjRoYHreFGsfzMnJ0csvv6zNmzer\nVatWevbZZ/Xcc89pzZo1OvPMM0PysLZNdna2Jk+erHfeeUepqakha9jYsWN10UUXhZQ/cuSI3njj\nDU2ZMkXTpk3TP/7xD3300Uc6cOCAWrZsGRbf11xlaZt4cykq3vu6SPuCsuztS3pGGO/7E2XdK0Xb\nPxZV2p7Quo+Ndc8Rz7od65wcT+yy3DOW1gdjvc+IZ66KJMk558oUwbN77rkn7LWMjIzgpPbII48E\nX586dapmz56tKlWq6Morr9SMGTPUsmVL/fvf/1a/fv00aNCgkDhPPPGEli5dqrp162rr1q167LHH\nghvkwYMHa9q0acGyRb9+6aWXNG/ePKWnp2v58uW6+OKLNXTo0JDYs2bN0t///ne1b99e9evXl3NO\n27dv14oVKzRs2DD95je/CZb929/+pjlz5ig5OVk33HCDpk6dqvbt22vNmjXq2rWrbrjhhpDYCxcu\n1AsvvKAzzjhDK1asUIsWLVRYWKisrCyNHDlSHTt2DJZ9+umntW7dOj322GP6+9//rtmzZ+ucc87R\nN998o86dO+umm24Kid2pUyedeuqpuvrqq9W9e/dyaxtrHVryiKcOLblb2tLaBy11Yo1trUNLfGvb\nW9rH0md91rdlnFnztpZ/6qmnwup71qxZ6tu3rySFxT7nnHOUnp6um266Sa1atQr72VgVnweLv1Za\nHVrmWGsuf/7zn/WXv/xFkvTWW2/pySef1FlnnaWsrCxdd911+t///d+Qn7eO+SVLlujxxx/X22+/\nrccee0wtWrTQxo0bdc011+i3v/1tsKy1n1j77PTp0zV16lTVqFFD9evX18SJE4MLf/E6mTVrlh5/\n/HHVrVtXI0eO1JgxY3TiiSfq+++/19ChQ4P9xVrXgbp69NFH1aRJk5B5cMeOHRozZkzYdVriW/qr\nde6xzoOW+d66LyiJZTyUdexYx6WlvHVcWvK2jh1f644kLVu2TBMnTlTt2rX1zTff6IwzztC+ffvk\nnNPYsWNDHrZa+6BlzMfTv2Od23z2b5/j0joPWvqsdexY5qu5c+dq4sSJqlWrlm6//XZNnDhRdevW\n1Y4dO3TnnXfq0ksvDYljqUOf65S1LS11aM3bUt7alpb5xHpPYu3fsZaVbHOVdR601Le1LS3X6XP/\nbc27vPa9Fb3/toxja//2+WyhJJH2yJaxY6lva2zLntpaJ76eccRTPppIfdA6ji1rpmVf5fP5lvUa\nLWuxdY9sbUtLfJ/zpvU6LbkkSv+27gctc7L1mZJlDxFPvcRa1rqmWceaz/XVUuc+92HWtdtyndax\n43Nf4HM/Y6mTJ554QtnZ2ercubOWLFmiOnXq6MQTT9TcuXPVo0cP/f73vw+JbXkeZr1H93kPYylv\nbUuf9xmWfVg87wXG+rzljjvuUGpqqvbt26fCwkIlJycrPT1dq1atUkFBQVidWPJu1aqV0tLSVLVq\nVQXe9t25c2fwjfH3338/JPbIkSN1/PHHq3Pnzvr444/lnNPZZ5+t2bNnq1GjRrr77ruDZceMGaN9\n+/apW7duwYME27dv18KFC3XyySeHlC1eh7fffrtatmypSy65RJmZmVq8eLGeeeaZYNnevXvrrLPO\n0v79+zVw4ECdd955KomlD1577bU6++yztWPHDmVnZ+uUU05Rjx499NVXX2nRokWaOnVq3G0zZMgQ\nXXLJJapfv76mT5+u888/XzfeeGPY9QfceuutOumkk3TxxRfruOOOC7blu+++q3379mn8+PFxXaMU\n/3vdpbWNNRef93WWvb1ke0ZofT+tvPZKkfK27Amta7Flz2F95meZk62xLXlb+6DlPsM6V0XlEtyt\nt97qfvvb37oPPvjAZWZmuk8//dT17NnTZWZmuszMzJCy/fv3d4WFhe7gwYMuPT3d5ebmOuecO3z4\nsLvyyivDYvfv3z/4/1lZWa5Xr17um2++cc45N3DgwJCyRb8eMGCAO3jwoHPOuSNHjrh+/fqFxe7X\nr587dOhQ2Ov79+8P+b2BPAoKClx2drbr3Lmz27dvn3POufz8fPfb3/42LMaAAQPcjz/+GIw3bNgw\n55xzO3bscJdffnlI2SuuuCLk5/Ly8pxzzhUUFITlEbjOffv2uSeeeML17dvXTZo0yS1btswdOHAg\nrKylbQKxi+ZSUh1a8nDOXoeW3K1taemDljqJJ7a1DmONb217S/tY+qzP+raMM2ve1vJXXnml69u3\nr3vjjTfc7Nmz3ezZs1337t2D/x/pOjdu3OjuuOMO94c//MG9+eabbtu2bWHlnHPu5ptvjvjfsGHD\nXHp6esTYRfMurc8GlDbHWnMp+vNXXnml2717t3POuQMHDpR5zPfp0yc45gcMGOBycnKcc879+OOP\nYbGt/cTaZ/v27esOHz7snHPuo48+cr1793Zbt26NWIf9+vVzBw4ccP/5z3/cBRdc4LZs2eKcc+7g\nwYOuT58+IWWt7d6vXz+XnZ0d9vq2bdsi9u9x48ZF/O/RRx91Xbt2DSlr6a/xrDuWedAy31v3BZY6\nt7aPpbx1XMa7V4plXFrztu7xfKw7gTJ79+51zjm3c+dOd+eddzrnnPv3v/8dFtvaBy1j3hrbMrf5\n7N8+x6VlHix+naX1WevYsd7DHDp0yGVnZ7vzzjsvOAfm5uaWeb/uc52KZ68Zax1a87aUj2cejHU+\nsd6TWPt3rGWds81V8cyDsda3tS0t1+lz/x3P2AkorV8l0v7bMo6t/dvnswXLXtM6diz1bY1t2VNb\n68TXMw5reWv/to5jy5pp2Vf5fL4VzzXGuhZb98jWtrfE9zlvWq/TkoulTixzj3P251uW/aBlTrY+\nU7LsIZzzd69rXdPieQZetHx5rq+WOve5D7Ou3ZbrjGd99fmeg6/9TLzPRJxzbsiQIcHYkeZBy/Mw\n6z26z3sYS3lrW/q+z4Gj7OMAACAASURBVIh1H2at73ift3Tv3j3q9+LJe/HixW7gwIFuwYIFIT8f\nTfHfd/XVVwf/v2/fviHfGzBgQNQ4kb43aNCg4P8PHjy4xN8b+Hr9+vVu9OjRrnfv3u7+++93r7zy\nips/f35YbEsfDORRWFjoevToEVMezsXWNkVfKygocLfddpubNGlS1PJXXXVV2GvRvudzrrK0jTUX\n65i37Asse3vnbM8ILfOxc7a9knX/aNkTWtdiy57D+szPMidbY1vyjue9a8tzUOdin6uiSYnvOE/F\nefzxx/XJJ5/omWee0YABA9SzZ0/Vrl074kmkpKQkJSUlqUqVKkpOTg5+VFPRE6JFFRQUKC8vTzVq\n1FDLli01adIkDRs2TKNGjQr7aKWiX59wwgnB/09JSVFBQUHE2Pn5+apevXrI6845FRYWhpVPTk5W\n/fr1demllwY/Hqmkj2kPfO/IkSPasWOHJKlOnTph1+mcU1ZWllq1aqWTTz5Zhw8f1jHHHKP9+/dH\nzCMpKUm1a9fWn//8Z11//fX617/+penTp2vVqlXav3+/Pvnkk2BZS9sUv57S6tCSRzx1aMnd0pbW\nPmitE2tsSx1a4lvbXoq9fSx91md9W8aZNW9r+RkzZgQ/TvK2225Tu3btNHPmTF1++eVhcQPXedJJ\nJ2nChAnasWOH5syZo1tvvVWbNm3Sscceq7fffjtY9sCBA+rQoUPYR7k557Rp06Yy1aFljrXmUvTn\n09LSdOyxx0qSUlNTI37kp3XM7927V2lpaUpLSwv5CMLibWPtJ9Y+Kyn4EX0XXHCBatWqpaFDh2rS\npElhdVilShWlpqYqNTVV7du3D7ZPjRo1VLVq1ZCy1nYvLCxUnTp1wl4PnO4vLjMzU506dVLz5s3D\nvpeRkRHytaW/xrPuWOZB63wfEMu+wFLn1vaxlLeOy3j3SrGMS+uYt44dH+uO9NNHiAaurXbt2vrP\nf/4jSWrRooXy8/PD8rbuZ2Id8/H071jnNp/92+e4tMyDxa+ztD5rHTuW+SolJUXVq1dXtWrVVLNm\nTaWlpUmSatWqFXHsWOrQ5zoVT1vGWofWvC3lrW0p2e4zLGUt/dt6f2mZq6zzoKW+rW1puU6f++94\n8o61XyXS/ts6ji392+ezBcte0zp2rPVtiW3ZU1vrxNczDmt5a/+2jmPrmhnrvsrn8614nstZ1mLr\nc1DreIg1vs9503qd1n1BrHVimXsCMWJte2vflmKfk63PlCx7CMnfva51TYtnrAWU9/pqqXOf+zDJ\nvjeN9TrjmU98vufgaz9jvYdZv369mjdvri+++CLYj9auXRs171ifh1nv0a3XaSlrKW9tS5/3GZZ9\nWDzvBcb6vOXIkSM6cOCA9u7dq3379mnz5s1q2rSpcnJydPjw4TLl3aVLF3Xs2FHPPPOM5s2bp+HD\nh5fYjs45ffzxx2rTpo0+/PBDHXPMMZIir2mFhYVas2aNWrduHfJ64E9fFZeTk6OMjIzgn4cJzHOb\nNm1SXl5eSNnAz59yyikaNWqUjhw5os8//1yrVq3Shg0bwj41Toq9D+bn52vLli1q0qSJ7r///uDr\nWVlZOnLkSEhZa9ukpKRowYIF+tWvfqXk5GRNmDBB99xzj0aMGKEDBw6ElU9KStLChQt18cUXB59R\nHT58WAsWLIj4Z4d8zVWBtpFUattYc7GOeeu9Q6x7e8n2jNAyH0u2vZJ1/2jZE1rXYut7r5a11TIn\nW2Nb8o5nD2G595Jsc1UkCX8wR5I6d+6sc889V1OmTNF1110XdXI477zzdOWVV+rw4cMaPHiwrrrq\nKp199tlavXq1LrjggrDyf/jDH9SrVy+99dZbSk1NVbNmzfTcc8/pvvvu06pVq0LKLlu2TOnp6XLO\n6ccff9S5556r/v376/bbb1d6enpY7MGDB+uKK65Q27Ztgx/ttnPnTq1evVq33357SNkLLrgg+FH6\n9913nyRp9erVGj16tHr06BEWu2/fvurVq5eaN2+uf//737rrrrskKexj8STpoYce0siRI5WXl6dj\njz1WvXv31mmnnaYDBw6ELEQBRTta9erV9Zvf/KbEj22NtW2kkuvw/PPPL1Me1jq05G5py+J9cODA\ngWrbtq1Wr16tzp07l6lOrP3bWofW+Ja2t7SPpc/6rG/LOLPmHU/5fv366Ze//KUmTJig2bNnR9wM\nBhRt+7S0NA0dOjT4EZt79uwJKfv4449r1KhRGjx4cNjfwCz+tzol21xomWOtuaxevVp9+/aVc067\ndu3SvHnzdPnll+vRRx+N+re9Y+2zd999twYNGqRmzZopJSVFV155pdq0aaNvv/02+HGUAdZ+Yh1n\nvXr1Up8+fTR9+nTVqFFD7dq104QJE3Tbbbdpy5YtIWVbtmyphx9+WPfee6+efPJJST/9vc0nnnhC\nZ511VkhZa7v/6le/Ur9+/XThhReGzIMZGRnq169fWPmnnnpK9913n66//vqw+LNnzw752tJfJdvc\nY50HLfO9ZT6RbHVubZ/HHntMo0ePjqm8dVxaylvHpeU6rWPH17oTiD1gwAC1bt1an3/+eXAMDB06\nVF26dAkpa+2DljFvjW2Z26z7Xktb+hyXlnlQsvVZ69iRYp+vmjVrpttvv125ubm64IILdN111yk9\nPV1fffWVTjvttLDyljos6zpVdG9VfKxZ29JSh9a8LeWtbWmZT6z3JJb+bSkbyCXWuco6D1rq29qW\nluv0uf+25m3pV+W5/y6+57D2b8s4tvZvn88WLHtN69ixrIHW2NY9taVOLOWteVvKW/alkn0cR1sz\nv/zyy7A107KvstSfZBuX1mu07Hute2Rr21v2BT7nTet1WnKx1Ill7pFsbW/dD1rnZMszJcseQvJ3\nr2td06xjzef6KsVe5z73YdZ+YrlO63zic1/gcz9jqZPhw4frtttu086dO9W0aVM99NBDcs5p2rRp\nGjFiRIl5l/Y8zPoMyuc9jLW8pS193mdY9mHW+rY8bxkyZIguvfRS1a1bV5MmTQr+GaB9+/Zp5MiR\nZcpb+umgxbBhw7Rq1SqNGDFCu3btilzZksaOHauJEydq48aNatmypcaMGaPdu3fryy+/1IQJE0LK\njh49Wg8//LC2bNkSfKN9z549at68ucaOHRsW+6yzztKCBQtUWFiopKQkrV27Vq1atdKECRN05513\nhpStV6+epJ/GRE5Ojpxz6tSpkzp16hQxb0sfvPPOOzVhwgQ98cQTat26tbKzs7V8+XJNnjxZDz30\nUEjZIUOGqGfPnsG2ufHGG+Wci9o2jzzyiJ588kl17dpVBw8elHNO48aN01tvvaXvvvsurPyECRP0\n5JNPavz48dqyZYtSUlLUuHFjpaena9y4cXFfo2SbqwJtI0kNGjRQdna2tmzZovHjxwfHUVlysYx5\ny77Aure3PCO0vj9h2StZ94+W+x3rWmzZc1jXbcucbI1t3StZ+qDlPeaic1VSUpKqVq0anKu2bdsW\n9XcUl+Si/TPjBLVx40ZlZGRo8ODBEb//3XffqXbt2mrcuLE2bdqkVatW6eSTTw47yRlw6NCh4EnQ\nor7//ns1a9as1Hw2bNgQ9U3gvLw8ffnll8HFLy0tTWeffXbY6TVJwVObAdu2bdPu3bt15plnRoy9\ne/dubd68WSeffHLwxGxBQYGqVKkSsXxgcnXOqUGDBiG/q6hIp15jtXHjRi1atEhXX3216eci1WE8\neVjrsKjS+pWlLa19MJJo/coSO546jDf30upPCm+f7du3Kzs7O2r7FO2zxx13nJo2bVquORcVrb6t\n46x43iWNNet1FvXFF1/o/fffD/vbrQFF/2ZiWQT+lmosotVhWefYaLkU32zVrVtXNWvWVGZmpjp0\n6FBiG0ml99mCggKtWbNGmzdvlvTTv0L4xS9+EfH0urWfWPvspk2b1LRp05CT34WFhVq6dGnI5sA5\np+XLl+ucc84JvrZ+/XqtX78+pr/VWTR2pHbfvHmzMjMzg/Ngo0aN1LFjRx1//PExx5Z+GvuBv/8q\nla2/lrbuxDMPBub77OxsST/N923bto0430dS0r4gGstYs5SNVt46LmMtX3xc1qtXT6mpqTGPy9Ly\nLj52Vq9erZNOOilqG/tadyTpm2++0ffff6/TTz9dp556qqSf5oLATVBAPH1w06ZNOvHEE0NeizTm\n44ldfG5r0KCB2rVrF3Fui6Q8+ndZxmXR+SfSuIw0D27YsEHr1q2LOA9a15KyrGklrTuFhYVavHix\n6tWrp7PPPltffPGFVqxYoZNPPlm//OUvw/7lj7UOfa1T8bSlpQ6teVvKW9vSMp9Y556i/TspKanE\ndSfWsRAQ61wVYNnHWurb2pbW6yzL/ruk8oG8mzVrFvzXcCXlXR773oref1vHsaV/l+XZwvfff6/F\nixeXeH8ZTfG9pmTvU5FEq29r7OJ76rS0NJ1//vml7qmtdWJ9xlFa3uVRhyX171j3YZHWzJUrV+rk\nk09W9+7dw9bMWPdVxcXyjCOSkvZKlrnKsu+13l9a29IS3zrfW+Yr63VacinrPaAUee4JiKV/W/eD\nkn3PEVDaMyXJvoeIpqz3uvGsrdZ9QXE+nm/FUueW+1FL/7Y+L7dcp+V5eVnfcyhpTva5n5Fir5OP\nP/5YDz30kOrVq6e7775bY8eO1Y4dO1SzZk2NGTNGHTt2DPn58nh+W9K64/MeJt75J5b11ed9Rrz7\nsICS6jvWZ8m/+MUv1KdPH91www3BT73ZvXu36tWrF3W+jPWZ7IYNGzRu3Dht2bJFmzdvVvPmzbVn\nzx61adNG99xzT9g6lZGRoffff19jx47V0qVLde+996pmzZo6ePCgRo4cqa5duwbLtm/fXpdffrmu\nvfbaYJ7169cPfoJJcevXrw8eQNm8ebNOPfVU7d27V61btw7LJVLZffv26cwzz4yYtxR7H7TkERjD\n9evX1913361Ro0Zp/fr1aty4scaOHRs2hovXd2l5R2qfffv2Rcwl0jWW1/z94IMPBg8zLFmyRPfd\nd1/wgM7o0aN14YUXxl3fxcX7nrEUeV8Q6/skku29knjm4/LYK0XaP1rvdyzPlAJi2XPEs27HOifH\nuyeI573UWPpgrPcZ7733nh5++GHl5eXpoosu0ogRI4IHyAYPHqxp06bFdB1VRo8ePTqmkkfJkSNH\n9MYbb2jKlCmaNm2a/vWvf2nfvn06cOCAWrZsGTIwCwsLlZmZqTfeeEOvv/66MjIylJubq0aNGkXc\nIOfk5GjGjBnavHmzWrVqpWeffVbPPfec1qxZo06dOqlGjRpR8/jHP/6hjz76SFWrVg3LI6Bq1apq\n2rSpTj/9dJ1++ulq0qSJUlJSNHHixJDTntnZ2Zo2bZreeecdpaamqmnTpqpVq5YaNmyosWPHRpwQ\natSooUaNGoVMtMnJyWGxA3m/8sorevfdd/Xxxx9r5cqVEetP+ulNtEjXGa18UXXr1lW7du0kKSyP\nwHU+/fTTmj9/vmrWrBkcNPXq1Qu7zsDHcxU1aNAg9enTJ+rvDzwsDQjUYaRcCgsL9fbbb+vFF1/U\n66+/rsWLF6ugoEBJSUlhfSU7O1tTpkzRV199pXbt2qlbt27BtozUPscdd1xwMNapU0ctWrRQWlpa\nxDwyMjKCv2/Pnj2aOHGinnvuOW3ZskVt2rQJ64Pvv/++pk+frmnTpum9997Ttm3blJqaGrFtqlSp\nosmTJ4f0q4BIeefm5iorK0tt2rTRvn379Pe//11LlizRzp07deaZZ4bkkpOTo5dffjk4dmbOnKnM\nzEytWbMmrGygvj/++ONgfc+bN0/ffvut0tLSot68pqamqlGjRmrcuHGwbSONnRkzZuijjz5SzZo1\ndeaZZwbrO9I1BvLesmWLWrZsGRzzW7ZsiZh38XE2aNAgXXHFFRHzDcTevXu3LrroIs2dO1evvfZa\niXUyf/58vfbaa8rIyNBnn32mtWvXKjk5WSeffHJY20ybNk0bNmxQq1at9MEHH2jjxo1au3atzjjj\njLAN/gsvvKAGDRpEfShUVLS57cCBA2rVqlVYvwrkXbQtly9frvr164e1ZWFhoRYuXBhWNikpKThX\nxBI7KSkp7KZn4sSJat68uU477TQde+yxwTpo2rRpxHkqNzdXS5Ys0SmnnBLs3ytXrozYPiNHjlSj\nRo3Upk0btWjRQi1atFDTpk0j3tTl5ORo1qxZOnLkiM4+++xgn/r6668jtntOTo7efvtt7dmzR61a\ntdJrr72mDz/8MOI4C+Ry6qmnhrVl4OMVixo1apTatm0bUrZevXoRPyaxJI899ljYXJWbm6s5c+bo\nmGOO0cCBA5WVlaXly5dr27ZtEftg8T77yiuvaMaMGfruu+/UoUOHkPLHHXdc1LLFY2dnZwfntZo1\na6p169bBvhRpzDdo0CBqn4o09xw5ckRvvvmm5s+fr6VLl+qrr77S+vXrdejQoVLXwIB69epFnO8j\nCaxrkT5StOgcW3R/0rp167B+UnwtmTBhgqZOnao1a9aobdu2IeUzMjKCp+uLl+3SpUtYbElhN9mB\nvOvWrRvyelJSkt58803t2rVL5513nl5//XVNnz5deXl5OvPMMyP2k6Lj8sknn9S0adMiXmdGRoba\nt2+vWrVqac+ePZoyZYoWLVqkHTt2hK2X0k9tuWDBgpC5bfny5RHXzMD+ZNGiRTrllFPUoUOH4LoT\nbb2cP3++qlSpok6dOunVV1/V9OnTtXnz5rA+W7Vq1ahtGWnMB8Za8fGwdu1a9ejRIyR2jRo1otZf\ntNgvv/yyDh48qMsuu0yZmZlavHix1q9fH3EcFzdo0CANGTIk4vcsbWnd4wX6bNOmTdWwYUPNmzdP\n8+fPD+5Zisbev3+/3nvvvZD6e+edd1RQUBDxGi1rSWB+iLReduzYMax88XH53HPP6fPPP9eaNWvC\n8h41apQ6dOigtm3bSvrpo7LPOeccnXrqqRHfhIlUh0Wvqej8k5ubqxUrVuj888/X4cOH9de//lXT\npk2Luk5J4XvZsWPH6k9/+lNYuW+++Sbq3BNpXObm5uqzzz6L2E+K33tlZGTojDPOUKNGjXTo0KFg\n7K+//jpi7OzsbL344otatmxZyM15cnJy2DgO7O3nz58ftkf+61//GnH/OGfOnJBxPH36dO3YsSOs\nDnNzc7Vq1aqQa5w9e3bEstJPe5/33ntP7733nlauXKmsrCxt27ZNVatWDVunAveuktS7d299+OGH\nevvtt5WVlRV1D3HGGWeoc+fOIQ+GIrV5YAwH4sycOVNz5syJOp9Y9j+FhYX68MMPNX/+fM2dOze4\nFlepUiXiWmwZ84FxlpqaqurVq+vll1/WzJkzS+yDsV7nkSNH9M9//lNz587VzJkzg2P+4MGDEfcE\nlv5d9L64eB984IEHIq47RefYwDiOdg8T7eH41KlTw/YnlrUkIyNDbdq0kfR/Y37GjBlR12LrHFFU\n3bp1NXHixKhrw8iRI9WwYcOI82Hxf1lpHTuRlLQGFn/uM3z48Ij/SjuQd/PmzdW1a1d16NBBHTp0\n0BlnnBH8OPiSlFYn1nt0S96B/t2lSxc1atRICxYs0Pvvvx+xDi370qKK3v/feOONUa9z//79ysjI\nUF5eXvDeOCsrS4WFhWFrvWVfZVm3I5Uv6VmOda6y7Hstz3GsbRkQ675Asj1DsdyXWO+jI+UiRX9u\nGus9oGXuKSqW/m3dD1qes40cOTLkGdEJJ5wQ8ZOGAiz3O5Lt/tXy3Mf6TMn6XM7yjNDyHoK1zi3P\nByX7vtfynoNln2x9Xm55PmN5P0iy3R9J4e8hXH/99VHnNSn2ZyJ33323pkyZovT0dA0ZMkSTJk3S\nXXfdpYsvvlgPPPBA2HxoeR5m3Q9artO6x7Pc81iexwZyifU+0HqvW5Z9WEC0Z36WZ8mffPKJrrrq\nKj344IPKzMxUnTp11KxZs6iHiSzPZG+55RaNHj1a1113nXr06KHt27frhRdeUGpqqh599NGw9ef2\n22/Xgw8+qNTUVN1zzz2aPHmyrr/+evXu3VujRo0K2Rt+/PHHuuqqq/TII49o9erVOuGEE3T88cdH\nfVZaPJdt27bp+eefj5iLpaxke+ZniR0Yw+eff76GDBmiyZMn6/7771e3bt0ijmFr3pHap6Tylvc7\npdjvA6dOnRr804rDhw/X5MmT9cc//lE9e/bUmDFjwu4JLM9EiivtPeNIoj0vt7xPItneK7G8nxbI\nxfK8Jdb3SSTb/Y7lmVJRsbz3an2mbXn2Y33v2vLs3vr+kRT7e/rDhw/Xq6++qhtuuEE5OTkaN26c\nfv3rX6t69eqaPXt2iecXior9n1wfJXfddZd++OEHDRkyROPHj9e4ceOCC9A999wTUnb06NH6z3/+\nowEDBqhdu3Zq166dunfvrrlz54Z9FFgg9uHDh7Vs2TLdeOONys3N1Y033qimTZuGfWSXJQ/pp1Nq\n0f5buXJlSNk777xTJ5xwgjp37qzJkydr8uTJwe9F+hukltjWvC3lLXkErvP4449X586d9dRTT5V4\nna1atdKFF16oSy65RN26dVO3bt20cuVKdevWTZdcckmZ6kT6qa9s2rQppr5SNO/Jkyfr6aefjpq3\nNY/nn38++P8PPPCA0tLSNHr0aJ166qm69957Q8pa29Lar26++ebgqesxY8aoVq1aGjZsmJo1axb2\nLzoijZ2bbrop4tgJ1HesYzPesVNanyqa9xdffFHqmLf2Qct8UlKdzJkzJ2IfLCws1Pr16/W73/1O\nP/zwgy677DJJCusnkrRy5UrNmDFDN998sz777LOw7xfP29KvLG1pnZMt5S3XKIX379q1a0ft3ytX\nrtT06dNjrj9Lu1vHjuU6LWXjmb8tfTBS+V69ekUsby1bdMyXNB9L8e0LAuNhwoQJGj9+fLmtgZY5\nxdqviq8ljRo1irqWWMpa8y7ellu3bo3allLkcXnTTTdFHJfWvC1zm2Wdt16ntS0t48FSf9bY1jXQ\nkos1dtG2f/DBB9W4ceOobW+5RsnvemnpsytXrtRrr70W85pmmX8i7e9K6ieW9rGOS59j3nKfUXzM\nx7p/jGUcW8elZZ0qnsf+/ftLnE8s/duat6VOrGuxZcxH6yfNmzcvcx+0jnlL7JL6YKSPPLeMY+v+\nxOe4tJS3rg1l2a+XNnYsuRQtGyhfWt6xjsvyuB+Ndp9hzbtoPxk7dmy59hPrdd55551yzsV0X2LZ\nF5S1f5f0LMc6V1lysTzHKV6+tLaU4h8P1j1eaddpvY+O97lpafeAlrnHWifW/aDP5yfW+zpf+wKf\nz/mLlo/lGaE1tqXOLc8HJfu+1/Js2LJPtt5HW/e9vt6Hsc5VlvJVq1ZVw4YN1aJFCx177LFq1aqV\nJKlJkyYRD12U5f6/stzXWZ7HWnOx1onP56aW9SEpKUnnnnuuXnrpJf3ud7/TW2+9pV69eumKK64I\n/umcoizPZA8fPhz8pMBmzZrp22+/lSRdeOGFOnToUFjs/Px81axZU5JUu3bt4JvjdevWVfE/tGLN\n25KLNW/LHGGJXXwMt2zZUlL0MWzN21Le2get5QPq1KkTzKlhw4YRD/dY1kCfz8ut+xlf76tYy1uf\nVVrud6x7JeseuTze74z2nntZ9icl7Tms7x9Z6qRKlSqqW7eukpOT1b9/f1177bW65pprtHv37ogH\n6aNyCe6qq66K+XsDBw4M+frqq68O/n/fvn3Dfn7QoEHOOecKCwtdjx49SoxlycM551q3bu0uvvji\nkP+6devmLr74Yte2bduov6ugoMDddtttbtKkSRHzsMa25m0pb8nDep2LFy92AwcOdAsWLAi+1q9f\nv6i5lSUX50ruK5a8rXkE+qBzzg0ePLjEHK1tae1XRa+7+PcHDBgQMe9Yxk6k10qqb59jx5K3tQ/6\nrJOi/eTXv/511O8Vj71+/Xo3evRo17t3b3f//fe7V155xc2fPz+kbFn6VWl5W+fkeGLHco3Ff760\n/m2JbW33ePtJLLlYypZlroqlD1rKW8pax7y1D/pcAy1zSrz9yrnS1xJL2Xjzdi62fhLPuhNr3vHu\nHy1riXOx9+942rK02Jb6s8a2roGWXOJdX52z9e+jvV5a8rauaZb5x9pPLO1TNF4s49LnmLeMY5/7\nR2t9x7Mf9LGHiHc+iSWXeO/RnSv/Nc1yndYxH89e07nyv0+z7k8qalyWVt66Nvjcr1ty8Zm3z/tR\nn+u8z71m8fjleZ9hzdvnXGUpb52/fe4LKmKPF+s49vXc1Lpni2dfFWtsn89P4r3/L+99gc/n/Nby\nFfEsJ8Dy7Ky8970VFbu06/T5Pox1rrKUv+mmm9zjjz/uRowY4a655ho3YsQIt3DhQjd+/Hh3yy23\nhJX3ef8f77Oc8t5Tl+W5RXmvgT6fm5ZlzAds377drV69Oux1Sz8ZMWKEu/XWW92LL77ohgwZ4v7y\nl78455y755573PDhw8Niz5071/Xo0cONGTPGDR8+3F133XXu2WefdUOGDHEzZ84sU96WXKx5W+YI\nS2zrGLbmbSlv7YOW8ueff767+eab3bBhw1zPnj2DffT55593f/rTn8JiW9ZAn8/L490rlff7Ktby\nPt9Xse4hLO3j8/3ORNqfWOpk3LhxbujQoS4vLy/42uLFi91ll13munTpEhY7moT/xJykpCS9++67\nOnLkSPC1w4cP66233gr7iCfnnD7++GPt3btXc+fODX5caUZGRsTY+fn52rJli5KSkoJ/U0+SsrKy\nQn6fNQ/pp9Nkl112mT744IPgf++//74++OCD4MeSBqSkpGjBggVyzik5OVkTJkzQpk2bNGLECB04\ncKBMsa15W8pb8rBeZ5cuXfT888/r22+/1Y033qhNmzaVeOLMmoulr1jytuaRk5OjjIwMZWRkqFq1\nasrKypL0099KzMvLCylrbUtrvzrppJP08MMPa9WqVerYsaPeeecd7dq1S7Nnz1bDhg1DylrGjrW+\nfY4dS97WPuizvxVnpgAAFW9JREFUTvLz87Vx40atWLFCe/fuDZ7UXLduXcTYgTxPOeUUjRo1SrNm\nzdKll16q/fv3a9myZWFlLf3Kkrd1TraUt1yjZOvfltjWdreWt7ZlrGWtc5W1D1rKW8pax7y1D/pc\nAy1zirWfWNaSQNlFixapatWqJZaNJ29LP7GMS8s1Sra2jGctsfRv6xwRa2xL/VljW9dASy7W2Ja2\nT6T10rrHizUPyTb/WPuJpX327Nljmk/iGfOxxraMY5/7R2t9W/eDvvYQ8cwnseZiXYstbW9dG6z7\nQcuYt8T2eZ9m3Z/4XIsDc0Qs5a1rg8/9uiUXn3n7vB/1uc773GsGrtPHfYY173jmKh+xrfO3z32B\n7z2eZRyXx3PTefPmhc331j2bpU6ssYuur4E/cSKVz/OTeO7/49kXlJa3paw1D2t5n/sw63WmpKTo\n3XffjXnfG2tZ37GtfXbhwoVe3oexzlWW8uPGjVNaWprOP/98TZ06VR06dNAnn3yiBg0a6OGHHw4r\n7/P+35K3dZ2y5GLN27I2WGP7fG5qif0///M/YT8v/fQn2Vq3bh32uqWfjBkzRj179lR+fr6uvvpq\n3XLLLZKkwYMHR+yDvXv31syZM9WhQwc1b95cv/jFL4L9tV+/fmXK25KLNW/LHGGJbR3D1rwt5a19\n0FL+ySef1FVXXaWBAwdq1KhRat++vaSfPjHnscceC4ttWQN9Pi+37md8va9iLe/zfRXrHsLSPmV5\nv7O0XBJpf2Kpk7vuuktDhgxR9erVg6916dJF06dP10033RSpyiOL+QjPUfLDDz+44cOHu0suucR1\n6tTJpaenu+7du7sRI0a4rVu3hpRdt26du/76613Pnj3drbfe6n744QfnnHN//etf3ZdffhkWe8WK\nFWEnHd977z3Xu3dv9/nnn8edR8CcOXPc/v37w15/6qmnIsY+dOhQyOtz58513bt3L5fYseZtLR9r\nHvFeZ2FhoduwYYMbOnSo++UvfxmME4klF0tfseZtyWP48OEh/y1dutQ559ywYcPcwoULI+ZhbctY\n8z5y5Ih79dVX3R//+Ed36aWXul//+tdu4MCBbsqUKW7Hjh0hZS1jxzn72PQ1dqx5Oxd7H/RZJ599\n9pnr06eP++Mf/+jWrl3rfv/737v09HTXu3dvt2LFirDYN998c8Rrcc65vXv3hnxt7VeWvK3tbilv\nuUbnbP3bEtva7tbyllysdWKZq6x90FLeUtY65q190OcaGBDLnGLtJ5a1JFDmrrvuCiv75ptvlilv\naz+xjEvLNQZyi7Utrf3Kcp3WtrTEttSfNXZR69evD2n3kubYa6+91vXs2TMkl2j7tlhjW9o+3vWy\nsLAw7HvF87bOD5a8rfO3c7HPP9Z+EhDLmLfOJ/GM+VhjW8axz/2jtb4t65TPPYQ17+XLl0fN5auv\nvor7Gp2ztb11bbDMVdYxH09s631arHOsZX9iiW2tb2t552K/97L0b0t/jSeXgFjWtHjm+1hjx3Od\nsV5jPP3EuteM9Tota/3nn3/urrjiCjdkyJCwssXnTWve8cxVPmJb54d49wXOxdY+lrKWOSKe/v3m\nm2+6AwcOhL3+zDPPhHxd0ny/c+fOkLKWvWNRsYw1a+yS1tfi/dsa2zJ2nCu/fUHx2Jay1jys5a2x\nLfO99Tq3bt3q7r777pB/re3cT/uI3/zmN3GX9R3bcp2BcdmtWzeXnp4eMi63b98eFtu52Md8UZZ5\nLZ7ypbGMtUS8r4tl7bGuU5a1wRrbOhda+lS860MsrHPyf4N45ojKyDqvxTMPxsK6BsabR2lzrHWc\nWcr7jG0dw5by1j2Ec7G3j7XdLbkk0v7EOX9jJ5qEP5izcOFC17VrV3feeee5u+66y+Xm5ga/F+lj\nnqKJVDYQu2PHjqXGtubx3nvvmWNHKhvpo5XiiR1r3pbyljys1xmp7LZt26LGtuZSkrK0T0XkYW3L\nWPtVPLn4uE6fYyeeMR9rH/RZJ+VVNlL58ppjreV/LrGt7Z4o/cTnXFWe5cs65q15VPQaGG1O8dlP\nymMtKWkujDWP8ixf1rasrOtleZWNtXws+7B415J4+pS1fEXfC/jMu7zm8PKaq3zUic99r8/9o+Ua\nreV/TvNJSWV93v9b5qp47/99rDuW2Nb5oazzdzxlI5Uvr/2GtbyPvY/PvMsrdrzPW3yMnUjK+zp9\n5J0osctrDFvKJ8p4iKdspPIffvih69Gjh7v66qtdVlaW69Wrl+vZs6fr2rWrW7RoUUjZ8rj/L697\nwPK63/G5FpeUS0XNJxVRnudysZX1uccra3nrXBXv3FZcRb/vVV73dfHsTX30b2tsn/d15XmvFi12\nedThf4P/hjrxvQb6il3WOdbn+zAVETsR7jNK8nNe5ysitkVK7J+tc3RMmTJFb775po499ljNmjVL\n11xzjaZOnaratWvLORdS9tVXX40aZ/v27SXGfuONN0qMbclDkp599tm4YhcvG+lju+KNHUvelvKW\nPKzXGa2spDLXt2TrK5a8KyoPa1vG0q/Kq07Kep0+x068Yz6WPuizTqxzm89+lSh5J0psa7snSj/x\nOVf5zNvnvFY8fkWtgVL4nOKzn5RXn42Ud6L0k+J5l9aWlXW9TKT6Ljoeynu/XlH9pLz31BVV36Xl\nXV51IlXOucpyn1Ee+8eK2rP9nOcTn/VtmavKcv9f3uuOJbZ1f5Io87f13uto9MFIuSTS2PFZ3+XV\nvyv6PqM87v/L477OZ2xL21jrz1q+ssb+29/+phdffFFbt27V9ddfr6efflqtWrXSrl27dN111+mi\niy4KlvV5L1WW2OU9Litqj1fea3Fl7YOJdJ+RKPfoiZS3tbyFz32vz/kn3r1pefdva+yjUd/RcrHw\nGbuy8jkuE0UizVWJMsdW1v16RcU+2nsI1vnYJfzBnCpVqqhu3bqSpH79+ql+/fq65ppr9Mwzz4Q9\ntHrppZeUnp6utLS0sDj5+fklxu7fv7+OO+64qLEteZQldvGypdWJz7xLK2/Jw3qd5Rk7UnlLX/GZ\nd7x5lLUPRlJedeKzvo/W2DnafdA6t/nsV4mSd6LErqz9xGceRyvvSMqyL6jINbCssROlzyZKPyme\nd1naMpJEGWuVtb4TNe/y3lMnSt4VVSeJPFeVpaw1l4ras/23zCc++7dlbajI++hIKmp/cjTn70Tq\n34ky5hOpvn32wUS5zkTa2yfK/sRavrLGrlatmk444QSdcMIJSktLU6tWrSRJDRo0UPXq1UPKJmo/\nOZr3rpK/Z1D/Lf07ke4zuGcsW2yrynpflyjj2Of7dT7r28pn7MrK57hMFIk0VyXKHJuo+7BEiX20\n9xCs8wbGT9ipcOPGjXNDhw4N+Xtgixcvdpdddpnr0qVLSNlvv/3WDRo0yP34449hcSJ9JLQltqUs\nsRM7tnO2vuIzb195JFouiVLfiRLbWifWuS1R2tJn3okSu7L2E595VOa8E2WOSJQ51lo+UfqJNe9E\nqu/KOA86Rz+p6LasrPdHiTJXVdZ5MJH6IP07cfsg/Tux+2CijMtE6oOJcp2JVCeVtb4ra+xbbrnF\nTZ06NeS1H374wT300EPutttuC3k9kdoyUWI7lzjjsrL2wURaA1lfyxbbin1v4t4z+qxvK5+xKyuf\n4zJRJNJclShzbCLNVZU1Nut8xY6daBL+YI5zzn366aeusLAw5LXc3Fw3c+bMsLIHDx50BQUFYa+v\nXr26zLEtZYmd2LGds/UVn3n7yiPRckmU+k6U2M7Z6sQ6tyVKW/rMO1FiV9Z+4jOPypx3oswRiTLH\nWssnSj+x5p1I9V0Z50Hn6CeJnHdlrZNEmmMTpX8nUh+kf/93xv5v6d+JUieJVN+JsjZYyyfK2Emk\n2JW1z/qKnZeX595+++2wMi+++KI7dOhQ2M8nUlsmSmznEmdcVsY+6FxirYGsr2WLbcW+N1yi7Gd8\n1reVz9iVlc9xmSgSaa5KlDk2keaqyhqbdb5ssctDknP/pX+IEAAAAAAAAAAAAAAAAPAo+WgnAAAA\nAAAAAAAAAAAAAPwccTAHAAAAAAAAAAAAAAAA8ICDOQAAAAAAoNKYO3duqWUyMjK0Z8+eEssMGjRI\nS5YsKa+0Kq077rhDs2fPDnlt8+bNuvDCC+OKl5eXp4ULF0qSZs+erTvuuKPMORa1fft2LV261PQz\nAwYMUGZmZly/L5a+BAAAAAAAUBIO5gAAAAAAgEqhoKBATz/9dKnlXnrpJe3du7cCMkJxX3/9dfBg\njg+ZmZn69NNPvcUvjr4EAAAAAADKKuVoJwAAAAAAABCLe++9V1u2bNGQIUP0wgsvaNasWXrttddU\no0YNHXfccXrwwQc1b948ffHFF7rjjjv0yCOPaMOGDZo6daqqVaumgoICjR8/Xk2bNo0Yf/v27cFP\neDl06JD69++vvn376vvvv9eIESNUWFio6tWr65FHHlGjRo309NNPa9GiRUpJSVGLFi10//33a/v2\n7br++ut1+umnq0WLFrruuuv0+OOPa/ny5Tp06JDOPfdc3XXXXUpKSjoqv9c5p/vuu0/ffvutmjRp\n8v/au/uYqss+juNvAU9gOnpQlAdHIbWZUgLhmoNRbrSW9MRDMdQ2YzVbOaMc2ZrxR8slcz2g/9R6\noB3OSVem0sNxOSyr2dMWKuAqopo5zaVpCC7x1Ln/cJxbDLrdvblud79f/57f9f1c5/pdf519z3Vx\n/PjxUdf7qaeeoquri1gsxvPPP084HCYpKYklS5YA8OKLL3L06FEaGhric3/88cfp6+ujqamJ3Nxc\n+vv7WbZsGb29vWRkZLB27VrGjBlDMBgkEonwxx9/kJOTQ2NjI8nJyfHsgYEBHnnkEfr6+ohGo9xw\nww2Ul5fz3HPPEYvFuOiii+jv7ycajVJfXw/A3LlzefXVV0lLS6O+vp4jR46QnZ3NiRMn4nVHyj10\n6BD3338/xcXF7N69m4GBAV544QXa29uH7aVNmzbx2WefEQgEmDx5MqtWrSIQCPw3W1mSJEmSJP0f\n8cQcSZIkSZJ0XliyZAmXXHIJr7zyCvv372fNmjW0tLQQDAZJT0+npaWF2tpaJk2axOrVq8nNzaWv\nr49nn32WYDBIaWkpoVBo1PqRSIScnByCwSCtra38/vvvADQ2NlJXV0coFKKyspJIJEJHRwfvv/8+\noVCIcDjMkSNHeOeddwDo7e3lgQceYPHixUQiEQ4ePEhraytvvvkme/fu5YMPPvjHcnfs2MH333/P\nhg0baGpq4ptvvhlxLQ4ePMgtt9zC66+/znXXXUdLSwvV1dW0tbURi8UA2LJlC1VVVfExycnJ3Hff\nfcyZMyferPPdd9/x5JNP8tZbb9HT00N3dze7d+9m69athEIh1q9fz4QJE3jjjTeG5e/YsYNoNEo4\nHGbdunWMGzeOzMxM7rjjDm699VYWLVo06ntsa2sjOTmZ9evXs2zZMnp6egD+Nre3t5eKigpCoRDT\np08nEokM20uTJk2KjwuHw5SVlXHo0KFR5yBJkiRJkjTEE3MkSZIkSdJ5Z8+ePcyYMYPx48cDMHv2\nbNatW/eX5yZOnMijjz5KLBbjl19+IT8/f9SaJSUlhMNhli9fTmlpKXfddRdwqqFj9uzZAMybNw84\ndcVRUVERY8eOjed3dnZSVFREamoqOTk5wKmrl3bu3MnChQsBOHbsGPv27fvHcqPRKPn5+YwZM4aU\nlBSuvvrqEddiwoQJ8c/y8/MJBoNkZWWRnZ3NF198QXp6OikpKfG80eTl5ZGSkgLA5MmTOXbsGF1d\nXezdu5e7774bgOPHj5OUNPwnqoKCApqbm1m6dCmlpaVUV1eTkHB2/y/79ttvKSwsBCAtLW3YmoyW\ne/HFF3PFFVcAkJGRwdGjR4fVTE1NpaSkhAULFlBWVsbNN9/MlClTzmo+kiRJkiTp/5uNOZIkSZIk\n6bwXi8WGXQ8FcPLkSR566CE2btzIZZddRmtrK11dXaPWmDZtGu+++y5ffvklW7Zs4bXXXos3+/z5\n55/Dnj0z6/T8oaYZgEAgwJ133kldXd3/RO7LL788rMaZ9Yec2QQzNKampobNmzeTnZ097LSc0SQm\nJv5lvoFAgLlz5/LEE0+MOu7SSy9l8+bNdHR00N7eTmVlJRs3bhxxTkMGBwfjGafPf+g7jpa7b9++\nEed5pubmZnp7e9m+fTsLFixgzZo1TJ8+fdTvIEmSJEmSBF5lJUmSJEmSzhMJCQlEo1EAZs6cSXd3\nN/39/cCpq4+uueYa4FTDRjQaZWBggISEBDIzMzlx4gTt7e3x5o2RvP3223R2djJnzhwaGxs5cOAA\n0WiUgoICPv74YwDee+89nnnmGWbNmsXnn3/OyZMnAfj000/j+acrLCxk69at8XmvXbuWH3/88R/L\nzc3NZdeuXcRiMfr7+9m1a9eIa/Hbb7/R3d0NwFdffcWVV14JwPXXX09nZyfbtm3jpptu+su409/R\naAoKCvjoo48YGBgAIBQK0dHRMeyZTz75hA8//JDCwkIaGhoYN24chw8fjr9bgPHjx/Pzzz8D0NPT\nw6+//gqcanQaqnfgwAF++OGHs84901DeTz/9REtLC9OmTeOee+6hrKyMr7/++m/HSpIkSZIkgSfm\nSJIkSZKk80RaWhoTJ06koqKC1tZWli5dyqJFiwgEAkyZMoWHH34YgOLiYhYvXsyqVasoLy+nqqqK\njIwM6urqaGhoIBKJjFg/NzeXxsZGAoEAsViMe++9l6SkJFasWMGKFSsIh8MkJSWxcuVK0tPTmTdv\nHvPnzychIYEZM2ZQXl7O/v37h9W88cYb2blzJzU1NSQmJnLVVVcxderUfyx36tSptLW1UV1dTUZG\nBrNmzRpxLbKysti0aRNNTU0MDg7S3NwMQFJSEiUlJfT398evqDpdXl4eq1ev5rHHHqOoqGjE2nl5\necyfP5+FCxdywQUXkJaWRkVFxbBnLr/8cpYvX85LL71EYmIixcXFZGZmcu2111JfX8/YsWOpqalh\nw4YN1NbWMnPmTHJzcwG47bbb2LZtG7W1tWRlZZGXl/e3uYcPHx5xnvDvvbRy5Ur27NlDVVUVF154\nIampqTz44IOjjpMkSZIkSRoyJjbS2bySJEmSJEnSGQYHB6mtreXpp5+ON8JIkiRJkiRpdF5lJUmS\nJEmSpP9o+/btVFZWcvvtt9uUI0mSJEmSdJY8MUeSJEmSJEmSJEmSJEk6BzwxR5IkSZIkSZIkSZIk\nSToHbMyRJEmSJEmSJEmSJEmSzgEbcyRJkiRJkiRJkiRJkqRzwMYcSZIkSZIkSZIkSZIk6RywMUeS\nJEmSJEmSJEmSJEk6B2zMkSRJkiRJkiRJkiRJks6BfwHTEVEtDMo45gAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# visualizing the different groups in the dataset\n",
+ "\n",
+ "data['race/ethnicity'].value_counts(normalize = True)\n",
+ "data['race/ethnicity'].value_counts(dropna = False).plot.bar(color = 'cyan')\n",
+ "plt.title('Comparison of various groups')\n",
+ "plt.xlabel('Groups')\n",
+ "plt.ylabel('count')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 129
+ },
+ "colab_type": "code",
+ "id": "HuHz4ouB-McA",
+ "outputId": "17a911b5-7543-439a-9c69-1c4f9b6218ed"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "group C 319\n",
+ "group D 262\n",
+ "group B 190\n",
+ "group E 140\n",
+ "group A 89\n",
+ "Name: race/ethnicity, dtype: int64"
]
- },
- {
- "metadata": {
- "id": "0Jpy1FwCjJbG",
- "colab_type": "code",
- "outputId": "abaad66f-b7d7-4ae2-b6dc-cc0ef454e03e",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 621
- }
- },
- "cell_type": "code",
- "source": [
- "# computing percentage for each of the students\n",
- "# importing math library to use ceil\n",
- "from math import * \n",
- "\n",
- "data['percentage'] = data['total_score']/3\n",
- "\n",
- "for i in range(0, 1000):\n",
- " data['percentage'][i] = ceil(data['percentage'][i])\n",
- "\n",
- "data['percentage'].value_counts(normalize = True)\n",
- "data['percentage'].value_counts(dropna = False).plot.bar(figsize = (16, 8), color = 'red')\n",
- "\n",
- "plt.title('Comparison of percentage scored by all the students')\n",
- "plt.xlabel('percentage score')\n",
- "plt.ylabel('count')\n",
- "plt.show()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:6: SettingWithCopyWarning: \n",
- "A value is trying to be set on a copy of a slice from a DataFrame\n",
- "\n",
- "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
- " \n"
- ],
- "name": "stderr"
- },
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6sAAAH+CAYAAAB6PpjoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmAlXW9P/DPwIiAsjtDmmVlIihu\n1y1UQhZZXFLUEnEpNX+aS6KVKCnikmuW4pLimnjvhS6YeosELfeE61YqdstrqWACA47MIAjD8Pz+\nUM5lLgPMjHMevoOv1z+H58z3ez6f7/Occ2bePGcpybIsCwAAAEhIq43dAAAAAPxfwioAAADJEVYB\nAABIjrAKAABAcoRVAAAAkiOsAgAAkBxhFaDIsiyLe+65Jw499NAYMmRIDBo0KMaNGxfV1dUbu7U6\n7r///rjhhhs2Wv3q6uo4/PDDY/DgwVFZWbnR+miop59+Ov75z39u7DZyc9BBB8WsWbPWun7AgAHx\nwgsvNHu9uXPnxk477RQRETfddFP8+Mc/XmvMihUr4sEHHyxs77jjjjFv3rxm7yUi4le/+lWj5zz0\n0ENxwgkn5F4XYFMhrAIU2U9/+tOYNm1a3HXXXTF9+vR4+OGHo6amJk477bRI6auujz/++Bg1atRG\nq//Xv/41Pvjgg5gxY0Z06dJlo/XRUPfee+9nKqym6PXXX68TVouloqIi7rzzzqLXSaUuQCqEVYAi\n+uCDD2LixIlx9dVXR/fu3SMion379jF27Nj47ne/G1mWxfLly2Ps2LExZMiQGDZsWFx99dVRW1sb\nER+ftZo4cWIMHz489ttvv5gxY0ZceumlMWjQoPjWt74VixcvjoiPzyjdd999cfjhh0efPn3i3//9\n3ws93HLLLYUzuqeddlpUVVVFxMdnqy666KI4+uij4957761z9up3v/tdHHrooTFs2LA47LDDCmfU\n/vnPf8Ypp5wSQ4YMiUMPPbQQFObOnRsHHHBA3HfffXHYYYdF3759Y9q0afXuk1mzZsXw4cNj6NCh\n8c1vfjNeffXV+Oc//xk//OEPY9GiRTF06NB4//3368w54YQT4qabbopvfetbsd9++8VFF11U2Ecv\nvvhiHHXUUXHQQQfFt771rZgzZ05ERDzwwANx1llnxbe//e249tprIyJiwoQJMXDgwBgyZEhcddVV\nhf8smDx5cgwdOjQGDBgQ5513Xnz00UcREXHBBRfE+PHj46STTor+/fvHSSedFMuWLYsbbrghZs6c\nGT/60Y9i2rRpsWzZshg1alQMGTIkBgwYENdcc02h99mzZ8fgwYNj8ODBcfPNN9fZn4899lgcdthh\nMXDgwDj55JPXWndExMqVK+PHP/5xDBkyJA466KA466yzYsmSJRER8eCDD8aQIUNiyJAh8aMf/ShW\nrFhR5/gNHTo0TjzxxHjnnXfqPeZZlsXNN98cQ4YMif79+8cVV1xR2K+vvfZaHHLIITFkyJC48sor\n6z2Wq82cOTOOOOKI6NevX/z85z+PiIijjjoqHnnkkcKYxx9/PA4//PC15v7973+PY489NoYNGxYH\nHXRQ/OY3v1lvrdUWLlwYZ511VvzpT3+KkSNHFq5/8skn48gjj4wDDjgg7r777sL16zrGa/rwww/j\nzDPPjGHDhsXAgQPjoosuipqamhgxYkT885//jKFDh8aKFSvWOoO7envVqlVx2WWXxYEHHhhHH310\n/Pd//3dhTFVVVfzoRz+KIUOGxMCBA2Pq1Kl15j/44INxxBFHxAEHHBD33ntvRMRade+///4YNmxY\nDB06NI4++uh44403GrSvAFqsDICieeKJJ7KDDjpovWNuv/327NRTT81qamqyZcuWZUcddVT24IMP\nZlmWZf37988uvvjiLMuybOLEidluu+2WzZw5M1u1alV21FFHZb/61a+yLMuyHj16ZJdddlmWZVn2\n5ptvZr17987ef//97NVXX8369OmTVVdXZ7W1tdl3vvOd7JZbbsmyLMvGjx+fHXDAAdmiRYsK22PG\njMmyLMv23XffbO7cuVmWZdnzzz+fXXnllVmWZdnJJ5+c3XbbbVmWZdncuXOzPffcM5szZ042Z86c\nbKeddsomTpyYZVmWTZs2rd51L1myJNt3332zF154IcuyLHvkkUeywYMHZ7W1tdnMmTOzQYMG1buP\njj/++Ozoo4/Oli5dmi1dujQbPHhw9uijj2bV1dXZ3nvvnT3zzDNZlmXZf/7nf2bDhw/PsizLpk6d\nmu2+++7ZP/7xj8I6DjrooKy6ujpbvnx5dtRRR2XTpk3Lnn/++axPnz7ZvHnzsizLsosvvji7+uqr\nsyzLstGjR2fDhg3LKisrs5qamuwb3/hG9tBDDxWOzfPPP59lWZbddddd2Xe/+91s1apV2QcffJDt\ns88+hZ8NHz48+9d//dcsy7LsnnvuyXr37p3NnDkze+edd7I99tgj++tf/5plWZbddttt2dlnn73W\n2h9//PHsxBNPzFatWpWtWrUq+/nPf5499dRT2Zw5c7Kvfe1r2bx587JVq1ZlZ555ZnbHHXdk7777\nbrbnnntmb731VqG3b3/72/Ue81//+tfZIYccklVVVWU1NTXZ//t//69wDI866qhs0qRJhePZs2fP\nbObMmWv1179//+z000/PVq5cmS1cuDDbe++9s7/85S/Z3XffnZ155pmFcRdeeGF2++23rzX/tNNO\nK1z/X//1X9muu+6arVixIpszZ07Wq1evQt+r75trmjp1amFtWfbx4+D666/PsizLXnnllWyXXXbJ\nVqxYsd5jvKb7778/u+CCC7Isy7Kampps7Nix2euvv77WfbNHjx7Ze++9t9b2E088kQ0ePDhbsmRJ\ntmzZsuzoo4/Ojj/++ML6zz///Ky2tjZbtGhR1q9fv8Kx79GjR3bddddlWZZlf/7zn7NddtklW7ly\nZZ261dXV2V577ZVVV1cXjsmECRPWWgPApsSZVYAi+uCDD6Jbt27rHfPEE0/Et771rSgtLY22bdvG\nYYcdFs8++2zh5wMHDoyIiB49esTmm28e++67b5SUlMQOO+wQCxYsKIw76qijIiLiK1/5Snz5y1+O\nV155JXr37h1PPPFEbLnlltGqVavYY489CmceIyJ222236Nq161o9devWLSZNmhTvvvtu7LXXXnHh\nhRdGTU1N/PGPfyycxfr85z8f++67b8ycOTMiPj4DeOSRR0ZExM4771zvS2RfeeWV+NznPhd77rln\nREQMGTIkKisr4913393gvjzkkEOiXbt20a5du+jbt2+8/PLL8eKLL0b37t1j//33j4iIQw89NN55\n551C7S996UvxpS99KSIinnrqqejXr19sueWW0aZNm5g4cWIMHjw4/vCHP8TBBx9cOPN97LHHxowZ\nMwp1+/XrF507d47S0tLo0aNHvPfee2v1dvLJJ8ett94aJSUl0alTp9hhhx1i7ty58dFHH8Xs2bPj\n0EMPjYiI4447rnA296mnnop99tknevToEREfn0X7wx/+UDizuVrXrl3jzTffjEcffbRwBrdv377x\n7LPPxh577BHdu3ePkpKSuP766+M73/lOPPvss7HvvvvGdtttFxER3/zmN2PWrFmxcuXKiKh7zB9/\n/PE46qijokOHDlFaWhrf/OY3Y8aMGbF8+fJ49dVX4+CDD46IiKFDh0a7du3WeWwOO+ywaN26dXTr\n1i323nvvePnll+Pggw+Op59+Oqqrq6O2tjYef/zxGDZs2Fpzb7311jjllFMiImLPPfeM5cuXR0VF\nxTprbcg3vvGNiIjYaaedYvny5VFZWbnBY7xa165d4+WXX45nnnkmVq1aFZdeemn06tWrwbWff/75\n6NevX2yxxRbRtm3bOut9/PHH48QTT4xWrVpF165d46CDDqrTw+qzzjvvvHMsX748Fi1aVOe2N998\n8ygpKYkpU6bEwoULY9iwYXHqqac2fMcAtEClG7sBgE1Zly5dYv78+esd8/7770enTp0K2506darz\nh+oWW2wRERGtWrUq/Hv19qpVq+rMW/PfVVVVsWzZsrjqqqsKLztdvHhxHHjggfXOWdMvfvGL+MUv\nfhFHHnlkbL311jFmzJj48pe/HFmWRYcOHQrjOnbsWHjpauvWraN9+/b19rbmWjt27Fjnug4dOqz1\nh3l9/u/6FixYEFVVVTFnzpwYOnRo4Wdt2rQp9LTmnMrKyigvLy9srw5f1dXV8eijj8YzzzwTER9/\nIFZNTU2d/lZr3br1WmEyIuKtt96Kq6++Ov7+979Hq1atYt68eXHkkUfG4sWLo6SkpLDmzTbbrPCf\nF9XV1fHCCy/U6X3LLbdc6z84dt1117joooti4sSJMXr06BgwYEBccsklUVlZWWdfbr755oV1rnl9\nhw4dIsuywodWrblPqqur46677orJkydHRERtbW107do1Pvjgg0I/EVFnDfVZ8z88OnToEFVVVdG9\ne/fYddddY8aMGfHFL34xPv/5z8cXvvCFteY+/fTT8Ytf/CIqKyujpKQksiyr977TUKt7bt26dURE\nrFq1aoPHeLVhw4bF4sWL48Ybb4y///3v8Y1vfCMuvPDCBtdevHhxnfvYmvusuro6Ro0aVehr+fLl\ndY796vvZmn2vabPNNot77703brvttrjppptixx13jEsuuSR23HHHBvcH0NIIqwBFtPvuu8eiRYti\n9uzZsfPOOxeur6mpiZtvvjlOP/302GqrrQrhIOLjs7FbbbVVo2tVVlbG5z//+cJtdOrUKX75y1/G\nW2+9FQ888EBsscUW8fOf/3yD4Tki4otf/GJcddVVsWrVqnjwwQfjBz/4QTz++OPRqlWrWLx4cSHw\nNOTM8Zq6detWZ61ZlsXixYujW7duG/ywojU/IXh1D+Xl5fGVr3wlHnjggbXG/+1vf6uz3aVLlzq3\nsfrf5eXlMXz48Bg9enSD1/F/XXbZZbHzzjvHLbfcEq1bt44RI0ZExMfBKcuyWLZsWbRr1y5WrlxZ\nCNLl5eWx3377xfjx4zd4+0OHDo2hQ4fGBx98EGPGjIm77rorttlmm3j55ZcLY5YsWRIfffRRdOvW\nrc71ixcvjlatWtX7oVXl5eUxYMCAOP744+tcv/r9nEuWLIkOHTrEqlWrCu+Prs+aP1vz/nHIIYfE\nI488Etttt13hLO2aampqYtSoUXHDDTdEv379YsWKFbHrrrtucH80VmOO8YgRI2LEiBExf/78OPvs\ns+PBBx8snKVerVWrVoX/tFhz7R07dqzzKd9rvge5vLw8brnllsKZ9KbYaaedYvz48bFixYq48847\n45JLLolJkyY1+fYAUudlwABF1LFjx/jud78bo0ePjrfffjsiIpYtWxZjx46N119/Pdq1axcHHnhg\nTJkyJWpra2Pp0qXx0EMPRb9+/Rpd67e//W1ERLz55pvx9ttvx2677RaLFi2Kr3zlK7HFFlvEu+++\nG08++WQsXbp0vbfz/vvvx0knnRRLliyJVq1axW677RYlJSVRWloaBxxwQOEs3DvvvBMvvPBC7Lff\nfg3ucdddd42FCxcWwtRvf/vb+NznPhfbbrvtBuc++uijsWLFili6dGk89dRTsddee8Vuu+0WFRUV\n8ec//zkiIubMmRM/+tGP6v2U5QEDBsQf/vCHWLx4caxcuTLOPPPMeOaZZ2LAgAExY8aMQrB47LHH\nYsKECRvsp7S0tBBMFi1aFL169YrWrVvHs88+G2+//XYsXbo0tthii9h+++3jd7/7XUR8/CE/JSUl\nERFxwAEHxAsvvFB4WfYrr7wSV1xxxVp1pk6dGrfccktERHTu3Dm+8pWvRMTHL09+6aWXYu7cuZFl\nWVxyySUxZcqU2H///evc7qRJk2L//feP0tK1/3964MCB8dBDD8WyZcsKY3/9619H27Zto2fPnvHo\no49GxMfHafny5evcF7/97W9j1apVsWjRonjxxRdjr732ioiPQ/aLL74YjzzySL0vAV62bFksXbo0\nevfuHRERv/zlL2OzzTbb4H10tdLS0liyZMkGP1W7ocf4lltuiSlTpkRERPfu3WPbbbct3PeXLl1a\neCl1WVlZ4cOTpk6dGq1affzn1B577BHPPPNMLFu2LJYtW1bnA6YGDBhQCJYrV66MK6+8MmbPnr3B\n9a2u+9e//jW+//3vx4oVK6JNmzbRu3fvwn0JYFPlzCpAkZ199tnRqVOn+N73vhe1tbXRqlWrGDhw\nYIwbNy4iPv6k2zlz5sQhhxwSJSUlMXTo0Hr/sN+Qrl27xuGHHx7z58+Piy66KDp16hQjRoyI73//\n+zFkyJDYcccd44ILLoizzz678Gmj67qdvn37xlFHHRWtW7eOzTbbLH7yk59ERMSll14aF110UTzw\nwAOx2WabxRVXXBFbb711zJ07t0E9tm/fPm644Ya4/PLLY+nSpdG1a9f42c9+1qA/uvfYY4848cQT\n46233oqDDjoovv71r0erVq1i/Pjxcfnll8eHH34Ym222WZxzzjn13t7uu+8ep5xyShxxxBHRpk2b\n6Nu3bxx66KFRUlISp59+epxwwgmxatWq6NatW1x66aUb7GfIkCFx3nnnxfe///343ve+F1dddVXc\neuutMXDgwDjrrLNi/Pjx0atXr7jkkkvi4osvjrvuuiuOOOKIwntMy8vL4/LLL48zzzwzampqYost\ntogxY8asVWfgwIExZsyYGDx4cLRu3Tq22267uPrqq6Nz585x2WWXxbe//e1o3bp17LLLLnHSSSfF\n5ptvHldccUWcccYZUVNTE9tuu21cfvnl9a5h0KBB8cYbb8Tw4cMj4uMz6quP9bhx42LMmDFx++23\nx9e//vXYfvvt17kvdtlllzj66KPj/fffj29/+9vx1a9+NSI+Dtd77713LF68OLbeeuu15q3+z5wj\njjgiunXrFt/73vdi0KBBcfrpp8ftt9++wWOw5557xk9/+tPo27dvPPnkk+sct/POOzfoGB9++OFx\n4YUXxh133BElJSWx2267xeGHHx4rVqyITp06xf777x+//vWv49xzz41x48bF+PHjY8SIEYWXHvfv\n3z+eeOKJGDp0aGy11VbRr1+/wnfQjho1Ki699NIYMmRIRET07dt3gy/h3XHHHQt1H3jggdh2223j\n0EMPjc022yy22GKLGDt27Ab3EUBLVpJt6L8jAUjejjvuGE8++WR87nOf29itFMUJJ5wQRx99dL1f\nfdISZFlWCNBf+9rX4t57742ePXtu5K7yMW7cuNhhhx3iuOOO29itANDCeBkwABTR97///bjjjjsi\nIuK5556LLMsKn1C8qXvrrbfiqaeeKnxCLwA0hpcBA0ARnXPOOXHhhRfG1KlTY7PNNotrr7022rZt\nu7HbKrobb7wxHnroobj44ovrfKIyADSUlwEDAACQHC8DBgAAIDnCKgAAAMlJ+j2rFRXV6/xZly7t\no7KyYd/Dlsf4TaVGij3lUSPFnvKokWJPedRIsac8aqTYUx41Uuwpjxop9pRHjRR7yqNGij3lUSPF\nnvKokWJPedRIsac8aqTYU3PWKCtb9+catNgzq6WlrZMav6nUSLGnPGqk2FMeNVLsKY8aKfaUR40U\ne8qjRoo95VEjxZ7yqJFiT3nUSLGnPGqk2FMeNVLsKY8aKfaUR40Ue8qrRosNqwAAAGy6hFUAAACS\nI6wCAACQHGEVAACA5AirAAAAJEdYBQAAIDnCKgAAAMkRVgEAAEiOsAoAAEByhFUAAACSI6wCAACQ\nHGEVAACA5AirAAAAJEdYBQAAIDnCKgAAAMkRVgEAAEiOsAoAAEByhFUAAACSU7qxG2iMsvKOdbc/\nuaxYUJV/MwAAABSNM6sAAAAkR1gFAAAgOcIqAAAAyRFWAQAASI6wCgAAQHKEVQAAAJIjrAIAAJAc\nYRUAAIDkCKsAAAAkR1gFAAAgOcIqAAAAyRFWAQAASI6wCgAAQHKEVQAAAJIjrAIAAJAcYRUAAIDk\nCKsAAAAkR1gFAAAgOaXFuuFly5bFBRdcEIsWLYrly5fHGWecEdOnT4/Zs2dH586dIyLilFNOiQMP\nPLBYLQAAANBCFS2sPv7449G7d+849dRT4913342TTz459thjjzjvvPOif//+xSoLAADAJqBoYfXg\ngw8u/Pu9996L7t27F6sUAAAAm5iiv2d1xIgR8cMf/jDGjBkTERH3339/nHjiiXHuuefG+++/X+zy\nAAAAtEAlWZZlxS7yl7/8Jc4///wYM2ZMdO7cOXr16hUTJkyIefPmxdixY9c5b+XK2igtbb1GtyX1\nDyz+EgAAAMhR0V4G/Nprr0W3bt1i6623jl69ekVtbW306NEjunXrFhERAwYMiHHjxq33Niorl9bZ\nLlvHuIqK6g32U1bWoUHjmjp+U6mRYk951EixpzxqpNhTHjVS7CmPGin2lEeNFHvKo0aKPeVRI8We\n8qiRYk951EixpzxqpNhTHjVS7CmPGin21Jw1yso6rHNO0V4G/MILL8Tdd98dERELFy6MpUuXxtix\nY2POnDkRETFr1qzYYYcdilUeAACAFqxoZ1ZHjBgRP/7xj2PkyJHx0UcfxdixY6N9+/YxatSoaNeu\nXbRv3z6uuuqqYpUHAACgBStaWG3btm1cf/31a10/derUYpUEAABgE1H0TwMGAACAxhJWAQAASI6w\nCgAAQHKEVQAAAJIjrAIAAJAcYRUAAIDkCKsAAAAkR1gFAAAgOcIqAAAAyRFWAQAASI6wCgAAQHKE\nVQAAAJIjrAIAAJAcYRUAAIDkCKsAAAAkR1gFAAAgOcIqAAAAyRFWAQAASI6wCgAAQHKEVQAAAJIj\nrAIAAJAcYRUAAIDkCKsAAAAkR1gFAAAgOcIqAAAAyRFWAQAASI6wCgAAQHKEVQAAAJIjrAIAAJAc\nYRUAAIDkCKsAAAAkR1gFAAAgOcIqAAAAyRFWAQAASI6wCgAAQHKEVQAAAJIjrAIAAJAcYRUAAIDk\nCKsAAAAkR1gFAAAgOaUbu4FiKivvWHf7k8uKBVWNGr++OQAAADQ/Z1YBAABIjrAKAABAcoRVAAAA\nkiOsAgAAkBxhFQAAgOQIqwAAACSnaF9ds2zZsrjgggti0aJFsXz58jjjjDOiZ8+ecf7550dtbW2U\nlZXFddddF23atClWCwAAALRQRQurjz/+ePTu3TtOPfXUePfdd+Pkk0+Of/mXf4mRI0fGsGHD4mc/\n+1lMmTIlRo4cWawWAAAAaKGK9jLggw8+OE499dSIiHjvvfeie/fuMWvWrBg4cGBERPTv3z+ee+65\nYpUHAACgBSvamdXVRowYEfPmzYvbbrstTjrppMLLfrt16xYVFRXFLg8AAEALVJJlWVbsIn/5y1/i\n/PPPj4qKipg5c2ZERLz99tsxevTomDRp0jrnrVxZG6WlrdfotqT+getaQnONb84aAAAAbFDRzqy+\n9tpr0a1bt9h6662jV69eUVtbG1tssUV89NFH0bZt25g/f36Ul5ev9zYqK5fW2S5bx7iKiup6r2+u\n8c1Zo87csg4NGvdp5hR7/KZSI8We8qiRYk951EixpzxqpNhTHjVS7CmPGin2lEeNFHvKo0aKPeVR\nI8We8qiRYk951EixpzxqpNhTc9YoK+uwzjlFe8/qCy+8EHfffXdERCxcuDCWLl0a++23X0yfPj0i\nImbMmBF9+/YtVnkAAABasKKdWR0xYkT8+Mc/jpEjR8ZHH30UY8eOjd69e8fo0aNj8uTJsc0228QR\nRxxRrPIAAAC0YEULq23bto3rr79+revvueeeYpUEAABgE1G0lwEDAABAUwmrAAAAJEdYBQAAIDnC\nKgAAAMkRVgEAAEiOsAoAAEByivbVNdSvrLxj3e1PLisWVDXrHAAAgJbMmVUAAACSI6wCAACQHGEV\nAACA5AirAAAAJEdYBQAAIDnCKgAAAMkRVgEAAEiOsAoAAEByhFUAAACSI6wCAACQnNKN3QDNr6y8\nY93tTy4rFlQ1avz65gAAABSTM6sAAAAkR1gFAAAgOcIqAAAAyRFWAQAASI6wCgAAQHKEVQAAAJIj\nrAIAAJAcYRUAAIDkCKsAAAAkR1gFAAAgOaUbuwFaprLyjnW3P7msWFDVLOMBAIDPNmdWAQAASI6w\nCgAAQHKEVQAAAJIjrAIAAJAcYRUAAIDkCKsAAAAkR1gFAAAgOcIqAAAAyRFWAQAASI6wCgAAQHKE\nVQAAAJJTurEbgHUpK+9Yd/uTy4oFVc0yHgAASJczqwAAACRHWAUAACA5wioAAADJEVYBAABIjrAK\nAABAcoRVAAAAklPUr6659tpr48UXX4yVK1fGaaedFn/4wx9i9uzZ0blz54iIOOWUU+LAAw8sZgsA\nAAC0QEULqzNnzow33ngjJk+eHJWVlTF8+PD42te+Fuedd17079+/WGUBAADYBBQtrO69996x6667\nRkREx44dY9myZVFbW1uscgAAAGxCivae1datW0f79u0jImLKlCnx9a9/PVq3bh33339/nHjiiXHu\nuefG+++/X6zyAAAAtGAlWZZlxSzw2GOPxe233x533313vPbaa9G5c+fo1atXTJgwIebNmxdjx45d\n59yVK2ujtLT1Gt2W1D9wXUtorvF51FjfYbDufHvaUF8AAEDRFfUDlp5++um47bbb4s4774wOHTpE\nnz59Cj8bMGBAjBs3br3zKyuX1tkuW8e4iorqeq9vrvF51FjX+DxqWHfj+irML+vQoHFNHZ9HjRR7\nyqNGij3lUSPFnvKokWJPedRIsac8aqTYUx41Uuwpjxop9pRHjRR7yqNGij3lUSPFnpqzRllZh3XO\nKdrLgKurq+Paa6+N22+/vfDpv2effXbMmTMnIiJmzZoVO+ywQ7HKAwAA0IIV7czqtGnTorKyMkaN\nGlW47sgjj4xRo0ZFu3bton379nHVVVcVqzwAAAAtWNHC6jHHHBPHHHPMWtcPHz68WCUBAADYRBTt\nZcAAAADQVMIqAAAAyRFWAQAASI6wCgAAQHKEVQAAAJIjrAIAAJCcon11DWyKyso71t3+5LJiQVX+\nzQAAwCbMmVUAAACSI6wCAACQHGEVAACA5AirAAAAJEdYBQAAIDnCKgAAAMkRVgEAAEiOsAoAAEBy\nhFUAAACSI6wCAACQnNKN3QD3CzbBAAAgAElEQVRsysrKO9bd/uSyYkFV/s0AAEAL4swqAAAAyRFW\nAQAASI6wCgAAQHKEVQAAAJIjrAIAAJAcYRUAAIDkCKsAAAAkR1gFAAAgOcIqAAAAyRFWAQAASE7p\nxm4AqKusvGPd7U8uKxZUFXV8c9YAAIBPy5lVAAAAkiOsAgAAkBxhFQAAgOQIqwAAACRHWAUAACA5\nwioAAADJEVYBAABIjrAKAABAcoRVAAAAkiOsAgAAkJzSjd0AsOkpK+9Yd/uTy4oFVc06BwCATZcz\nqwAAACRHWAUAACA5wioAAADJEVYBAABIjrAKAABAcoRVAAAAktOgsHrBBResdd0pp5zS7M0AAABA\nxAa+Z/Xhhx+OSZMmxRtvvBHHHXdc4fqamppYuHDhBm/82muvjRdffDFWrlwZp512Wuyyyy5x/vnn\nR21tbZSVlcV1110Xbdq0+fSrAAAAYJOy3rD6jW98I/bdd9/44Q9/GGeffXbh+latWsVXv/rV9d7w\nzJkz44033ojJkydHZWVlDB8+PPr06RMjR46MYcOGxc9+9rOYMmVKjBw5snlWAgAAwCZjgy8D7t69\ne0ycODF69eoVW2+9dWy99dbRvXv3qK6uXu+8vffeO2688caIiOjYsWMsW7YsZs2aFQMHDoyIiP79\n+8dzzz3XDEsAAABgU7PeM6urXXHFFTF16tTo2rVrZFkWERElJSXx+9//fp1zWrduHe3bt4+IiClT\npsTXv/71eOaZZwov++3WrVtUVFR82v4BAADYBJVkq9Pnehx22GExZcqU2HzzzRtd4LHHHovbb789\n7r777hg8eHDhbOrbb78do0ePjkmTJq1z7sqVtVFa2nqNbkvqH7iuJTTX+DxqrO8wWHe+PeVRw7o3\nTg0AAFqMBp1Z3W677ZoUVJ9++um47bbb4s4774wOHTpE+/bt46OPPoq2bdvG/Pnzo7y8fL3zKyuX\n1tkuW8e4ior6X5LcXOPzqLGu8XnUsO78a1j3xqlRmFvWoUHjPs2cFGuk2FMeNVLsKY8aKfaUR40U\ne8qjRoo95VEjxZ7yqJFiT3nUSLGnPGqk2FNz1igr67DOOQ0Kq5/73OfiuOOOiz333DNat/7fM53n\nnHPOOudUV1fHtddeG/fee2907tw5IiL222+/mD59ehx++OExY8aM6Nu3b0PKAwAA8BnToLDauXPn\n6NOnT6NueNq0aVFZWRmjRo0qXHf11VfHRRddFJMnT45tttkmjjjiiMZ1CwAAwGdCg8LqGWec0egb\nPuaYY+KYY45Z6/p77rmn0bcFAADAZ0uDwupOO+0UJWt8mElJSUl06NAhZs2aVbTGAAAA+OxqUFj9\n7//+78K/V6xYEc8991z89a9/LVpTAAAAfLa1auyENm3aRL9+/eLZZ58tRj8AAADQsDOrU6ZMqbM9\nb968mD9/flEaAgAAgAaF1RdffLHO9pZbbhk33HBDURoCAACABoXVq666KiIiPvjggygpKYlOnToV\ntSkAAAA+2xoUVl966aU4//zz48MPP4wsy6Jz585x3XXXxS677FLs/gCaRVl5x7rba/y7YkFVo+Y0\n13gAANatQWH1+uuvj1tvvTV69OgRERGvv/56/OQnP4l//dd/LWpzAAAAfDY16NOAW7VqVQiqER9/\n72rr1q2L1hQAAACfbQ0Oq9OnT48lS5bEkiVLYtq0acIqAAAARdOglwFfeumlcfnll8dFF10UrVq1\nip49e8YVV1xR7N4AAAD4jGrQmdVnn3022rRpE88//3zMmjUrsiyLJ598sti9AQAA8BnVoLD68MMP\nx80331zYvvvuu+M3v/lN0ZoCAADgs61BYbW2trbOe1RLSkoiy7KiNQUAAMBnW4PeszpgwIAYMWJE\n7LnnnrFq1aqYOXNmDB48uNi9AQAA8BnVoLB6xhlnxD777BOvvPJKlJSUxCWXXBK77757sXsDAADg\nM6pBYTUiYq+99oq99tqrmL0AAABARDQirALQ/MrKO9bd/uSyYkFV/s0AACSkQR+wBAAAAHkSVgEA\nAEiOsAoAAEByhFUAAACSI6wCAACQHGEVAACA5AirAAAAJEdYBQAAIDnCKgAAAMkRVgEAAEhO6cZu\nAICGKyvvWHf7k8uKBVWNGt+UOesaDwBQDM6sAgAAkBxhFQAAgOQIqwAAACRHWAUAACA5wioAAADJ\nEVYBAABIjrAKAABAcoRVAAAAkiOsAgAAkBxhFQAAgOSUbuwGAGjZyso71t3+5LJiQVWzzWmu8Rvq\nCwBIhzOrAAAAJEdYBQAAIDnCKgAAAMkRVgEAAEiOsAoAAEByhFUAAACSI6wCAACQnKKG1b/97W8x\naNCguP/++yMi4oILLojDDjssTjjhhDjhhBPiiSeeKGZ5AAAAWqjSYt3w0qVL4/LLL48+ffrUuf68\n886L/v37F6ssAAAAm4CinVlt06ZN3HHHHVFeXl6sEgAAAGyiihZWS0tLo23btmtdf//998eJJ54Y\n5557brz//vvFKg8AAEALVpJlWVbMAjfddFN06dIljj/++Hjuueeic+fO0atXr5gwYULMmzcvxo4d\nu865K1fWRmlp6zW6Lal/4LqW0Fzj86ixvsNg3fn2lEcN686/hnXnX2NTXzcAUFRFe89qfdZ8/+qA\nAQNi3Lhx6x1fWbm0znbZOsZVVFTXe31zjc+jxrrG51HDuvOvYd3517Du/Gts6uuuM7esQ4PGfZo5\nxR6/qdRIsac8aqTYUx41Uuwpjxop9pRHjRR7yqNGij01Z42ysg7rnJPrV9ecffbZMWfOnIiImDVr\nVuywww55lgcAAKCFKNqZ1ddeey2uueaaePfdd6O0tDSmT58exx9/fIwaNSratWsX7du3j6uuuqpY\n5QEAAGjBihZWe/fuHRMnTlzr+iFDhhSrJAAAAJuIXF8GDAAAAA0hrAIAAJAcYRUAAIDkCKsAAAAk\nR1gFAAAgOcIqAAAAySnaV9cAwKasrLxj3e1PLisWVDXbnKbUAIBNhTOrAAAAJEdYBQAAIDnCKgAA\nAMkRVgEAAEiOsAoAAEByhFUAAACSI6wCAACQHGEVAACA5AirAAAAJEdYBQAAIDmlG7sBAKB5lJV3\nrLu9xr8rFlTl2wwAfErOrAIAAJAcYRUAAIDkCKsAAAAkR1gFAAAgOcIqAAAAyRFWAQAASI6wCgAA\nQHKEVQAAAJIjrAIAAJAcYRUAAIDklG7sBgCAjaesvGPd7U8uKxZU5d8MAKzBmVUAAACSI6wCAACQ\nHGEVAACA5AirAAAAJEdYBQAAIDnCKgAAAMkRVgEAAEiOsAoAAEByhFUAAACSI6wCAACQnNKN3QAA\n0HKUlXesu/3JZcWCqvybAWCT5swqAAAAyRFWAQAASI6wCgAAQHKEVQAAAJIjrAIAAJAcYRUAAIDk\nCKsAAAAkp6hh9W9/+1sMGjQo7r///oiIeO+99+KEE06IkSNHxjnnnBMrVqwoZnkAAABaqKKF1aVL\nl8bll18effr0KVw3fvz4GDlyZPzbv/1bbLfddjFlypRilQcAAKAFK1pYbdOmTdxxxx1RXl5euG7W\nrFkxcODAiIjo379/PPfcc8UqDwAAQAtWWrQbLi2N0tK6N79s2bJo06ZNRER069YtKioqilUeAACA\nFqwky7KsmAVuuumm6NKlSxx//PHRp0+fwtnUt99+O0aPHh2TJk1a59yVK2ujtLT1Gt2W1D9wXUto\nrvF51FjfYbDufHvKo4Z151/DuvOvYd351/isrhuATVLRzqzWp3379vHRRx9F27ZtY/78+XVeIlyf\nysqldbbL1jGuoqK63uuba3weNdY1Po8a1p1/DevOv4Z151/DuvOv8Vldd525ZR0aNO7TzEmxRoo9\n5VEjxZ7yqJFiT3nUSLGnPGqk2FNz1igr67DOObl+dc1+++0X06dPj4iIGTNmRN++ffMsDwAAQAtR\ntDOrr732WlxzzTXx7rvvRmlpaUyfPj1++tOfxgUXXBCTJ0+ObbbZJo444ohilQcAAKAFK1pY7d27\nd0ycOHGt6++5555ilQQAAGATkevLgAEAAKAhhFUAAACSI6wCAACQHGEVAACA5AirAAAAJEdYBQAA\nIDlF++oaAIA8lJV3rLu9xr8rFlTl2wwAzcaZVQAAAJIjrAIAAJAcYRUAAIDkCKsAAAAkR1gFAAAg\nOcIqAAAAyRFWAQAASI6wCgAAQHKEVQAAAJIjrAIAAJCc0o3dAABA3srKO9bd/uSyYkFVs4xv6hwA\n/pczqwAAACRHWAUAACA5wioAAADJEVYBAABIjrAKAABAcoRVAAAAkiOsAgAAkBxhFQAAgOQIqwAA\nACRHWAUAACA5pRu7AQAAIsrKO9bd/uSyYkFVo8avbw5AS+LMKgAAAMkRVgEAAEiOsAoAAEByhFUA\nAACSI6wCAACQHGEVAACA5AirAAAAJEdYBQAAIDnCKgAAAMkRVgEAAEhO6cZuAACAfJSVd6y7/cll\nxYKqZhnf1DkA9XFmFQAAgOQIqwAAACRHWAUAACA5wioAAADJEVYBAABIjrAKAABAcoRVAAAAkpPr\n96zOmjUrzjnnnNhhhx0iIqJHjx5x8cUX59kCAAAALUCuYTUiYp999onx48fnXRYAAIAWxMuAAQAA\nSE7uYfV//ud/4vTTT49jjz02nn322bzLAwAA0AKUZFmW5VVs/vz58eKLL8awYcNizpw5ceKJJ8aM\nGTOiTZs29Y5fubI2Sktb/+8VJSX13/C6ltBc4/Oosb7DYN359pRHDevOv4Z151/DuvOvYd3517Du\n/Gukum6g2eX6ntXu3bvHwQcfHBERX/ziF2OrrbaK+fPnxxe+8IV6x1dWLq2zXbaO262oqK73+uYa\nn0eNdY3Po4Z151/DuvOvYd3517Du/GtYd/41rDv/Gqmuu878sg4NHpvH+E2lRoo95VEjxZ6as0ZZ\nWYd1zsn1ZcAPP/xw3HXXXRERUVFREYsWLYru3bvn2QIAAAAtQK5nVgcMGBA//OEP4/e//33U1NTE\nuHHj1vkSYAAAAD67cg2rW265Zdx22215lgQAAKAF8tU1AAAAJEdYBQAAIDnCKgAAAMkRVgEAAEiO\nsAoAAEByhFUAAACSk+tX1wAAwKaorLxj3e1PLisWVBV1fHPWgNQ4swoAAEByhFUAAACSI6wCAACQ\nHGEVAACA5AirAAAAJEdYBQAAIDnCKgAAAMkRVgEAAEiOsAoAAEByhFUAAACSU7qxGwAAADa+svKO\ndbc/uaxYUNVsc5pr/Ib6YtPgzCoAAADJEVYBAABIjrAKAABAcoRVAAAAkiOsAgAAkBxhFQAAgOQI\nqwAAACRHWAUAACA5wioAAADJEVYBAABITunGbgAAAKC5lJV3rLv9yWXFgqpmGZ9XDZxZBQAAIEHC\nKgAAAMkRVgEAAEiOsAoAAEByhFUAAACSI6wCAACQHGEVAACA5AirAAAAJEdYBQAAIDnCKgAAAMkp\n3dgNAAAA8L/KyjvW3V7j3xULqho1p7nG51VjTc6sAgAAkBxhFQAAgOQIqwAAACRHWAUAACA5wioA\nAADJEVYBAABIjrAKAABAcnL/ntUrr7wy/vznP0dJSUmMGTMmdt1117xbAAAAIHG5htX/+q//irff\nfjsmT54cb775ZowZMyYmT56cZwsAAAC0ALm+DPi5556LQYMGRUTE9ttvH4sXL44lS5bk2QIAAAAt\nQK5hdeHChdGlS5fCdteuXaOioiLPFgAAAGgBSrIsy/IqdvHFF0e/fv0KZ1ePPfbYuPLKK+PLX/5y\nXi0AAADQAuR6ZrW8vDwWLlxY2F6wYEGUlZXl2QIAAAAtQK5hdf/994/p06dHRMTs2bOjvLw8ttxy\nyzxbAAAAoAXI9dOA/+Vf/iV23nnnGDFiRJSUlMQll1ySZ3kAAABaiFzfswoAAAANkevLgAEAAKAh\nhFUAAACSI6wCAACQHGEVAACA5OT6acCfxocfflj4jtaysrJo3759UeasXLkyIiJKSze8axpz+1VV\nVTFhwoT44x//WJhTXl4effv2jVNOOWW9X+HTmJ6aOqdY686rp6aMz6NGY/dVivs2j8desR+rjanx\naR6reayj2PfBPGoUc/xn/bk2xePdlBoNHZ/X8c7rWKT23JnquiPSW0cxa9TU1MTUqVPjj3/8Y1RU\nVETE/97Phw8fHq1bt869p09ToyX/jslzTmPGv/nmmzFz5sxYsGBBRHx8/zjggANiu+2222g9fZo5\na0r+04BfffXV+MlPfhJVVVXRpUuXyLIsFixYEN27d4+xY8fGjjvu+KnnzJ07N66//vp46aWXolWr\nVrFq1aqIiNh3333jBz/4QXTv3v1T93TqqafGQQcdFP37949u3bpFlmUxf/78mDFjRsyaNSt+8Ytf\nfKqemjInj3UXu6cU91NT9lWK+zaPx16xH6tNqdHYx2oe68hj3Snezz3XpvN7L48aTemp2Mc7j2PR\nlDkp/p2T4v02xWPRlDnnnntufPGLX1zrfj59+vSoqqqKa6+9Nvl1byq/Y1Lct7feems8++yz0a9f\nv+jatWvh/vHEE0/EoYceGt/5zndy76mpc+qVJW7EiBHZ//zP/6x1/WuvvZaNHDmyWeYcf/zx2TPP\nPJOtWrWqcF1NTU02ffr07Dvf+U6z9HTsscfWe32WZc3SU1Pm5LHuYveU4n7KssbvqxT3bR6PvWI/\nVptSo7GP1TzWkce6U7yfe66ta2P+3sujRlN6KvbxzuNYNGVOin/npHi/TfFYNGXOcccdV+/trOtn\nKa57U/kdk+K+PeaYY+rs19VqamqyY445ZqP01NQ59Un+PatZlsX222+/1vU777xz1NbWNsuc2tra\n2H///aOkpKRwXWlpaQwePDiWL1/eLD116NAh7r777pgzZ04sWbIklixZEm+99Vbcdttt0blz50/d\nU1Pm5LHuYveU4n6KaPy+SnHf5vHYK/ZjtSk1GvtYzWMdeaw7xfu559qGrzvF453H/bzYxzuPY9GU\nOSn+nZPi/TbFY9GUOSUlJTFjxoyoqakpXLdixYr4z//8z2jTps1G6SnF55wUj10efdXW1hZe/rum\n+q7Lq6emzqlP8u9Z3W233eL000+PQYMGRdeuXSMiYuHChTF9+vTYZ599mmXONttsE5dffvla4x95\n5JF6X+vdlJ6uv/76uPfee+PCCy+MioqKKCkpKbye/LrrrvvUPTVlTh7rLnZPKe6npuyrFPdtHo+9\nYj9Wm1KjsY/VPNaRx7pTvJ97rk3n914eNZrSU7GPdx7HoilzUvw7J8X7bYrHoilzrrvuurjxxhvj\nmmuuiY8++igiItq3bx99+vSJa665pkWse1P5HZPivj333HPj5JNPjs6dOxfGV1RUxIcffhiXXHLJ\nRumpqXPqk/x7ViMinn/++XjuuefqfHjC/vvvH3vssUezzFm5cmX85je/qXf8wQcfHK1arX0Cuik9\nNUZTemrsnDzWXeyeUt1PTdlXqe3bpvRU7HXndSyaopjryGPdqd7PPdem83uv2DWa2lNjpHgsmjon\nxb9zUrzfpnYsPs2cxkht3ZvS75jU9u1qc+bMqTP+85///DrH5tVTc9zPW0RYXZcVK1bU+/KH5p5T\n7Nu/5JJL4tJLLy1SR/ko9n7dlDR2X6W4b/N47OWx7sbWaMpjdVM5fsWukcf947P6XJvi8c5DsY93\nXscitefOVNfdWKkei8bOufnmm+Oss85KqqcUn3NSPHZ59PXYY4/FoEGDkuqpsXOSf8/q+lxwwQVF\nn3PmmWcW9fYjIs4+++xGjT/jjDMaXaOx68hj3cXuqbHjmzKnKceisfsqxX2bx2Ov2I/VptRo7GO1\nKTXyuJ83tqcU7+d5PNfm8RyS4mMvj+Odx/282Mc7j2PRlDkp/p2zqfy9lsfzVGPnNDaIpLjuPH6P\npXjsmjJnfeOzLIv3338/Fi1aVLiuurp6o/bUHHNa9JnVlmTlypUxY8aM6NKlS/Tp0ycef/zxeO21\n12K77baLQw45ZJ3fkQXka8KECXH44YfX+zH6pM/x+2zxu5XPiqqqqnjppZfqfM/qnnvuud7vEuaz\n4R//+Edcc8018e6778bcuXNj++23j8WLF8fOO+8cF154YYv/fdh63Lhx4zZ2E+uzatWqmDZtWtxz\nzz3xq1/9Kh5++OF46aWXoqSkJL70pS/VO6e6ujr++Mc/xpe//OWoqqqKG2+8Me67776YPXt27LTT\nTtGuXbs6419//fUoKyuLiI9PS993333xq1/9Kt55553Yaaed1vrS4ieffLJQ+4MPPojrrrsu7rzz\nzpg9e3bssssua91+RMT5558f8+fPj5deeimmTZsWf/vb36Jnz57x8ssvx+9///u1/mds+fLl8R//\n8R/xzDPPRLdu3aJLly6Fn916662x9957r1VjxYoV8cgjj0RVVVVss8028dvf/jYmTZoU77zzTvTs\n2XOtdVRXV8d9990X//jHP6Jnz55x//33x7//+7/HG2+8Eb169Vrr9HxTjkVExNNPPx2TJk2KBx98\nMGbMmBF/+tOfolWrVvGFL3xhrbE1NTXx+uuvR/fu3aOmpiYmT54cv/71r+Odd96JHXfcca01NHbN\nq/3pT3+KKVOmxO9+97t44okn4o033ohOnToV3gDeUPfee2/svvvuDRp7wgknxJFHHlnvzxp7n12X\nH/zgBzFkyJB6fzZ27NjYaqutGvyktWjRorjlllvid7/7XbRv3z623Xbbws8uu+yy6NevX4NuZ7Wf\n/vSnsd9++33qGo25P0VEVFZWxsSJE2Pu3LnRs2fPuP322+OOO+5Y574dM2ZMvPTSS/Hqq6/Gl770\npejUqdMG11ZTUxP/8R//ERMmTIj77rsvpk6dGk8//XR8+OGHseOOO671XpzGPvbqs75jvS7ruw+u\nT2Pu56vVd7wb+xzSlOfaphy/xj4fNPax1NjntcbeZ1fXaMx9sCm/Yxr7eG3s79bG7teIxv9ubY7H\n3oYeR409Fk2p09jHRlPus41dQ3P9HlutvueQxh6/pjyWGvs81ZR91dgaU6ZMibFjx8by5ctj5cqV\nUVVVFX/+859j/Pjx0aVLl+jRo8en2q8Rjb9PNfZ4N+Wx19jj19jnqDz+zmnKvmrsus8555wYN25c\nnH766TF48OCYN29e3HXXXdG+ffu4+uqr630eacpj4//a0HNhU3PD/5X8mdWxY8fG1ltvHfvvv388\n88wzkWVZ7LbbbvHAAw9E9+7dY/To0WvNOemkk+Lggw+Ob37zm/GDH/wgvvrVr8YBBxwQs2fPjt//\n/vdxxx131Bl/4oknxn33/f/2zjyqqmqP49+LTEGGIWJqaZIreCkklKL4SAFFoERAUNOLA0ZOmGOJ\nAyZapg2asUQzX4lZ2bSwnoll9ByI8UmCGuSYCkjAlXlQ4P7eH6x7373cc5F9EKP3fp+1WEvP/e3z\nm/Zvn2mfffYBaHnHRaFQwMvLC5mZmSguLsY777xjVH758uVwdHSEj48PMjIycOLECezatcvApvDw\ncHz88ccAgHHjxuHo0aOSv2mIiopC//79YWtri2+++QZz5sxBUFCQgX5dlixZgvvuuw9lZWUYMGAA\nKioq4OPjg9zcXBQVFWH79u168vPmzYOrqysqKyuRnZ0NNzc3eHh44MyZM8jLy8N7773X4VzExsai\nqqoK3t7e2hM/zQfbBwwYYNDmpZdegpOTExYsWIBXX30VarUao0aNwrlz53Dt2jUDH0R9BoBt27ZB\npVJh1KhRSE1NhY2NDR555BF888038PX1lfx4sjGM5cLJyQn29vYwMzODpsRKS0vRq1cvKBQKJCcn\n68mL9lkA8Pb21i4Br9FRVlYGOzs7SR2BgYEYMmQIampqoFQq77gSW0REBHx8fGBra4tPP/0UI0aM\n0E7VMeZ3fX290f1FRkZi//79HdIh2p80ep988kmUlJRApVJh4MCB8PX1RW5uLo4dO4Y9e/boyWvq\nMS0tDQkJCWhoaMCIESPg5OQEW1tbuLi4GOgQ/WC7aO2J5hoQ74NtcbfyLTqGdGSsbW/+5IwHorUk\nOq6J9llAvA/KOcaI1qvosVU0roD4sVW09uTUkWgu5OgRrQ3R2MrxQc5xTHQMEc2fnFoSHafkxEpU\nx5QpU7Bv3z5YWFjoba+trcWcOXNw4MCBDsUVEO9TovkWzZ3GVpH8iY5R9+I8R06sRP2eOnWqtg+o\n1WoolUp8+umnAICwsDB8+eWXHY6tnLFQznWDJO3+IuufhFKp1Pv/zJkztf8ODQ2VbKO7vXV7qQ+I\n68q0/rhy6/ZEROHh4dp/z5gx447yRC0f7K2pqaHCwkIaPnw4Xb9+nYiIbt68SZMnT27TptraWpo5\ncyZ9/fXXberQbG9sbKQxY8ZQc3OzUb9a++Hn52f0N2O+tScXbX2wXeq3sLAw7b9bfzBYygdRn3Xb\naIiIiCAioqamJgoODjaQHzFihOSfu7s7DR48WFLHiRMnSKlU0pEjR7TbpPKsQbTPEhF99tlnFBER\nQTk5Oe3Sodnv5cuXaf369RQYGEhr166l/fv30+HDh43KExE1NzfTsmXLKC4uTtJGDYMHDyYvLy+9\nP29vb/Ly8iIXF5cO6xDtT0T/7ctqtZp8fX2N6m8tr6G4uJi++OILiomJoXnz5knqEP1gu2jtieaa\nSLwPyunnHck30Z3HEDljrWj+RMcD3TbtrSXRcU20zxrbT1u/deQYQ9S+ehU9torGlUj82Cpae6J1\nRCSeCzl6RGtDNLZyfJBzHBMdQ0TzJ6eWRMcpObES1TFp0iSqqakx2F5dXa03vmgQjSuReJ8Szbdo\n7nS3tzd/HRmjOus8h0h+rNrrd0xMDC1dupQ++ugjioiIoHfffZeIiFatWkXR0dGSNonqkDMWyrlu\nkKLLf2eViJCSkgJnZ2f861//gqWlJYCW6QrG6N+/PzZt2oQJEybA3d0dhw8fxvDhw3HixAntlCRd\n6uvrcenSJRARbG1tcQuzhsQAABphSURBVP36dTzyyCOorq5GbW2tgXx5eblWv7m5OfLz8+Hk5ITr\n168bveMSEREBf39/9OjRA3FxcdoFLKqqqrBu3ToDebVajbNnz2LIkCGwsrJCfHw8Fi5ciJKSEjQ1\nNUnqaGxsRG1tLaytrfHSSy9pp56UlpZKfnC5qakJV69exc2bN1FZWYnTp09j6NChuHTpkt6HpzXI\nyYVarca5c+cwePBgve2aaQCtsbGxQUJCAiZMmIBRo0YhNzcXLi4uyMjIMLijKMdnoGU62uXLl+Hg\n4IB///vf2g8TX7x4UVJ+0qRJ6Nu3L6ZNm2bwW3h4uGQbT09PuLu7Y9euXfj2228RHR0t6a8G0T4L\ntNxJ8/X1xVtvvYXExEQsW7asTR2a3wYOHIhXX30VjY2NyMrKwpkzZ3DlyhX4+/vryZuamuL777+H\nr68vTExM8NZbb2HVqlVYu3atZF0ALVPyVCoVli5davCbVKyM6YiJiZHUYaw/nTp1yqjvTU1NKCws\nRL9+/bB27Vrt9vz8fMl+3prevXsjLCwMYWFhRmU0H2z38vKCmZkZgP9OUZea2iRae6K5BsT7oJx+\nLppv0TFEzlhLrSYL9e7dG6GhoUbzJzoeAOK1JDquyemzon1QzjHG1NQUR44cwfjx49tVr5pjq1qt\nbtexVTSuQMuxNSAgQHtsXbhwIYjI6LFVtPZE60jjh0gu5OjR1AYRtas2RGMrxwc5xzHRMUQ0f3Jq\nSXecOnbs2B3HKYVCge+//x7e3t7tjpXoWDhjxgxMmjQJLi4uet/RPHv2LJYvX24gLxpXQLxPieZb\nNHeaNiL5MzZGGTtvET0HAeTFtnWskpKSMGzYsDZjJeJ3bGwskpOT8fvvv2PmzJl45plnALT0G0dH\nR0mbRHXIGQtFa6mtHXVpLl26RPPnz6eAgABaunQpFRcXk0qlou3bt9OVK1ck2zQ2NtInn3xCL7zw\nAvn7+5Ofnx8FBATQ+++/T/X19QbySqWSwsPDSalUklKppKNHjxIR0axZsygpKclAPjo6Wu8vLS2N\nVCoVRUVFUUZGhqRNQ4cOpQ0bNlBZWRkRtdzJKCsr03sSqEt+fj4plUq9O2lNTU0UHx9Pf//73yXb\nJCcn06xZs/S2nThxgkaPHk0nTpwwkM/KyqKQkBB64YUX6OLFizRz5kz629/+RoGBgfTLL78YyLfO\nRVFRERUUFNDWrVvp8uXLkjbl5eVReHg4eXt7U3BwMAUFBdGYMWMoIiKCLl68aCBfXV1Nb775Jvn7\n+9OwYcPIxcWFxo8fT6+++iqpVKp2+Xzs2DEaM2aMpM9ERNnZ2RQYGEgjR46kyZMn04ULF4io5Q7U\nqVOnDOTVajW9//77VFtba/Dbxo0bJXXocuXKFXrxxRfJx8fHqEzrPjt27Fjy8vKiHTt2SPbZ1qSn\np9P06dMN7lbq8tJLLxlsk4qphhs3blB0dLSefpVKRd9++y1NmTLFaLuDBw/qxUqjY+fOnZI6Vq5c\nqdXR2NhIBQUFlJiYKKkjLy+PZsyYoe1PwcHBbfYnIqJffvmFFi9erLft8OHDNGHCBDp79qyBvIuL\ni16ttgdNrLy9vcnDw4NGjhxJY8eOpZiYGCotLTWQb117M2bMoJEjR9Kzzz4rWXu6ZGRkkFKpNLgT\n2hZXrlyhF154gZ544glqamqSlNH087q6Or1tRG3388TERG2+NflrbGyUzLdmDHn22We143lqairF\nxcVJjuetx9qUlBQqKChoc6w9efIk+fn50bRp0ygnJ4dCQkLI09OTxo8fL9kmOzubJk6cSB4eHtrx\nQK1W0+rVqyk7O1tSR+ta0vVbCs24FhAQQMOGDaMnn3ySfH19jY5rrftsY2MjffTRRxQQECDZZ4kM\n++Dw4cPJycmJVq9eTSUlJQbymmOMbq3eunWLdu7cafQYozsmqFQqbY0YGxM0x1bN8fXHH38ktVpN\ns2fPljy2So1RqampkrZoaJ3voKAgcnFxIV9fX0pPTzeQb117s2bNouHDhxs97umiGcvHjRvXppwm\nTj4+PuTk5ERDhgzRjgdSudBFrVZTTk4OzZw5s81jhtR5SGpqKi1atEiyn2tiq1ar9XLXHh88PDzI\nw8OjzTGNSPrc6/nnn6fdu3dTQ0ODUV0HDx6kmpoaA7ukxpCsrCyaNGkSRUREUFZWFs2aNYs8PDwo\nMDBQsl6zs7Np8eLFen7/8MMPNHHiRKO1JDVOac47pc51WsfqTuO/ro6AgACaMWMGFRcXExFRXFyc\n0fOpuro6SktLo0OHDtGhQ4coMzOzzbjqjs1E/60lqbgSiZ/bavIdGRlJAQEB5O/vT9OnT6fdu3dL\nnrdoctfec04i6eN3UlKS0fyJnre0PgfRxOlunucQGcbKz8+PlEol7d69m27cuNEuv9s6b5GDlI6j\nR49SYGAgZWVlGW2nVqsNxkIpH4gMrxs0cu+9957eTLE70eWfrF6/fh12dnaIj49HWloapk6dCmtr\na9TV1cHFxUXyBd2ff/4Z+fn5+OCDD5CWlobVq1fD2toaBw4cwOOPP44xY8boyZ89exYhISFYsGAB\nevbsqd3+0UcfSdrk5+eH5ORkbNiwAWlpaVi1apXWJmN3YoYMGQI/Pz8sX74cffr0QUhICFxdXY0u\ntPD8888jODgYDQ0NsLa2BgB069YN8+fPx/z58yXbLF++HCEhIVCpVFo/3N3dkZycLLkiYm1tLQYP\nHqz14+rVq3BwcEB1dTXKy8sN5D/99FPEx8cDAFJTUzFt2jTY2dlBpVLh6aefxsCBAw3aTJs2DcHB\nwXjzzTe1vtra2hpd+OiZZ55BcHAwPv74Y71cGMPc3BzFxcWYPn06Vq5cidjYWBQUFKB79+5G72jO\nmTMHwcHBBvnetGmTpPxTTz2F4OBg1NfXw8rKSu833btRuhw/flzbR27cuIHz58/DxMQE3t7eWLdu\nnUEf3Lx5M9auXYtp06YhNTUVa9asgZ2dHb766is4OzvD09PTQIebm5vWD3d3d7i5uSEvL89orEJC\nQrBu3TptvjV1UVdXJ2nTb7/9BjMzM1haWmrl77//ftTW1iImJsao36dOncLEiRMNdEi12bNnDzZv\n3gwAWr979eqFsrIySK39VlZWhpKSEtjb2+OVV17Byy+/jMbGRhQUFKCsrAyPPfaYQZvKyko88MAD\nAGBgk2ZVRV1cXFwka9VYn9WNVXJyslaHhYUFUlJS4O3tbRDbI0eO4Ouvv9b6fe3aNfTr1w8qlQpV\nVVUG+09JScHrr78OW1tbrFy5ErW1tSguLoafnx9iY2Ph7u5u0Oa1117T9s+ioiJcvHgRDz/8MMaN\nG4fY2FiDPpWamorExEQcP35cW0slJSWwtrY2+q1KXR26/ValUknmLzc3F76+viAiKBQKpKWlIT4+\nHgsWLMDp06cNxnNra2uj+29oaJC0aceOHUhISEBlZSXCw8Oxd+9eODk5obCwEC+//LL2PR4NtbW1\nuHXrlvad55UrV2r9DgwMlNSheye8tV1Ssc3JycFPP/0EW1tbbNq0CbGxsSgtLUV6ejoCAgIM3h88\ndOgQ3n33XYP919fX4+bNm5I27dmzB2+88YZem/79+yMtLQ1+fn4Gd+9LS0tRVlaGyMhIbb5LS0th\nZWWFt99+W1JHfX09ysvLERYWpl1xsqqqCk888YTk+gBz587V67exsbFYv349rKys9BZ00jBmzBgc\nPHhQ+38iws6dO7UzkTTv1OqyY8cO7Nu3DxUVFQgPD0dCQgIcHR2N5rugoABKpRIAcObMGQQGBqKg\noACzZ8/G77//brCQmK49QMvxf8eOHdrtUjZp4nTffffB0tISDg4OqKqqQlVVFdRqtWRsW6/m6eDg\nACLCkiVLJFfz1NS8ppZu3LihjVVRUZHB/hcvXox58+bprRaqyZ3U/tPT0+Hu7q7XN+Pj4+Hm5oaU\nlBRJvw8dOgQrKysEBARot+3cuRO9evVCUlKSZJsrV64gKSkJe/bskVzFtDW2traws7NDYWEhIiMj\n4eDgACsrKwwcOBB9+/Y1kLexsUFDQ4M2z7r7t7OzM5AHgGvXruHSpUvo06cP5s2bh8jISDQ3N6O+\nvh5PPvmkwblOfn4+srOz8fDDD2PVqlVYsWIF1Go1Tp48CR8fH8lFehQKBdRqNUxMTJCbm4uFCxdq\n7Wp9ngG0zCL75ptvkJqaipKSEgAts0Y8PT0RHBxscI6n6Z8//PADAP1aeuihhyT9Hj9+PN544w30\n6dMHq1evxooVK9Dc3Iy6ujrU1dUZyF+/fh0nTpzAjRs3UFRUBAcHB/zxxx84d+4cKisrtU/RNNTU\n1KC6uhr3338/mpubcfPmTe2CQ5WVlZI2/f7773rjgq4fFy5cMJhlpcnFvHnztD6o1WrteU5r0tPT\nMWLECBw5csRg/1OnTpW06fjx44iPj0diYqJenOrr6yV1AMCxY8fwwQcfoK6uDmPGjEFMTIx2FWep\nd2MrKiqQl5eHWbNmGeSirKxMUocopaWlyMnJwYgRIzB69GjExMRg7NixGDt2rKRNR48exaZNm1Bf\nX4/Ro0fjnXfe0V7zvPLKK5Lv9zo4OGivG3RZtGiR0XeCJWn3Ze2fREhIiPbO1PTp0+natWtE1PI+\nitQ8fTltlEolZWZm0syZMyk6OpoyMzON3iGXa5PufPzc3FyKiYmh8ePHU0hICEVGRnbYpnvhh64P\n06ZN08qXlJQYnbcuapOo/NSpU6mkpITOnz9P7u7ulJeXR0REBQUFRt+R6WybiOT1QQ2dFVtRm+5V\n7Yn43Trf+fn5RNR2vjvSz9tTqx3V0V6///jjDyG/5cRWV0d7a0lEx9ixYyk0NJTi4uK0f88884z2\n362RM+botmn9BEzqPRw5Y0hn50/uWCtqkxy/Nfu9dOkSrV+/noiIjh8/3q7Y3slv0f6hsUlDe/It\npWP06NFGdci1SSROctrIqaWO7r+tON2rWHW2PFHLe3iFhYWUlZVFXl5e2tooLS2lSZMmdVhejl1L\nliyhrVu30i+//ELXrl2jq1evUmZmJm3cuJFefvllA3k5uRD1Q9QHOXES9UNUx72IE1HL+5nl5eXU\n3NxMn3/+OU2ePJmqqqqISHqckqNDFF2bDhw4cEebROWJiPbv32/0T2R2WJd/strU1KR9sti9e3ft\nstI9evQweDfJWJt+/fq12UahUGDYsGHYu3cvzpw5gy+//BIxMTGwtrZGz549sXv37g7bpLvd2dkZ\nzs7OAICSkhLJpzuiNt0NP+4UJ100K2YCLU8ZjD11ErVJVN7MzAy9evVCr1698MADD8DJyQkA0K9f\nP6Pf1+tsm+TEVnfef2fFVrTf3o3au1MbUb9b51vzLkZb+Ra1SbRWpXTc7VoyMzODvb097O3t2+23\nnNjq6mhvLYnoOHToEOLj4/Hbb78hOjoa/fr1w8mTJxEVFSW5f13aWxc2NjbYtm0bysvL0b9/f6xb\ntw6enp44ffq05GwNOWOIqF1y8ifqd0drqT1+3759W7vfRx99FL/99huAlhkxcXFxd9RxJ7/l9A/R\nfIvqkGOTaJzktBG1q7P3L7eNqF2dLQ+0zNjq27cv+vbtC3t7e21t2NnZSb5jLiovx67S0lJs27ZN\nb1v//v0xbNgw7UwBXeTkQtQPUR/kxEnUD1Ed9yJOQMvMyB49egAAJk+eDFtbW8yZMwe7du2SfO9T\njg5RdG2aMmUKevbs2aZNovJAy2fvRo4cCXt7e4PfjK2NIEWXv1jVLKc/atQo9OjRAwsWLICrqysy\nMjKMLpjRus3ChQvbbCN6cirHpokTJ0pu15zAdNSmu+HHneJ04cIFLF68GESEq1evIikpCf7+/vjw\nww/RvXv3u2KTqLzoicq9sAnomrEV7bd3o/bu1EbUbzn5FrVJtFaldNztfMvxuyvqsLCwwNKlS3H5\n8mVs2LABrq6uRqdFytk/AGzZsgWJiYlwdHREQEAAvv32W/z8888YMGCA9pMEXT22cvy+F/l+/PHH\nsWzZMri4uODkyZPaqairV6/GoEGDOqxDtH8A4vkW1SHHJtE4yWkjaldn719uG1G7OlseAHr27Il/\n/OMfep+EKS4uxocffig5hVZUXo5dxha8+v777yVfeZKTC1E/RH2QEydRP0R13Is4AS2vbc2dOxfb\nt2+HpaUlxo4dCwsLC8yaNQsVFRV3RYcoojaJygMtr2loXhdq3U8zMjLabWuX/84q0DJ3OzU1FYWF\nhSAi2NnZYdSoUW1+3FqkzVdffYXQ0NBOt0kEOTZ1th+ZmZl6/x8wYAB69+6Nf/7zn/D29tY+WeqI\nTaLydXV1SExMxIMPPqg9UcnOzsaAAQMwZcoUyXc/OtsmDV0ttqI2yZHvbL/l5FuuH6J0Nb+7oo7W\nHDx4EMePHzd4YnC39t8eumJs5fh9L/JNRNoVJx9//HHtipP5+flwdHQ0uLsut1413Kl/3A1EdbRH\nXjROctuI2NXZ+5fbRtSuzpYHgIaGBvz00096796eO3cOWVlZeP755w2ebInKy7GruLgY27dvR2Zm\npnZlXmtra4wcORJRUVFGb6RqaE8uRP0Q9UFOnET96KiOzoiThoyMDAwfPlwvLjU1NTh8+DAmT558\nV/1oLyI2yZEHWt7ht7CwMFijR+rLDsb4S1ysMgzDMAzDMAyjj9BCNQzzF6TLTwNmGIZhGIZhmP9X\nPvnkE6O//fHHH/fQEoa59/DFKsMwDMMwDMN0Ue7WQjUM81eEL1YZhmEYhmEYpotytxaqYZi/IvzO\nKsMwDMMwDMN0Ye7GQjUM81eEL1YZhmEYhmEYhmGYLofJnUUYhmEYhmEYhmEY5t7CF6sMwzAMwzAM\nwzBMl4MvVhmGYRjmHlFfX48ffvjhzzaDYRiGYf4S8MUqwzAMw9wjfv31V75YZRiGYZh2wgssMQzD\nMP/zZGRk4N1330Xfvn1RWFiI7t27Y9u2bbj//vtx+PBh7N+/H0QEW1tbvPbaa3jwwQfh5uaG0NBQ\nqNVqrF27FvHx8UhOToaJiQkmTpwIpVKJoqIixMbGor6+HnV1dVi2bBk8PDwQHR0Ne3t7nD9/Hleu\nXEFoaCjCw8MRFBSEqqoqBAUFISoqCitXrkRFRQVqa2vh5+eHF198EUSEDRs2ICcnB3Z2dnjooYfw\n4IMPYunSpUhPT8eOHTtARDA1NcXGjRvxyCOP6Pn69ttvIz09Hebm5ujduze2bNkCU1NTvPbaazh7\n9iwAYPbs2fD390dOTg42b94MU1NTKBQKrFu3DoMGDUJ4eDicnJyQl5eHhIQEZGVl3VEvwzAMw9x1\niGEYhmH+x0lPTydnZ2cqLi4mIqIVK1ZQQkICFRUV0YQJE+jWrVtERLR371564403iIjI0dGRUlJS\niIgoKyuLwsLCqKmpiW7fvk1z586lyspKioyMpLS0NCIiKikpIS8vL2psbKSVK1fSkiVLiIiooKCA\n3NzciIjo66+/puXLlxMR0bVr1ygxMZGIiG7dukVubm5UXV1NP//8M4WEhFBTUxPV1tbSuHHjaOvW\nrVRXV0e+vr5UXl5ORERHjx6lqKgoPT8rKipo6NCh1NTURERE3333HRUWFlJiYiItWrSIiEhrd1NT\nE/n6+lJOTg4REf3000+kVCqJiEipVNLWrVuJiNqll2EYhmE6A9M/+2KZYRiGYe4FgwYNQu/evQEA\nbm5uyMvLg52dHUpLSzFnzhwAwO3bt/Hwww8DAIgIbm5uAICcnBw89dRT6NatG7p164Zdu3YBaHli\nW1tbix07dgAATE1NoVKpAADDhw8HAPTr1w81NTVobm7Ws6dnz544deoUDhw4ADMzM9y6dQsVFRXI\ny8vD008/jW7dusHKygqenp4AgAsXLqC0tBSLFi0CADQ3N0OhUOjt08bGBp6enlAqlRg3bhwCAgLw\n0EMPITc3F+7u7gCABx54ALt370ZVVRVUKhVcXFy09i5btky7L43v7dHLMAzDMJ0BX6wyDMMw/xeQ\nzlsvRASFQgFzc3O4uLjg/fffl2xjZmYGAFAoFHrtNZibmyMuLg62trYGv5ma6h9iW7dPSEjA7du3\n8dlnn0GhUGgvJtVqNUxM/rukhObf5ubm6Nu3Lz7++OM2/Xzvvfdw6dIlHD9+HEqlEnFxcVAoFFCr\n1XpyrS84W9un8b29ehmGYRjmbsMLLDEMwzD/F1y+fBklJSUAgFOnTsHR0RHOzs7Izc1FaWkpACAp\nKQk//vijQVtXV1ekpaWhsbERTU1NCA8PR0lJCZ566ikkJSUBAG7evInXX3+9TRtMTEzQ1NQEAFCp\nVHjsscegUCiQnJyMhoYG3L59Gw4ODjh9+jSICPX19UhJSQEAPProoygvL8f58+cBAFlZWfj888/1\n9n/9+nXs3bsXjz32GCIiIjBu3Djk5+fD1dUVJ0+eBADU1NQgLCwMFhYW6NWrF3JycgAAaWlpGDp0\nqIHN7dHLMAzDMJ0BP1llGIZh/i8YNGgQtm7diqtXr8LGxgZBQUGwsrLCmjVrMHfuXNx3332wtLTE\nli1bDNq6urrC19cX06dPBwA8++yzsLe3x5o1a7Bu3Tp89913uH37NubPn9+mDc7Oznj77bexatUq\nzJgxA8uWLUNKSgp8fHwwYcIErFixAl988QW+++47TJo0CX369IGrqytMTU1haWmJt956C2vWrIGF\nhQUAYMOGDXr77927N3799VeEhobC2toaNjY2iIqKgqWlJbKzszF16lQ0Nzdj9uzZMDc3x5YtW7B5\n82Z069YNJiYmWL9+vYHN7dHLMAzDMJ0BrwbMMAzD/M+jWQ34s88++7NNuSPV1dX48ccfERQUBIVC\ngXnz5uG5557Dc88992ebxjAMwzD3FH6yyjAMwzBdCGtra2RnZ2Pfvn2wsLDAwIED4efn92ebxTAM\nwzD3HH6yyjAMwzAMwzAMw3Q5eIElhmEYhmEYhmEYpsvBF6sMwzAMwzAMwzBMl4MvVhmGYRiGYRiG\nYZguB1+sMgzDMAzDMAzDMF0OvlhlGIZhGIZhGIZhuhx8scowDMMwDMMwDMN0Of4DUH5V4TsJJJQA\nAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
+ },
+ "execution_count": 175,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data['race/ethnicity'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 449
+ },
+ "colab_type": "code",
+ "id": "G5B9KxHRW_D0",
+ "outputId": "c0a96572-aa93-4161-8ed9-1f8f48945ac2"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAGwCAYAAABSAee3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlYVPXiBvB3ZthEEUTBJZe01FQQ\nBcXcLu7gGrlviKZZ/ayUDMUlE5WUMDOT1KxEQa+muXDVUtzyloAZIi6VqY8LigiyL8Ywc35/eD2J\noI7kcM4X38/z+DzOYRze+crhne9ZNZIkSSAiIiIhaZUOQEREROXHIiciIhIYi5yIiEhgLHIiIiKB\nsciJiIgExiInIiISGIucKgVJkrBu3ToMGDAA3t7e6NWrF+bPn4/c3Fylo5UQFRWF5cuXK/b9c3Nz\n8corr6BPnz7IzMws8bXPP/8c7dq1g4+PD3x8fODt7Y0PP/wQhYWFFZKtqKgIO3fufOzztm/fjvHj\nx5danpycjObNm8v57/+Tmppa6vm7du2Cn5/f04heyrfffiv/3cfHB+np6Wb5PkQAYKF0AKKnYenS\npTh+/Di+/vpr1K5dGwUFBQgJCcEbb7yBjRs3QqPRKB0RADB27FhFv/8ff/yBrKws/Pjjj2V+3dvb\nGyEhIQDuFuu0adMQHh6O999/3+zZzp07h507d8LX17fcr6HT6fDDDz88xVRPLi0tDV999RWGDx8O\nAIrnocqPM3ISXlZWFiIjI7FkyRLUrl0bAGBra4t58+Zh0qRJkCQJf/31F+bNmwdvb2/07dsXS5Ys\ngcFgAAD06NEDkZGRePXVV9GpUyfs378fwcHB6NWrF4YPH47s7GwAQPPmzbFhwwa88sor6NixI/79\n73/LGcLDw+UtAW+88QZycnIA3J3lzp07F0OHDkVERAQ+//xzzJkzBwDw/fffY8CAAejbty8GDhyI\n+Ph4AMCNGzcwceJEeHt7Y8CAAfIsNTk5GV26dMGGDRswcOBAdO3aFXv37i1zTOLj4/Hqq6/Cx8cH\nw4YNw+nTp3Hjxg28//77uH37Nnx8fJCRkfHIcbWyssKIESPw888/AwDS09MxceJE+Pj4oEePHli3\nbp383B49emDlypXw9vbGjRs3cPPmTbz55pvw9vaGt7e3/MHhYe8hPT0db7/9NhITEzF69GgAwMGD\nBzFw4EB4e3tj8ODB+O2330z9kSiT0WjEggUL0K1bNwwdOhS///67/DU/Pz/s2rWrzMdHjx5F//79\n4e3tjTfeeANZWVmPzDdy5EjcuHEDPj4+KCoqQvPmzXHz5k0AwIYNG9CvXz/4+Pjgrbfekv8PgoKC\nsGLFCkyYMAHdu3fHhAkTKmxLCFUCEpHgjhw5IvXu3fuRz1mzZo30+uuvS3q9XiosLJSGDBki7dy5\nU5IkSerevbv0wQcfSJIkSZGRkZKbm5sUFxcnGY1GaciQIdK3334rSZIkNWvWTFqwYIEkSZJ08eJF\nycXFRcrIyJBOnz4tdezYUcrNzZUMBoM0fvx4KTw8XJIkSVqxYoXUpUsX6fbt2/Lj2bNnS5IkSR06\ndJCSk5MlSZKkX375Rfroo48kSZKk1157TVq9erUkSZKUnJwseXh4SNeuXZOuXbsmtWzZUoqMjJQk\nSZL27t1b5vvOy8uTOnToIJ04cUKSJEn64YcfpD59+kgGg0GKi4uTevXqVeYY3Z/tnpiYGGn48OGS\nJEnSggULpHnz5kmSJElXr16VWrVqJd24cUMew7lz58r/bty4cdKnn34qSZIkXb58WfL09JQyMjIe\n+R6+++47yd/fX5IkSdLr9VK7du2kkydPSpIkSZ9//rn8tfufd79r165JLVq0KPO9SdLdn5M+ffpI\neXl5UmFhoTR06FBp7NixkiRJ0tixY+Wfh/sf5+fnS56entIff/whSZIkLVq0SJo/f/4j8z04xs2a\nNZNSUlKkkydPSv/617+k9PR0eTzvjffMmTOlvn37SpmZmZJer5cGDRok7dq166Hvheh+nJGT8LKy\nslCzZs1HPufIkSMYPnw4LCwsYGNjg4EDB8ozTQDo2bMnAKBZs2awtrZGhw4doNFo0LRpU9y6dUt+\n3pAhQwAATZo0QePGjZGUlAQXFxccOXIE1apVg1arRdu2bXHt2jX537i5ucHR0bFUppo1a2Lz5s24\nfv062rVrh1mzZkGv1+PYsWPyrPS5555Dhw4dEBcXBwAoLi7G4MGDAQCtWrXCjRs3Sr1uUlIS6tSp\nAw8PDwB3N5dnZmbi+vXrjx/M++Tl5WHTpk3o3bs3AGDu3Ln44IMPAAANGjSAk5MTkpOT5ed369YN\nAFBQUID4+Hh5P3ajRo3g4eEhz8pNeQ8WFhY4duwY2rRpAwBo165diTF9GIPBUGr/eEBAAADgl19+\ngZeXF6pWrQobGxv07dv3sa+XkJCAOnXqoFmzZgCAwMBAzJo1q1z5jhw5Am9vb/lnddiwYSV+Br28\nvODg4AALCws0a9YMKSkpj81HBHAfOVUCNWrUKPNgpvtlZGTA3t5efmxvb4/bt2/Lj6tWrQoA0Gq1\n8t/vPTYajSX+3f1/z8nJQWFhIRYvXixvGs/OzpZL7cF/c79Vq1Zh1apVGDx4MOrWrYvZs2ejcePG\nkCQJdnZ28vOqV68ub4LV6XSwtbUtM9v977V69eolltnZ2ZV4vw+zb98+/PrrrwAAS0tL9O7dWy7k\n06dP45NPPkFKSgq0Wi3S0tLKHJvc3FxIkoSRI0fKXysoKMDLL79s8nsAgMjISOzYsQNFRUUoKioy\n6TiHR+0jz87OhrOzs/z4wTEqS2ZmZonnWVlZlTtfRkZGqe9////J/f/nOp1O3vVD9DgschJemzZt\ncPv2bZw9exatWrWSl+v1eqxcuRJvvvkmatWqJe/bBO7O4mvVqvXE3yszMxPPPfec/Br29vZYv349\nLl++jO3bt6Nq1ar49NNPH/vBAgAaNmyIxYsXw2g0YufOnZg+fToOHz4MrVaL7OxsuRhN2eJwv5o1\na5Z4r5IkITs7GzVr1ixz9nu/+w92e1BgYCD8/f0xatQoaDQadO3a9aHfX6fT4bvvvivxoQhAiRn8\noyQkJGDt2rXYunUr6tevj59//lneGlBe1atXL3EWw/3HCDz4geLecRE1atQocXR/YWEhsrOzcePG\njSfO97R+BokexE3rJLzq1atj0qRJmDlzJq5cuQLg7i/cefPm4dy5c6hSpQq6deuGbdu2wWAwoKCg\nALt27YKXl9cTf689e/YAAC5evIgrV67Azc0Nt2/fRpMmTVC1alVcv34dP/74IwoKCh75OhkZGZgw\nYQLy8vKg1Wrh5uYGjUYDCwsLdOnSBVu2bAEAXL16FSdOnECnTp1Mzti6dWukp6fj5MmTcuY6deqg\nfv36T/x+73f79m24uLhAo9Fgx44dKCwsLPN9WlhYwMvLC5s3bwZw9/9i1qxZj91UbGFhgby8PEiS\nhIyMDNSsWRP16tVDYWEhduzYgYKCAkj/4GaNbdu2xU8//YTCwkIUFhaWmLk7OTnJB7+dPHkSly9f\nBgB4eHggLS0NSUlJAIAvvvgC4eHhj8xnYWGBgoICFBcXl/j+3bp1Q0xMjPzBYPPmzeX6GSR6EGfk\nVCm88847sLe3x1tvvQWDwQCtVouePXti/vz5AO4ehXzt2jX0798fGo0GPj4+Ju0jfZCjoyNeeeUV\npKamYu7cubC3t8fIkSPx7rvvwtvbG82bN0dQUBDeeecdREREPPJ1unbtiiFDhkCn08HS0lKeCQcH\nB2Pu3LnYvn07LC0tsWjRItStW9fk2aytrS2WL1+OhQsXoqCgAI6Ojli2bNk/PgVv6tSpmDJlChwc\nHDBy5EiMGDECH3zwATZt2lTqufPnz8eHH36IrVu3AgAGDRr02Pfg4eGBpUuXomvXrti/fz82bdqE\nXr16oXbt2pg9ezZOnTqFd999F927d3/oa9zbR/6g6dOno0ePHjhy5Ah8fHxQq1YteHl54cSJEwCA\nCRMm4L333sPRo0fh6emJzp07AwCqVKmCzz//HIGBgQDu7u9fsmQJqlat+tB8ixcvhr29PTp37owd\nO3bIGVq3bo3JkydjzJgxMBqNaNGihfzzSfRPaKR/8hGX6BnSvHlz/Pjjj6hTp47SUYiIZNy0TkRE\nJDAWORERkcC4aZ2IiEhgnJETEREJjEVOREQkMCFPP0tLU9etKQGgRg1bZGY++txhuotjZRqOk2k4\nTqbjWJlGjePk5GT30K9xRv6UWFjolI4gDI6VaThOpuE4mY5jZRrRxolFTkREJDAWORERkcBY5ERE\nRAJjkRMREQmMRU5ERCQwFjkREZHAWOREREQCY5ETEREJjEVOREQkMBY5ERGRwFjkREREAmORExER\nCUzIu589Ta8tOaR0hFK+CeqhdAQiIhIEZ+REREQCY5ETEREJjEVOREQkMBY5ERGRwJ75g93INFMO\nzVA6QinhPT5WOgIRkeI4IyciIhIYi5yIiEhgLHIiIiKBsciJiIgExiInIiISGIuciIhIYCxyIiIi\ngbHIiYiIBMYiJyIiEhiLnIiISGAsciIiIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKBsciJiIgE\nxiInIiISGIuciIhIYCxyIiIigbHIiYiIBMYiJyIiEhiLnIiISGAsciIiIoFZmPPFP/74Y/z6668o\nLi7GG2+8AVdXV8yYMQMGgwFOTk4ICwuDlZUVoqOjsX79emi1WgwfPhzDhg0zZywiIqJKw2xFHhcX\nhz///BNbtmxBZmYmXn31VXTs2BGjR49G3759sWzZMmzbtg2+vr4IDw/Htm3bYGlpiaFDh6J3795w\ncHAwVzQiIqJKw2yb1tu3b4/PPvsMAFC9enUUFhYiPj4ePXv2BAB0794dsbGxOHXqFFxdXWFnZwcb\nGxu4u7sjISHBXLGIiIgqFbMVuU6ng62tLQBg27Zt+Ne//oXCwkJYWVkBAGrWrIm0tDSkp6fD0dFR\n/neOjo5IS0szVywiIqJKxaz7yAHgwIED2LZtG7755hv06dNHXi5JUpnPf9jy+9WoYQsLC91Ty6g2\nTk52SkcQwrMwTs/Ce3waOE6m41iZRqRxMmuR//e//8Xq1avx1Vdfwc7ODra2trhz5w5sbGyQmpoK\nZ2dnODs7Iz09Xf43t27dQps2bR75upmZBeaMrbi0tFylIwihso+Tk5NdpX+PTwPHyXQcK9OocZwe\n9cHCbJvWc3Nz8fHHH2PNmjXygWudOnXCvn37AAD79+9H165d4ebmhtOnTyMnJwf5+flISEhAu3bt\nzBWLiIioUjHbjHzv3r3IzMzEtGnT5GVLlizB3LlzsWXLFtSrVw++vr6wtLTE9OnTMXHiRGg0GkyZ\nMgV2duJs0iAiIlKS2Yp8xIgRGDFiRKnl69atK7XMx8cHPj4+5opCRERUaZn9YDeiZ8n5SeOf3ms9\ntVcCmn0V8RRfjYjUhJdoJSIiEhiLnIiISGAsciIiIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKB\nsciJiIgExiInIiISGIuciIhIYCxyIiIigbHIiYiIBMYiJyIiEhiLnIiISGAsciIiIoGxyImIiATG\nIiciIhIYi5yIiEhgLHIiIiKBsciJiIgEZqF0ACJ6Nq1ackTpCKW8FdRN6QhET4wzciIiIoGxyImI\niATGIiciIhIYi5yIiEhgLHIiIiKBsciJiIgExiInIiISGIuciIhIYCxyIiIigbHIiYiIBMYiJyIi\nEhiLnIiISGAsciIiIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKBsciJiIgExiInIiISGIuciIhI\nYCxyIiIigbHIiYiIBMYiJyIiEhiLnIiISGAsciIiIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKB\nsciJiIgExiInIiISGIuciIhIYGYt8vPnz6NXr16IiooCAAQFBWHgwIHw8/ODn58fjhw5AgCIjo7G\nkCFDMGzYMGzdutWckYiIiCoVC3O9cEFBARYuXIiOHTuWWP7ee++he/fuJZ4XHh6Obdu2wdLSEkOH\nDkXv3r3h4OBgrmhERESVhtlm5FZWVli7di2cnZ0f+bxTp07B1dUVdnZ2sLGxgbu7OxISEswVi4iI\nqFIxW5FbWFjAxsam1PKoqCiMGzcOAQEByMjIQHp6OhwdHeWvOzo6Ii0tzVyxiIiIKhWzbVovyyuv\nvAIHBwe0aNECX375JVauXIm2bduWeI4kSY99nRo1bGFhoTNXTMU5OdkpHUEIahyn80oHeAg1jpUa\nPQvj9Cy8x6dBpHGq0CK/f395jx49MH/+fHh7eyM9PV1efuvWLbRp0+aRr5OZWWC2jGqQlpardAQh\ncJxMx7EyTWUfJycnu0r/Hp8GNY7Toz5YVOjpZ++88w6uXbsGAIiPj0fTpk3h5uaG06dPIycnB/n5\n+UhISEC7du0qMhYREZGwzDYjP3PmDEJDQ3H9+nVYWFhg3759GDt2LKZNm4YqVarA1tYWixcvho2N\nDaZPn46JEydCo9FgypQpsLMTZ5MGERGRksxW5C4uLoiMjCy13Nvbu9QyHx8f+Pj4mCsKERFRpcUr\nuxEREQmMRU5ERCQwFjkREZHAWOREREQCY5ETEREJjEVOREQkMBY5ERGRwFjkREREAmORExERCYxF\nTkREJDAWORERkcBY5ERERAJjkRMREQmMRU5ERCQwFjkREZHAWOREREQCY5ETEREJjEVOREQkMBY5\nERGRwFjkREREAmORExERCYxFTkREJDAWORERkcBMKvKgoKBSyyZOnPjUwxAREdGTsXjUF6Ojo7F5\n82b8+eefGDNmjLxcr9cjPT3d7OGIiIjo0R5Z5IMGDUKHDh3w/vvv45133pGXa7VavPjii2YPR0RE\nRI/2yCIHgNq1ayMyMhK5ubnIysqSl+fm5sLBwcGs4YiIiOjRHlvkALBo0SJ89913cHR0hCRJAACN\nRoODBw+aNRwRERE9mklFHh8fj7i4OFhbW5s7DxERET0Bk45ab9SoEUuciIhIhUyakdepUwdjxoyB\nh4cHdDqdvHzq1KlmC0ZERESPZ1KROzg4oGPHjubOQkRERE/IpCL/v//7P3PnICIionIwqchbtmwJ\njUYjP9ZoNLCzs0N8fLzZghEREdHjmVTkv//+u/z3oqIixMbG4o8//jBbKCIiIjKNSUV+PysrK3h5\neeGbb77B5MmTzZGJiIj+5+rJBU/vtZ7S6zRsO+8pvRI9DSYV+bZt20o8vnnzJlJTU80SiIiIiExn\nUpH/+uuvJR5Xq1YNy5cvN0sgIiIiMp1JRb548WIAQFZWFjQaDezt7c0aioiIiExjUpEnJCRgxowZ\nyM/PhyRJcHBwQFhYGFxdXc2dj4iIiB7BpCL/5JNP8MUXX6BZs2YAgHPnziEkJAQbN240azgiIiJ6\nNJOuta7VauUSB+6eV37/pVqJiIhIGSYX+b59+5CXl4e8vDzs3buXRU5ERKQCJm1aDw4OxsKFCzF3\n7lxotVq89NJLWLRokbmzERER0WOYNCP/+eefYWVlhV9++QXx8fGQJAk//vijubMRERHRY5hU5NHR\n0Vi5cqX8+JtvvsHu3bvNFoqIiIhMY1KRGwyGEvvENRoNJEkyWygiIiIyjUn7yHv06IGRI0fCw8MD\nRqMRcXFx6NOnj7mzERER0WOYfD9yT09PJCUlQaPR4MMPP0SbNm3MnY2IiIgew+S7n7Vr1w7t2rUz\nZxYiIiJ6QibtIyciIiJ1YpETEREJjEVOREQkMBY5ERGRwMxa5OfPn0evXr0QFRUFAEhJSYGfnx9G\njx6NqVOnoqioCMDdC84MGTIEw4YNw9atW80ZiYiIqFIxW5EXFBRg4cKF6Nixo7xsxYoVGD16NDZt\n2oRGjRph27ZtKCgoQHh4OCIiIhAZGYn169cjKyvLXLGIiIgqFbMVuZWVFdauXQtnZ2d5WXx8PHr2\n7AkA6N69O2JjY3Hq1Cm4urrCzs4ONjY2cHd3R0JCgrliERERVSomn0f+xC9sYQELi5IvX1hYCCsr\nKwBAzZo1kZaWhvT0dDg6OsrPcXR0RFpamrliERERVSpmK/LHedi12k25hnuNGrawsKi890N3crJT\nOoIQ1DhO55UO8BBqHCs1UuM4XVU6QBnUOE5Pm0jvsUKL3NbWFnfu3IGNjQ1SU1Ph7OwMZ2dnpKen\ny8+5devWYy//mplZYO6oikpLy1U6ghA4TqbjWJmG42Sayj5OTk52qnuPj/pgUaGnn3Xq1An79u0D\nAOzfvx9du3aFm5sbTp8+jZycHOTn5yMhIYGXgiUiIjKR2WbkZ86cQWhoKK5fvw4LCwvs27cPS5cu\nRVBQELZs2YJ69erB19cXlpaWmD59OiZOnAiNRoMpU6bAzk6cTRpERERKMluRu7i4IDIystTydevW\nlVrm4+MDHx8fc0UhIiKqtHhlNyIiIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKBsciJiIgExiIn\nIiISGIuciIhIYCxyIiIigbHIiYiIBMYiJyIiEhiLnIiISGAsciIiIoGxyImIiATGIiciIhIYi5yI\niEhgLHIiIiKBsciJiIgExiInIiISGIuciIhIYCxyIiIigbHIiYiIBMYiJyIiEhiLnIiISGAsciIi\nIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKBsciJiIgExiInIiISGIuciIhIYCxyIiIigbHIiYiI\nBMYiJyIiEhiLnIiISGAsciIiIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKBsciJiIgExiInIiIS\nGIuciIhIYCxyIiIigbHIiYiIBMYiJyIiEpiF0gGIiIiehtm//Kl0hFI+at/U7N+DM3IiIiKBsciJ\niIgExiInIiISGIuciIhIYCxyIiIigbHIiYiIBFahp5/Fx8dj6tSpaNr07uH4zZo1w6RJkzBjxgwY\nDAY4OTkhLCwMVlZWFRmLiIhIWBV+HrmnpydWrFghP541axZGjx6Nvn37YtmyZdi2bRtGjx5d0bGI\niIiEpPim9fj4ePTs2RMA0L17d8TGxiqciIiISBwVPiO/cOEC3nzzTWRnZ+Ptt99GYWGhvCm9Zs2a\nSEtLq+hIREREwqrQIn/++efx9ttvo2/fvrh27RrGjRsHg8Egf12SJJNep0YNW1hY6MwVU3FOTnZK\nRxCCGsfpvNIBHkKNY6VGahynq0oHKIMax0mtKmKsKrTIa9eujX79+gEAGjZsiFq1auH06dO4c+cO\nbGxskJqaCmdn58e+TmZmgbmjKiotLVfpCELgOJmOY2UajpNpOE6me1pj9agPBBW6jzw6Ohpff/01\nACAtLQ23b9/G4MGDsW/fPgDA/v370bVr14qMREREJLQKnZH36NED77//Pg4ePAi9Xo/58+ejRYsW\nmDlzJrZs2YJ69erB19e3IiMREREJrUKLvFq1ali9enWp5evWravIGERERJWG4qefERERUfmxyImI\niATGIiciIhIYi5yIiEhgLHIiIiKBsciJiIgExiInIiISGIuciIhIYCxyIiIigbHIiYiIBMYiJyIi\nEhiLnIiISGAsciIiIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKBsciJiIgExiInIiISGIuciIhI\nYCxyIiIigbHIiYiIBMYiJyIiEhiLnIiISGAsciIiIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKB\nsciJiIgExiInIiISGIuciIhIYCxyIiIigbHIiYiIBMYiJyIiEhiLnIiISGAsciIiIoGxyImIiATG\nIiciIhIYi5yIiEhgLHIiIiKBsciJiIgExiInIiISGIuciIhIYCxyIiIigbHIiYiIBMYiJyIiEhiL\nnIiISGAsciIiIoGxyImIiATGIiciIhIYi5yIiEhgLHIiIiKBsciJiIgEZqF0gHs++ugjnDp1ChqN\nBrNnz0br1q2VjkRERKR6qijy48eP48qVK9iyZQsuXryI2bNnY8uWLUrHIiIiUj1VbFqPjY1Fr169\nAAAvvPACsrOzkZeXp3AqIiIi9VNFkaenp6NGjRryY0dHR6SlpSmYiIiISAwaSZIkpUN88MEH8PLy\nkmflo0aNwkcffYTGjRsrnIyIiEjdVDEjd3Z2Rnp6uvz41q1bcHJyUjARERGRGFRR5J07d8a+ffsA\nAGfPnoWzszOqVaumcCoiIiL1U8VR6+7u7mjVqhVGjhwJjUaDDz/8UOlIREREQlDFPnIiIiIqH1Vs\nWiciIqLyYZETEREJjEVOREQkMBb5P3Dz5k2cOHECAFBUVKRwGnXjWNE/VVhY+Mg/VDaue49XXFyM\n3bt34+uvvwYAnD9/Hnq9XuFUpuPBbuUUERGBH374AQUFBYiOjkZISAicnJwwefJkpaOpDsfq0V5+\n+WVoNBoAwIOro0ajQWxsrBKxVKdHjx7QaDSlxgi4O04HDx5UIJW6cd0zzaxZs+Do6Ijjx49j69at\niIqKQkJCApYtW6Z0NNNIVC5jxoyRJEmSxo4dK0mSJBmNRmn48OFKRlItjhWZQ1ZWlpSTk6N0DFXj\numcaf39/SZL+HidJ+nvsRKCK88hFZDAYAECeSf31118oLi5WMpJqcaxM89tvv+Gjjz7C1atXYTAY\n0KxZM8yZMwcvvPCC0tFU5dixYwgODoa1tTX0ej20Wi0WLFgADw8PpaOpDtc90+j1euTk5MjjdPHi\nRaF2Q3DTejlt3LgR+/btw5UrV9CtWzfEx8dj3LhxGD16tNLRVKessfL398eoUaOUjqYqY8aMwaxZ\ns+Di4gIASExMxLJly7BhwwaFk6nLyJEjsWLFCjg7OwMAUlJSMH36dGzatEnhZOrDdc80J06cQEhI\nCC5fvow6deoAAEJCQuDu7q5wMtOwyP+B5ORkJCUlwcrKCq1atULdunWVjqRaHKvHGzduXKnS9vf3\nx/r16xVKpE5+fn6IjIwssayssaO7uO6Z7vbt27C0tET16tWVjvJEuGm9nGbNmlXi8cGDB6HT6dCw\nYUOMHDlSuB8Ec8rLy8Pu3btx+/ZtzJkzB3FxcahatSrH6AHVq1fHV199BU9PTwBAXFwc7O3tFU6l\nPvXr10dwcDA8PT0hSRLi4uLj+jX5AAAd5klEQVTQsGFDpWOpEtc905w/fx5LlixBfn4+tmzZgoiI\nCLRv3x6tWrVSOppJePpZOdWoUQOFhYXo2LEjOnXqhOLiYtjZ2QEApk+frnA6dQkKCkL16tVx+vRp\nAEBGRgbHqAxLlizBX3/9hdWrV2PNmjUwGo1YvHix0rFUZ+HChXBzc0NCQgISExPRvn17BAcHKx1L\nlbjumWbhwoWYM2cOrKysAABdunTBokWLFE5lOhZ5OZ09exbLly/HoEGDMHDgQISFheHPP//E5MmT\neU7rA/Lz8zF69GhYWloCAPr164c7d+4onEp9qlWrhnbt2sHT01P+U7VqVaVjqY4kSTAajSVOQ7t3\nkBKVxHXPNBYWFiUOKn3xxReh1YpTj9y0Xk45OTk4ePAg2rZtC61WizNnziA1NRXnz5/nivIAo9GI\nq1evyr9sjx49CqPRqHAq9QkJCUFycjI8PT1RVFSEL774Aq1atUJAQIDS0VRl9uzZsLe3h6enJ/R6\nPY4fP474+HihZlAVheueaezs7LBt2zYUFhbi1KlTiImJQc2aNZWOZTIe7FZOf/zxB8LDw3Hx4kVI\nkoSGDRvirbfeAgBYWVmhRYsWCidUj4sXL2LhwoVISkqCra0tmjdvjtmzZ/O0qgeMGTMGGzduLLFs\n7NixiIqKUiiROvFgN9Nx3TNNfn4+1q9fj5MnT8LS0hJubm4YO3asMFvEOCMvp+bNm2Pp0qVITU1F\ngwYNlI6jaomJiYiIiFA6huoVFxfjzp07sLGxAQAUFBTI5wHT3/R6PVJTU1G7dm0Ady9BynOjy8Z1\nzzSffvop5s6dq3SMcmORl9OePXuwatUqAMDu3buxaNEiuLi4wNfXV+Fk6vPzzz+jTZs2nAU8hr+/\nPwYNGoTnn39e3iQaGBiodCzVCQgIwPjx46HVamE0GuULwlBpXPdMI0kStmzZgtatW8vHEwB395WL\ngJvWy2n06NGIiIjAxIkTERkZib/++gt+fn749ttvlY6mOn369EFycjKqVKkiryS8hnjZCgoKcPny\nZWi1WjRq1AhVqlRROpJqZWdnQ6vVymeLUGlc90zj5+dXaplGoxFmdw1n5OWk0+lgZWUlH0Ry77QF\nKm3//v1KRxDCTz/9hM2bNyM3N7fEEdmi/DKpKNu3b0dkZGSpceJNU0rjumeaB4+5EA2LvJzc3d0R\nGBiI1NRUfPnllzh06BA6duyodCxVGjduXKllOp0ODRo0wOTJk1G/fn0FUqlPSEgI5syZI+/7pbJ9\n/fXXWLlyJcfJBFz3TOPl5YW0tDTodDpoNBoYDAY4ODjA3t4es2fPRpcuXZSO+Egs8nIKCAjAiRMn\n0KxZM1hZWWHmzJlo27at0rFUycPDA0VFRfJtKI8ePQoAaNq0KWbNmiX8p+GnpVGjRqr/haEGL7zw\nAho3bqx0DCFw3TNN37598fLLL8PLywvA3a1jCQkJGDlyJN555x3Vr5cs8if04OlBtra2AIBz587h\n3LlzGDNmjBKxVO3EiRMlfmG4u7vjtddew7Rp03ijC/z9M1W7dm1MnToVHh4e0Ol08tf5M3VXaGgo\nNBoNLC0tMXLkSLi5uZUYpxkzZiiYTp247pkmMTERQUFB8uOuXbti9erVmDp1qhAXG2KRP6HMzEyl\nIwhHr9dj/fr1cHd3ly+ek5mZiZMnT4LHWv79M+Xk5AQnJyfk5OQonEidmjVrBuDubJJMw3XPNHXr\n1sWUKVNKjFPVqlWxf/9+1KtXT+l4j8Wj1p/QhQsXHvl1UU5XqEipqamIiIgocfGccePGQa/Xo2rV\nqrwb0/8YjUacOXMGrVu3BgDExsbi5ZdfFmJGUJEKCgoQGxuLnj17AgB27tyJPn36yFvH6G9c90xT\nXFyM//73vyXGqXv37igsLETVqlVhYaHuOa+606lQcHAwNBqN/Gn23i9ZSZKEOl2hItWuXRv+/v5I\nTk5Gu3btUFRUxKP8yxAUFARnZ2e5yH/55Rfs3LkToaGhCidTl/fee6/EgaV//fUXpk+fLl/Xgf7G\ndc90eXl50Gg0mDRpEs6fPw+NRiPM3QdZ5E/o/v1N+fn5uHLlCrRaLZ5//nn5ilxUUkREBH744QcU\nFhZi165dCAsLg5OTEyZPnqx0NFW5ceMGPv74Y/nxu+++W+b5rc+63Nxc+Pv7y49HjBiB3bt3K5hI\nvbjumeaDDz6Ao6Mjjh8/jokTJ+L48eNYvXo1li1bpnQ0k4hzexeViY6OxquvvorPP/8cYWFheOWV\nVxATE6N0LFU6cOAANm/eLN8Defbs2TzntwwajQZHjhxBdnY2MjMzsXfvXtVv0lNCtWrVEBUVhXPn\nzuHMmTNYu3YtLwrzEFz3TJOSkoLAwEB5MjZ27FjcunVL4VSm42+Jctq4cSN27dolX3krPz8fEydO\nRO/evRVOpj73rhd+bzfEX3/9xWtjlyE0NBSffvopwsLCoNPp4OrqyvuRl2Hp0qX4+uuvsXz5cnmc\n7t+SQX/jumcavV6PnJwceZwuXryIoqIihVOZjkVeTlqttsTlM0U4IEIpAwYMwLhx43DlyhV8+OGH\niI+PL/NCFc+62rVrY+bMmahVqxYuXbqES5cuoUaNGkrHUh2NRoNBgwZh2rRpiI+Px2+//SbUL92K\nxHXPNAEBAfD398fly5fh4+MDjUYj1G1xedR6OYWFheHChQto3749JElCfHw8XFxcMG3aNKWjqVJy\ncjKSkpJgZWWFVq1a8WjZMgQEBKB///546aWX8NZbb6Ffv374448/sHz5cqWjqcqkSZPw+uuvw9HR\nEUFBQfD398eePXuwZs0apaOpEtc9092+fRtWVlbC7aphkf8DJ06cwJkzZwAArVu3hru7u8KJ1GXW\nrFmP/Do3G5d07z7bX375JRwcHDB8+HBMmDAB69atUzqaqty79/iKFSvQuHFjDBw4EOPHj+ftOu/D\ndc809654VxaNRoMDBw5UcKLy4bbgcrpw4QKOHTuGd999FwCwYMEC2NnZ8WIV9/H29gYAHDp0CFqt\nFp6envLWC54CU9qdO3fw66+/Ijo6Ghs2bEBOTg6ys7OVjqU6RUVFiI6Oxp49e/Ddd98hOTkZubm5\nSsdSFa57ptm9ezckScKaNWvw0ksvoUOHDjAajYiLi8OVK1eUjmc6icpl9OjR0i+//CI/Pnv2rDRm\nzBgFE6nX+PHjSy2bPHmyAknU7aeffpLefPNNadeuXZIkSVJ4eLi0Y8cOhVOpz7lz56SFCxdKx44d\nkyRJkqKioqSjR48qnEqduO6Zpqzf3WWNnVpxRl5OxcXFaNeunfy4ZcuWvOThQ2RlZeHw4cNo06aN\nfPnDmzdvKh1LdTp37ozOnTvLj//v//5PwTTq1aJFC8ydO1d+zGvRPxzXPdNYWVlhyZIlaNu2LbRa\nLU6fPi0f8S8C7iMvp5CQEKSmpsLd3R1GoxHx8fFo0qQJZs6cqXQ01Tl//jy++OIL+fKHTZo0wZtv\nvomWLVsqHY2oUuO6Z5q8vDxER0fL49S4cWP4+voKc9Abi/wfiI2NxdmzZ+VzWe+foRMREVUEFjmR\nSty7GciDB275+voqlEidbt68if379yM3N7fE7qy3335bwVREyuE+ciKVmDhxIurVqwdnZ2d5Ge98\nVtpbb72Frl27onbt2kpHIVIFFjmZXUpKCtLS0tC6dWvs2rULZ86cwahRo9CkSROlo6mKTqfDJ598\nonQM1bO3t8d7772ndAwhcN0zzU8//YTs7Gz0798fs2fPxqVLl4S65DZvmlJON2/exAcffCCfR75n\nzx5cv35d4VTqFBgYCEtLSyQmJuK7776Dj48PQkJClI6lGoWFhSgsLISXlxd+/PFH5OXlycsKCwuV\njqcaFy5cwIULF+Du7o6NGzfi999/l5dduHBB6XiqxHXPNJ9//jm8vLwQExMDnU6HqKioEne6VDvO\nyMtpzpw5GDduHNauXQsA8uUiRfrPryg6nQ4tWrRAaGgo/P394eHhIdSpHebWv3//Eve4v59Go+Hd\nqv4nODi4xOMffvhB/rtGo8GGDRsqOpLqcd0zjZWVFapVq4YDBw5gxIgRsLCwEGqcWOTlZDQa4eXl\nha+++goA0LFjR4SHhyucSp0MBgNWrVqFQ4cOYdq0aUhKSkJ+fr7SsVTj0KFDSkcQAj8kPzmue6ap\nVasWJkyYgPz8fLi7uyM6OrrETbHUjkVeThYWFoiNjYXRaER6ejpiYmJgbW2tdCxVCgsLw759+7By\n5UpYW1sjOTm51OyKUOZdqXQ6HRo0aIDJkyejfv36CqRSn549e5Zadm+c3nvvPbRq1UqBVOrEdc80\nYWFhOH/+vHzswIsvvohly5YpnMp0PP2snG7duoXPPvsMJ0+ehJWVFVq3bo233367xBHHz7qVK1cC\nAMaOHQsHBweF06jfZ599hqKiIvlGDkePHgUANG3aFJs3b+aM9H/WrFkDOzs7udCPHj2KjIwMdOjQ\nAaGhofj3v/+tcELlcd0zjZ+fHzQaDT7++GPUqVNH6Tjlxhl5OTk7O2PWrFnIzc2F0WiERqNBcXGx\n0rFUxdPTEwCE2kSlpBMnTpQoa3d3d7z22muYNm0aNm3apGAydTl69Cg2btwoPx42bBjGjRuHN954\nQ8FU6nJv3eN92h/t3vr2448/ssifRe+//z4SEhLg6OgIAJAkCRqNBtu2bVM4mXrc+2WSl5eHdevW\n4fbt25gzZw7i4uLQsmVLVK9eXeGE6qLX67F+/Xq4u7vL13vOzMzEyZMneR3/+1hbW+Ojjz4qMU56\nvR4///wzbG1tlY6nCvfWvbFjxyIqKkrhNOoXFRWFtm3bCvs7iZvWy2nYsGHYunWr0jGE8Pbbb6NT\np06Ijo7G5s2bsXfvXuzYsUM+4p/uSk1NRUREhHy950aNGsHPzw96vR5Vq1ZF3bp1lY6oCnl5edi5\nc2eJcfL19UVhYSHs7OyEuT52RQgICEBKSgpcXV1haWkpL58xY4aCqdRn1KhR+P3339GwYUNYWloK\nNzHjjLycfHx8sH//frRo0QI6nU5eXq9ePQVTqVN+fj5Gjx6N77//HgDQr18/7se8z/Xr1/Hcc88h\nNzcXQ4YMKfE1vV6PF198UaFk6nLq1Cm4ubnh119/RYMGDdCgQQP5a0lJSfDy8lIwnTr961//UjqC\nEJYuXap0hH+ERV5OZ8+eRWRkJGrWrCkvE+kTXEUyGo24evWqfLnRo0ePwmg0KpxKPTZs2IBZs2aV\neTQxz4/+W3x8PNzc3EqcP34/Fnlp/fv3x+7du3Hu3DnodDq4uLigf//+SsdSHXt7e0RFRZXa/ScK\nblovpyFDhuC7775TOoYQLl68iIULFyIpKQm2trZo3rw55syZw8tEUrnl5eWVumkKt4aVFhgYCHt7\ne3h6ekKv1+P48eMwGAxYtGiR0tFURfTdf5yRl5O3tzdiY2Ph6upaYtM6j9Au7erVq4iIiCixbPfu\n3SzyB3zxxReIiooqdWBbbGysQonUad68eTh69Chq1aoFgAeaPsrNmzcRFhYmP+7fv3+Z1yt41om+\n+49FXk5bt27F5s2bSyzj5TRLSkpKwunTp7FhwwbcuHFDXm4wGPDVV19hwIABCqZTn++//x4HDhzg\nkdePcebMGRw+fJh3hjOBXq9HamqqfKe4mzdv8jTZMoi++49FXk4xMTEAgOzsbGi1Wh4pWwYnJyfY\n2tpCr9cjMzNTXq7RaBAaGqpgMnV66aWXYGHBVfJx3NzckJmZKZ/6SQ8XEBCA8ePHQ6vVwmg0QqvV\nYsGCBUrHUp158+Zh3rx5OHPmDLp06YLmzZtj4cKFSscyGfeRl9OxY8cQHBwMa2tr6PV6eQXx8PBQ\nOprqZGRklPilq9frERwczP10//Puu+9Co9EgPz8fly5dQsuWLUvsrvnss88UTKceQ4YMgUajgdFo\nxOXLl9GoUSPodDpuWjdBdnY2NBqNsOdJm9vhw4fRvXv3Est2794tzFZDfvwvpxUrViAyMlK+JGtK\nSgqmT5/OK3CV4dChQ/jss8+QmZkJKysrGI1GdOvWTelYqjF27FilIwhhxYoVSkcQxr0PPQ/DDz13\nVZbdfyzycrK0tCxxXfW6detys+hDbN68GQcOHMCkSZMQGRmJgwcPIjk5WelYqnHvKlz0aM8995zS\nEYTBDz2medTuvyVLliiY7Mmwecqpfv36CA4OhqenJyRJQlxcHBo2bKh0LFWytraWd0EYjUb07NkT\nfn5+8Pf3VzoaUaV070NPXl6e0OdHm1vdunXx6quvwsvLC5IkoWbNmrh06RIuXbok1G5SrdIBRLVw\n4UL5KlOJiYlo3749bw/4EK6uroiKikKXLl3g7++PwMBA3LlzR+lYRJVeUFAQqlevjtOnTwO4e7zK\n9OnTFU6lPgsXLsTJkyeRnJyMqVOn4s8//8TMmTOVjmUyzsjLKS0tDU2aNIGvry927tyJpKQktGrV\niudGlyEoKAhFRUWwsrJChw4dkJmZiU6dOikdiwR18+ZNhIeHIzs7GytWrMCePXvQpk0bbnovg+jn\nR1eU9PR09OrVC19++SX8/PwwfPhwTJgwQelYJuOMvJwCAwNhaWmJxMREbN++HT4+PggJCVE6lqrc\nO88+NDQUy5cvx8cff4zDhw8jMTERX3zxhcLpSFRz5sxBr169kJGRAQBwdHREUFCQwqnUSfTzoyvK\nnTt38OuvvyI6Ohq9evVCTk4OsrOzlY5lMhZ5Oel0OrRo0QL79u2Dv78/PDw8YDAYlI6lKvdmSM2a\nNUPTpk1L/SEqD6PRCC8vL7mcOnbsyNu8PsT950d37twZ69ev53nkZZg6dSq++uorvP7663B0dERU\nVJRQV8DjpvVyMhgMWLVqFQ4dOoRp06YhKSkJ+fn5SsdSla5duwIAOnXqhMOHD2PkyJEAgDVr1uDV\nV19VMhoJzMLCArGxsTAajUhPT0dMTAysra2VjqVKL7zwQqnLI1NpXbp0QZcuXeTHr7/+OoKDg+Hr\n66tgKtNxRl5OYWFhqFKlClauXAlra2skJyfzYLeHuHfAzT3NmzfnplAqt5CQEOzevRuZmZmYNGkS\nfvvtNyxevFjpWKoUHh6OTp06oWPHjiX+UElbt25F165d4eLiAnd3d7Rv3x55eXlKxzIZr+xGZjdq\n1KhSB9j4+fkhMjJSoUQkunt3PzMajfImdt79rLSBAwdiy5YtvH7/YwwdOhQbN24sda0LUU6R5aZ1\nMrt69eohNDQU7u7uMBqNiI2N5S9dKrf3338fCQkJ8mV/eYnWh+P1+00j+rUuOCMnsysuLsaOHTvw\n22+/QavVwtXVFf369YOlpaXS0UhAw4YNw9atW5WOoWoPu37/vQ89vH5/SUuWLEH9+vWRlZWF+Ph4\n1KlTB5cvXxbm54wf1cjsJEmCTqeDVquV/9x/UxCiJ+Hj44P9+/ejRYsWJX6OuJXnb7x+/5N58FoX\nWVlZQh1LwBk5mV1gYCDs7e3h6ekJvV6P48ePw2Aw8O5nVC7vvfceEhISULNmTXkZN62X7datWzh0\n6JB8xsiXX34JX1/fEveJoLs3T9mzZw9yc3NLnMooykGUnJGT2d28eRNhYWHy4/79+wt1jiapy5Ur\nV3DkyBGlYwhh5syZGDZsmPy4adOmCAoKwjfffKNgKvUJDAzE66+/jlq1aikdpVxY5GR2er0eqamp\nqF27NoC7xV5cXKxwKhKVt7c3YmNj4erqWmLTepUqVRRMpU537txBv3795Mfdu3dniZehSZMmj731\nq5qxyMnsAgICMH78eGi1WhiNRmi1Wl5dispt69at8uV/79FoNDh48KBCidTrwTNG4uLieCxBGQYM\nGABfX180b968xIdDUTatcx85VZjs7GwYDAbodDrY29srHYcEl52dDa1WCzs7O6WjqNa9M0bOnTsH\nnU4HFxcX9O/fn2eMPKB3796YPHkynJycSizv1q2bMoGeEGfkZHZffvklqlevjoEDB2LChAlwcHCA\nm5sbpk6dqnQ0EtCxY8cQHBwsn/d7bwuPSPePrigWFhZo06YNnn/+eQBAUVERBg8ejP/85z/KBlOZ\nF154ocSxBKJhkZPZHTp0CJs3b8a3336Lnj17YsqUKRg/frzSsUhQK1asQGRkpHzkdUpKCqZPn45N\nmzYpnEx95s2bh0uXLuHSpUto3bo1zpw5g0mTJikdS3Vq1KiBMWPGwMXFpcSm9RkzZiiYynQscjI7\no9EIo9GI//znP/K+cd5ghsrL0tKyxOlTdevW5dXLHuLChQvYtGkT/Pz8sHr1aqSkpPAWwmXw9PSE\np6en0jHKjT/9ZHa9evVC586d4ePjg8aNGyM8PBxubm5KxyJB1a9fH8HBwfD09IQkSYiLi0PDhg2V\njqVKBoNBvvlHRkYG6tati99//13hVOoj+t0YebAbVSij0YjU1FTUrVtX6SgkqOLiYuzevRtnzpwp\ncclfXi2wtP/85z8oLCyEvb09FixYAAsLC3Tq1EmYo7HJNCxyMrv7D3bz8/ODg4MD2rRpg3fffVfp\naCSglJQUpKWloXXr1ti5cyfOnj2LUaNGoUmTJkpHU62srCz5jBEHBwel49BTxvuRk9ndu0Tknj17\n0LNnT3zzzTdISEhQOhYJKjAwEJaWlkhMTMT27dvh4+ODkJAQpWOp0vbt2+Hl5YWxY8fC398fgwcP\nxu7du5WORU8Z95GT2fFgN3qadDodWrRogdDQUPj7+8PDwwMGg0HpWKoUERGBXbt2ybPwjIwMTJgw\nAQMGDFA4GT1NnJGT2d072O3FF1/kwW70jxkMBqxatQqHDh1Cly5dkJSUxA+GD1GnTh1Ur15dflyj\nRg0eGFgJcR85Vbi8vDzExMQIf6QoKSMlJQX79u1D586d0bRpU+zduxfPP/88WrZsqXQ01QgNDYVG\no0FycjIuX74MDw8PaDQaJCYmonHjxvjkk0+UjkhPEYuczO706dNYu3YtsrKyANy9iUp6ejpiYmIU\nTkZUOe3YseORX+eH6MqFRU5mN2LECAQEBGDp0qWYP38+YmJi0KZNG3Tv3l3paEREwuM+cjI7Gxsb\nvPzyy7CysoKLiwsCAgIQFRWldCwiokqBR62T2VWpUgUHDx5E/fr1sWzZMjRo0AApKSlKxyIiqhS4\naZ3MLi8vD+np6ahVqxYiIiKQlZWFV155Ba6urkpHIyISHouciIhIYNxHTkREJDAWORERkcB4sBvR\nMyI5ORk+Pj5o27YtgLvn87dr1w5TpkxBlSpVFE5HROXFGTnRM8TR0RGRkZGIjIzE+vXrkZ+fj+nT\npysdi4j+Ac7IiZ5R1tbWmD17Nry9vXHhwgVER0cjISEBd+7cQfv27TFjxgwAwIIFC3Dq1CnUqlUL\nderUQY0aNRAQEAB3d3cMHToURqMRc+fORWRkJL7//nsYDAY0adIEH374IWxsbLB3715ERUVBkiQ4\nOjpi0aJFqFGjhsLvnqjy4Iyc6BlmaWkJFxcXnD9/HqmpqYiKisK2bdtw9epVHD58GLGxsUhKSsLW\nrVuxfPlyxMXFyf+2oKAAXl5emDt3LpKSkhATE4ONGzdiy5YtsLOzw9atW5GSkoLVq1cjIiIC//73\nv+Hp6Yk1a9Yo+I6JKh/OyImecbm5uVi5ciUMBgP8/PzkZcnJyfJ+dJ1OB1tbW3Tt2lX+d5Ikwd3d\nHQAQHx+Pq1evYty4cQDulryFhQVOnjyJtLQ0TJw4EQBQVFSE+vXrV/A7JKrcWOREz7DCwkL89ttv\n8PDwgLu7u1y496xduxZa7d8b7u7/O3B3Rg8AVlZW6NGjB+bNm1fi6wcOHEDr1q05CycyI25aJ3pG\n6fV6LFq0CJ07d8agQYMQExOD4uJiAMDKlStx+fJlNGnSBImJiZAkCYWFhfjpp5/KfC13d3ccPXpU\nvi/4xo0bcfLkSbi6uiIpKQlpaWkAgO+//x4HDhyomDdI9IzgjJzoGZKRkQE/Pz8YDAbk5OSgc+fO\nmDdvHqysrJCYmIiRI0dCp9OhZcuWaNCgAerXr489e/ZgyJAhqFu3Ltq2bQsLi9K/NlxdXTFmzBj4\n+fnB2toazs7OGDx4MKpUqYI5c+bgjTfeQJUqVWBjY4PQ0FAF3jlR5cVLtBLRQ+Xm5uLAgQPw9fWF\nRqPBm2++iQEDBmDAgAFKRyOi/+GMnIgeqmrVqkhISMCGDRtgbW2Nxo0bw8fHR+lYRHQfzsiJiIgE\nxoPdiIiIBMYiJyIiEhiLnIiISGAsciIiIoGxyImIiATGIiciIhLY/wN7lzTQ8eP3CgAAAABJRU5E\nrkJggg==\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "JP86Ohe7oBZA",
- "colab_type": "code",
- "outputId": "3de2b683-6ded-4e6e-f49f-aabcf13a27ea",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 251
- }
- },
- "cell_type": "code",
- "source": [
- "# checking which student is fail overall\n",
- "\n",
- "data['status'] = data.apply(lambda x : 'Fail' if x['pass_math'] == 'Fail' or \n",
- " x['pass_reading'] == 'Fail' or x['pass_writing'] == 'Fail'\n",
- " else 'pass', axis = 1)\n",
- "\n",
- "data['status'].value_counts(dropna = False).plot.bar(color = 'gray', figsize = (3, 3))\n",
- "plt.title('overall results')\n",
- "plt.xlabel('status')\n",
- "plt.ylabel('count')\n",
- "plt.show()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAANsAAADqCAYAAAArpTBIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFZ9JREFUeJzt3XtUlGUeB/DvDJclAuSyAxaYF3RT\nTDIxFZBV8TJgZdDxkghS6ilD3TjqaiKkHMkL2cVQ0y09R7NWTrDiJRS2ZTV1ES3UMmNX1Ha9gaDD\nHeQyz/7h7hRRONK8zzDD93NO5/DOC8/8Zk5fn2eemXl/KiGEABEpTm3uAoi6CoaNSBKGjUgSho1I\nEoaNSBKGjUgShq2LuHr1Kvz8/AAAaWlpWL58udnuv7GxEVlZWVLvvzNg2Ei68+fPM2wkx8GDB/H0\n008jLCwMM2fOxH/+8x8UFxdj2LBhaG5uNvxeXFwc/vznP6OxsREpKSnQarUIDQ3Fli1bDL8TGhqK\njRs3QqvV4vr167h06RKmT5+O8PBwjB8/HgcOHDC6rr/85S+YP38+YmNjkZqaCgBIT09HWFgYQkND\nsXDhQjQ0NAAATp48icjISEycOBHh4eE4ePAgACAmJgZ79+41jPnT4/LycsyfPx9nzpxBVFQUAOCd\nd96BVquFVqvFzJkzUVpa2oFn1QIIkuratWsiICBAfP/990IIIbZt2yZiY2OFEEKEh4eL/Px8IYQQ\ndXV14oknnhC3bt0SGzduFLGxseLOnTuitrZWREREiLy8PCGEEGPGjBGJiYmG8V9++WWxdetWIYQQ\nJ0+eFP7+/qKxsVFcuXJFDBgwQAghxHvvvScSEhLa1JaZmSkGDx4sLl++LIQQ4tSpUyIwMFCUlJQI\nIYRISkoSa9euFUII8dxzz4mCggIhhBCXL18WCxcuFEIIER0dLbKysgxj/v/4x/efmZlpeMz/+te/\nxIQJE0RjY6MQQoidO3eKPXv2dPTp7dQ4s0l2/PhxDB8+HD179gQATJkyBQUFBWhuboZWq0VeXh4A\n4OjRo/D394e7uzv+/ve/IyoqCvb29nB0dMSzzz6L3Nxcw5ijR482/Lx582bMnj0bABAQEIA7d+6g\nrKzM6Pp69eqFXr16AQDy8vIwceJEeHl5AQCmT59uuF8PDw9kZWXh4sWL6NWrF956660OPR8uLi64\nffs29u/fj8rKSsTExCAiIqJDY3V2DJtkOp0OLi4uhmNnZ2cIIaDT6VqF7fPPP8fEiRMBANXV1Viz\nZg3CwsIQFhaGnTt3or6+3jBGt27dDD8fPXoUM2bMgFarxcSJEyGEgF6vN7q+H49VXV2NAwcOGO43\nPj4eTU1NAIDVq1fjgQcewIsvvogJEybg0KFDHXo+vLy8kJaWhkOHDmH06NF46aWXcOPGjQ6N1dnZ\nmruArsbDwwOnT582HFdWVkKtVsPNzQ0ajQY2NjYoKirCsWPHsGzZMgCAp6cnZs2ahTFjxrQ7dlNT\nE+Lj4/Huu+9i1KhRaGxshL+/f4dr9fT0RGRkJJYuXdrm3G9/+1skJSUhKSkJx44dw4IFCxASEgK1\nWt0q3JWVlfe8nxEjRmDEiBGoq6vDunXrsH79+g7PlJ0ZZzbJgoOD8eWXX+LKlSsAgN27dyM4OBi2\ntnf/3dNqtUhLS8OAAQPg5uYGABg7diw+/fRTtLS0QAiBzZs344svvmgzdn19Perq6vDYY48BAHbs\n2AE7OzvU1dV1qNbQ0FDk5ubi9u3bAO7Otn/605/Q1NSEmJgY3Lx5EwAwcOBA2NraQq1WQ6PRoKio\nCABw+vRpfP/9923GtbW1RU1NDYQQOHbsGJKTk6HX6+Ho6Ij+/ftDpVJ1qN7OjjObZN27d0dKSgri\n4uLQ1NQEHx8frFq1ynBeq9XiueeeQ0pKiuG2qKgoXL16FU899RSEEHjssccQGxvbZmwXFxfMmTMH\nERER8PDwwCuvvIJx48Zh7ty52Lp1633XOnDgQMydOxcxMTHQ6/Xw8PBAcnIy7OzsMHnyZLzwwgsA\nALVajcTERMOycuHChfjiiy8wbNgwBAcHtxk3ICAA69evR0hICHJzc/HZZ59Bq9XC3t4e7u7uWL16\n9X3XaglUQvD7bEQycBlJJAnDRiQJw0YkCcNGJAnDRiSJRW79l5VVm7sEo7i5OUKn69h7XNSWJTyf\nGo3zL57jzKYgW1sbc5dgVSz9+WTYiCRh2IgkYdiIJGHYiCRh2IgkscitfyVs3vy2uUswSlzcQnOX\nQB3EmY1IEoaNSBKGjUgSho1IEoaNSBKGjUgSho1IEoaNSBKGjUgSho1IEoaNSBKGjUgSho1IEoaN\nSBKGjUgSho1IEoaNSBKGjUgSho1IEoaNSBLFLvhTW1uLpUuXorKyEk1NTZg3bx40Gg1WrlwJAHj0\n0UeRnJwMAPjwww9x6NAhqFQqzJ8/H6NGjVKqLCKzUSxse/bsQe/evbFo0SKUlpYiNjYWGo0GCQkJ\n8Pf3x6JFi3DkyBH06dMH2dnZ2L17N2pqahAVFYWRI0fCxsayr+tO9FOKLSPd3NxQUVEBAKiqqoKr\nqyuuXbsGf39/AMCYMWOQn5+PgoIChISEGJqXe3t7o7i4WKmyiMxGsbA99dRTuH79OsaPH4/o6Ggs\nWbIELi4uhvMeHh4oKytDeXk53N3dDbe7u7ujrKxMqbKIzEaxZeTevXvx8MMPY9u2bSgqKsK8efPg\n7PxD7yohxM/+3S/d/mNubo4W3z6oo9rr/9UVWPLjVyxshYWFGDlyJACgf//+uHPnDpqbmw3nS0tL\n4enpCU9PT1y+fLnN7e3p7A3xlGQpjSCVoNE4d/rHb5ZmiD179sTZs2cBANeuXcODDz4IX19ffPnl\nlwCA3NxchISEYMSIETh8+DAaGxtRWlqKmzdvom/fvkqVRWQ2is1s06ZNQ0JCAqKjo9Hc3IyVK1dC\no9Hg9ddfh16vx+OPP46goCAAwNSpUxEdHQ2VSoWVK1dCrebbf2R9VMKYF0mdjBJLCTbW6Py4jCQi\nozBsRJIwbESSMGxEkjBsRJIwbESSMGxEkjBsRJIwbESSMGxEkjBsRJIwbESSMGxEkjBsRJIwbESS\nMGxEkjBsRJIwbESSMGxEkjBsRJIwbESSMGxEkjBsRJIwbESSKHZFZADYt28fPvzwQ9ja2uIPf/gD\nHn30USxZsgQtLS3QaDR48803YW9vj3379mHHjh1Qq9WYOnUqpkyZomRZRGahWNh0Oh02bdqEzMxM\n1NXVIS0tDTk5OYiKikJ4eDjefvttZGRkICIiAps2bUJGRgbs7OwwefJkjB8/Hq6urkqVRmQWii0j\n8/PzERgYCCcnJ3h6emLVqlUoKCjA2LFjAfzQDPHs2bMYNGgQnJ2d4eDggCFDhqCwsFCpsojMRrGZ\n7erVq2hoaMDcuXNRVVWFBQsWoL6+Hvb29gDYDJG6HkVfs1VUVGDjxo24fv06Zs6c2arRIZshdowl\nNwM0BUt+/IqFzcPDA0888QRsbW3xyCOP4MEHH4SNjQ0aGhrg4ODQqhlieXm54e9u3ryJwYMHtzs2\nmyF2Texi8wtGjhyJEydOQK/XQ6fToa6uDkFBQcjJyQHwQzPExx9/HN988w2qqqpQW1uLwsJCDB06\nVKmyiMxGsZnNy8sLWq0WU6dOBQAkJiZi0KBBWLp0KdLT0/Hwww8jIiICdnZ2WLRoEWbPng2VStWm\n9zaRtWAzxP9hM8TOr0ssI1977bU2t82ePbvjFRF1Qe0uI/ft24fdu3fjwoULmDFjhuH2pqamVpsa\nRHRv7YZt0qRJGD58OBYvXowFCxYYbler1ejbt6/ixRFZk3tukHh5eeGjjz5CdXU1KioqDLdXV1fz\nI1VE98Go3ciUlBRkZmbC3d3d8KazSqXC3/72N0WLI7ImRoWtoKAAJ06cwG9+8xul6yGyWkbtRvbs\n2ZNBI/qVjJrZunfvjhkzZiAgIAA2Nj98JvHVV19VrDAia2NU2FxdXREYGKh0LURWzaiwxcXFKV0H\nkdUzKmx+fn5QqVSGY5VKBWdnZxQUFChWGJG1MSpsRUVFhp8bGxuRn5+Pf/7zn4oVRWSN7vsrNvb2\n9hg1ahSOHz+uRD1EVsuomS0jI6PVcUlJCUpLSxUpiMhaGRW2r776qtWxk5MT3n33XUUKIrJWRoVt\nzZo1AO5eU0SlUqFbt26KFkVkjYwKW2FhIZYsWYLa2loIIeDq6oo333wTgwYNUro+IqthVNjeeust\nbN68Gb/73e8AAOfPn8cbb7yBjz/+WNHiiKyJUbuRarXaEDTg7vtuP/7YFhHdm9Fhy8nJQU1NDWpq\napCdnc2wEd0no5aRycnJWLVqFRITE6FWq9G/f3+kpKQoXRuRVTFqZjt+/Djs7e1x6tQpFBQUQAiB\nI0eOKF0bkVUxKmz79u3Dxo0bDcfbt2/HgQMHFCuKyBoZFbaWlpZWr9FUKpVR1+Qnoh8Y9ZotNDQU\nzz//PAICAqDX63HixAlMmDDhnn/X0NCAp59+GnFxcQgMDGQjROrSjP4+27Bhw/D1119DpVJhxYoV\n92x+AQDvv/++4dMm7733HhshUpdm9LX+hw4del8NLy5evIji4mKMHj0awN2LBiUnJwO42whx+/bt\n6N27t6ERIgBDI8TQ0ND7eAhElkGxxhrr1q1DUlISsrKyAMCkjRDZn63rsuTHr0jYsrKyMHjwYPTo\n0eNnz/+aRogA+7N1VZbeWEORsB0+fBhXrlzB4cOHUVJSAnt7ezg6OpqkESKRpVIkbD/+rltaWhq8\nvb1x+vRp5OTk4Nlnn23VCDExMRFVVVWwsbFBYWEhEhISlCiJyOwU7an9YwsWLGAjROrS2Azxf9gM\nsfOz9NdsivXUJqLWGDYiSRg2IkkYNiJJGDYiSRg2IkkYNiJJGDYiSRg2IkkYNiJJGDYiSRg2IkkY\nNiJJGDYiSRg2IkkYNiJJGDYiSRg2IkkYNiJJGDYiSRg2IkkYNiJJGDYiSRg2IkkUvSJyamoqvvrq\nKzQ3N+Pll1/GoEGD2BCRuizFwnbixAlcuHAB6enp0Ol0iIyMRGBgIBsiUpel2DLyySefxIYNGwAA\nLi4uqK+vR0FBAcaOHQvgbkPE/Px8nD171tAQ0cHBwdAQkcjaKDaz2djYwNHREQCQkZGB3//+9zh2\n7JhJGiKyGWLXZcmPX/EuNp9//jkyMjKwffv2Vk3vf01DRDZD7JrYWKMdR48exZYtW/DBBx/A2dnZ\n0BARQLsNET09PZUsi8gsFAtbdXU1UlNTsXXrVsNmR1BQEHJycgCgVUPEb775BlVVVaitrUVhYSGG\nDh2qVFlEZqPYMjI7Oxs6nQ7x8fGG29auXYvExEQ2RKQuic0Q/4fNEDs/vmYjIqMwbESSMGxEkjBs\nRJIwbESSMGxEkjBsRJIwbESSMGxEkjBsRJIwbESSMGxEkjBsRJIwbESSMGxEkjBsRJIwbESSMGxE\nkih+KTvqmniZibY4sxFJwrARScKwEUnCsBFJ0mk2SFavXo2zZ89CpVIhISEB/v7+5i6JyKQ6RdhO\nnjyJf//730hPT8fFixeRkJCA9PR0c5dFZFKdYhmZn5+PcePGAQB8fX1RWVmJmpoaM1dFZFqdImzl\n5eVwc3MzHBvTo43I0nSKZeRP3av9gBIN8VasWGHyMbsyPp9tdYqZ7ed6tGk0GjNWRGR6nSJswcHB\nhr5t3377LTw9PeHk5GTmqohMq1MsI4cMGYKBAwfi+eefh0ql4hKErJJF9mcjskSdYhlJ1BUwbESS\nMGxEkjBsRJJ0it1Ia3Ljxg2UlZXB398fe/fuxblz5zB9+nT06dPH3KVZjI8//rjd8zNmzJBUiWlx\nZjOxP/7xj7Czs8OZM2eQmZmJsLAwvPHGG+Yuy6LodLp2/7NUnNlMzMbGBgMGDMC6desQGxuLgIAA\ntLS0mLssixIZGQlvb28UFxebuxSTYthMrKWlBe+//z7y8vIQHx+Pr7/+GrW1teYuy6Ls3LkTy5Yt\nQ3JycptzKpUKO3fuNENVvx7f1DaxGzduICcnB8HBwejXrx+ys7PRq1cv+Pn5mbs0q7Bp0ybMmzfP\n3GV0CGc2BQwZMgT9+vUzbJD079/f3CVZpCNHjmDDhg2orKwEADQ1NaF79+4WGzZukJgYN0hMJy0t\nDRs2bED37t2RkZGBefPmYebMmeYuq8MYNhP7/wZJTk6OYYOkubnZ3GVZpAceeAA9evSAXq+Hm5sb\npk2bhszMTHOX1WFcRprYz22Q1NXVmbssi+Tl5YWsrCz4+flh8eLF8PHxwa1bt8xdVodxg8TEfm6D\nxMfHh1cLuw9r1qzBsmXL0NLSgsrKSnzyySfw8fGBTqfDhAkT4O3tbe4SO4Qzm4k99NBDCA4ORkVF\nBU6dOoVu3bph+fLl2L9/v7lLsxjfffcdgLtLcnd3d5w8eRLz5883c1W/HsNmYq+//jouXbqES5cu\nwd/fH+fOncOcOXPMXZZF+eliy1oWX9wgMbHi4mLs2rULvr6+2LJlCz799FNcvHjR3GVZFJVK1e6x\npeLMZmItLS2Ga17evn0bDz30EIqKisxclWU5d+4cJk+eDODurHb58mVMnjwZQgioVCpkZGSYucKO\n4QaJie3fvx8NDQ1wcnLC4sWL4e7ujpEjR2LNmjXmLs1iXLt2rd3z3CAhAHc/5ZCWloZu3bqhZ8+e\nKCkpQWBgoLnLsiiWGqZ7YdhMbMeOHdi7d6/hCs+3b9/Giy++iEmTJpm5MjI3bpCYmJeXF1xdXQ3H\nbm5ueOSRR8xYEXUWfM1mYgsXLkRxcTGGDRsGvV6PM2fOwNvbGz169AAALFmyxMwVkrkwbCa2Z8+e\nds9HRkZKqoQ6G4aNSBK+ZiOShGEjkoRhs2LFxcX49ttv2/2d+vp65ObmSqqoa2PYrNhf//pXnD9/\nvt3fOX/+PMMmCd/UthKlpaVYvHgxAKChoQGhoaHYtWsXnJyc4ODgAD8/P6xYsQI2NjaoqalBfHw8\nnnzySSxfvhxVVVVITU1F37598Y9//APr168HAMTExOCVV16Br69vq7GnTZtm+OwiGY8zm5U4ePAg\n+vTpg48++gi7du2Cs7MzQkJCMGfOHDzzzDMoLy/Hq6++ih07diAxMRHvvPMOHBwc8NJLLyEoKKjd\n9/9+OnZDQ4PER2Y9GDYrERISgvz8fLz22mvIy8vDtGnTWp3XaDTYtm0boqKisHr1alRUVJhsbDIO\nw2YlfH198dlnn2HSpEnIz89HTExMq/OrVq3CuHHj8Mknn/zi1b5++r2xpqYmo8Ym4/A1m5XYv38/\nvL29ERQUhOHDhyM0NBS9e/c2BKa8vBz9+vUDAGRnZ6OxsREAoFarDVf/cnJyQklJCQDg1q1buHDh\nwi+O3dzcDFtb/u9zP/gJEivx3XffYcWKFbC3t4cQAuHh4XB2dkZqairi4uLg6OiILVu2wMfHBy+8\n8ALWrl2LkJAQTJkyBbGxsQgJCUFSUhJmzZoFvV4PX19flJWVYdasWXBzc2szdnR0tLkfssVh2Igk\n4Ws2IkkYNiJJGDYiSRg2IkkYNiJJGDYiSRg2IkkYNiJJ/guQTmn2r9C8SwAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# visualizing the differnt parental education levels\n",
+ "\n",
+ "data['parental level of education'].value_counts(normalize = True)\n",
+ "data['parental level of education'].value_counts(dropna = False).plot.bar()\n",
+ "plt.title('Comparison of Parental Education')\n",
+ "plt.xlabel('Degree')\n",
+ "plt.ylabel('count')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 422
+ },
+ "colab_type": "code",
+ "id": "r8temzw0XFd1",
+ "outputId": "80a975e8-482b-4b43-9db1-970dd89e5221"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAGVCAYAAAAFYHMyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XtUVPXCxvFnuIUXUKABw6zslJqJ\nIJimSV4w0bxf81Xzzayjx0t5jnc085qaJzPNrLejpWhloRknTeym9XaQMnyR9GTmWSneYFAQERCE\n/f7RalZkEhq7YQ/fz1quxeyZvedhhu0z+7f3nm0zDMMQAACwJA9XBwAAANePIgcAwMIocgAALIwi\nBwDAwihyAAAsjCIHAMDCKHJUa4Zh6LXXXlOvXr0UGxurrl27au7cubpw4YKro5WzceNGrVixwmXP\nf+HCBfXt21fdunVTTk5OhY995JFHtHXrVmVmZqpXr16/Ov/y5cvVoUMHbdmyxfTs2dnZ+vjjj3/1\nvrS0NH377bemZ7geU6ZMUceOHfX555+Xm75q1SrNmjWryp9v69ateuSRR6p8ubA+L1cHACry97//\nXV9++aXWrl2rkJAQFRQUaNGiRRozZow2bdokm83m6oiSpBEjRrj0+Q8fPqzc3Fzt2bOn0vOEhITo\n/fff/9X5d+zYoWXLlqldu3am5P25lJQU/etf/1JMTMwV923ZskVRUVFq1qyZ6Tmu1fbt25WUlKRb\nbrnF1VFQw7FFjmorNzdX8fHxWrJkiUJCQiRJtWvX1pw5c/TYY4/JMAxdunRJc+bMUWxsrHr06KEl\nS5aotLRUktSlSxfFx8erf//+at++vXbt2qV58+apa9euGjJkiM6fPy9Jatq0qTZs2KC+ffuqXbt2\nevPNN50ZVq9e7RwJGDNmjPLy8iT9uNU1e/ZsDRo0SK+//nq5rbAPPvhAvXr1Uo8ePdS7d2+lpKRI\nkk6dOqXRo0crNjZWvXr10rZt2yRJJ06cUIcOHbRhwwb17t1b0dHR2rFjx6++JikpKerfv7+6d++u\nwYMHKz09XadOndKUKVN09uxZde/eXefOnSs3T0ZGhgYPHqyuXbtq8uTJztfnxIkTat68+RXz//nP\nf9bp06cVFxent99+W3l5eZo6dapiY2MVExNTbiu9adOmeuWVVxQbG6vS0lJ9//33GjFihGJjY9W7\nd2+lp6c7cz/00EN67rnn1KNHD3Xp0kVffvmlDh48qPnz5yspKUl//etfy+V+88039d5772nZsmVa\nt26dwsPDlZ2d7bx/6dKlWrRokVatWqUZM2ZozJgx6ty5s4YOHaqzZ89Kks6cOaOxY8cqNjZWsbGx\nzg8qly9f1qxZsxQbG6sHHnhAEyZMUH5+/hWv99Xes4cfflhlZWUaPXp0hR+eunTpon379l1xu6L3\n3DAMLV68WF26dFFsbKz+8Y9/lFvm/Pnz1a1bN/Xs2VPffffdVZ8bNYgBVFO7d+82HnjggQof88or\nrxiPP/64UVJSYhQWFhoDBw40tm3bZhiGYXTu3Nl46qmnDMMwjPj4eCM8PNzYu3evUVZWZgwcONB4\n++23DcMwjCZNmhjz5883DMMwjh49arRo0cI4d+6ckZ6ebrRr1864cOGCUVpaajzyyCPG6tWrDcMw\njJUrVxodOnQwzp4967wdFxdnGIZhtG3b1jhx4oRhGIbx1VdfGc8884xhGIbx6KOPGi+//LJhGIZx\n4sQJIyoqysjIyDAyMjKM5s2bG/Hx8YZhGMaOHTt+9ffOz8832rZta+zbt88wDMPYuXOn0a1bN6O0\ntNTYu3ev0bVr1199jZ544gnjueeeMwzDMNLS0ozmzZsbW7ZsMTIyMoy77rrLMAzjivk7d+5sfPXV\nV4ZhGMbMmTONadOmGaWlpcbZs2eNjh07GocPH3a+dmvWrDEMwzBKS0uNbt26OV/Xffv2GR06dDBK\nSkqMvXv3Gi1atDA+/PBDwzAM49VXXzUeeeSRK167XxoxYoTz/RwzZoyxfv16530xMTHG/v37jZUr\nVxqtWrUyjh8/bhiGYUyZMsVYtGiRYRiGMXLkSOP55583DMMwfvjhB6NNmzbGuXPnjE8//dQYOXKk\nUVZWZpSVlRnPP/+88dlnn13x/Fd7z3763U+fPn3FPD//fX7+Ov78dkXv+bZt24yhQ4caxcXFxoUL\nF4yOHTsaaWlpxpYtW4yIiAgjPT3dMAzDmDdvnjFz5sxffd1Qs7BFjmorNzdXQUFBFT5m9+7dGjJk\niLy8vOTr66vevXvriy++cN7/03BtkyZNdMMNN6ht27ay2Wy68847lZWV5XzcwIEDJUm33367Gjdu\nrAMHDqhFixbavXu36tatKw8PD7Vq1UoZGRnOecLDwxUYGHhFpqCgIL311ls6efKkWrdurZkzZ6qk\npET/+te/NGzYMElSw4YN1bZtW+3du1fSj1uIAwYMkCTdfffdOnXq1BXLPXDggBo0aKCoqChJUmxs\nrHJycnTy5MkKX6N9+/bpwQcflCS1bNlSt99+e4WP/6VPP/1UI0eOlIeHhwIDA/XAAw9o165dzvs7\ndeokSfrPf/6js2fPatCgQZKkqKgoBQYGav/+/ZKkOnXqqGvXrhX+jhXp1auXtm/fLkn69ttvVVZW\npoiICElS27Zt1ahRI0lSt27dtH//fhUUFCglJcW5X/nWW29VVFSU9uzZo8DAQB09elQffvihCgsL\nNWnSJEVHR5d7vt96z36vq73nn332mWJjY+Xt7a26detqx44dCgsLkyT96U9/UosWLSRJd911lzIz\nM6skC6yNfeSotgICAn7zP6pz586pXr16ztv16tVzDqtKP5aHJHl4eDh//ul2WVlZufl+/nNeXp4K\nCwu1ePFi59D4+fPnnaX1y3l+bs2aNVqzZo0GDBigm266SXFxcWrcuLEMw5Cfn5/zcf7+/s5hcE9P\nT9WuXftXs/38d/X39y83zc/Pr9zv+2vOnz+vunXrlnvea3HhwgVNmjRJnp6ekqRLly6pe/fuzvvr\n168vScrLy1NRUZF69OjhvC8/P1+5ubny9/cv97tf7XesSJcuXfTUU08pIyNDH3300a9m+On3y8vL\n04ULF2QYhoYOHeq8r6CgQPfee69atmyp2bNnKz4+XtOnT1eXLl309NNPl3ttcnNzK3zPfq+rvec5\nOTnlcvz0GEnl3kdPT0/nbhLUbBQ5qq2IiAidPXtWBw8e1N133+2cXlJSohdffFFjx47VjTfeqNzc\nXOd9ubm5uvHGG6/5uXJyctSwYUPnMurVq6f169frhx9+0NatW1WnTh09//zzldoCuuWWW7R48WKV\nlZVp27Ztmjx5sj799FN5eHjo/Pnzzg8AlRlx+LmgoKByv6thGDp//ryCgoIq3Lr19/cvt//3Woso\nODhYq1evVpMmTX7zcXXq1NHOnTuvuO+nD0O/R+3atdW5c2ft3LlTSUlJWrx4sfO+nx+p/9NrHBQU\nJE9PT23ZsqXch7ifdO/eXd27d1dubq7i4uK0du3acvvpAwICfvd79ssPLD8dl1GRgICAcr9Pdna2\nfH19K/2cqHkYWke15e/vr8cee0zTp0/XsWPHJEmFhYWaM2eODh06pFq1aqlTp05KSEhQaWmpCgoK\n9N5776ljx47X/Fw/DdkePXpUx44dU3h4uM6ePavbb79dderU0cmTJ7Vnzx4VFBRUuJxz585p1KhR\nys/Pl4eHh8LDw2Wz2eTl5aUOHTpo8+bNkqTjx49r3759at++faUztmzZUtnZ2c6h6u3bt6tBgwa6\n+eabK5wvIiJCH374oSQpNTVVx48fr/RzSj9uCb/11luSfhwOfuaZZ3Tw4MErHtewYUM1aNDAWeTn\nzp3T3/72t998zby8vK56OuEv7+vVq5fefPNNFRUVOYeYJenrr7/W6dOnJUlJSUmKioqSl5eXOnbs\n6MxeWFiomTNn6vTp09qyZYtWr14t6cet+V/b3VAV75ndbneePrdjxw5dunTpN+fp0qWLtm/fruLi\nYhUUFGjYsGEc1IYKsUWOam3ixImqV6+e/vKXv6i0tFQeHh6KiYnR3LlzJf149HBGRoZ69uwpm82m\n7t27lxvarazAwED17dtXmZmZmj17turVq6ehQ4fqiSeeUGxsrJo2baoZM2Zo4sSJev311ytcTnR0\ntAYOHChPT095e3tr0aJFkqR58+Zp9uzZ2rp1q7y9vbVw4ULddNNNOnHiRKUy1q5dWytWrNCCBQtU\nUFCgwMBALV++/DdPwZs6daomT56s9957T+Hh4ddURJI0adIkzZs3T7GxsZKk6OhoNW3a9IrH2Ww2\nLV++XHPnztWKFSvk4eGhUaNGlRsa/jX33XefXnvtNQ0cOPCK89a7du2qZcuWKSMjQzNnzlSHDh2U\nn5+v//qv/yr3uPbt22vevHn697//rdDQUOcZBHPnztXTTz+td955R5LUp08f3XTTTYqJiVFcXJy6\ndesmT09P3XrrrVqyZMkV2a72nlXWuHHj9PTTT+vtt99WbGys7rjjjt+c58EHH9Thw4fVrVs33XDD\nDRo0aJAiIyP1ww8/VPp5UbPYDIPrkaNma9q0qfbs2aMGDRq4OgoqoWfPnnrhhRecpbhq1SqdOXPG\n+YEJqGkYWgdgGdu3b5fdbq/Uli1QUzC0DsASRo0apZycHK1cudLVUYBqhaF1AAAsjKF1AAAsjCIH\nAMDCLLmP3OGoXpewxLUJCKitnJyKzy0GUPVY96zLbve76n1skeMP5+Xl6eoIQI3EuueeKHIAACyM\nIgcAwMIocgAALIwiBwDAwihyAAAsjCIHAMDCKHIAACyMIgcAwMIocgAALIwiBwDAwihyAAAsjCIH\nAMDCLHn1M3dnt/u7OoLp7HZXJzCHw5Hn6ggAahi2yAEAsDCKHAAAC6PIAQCwMIocAAALo8gBALAw\nihwAAAujyAEAsDCKHAAAC6PIAQCwMIocAAALo8gBALAwihwAAAujyAEAsDCKHAAAC6PIAQCwMFOv\nR56YmKh//OMf8vLy0hNPPKGmTZtq2rRpKi0tld1u17Jly+Tj46PExEStX79eHh4eGjJkiAYPHmxm\nLAAA3IbNMAzDjAXn5ORo6NCh2rJliwoKCrRq1SpdvnxZ999/v3r06KHly5erQYMG6tevn/r376+E\nhAR5e3tr0KBB2rhxo+rXr3/VZTscF8yIXG3Y7f6ujoDr5HDkuToCcFV2u5/b///prux2v6veZ9rQ\nenJystq1a6e6desqODhYCxYsUEpKimJiYiRJnTt3VnJystLS0hQWFiY/Pz/5+voqMjJSqampZsUC\nAMCtmDa0fuLECRUVFWns2LHKy8vTxIkTVVhYKB8fH0lSUFCQHA6HsrOzFRgY6JwvMDBQDofDrFgA\nALgVU/eR5+bm6sUXX9SpU6c0cuRI/XwU/2oj+pUZ6Q8IqC0vL88qywlUlYqGv4DqgL9R92NakQcF\nBalVq1by8vLSLbfcojp16sjT01NFRUXy9fVVZmamgoODFRwcrOzsbOd8WVlZioiIqHDZOTkFZsWu\nFux2VyfA9WL/I6oz9pFbl0v2kXfo0EF79+5VWVmZcnJyVFBQoPbt2yspKUmStGvXLkVHRys8PFzp\n6enKy8vTxYsXlZqaqtatW5sVCwAAt2LaFnlISIhiY2M1ZMgQSdLs2bMVFham6dOna/PmzQoNDVW/\nfv3k7e2tyZMna/To0bLZbBo/frz8/Bj6AQCgMkw7/cxM7j40xOln1sXpZ6jOGFq3LpcMrQMAAPNR\n5AAAWBhFDgCAhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABYGEUOAICFUeQA\nAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABY\nGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhF\nDgCAhVHkAABYGEUOAICFeZm14JSUFD355JO68847JUlNmjTRY489pmnTpqm0tFR2u13Lli2Tj4+P\nEhMTtX79enl4eGjIkCEaPHiwWbEAAHArphW5JLVp00YrV6503p45c6aGDRumHj16aPny5UpISFC/\nfv20evVqJSQkyNvbW4MGDdIDDzyg+vXrmxkNAAC38IcOraekpCgmJkaS1LlzZyUnJystLU1hYWHy\n8/OTr6+vIiMjlZqa+kfGAgDAskzdIv/+++81duxYnT9/XhMmTFBhYaF8fHwkSUFBQXI4HMrOzlZg\nYKBznsDAQDkcDjNjAQDgNkwr8ttuu00TJkxQjx49lJGRoZEjR6q0tNR5v2EYvzrf1ab/XEBAbXl5\neVZZVqCq2O1+ro4AVIi/UfdjWpGHhITowQcflCTdcsstuvHGG5Wenq6ioiL5+voqMzNTwcHBCg4O\nVnZ2tnO+rKwsRUREVLjsnJwCs2JXC3a7qxPgejkcF1wdAbgqu92Pv1GLqugDmGn7yBMTE7V27VpJ\nksPh0NmzZzVgwAAlJSVJknbt2qXo6GiFh4crPT1deXl5unjxolJTU9W6dWuzYgEA4FZsRmXGsq9D\nfn6+pkyZory8PJWUlGjChAm66667NH36dF26dEmhoaFavHixvL29tXPnTq1du1Y2m00jRoxQnz59\nKly2u3+itNv9XR0B18nhyHN1BOCq2CK3roq2yE0rcjO5+x8iRW5dFDmqM4rculwytA4AAMxHkQMA\nYGEUOQAAFkaRAwBgYRQ5AAAWRpEDAGBhFDkAABZGkQMAYGEUOQAAFkaRAwBgYRQ5AAAWRpEDAGBh\nFDkAABZGkQMAYGEUOQAAFkaRAwBgYRQ5AAAWRpEDAGBhFDkAABZGkQMAYGEUOQAAFkaRAwBgYRQ5\nAAAWRpEDAGBhFDkAABZGkQMAYGEUOQAAFkaRAwBgYRQ5AAAWRpEDAGBhFDkAABZGkQMAYGEUOQAA\nFkaRAwBgYRQ5AAAWRpEDAGBhphZ5UVGRunbtqq1bt+r06dN6+OGHNWzYMD355JMqLi6WJCUmJmrg\nwIEaPHiw3nnnHTPjAADgdkwt8jVr1qhevXqSpJUrV2rYsGF64403dOuttyohIUEFBQVavXq1Xn/9\ndcXHx2v9+vXKzc01MxIAAG7FtCI/evSovv/+e3Xq1EmSlJKSopiYGElS586dlZycrLS0NIWFhcnP\nz0++vr6KjIxUamqqWZEAAHA7XmYteOnSpXrqqae0bds2SVJhYaF8fHwkSUFBQXI4HMrOzlZgYKBz\nnsDAQDkcjt9cdkBAbXl5eZoTHPgd7HY/V0cAKsTfqPsxpci3bdumiIgINWrU6FfvNwzjmqb/Uk5O\nwXVnswK73dUJcL0cjguujgBcld3ux9+oRVX0AcyUIt+9e7cyMjK0e/dunTlzRj4+Pqpdu7aKiork\n6+urzMxMBQcHKzg4WNnZ2c75srKyFBERYUYkAADckilFvmLFCufPq1atUsOGDbV//34lJSWpb9++\n2rVrl6KjoxUeHq7Zs2crLy9Pnp6eSk1NVVxcnBmRAABwS6btI/+liRMnavr06dq8ebNCQ0PVr18/\neXt7a/LkyRo9erRsNpvGjx8vPz/23wAAUFk2o7I7pqsRd9/HY7f7uzoCrpPDkefqCMBVsY/cuira\nR843uwEAYGEUOQAAFkaRAwBgYRQ5AAAWRpEDAGBhFDkAABZGkQMAYGEUOQAAFkaRAwBgYRQ5AAAW\nVqkinzFjxhXTRo8eXeVhAADAtanwoimJiYl66623dOTIEQ0fPtw5vaSkpNzlRwEAgGtUWOR9+vRR\n27ZtNWXKFE2cONE53cPDQ3fccYfp4QAAQMUqffWzCxcuKDc3t9y0Ro0amRLqt7j71Xu4+pl1cfUz\nVGdc/cy6Krr6WaWuR75w4UJt2bJFgYGB+qn3bTabPv7446pJCADVQE34EG23uzqBeWrqB+lKFXlK\nSor27t2rG264wew8AADgGlTqqPVbb72VEgcAoBqq1BZ5gwYNNHz4cEVFRcnT09M5/cknnzQtGAAA\n+G2VKvL69eurXbt2ZmcBAADXqFJFPm7cOLNzAACA61CpIm/evLlsNpvzts1mk5+fn1JSUkwLBgAA\nflulivzbb791/lxcXKzk5GQdPnzYtFAAAKByrvmiKT4+PurYsaO++OILM/IAAIBrUKkt8oSEhHK3\nz5w5o8zMTFMCAQCAyqtUkX/99dflbtetW1crVqwwJRAAAKi8Sn/XuiTl5ubKZrOpXr16Zmb6Te7+\nXcE14Wsi3VVN/YpId8G6Z23uvP797u9aT01N1bRp03Tx4kUZhqH69etr2bJlCgsLq7KQAADg2lWq\nyJ977jm99NJLatKkiSTp0KFDWrRokTZt2mRqOAAAULFKHbXu4eHhLHHpx/PKf/5VrQAAwDUqXeRJ\nSUnKz89Xfn6+duzYQZEDAFANVOpgtx9++EELFizQgQMH5OHhoWbNmmnhwoVq1KjRH5HxChzshurK\nnQ+2qQlY96zNnde/ig52q9QW+RdffCEfHx999dVXSklJkWEY2rNnT5UFBAAA16dSRZ6YmKgXX3zR\neXvdunV6//33TQsFAAAqp1JFXlpaWm6fuM1m0zWcfg4AAExSqdPPunTpoqFDhyoqKkplZWXau3ev\nunXrZnY2AADwGyr9zW779u3TgQMHZLPZ1KpVK0VERFT4+MLCQs2YMUNnz57VpUuXNG7cODVr1kzT\npk1TaWmp7Ha7li1bJh8fHyUmJmr9+vXy8PDQkCFDNHjw4AqXzcFuqK7c+WCbmoB1z9rcef2r6GC3\na/qK1muxY8cOnTx5Uo8//rhOnjypRx99VJGRkbr//vvVo0cPLV++XA0aNFC/fv3Uv39/JSQkyNvb\nW4MGDdLGjRtVv379qy6bIkd15c7/kdQErHvW5s7r3+8+av16PPjgg3r88cclSadPn1ZISIhSUlIU\nExMjSercubOSk5OVlpamsLAw+fn5ydfXV5GRkUpNTTUrFgAAbqVS+8h/j6FDh+rMmTN6+eWXNWrU\nKPn4+EiSgoKC5HA4lJ2drcDAQOfjAwMD5XA4KlxmQEBteXnxhTSofir61AzAXDV1/TO9yN966y39\n+9//1tSpU8sd6X61Ef3KjPTn5BRUWb7qyG53dQJcL3ff7ePuWPeszZ3XP5cMrX/zzTc6ffq0JOmu\nu+5SaWmp6tSpo6KiIklSZmamgoODFRwcrOzsbOd8WVlZCg4ONisWAABuxbQi37dvn9atWydJys7O\nVkFBgdq3b6+kpCRJ0q5duxQdHa3w8HClp6crLy9PFy9eVGpqqlq3bm1WLAAA3IppR60XFRVp1qxZ\nOn36tIqKijRhwgS1aNFC06dP16VLlxQaGqrFixfL29tbO3fu1Nq1a2Wz2TRixAj16dOnwmW78/CJ\nxJGzVubOR83WBKx71ubO659LTj8zE0WO6sqd/yOpCVj3rM2d1z+X7CMHAADmo8gBALAwihwAAAuj\nyAEAsDCKHAAAC6PIAQCwMIocAAALo8gBALAwihwAAAujyAEAsDCKHAAAC6PIAQCwMIocAAALo8gB\nALAwihwAAAujyAEAsDCKHAAAC6PIAQCwMIocAAALo8gBALAwihwAAAujyAEAsDCKHAAAC6PIAQCw\nMIocAAALo8gBALAwihwAAAujyAEAsDCKHAAAC6PIAQCwMIocAAALo8gBALAwihwAAAujyAEAsDCK\nHAAAC/Myc+HPPvusvv76a12+fFljxoxRWFiYpk2bptLSUtntdi1btkw+Pj5KTEzU+vXr5eHhoSFD\nhmjw4MFmxgIAwG2YVuR79+7VkSNHtHnzZuXk5Kh///5q166dhg0bph49emj58uVKSEhQv379tHr1\naiUkJMjb21uDBg3SAw88oPr165sVDQAAt2Ha0Po999yjF154QZLk7++vwsJCpaSkKCYmRpLUuXNn\nJScnKy0tTWFhYfLz85Ovr68iIyOVmppqViwAANyKaVvknp6eql27tiQpISFB999/v/73f/9XPj4+\nkqSgoCA5HA5lZ2crMDDQOV9gYKAcDkeFyw4IqC0vL0+zogPXzW73c3UEoMaqqeufqfvIJemjjz5S\nQkKC1q1bp27dujmnG4bxq4+/2vSfy8kpqLJ81ZHd7uoEuF4OxwVXR8DvwLpnbe68/lX0IcXUo9Y/\n//xzvfzyy3r11Vfl5+en2rVrq6ioSJKUmZmp4OBgBQcHKzs72zlPVlaWgoODzYwFAIDbMK3IL1y4\noGeffVavvPKK88C19u3bKykpSZK0a9cuRUdHKzw8XOnp6crLy9PFixeVmpqq1q1bmxULAAC3YtrQ\n+o4dO5STk6NJkyY5py1ZskSzZ8/W5s2bFRoaqn79+snb21uTJ0/W6NGjZbPZNH78ePn51cz9HAAA\nXCubUZmd0tWMO+8HkSS73d/VEXCdHI48V0fA78C6Z23uvP65bB85AAAwF0UOAICFUeQAAFgYRQ4A\ngIVR5AAAWBhFDgCAhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABYGEUOAICF\nUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHk\nAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAA\nWJipRf7dd9+pa9eu2rhxoyTp9OnTevjhhzVs2DA9+eSTKi4uliQlJiZq4MCBGjx4sN555x0zIwEA\n4FZMK/KCggItWLBA7dq1c05buXKlhg0bpjfeeEO33nqrEhISVFBQoNWrV+v1119XfHy81q9fr9zc\nXLNiAQDgVkwrch8fH7366qsKDg52TktJSVFMTIwkqXPnzkpOTlZaWprCwsLk5+cnX19fRUZGKjU1\n1axYAAC4FS/TFuzlJS+v8osvLCyUj4+PJCkoKEgOh0PZ2dkKDAx0PiYwMFAOh8OsWAAAuBXTivy3\nGIZxTdN/LiCgtry8PKs6EvC72e1+ro4A1Fg1df37Q4u8du3aKioqkq+vrzIzMxUcHKzg4GBlZ2c7\nH5OVlaWIiIgKl5OTU2B2VJdqiMTYAAAQJklEQVSy212dANfL4bjg6gj4HVj3rM2d17+KPqT8oaef\ntW/fXklJSZKkXbt2KTo6WuHh4UpPT1deXp4uXryo1NRUtW7d+o+MBQCAZZm2Rf7NN99o6dKlOnny\npLy8vJSUlKS///3vmjFjhjZv3qzQ0FD169dP3t7emjx5skaPHi2bzabx48fLz69mDo8AAHCtbEZl\ndkpXM+48fCJJdru/qyPgOjkcea6OgN+Bdc/a3Hn9qzZD6wAAoGpR5AAAWBhFDgCAhVHkAABYGEUO\nAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCA\nhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR\n5AAAWBhFDgCAhVHkAABYGEUOAICFUeQAAFgYRQ4AgIVR5AAAWBhFDgCAhVHkAABYGEUOAICFebk6\nwE+eeeYZpaWlyWazKS4uTi1btnR1JAAAqr1qUeRffvmljh07ps2bN+vo0aOKi4vT5s2bXR0LAIBq\nr1oMrScnJ6tr166SpD/96U86f/688vPzXZwKAIDqr1oUeXZ2tgICApy3AwMD5XA4XJgIAABrqBZD\n679kGEaF99vtfn9QElep+PdH9WW3uzoBfh/WPSurqetftdgiDw4OVnZ2tvN2VlaW7DX1HQEA4BpU\niyK/7777lJSUJEk6ePCggoODVbduXRenAgCg+qsWQ+uRkZG6++67NXToUNlsNj399NOujgQAgCXY\njN/aIQ0AAKqtajG0DgAArg9FDgCAhVHkAABYGEUOAICFVYuj1gEAVefFF1+s8P4JEyb8QUnwR6DI\nYZp7771XNptNkpSbmytfX1+VlZWpuLhYISEh2r17t2sDAm7qp6+8PnDggHJycnTPPffIMAylpKQo\nNDTUxelQ1ShymGbv3r2SpIULF6pPnz7OS9OmpqZqx44drowGuLXhw4dLkj755BOtXbvWOf3xxx/X\nX/7yF1fFgknYRw7TffPNN+WuLx8ZGanDhw+7MBFQM2RlZem7775z3j527JhOnjzpwkQwA1vkMF1I\nSIgmTpyoVq1aycPDQ+np6fL393d1LMDtxcXFadasWTp58qQ8PDwUEhKiadOmuToWqhjf7AbTFRcX\nKzk5WUePHpVhGGrcuLHuv/9+eXnxORL4I5SUlMjb29vVMWASihymGzFihDZu3OjqGECNk5KSokWL\nFqm4uFg7d+7U888/r9atWys6OtrV0VCF2CSC6Ro2bKjJkycrLCys3FbBTwfkADDHypUrtX79ej3x\nxBOSpJEjR2rcuHEUuZuhyGG6Ro0aSZLy8/NdnASoWby8vBQQEOA8DTQoKMj5M9wHRQ7TTZgwQRcv\nXtT58+cl/bjPfP78+S5OBbi/m2++WS+88IJycnK0Y8cOffTRR7rjjjtcHQtVjH3kMN3q1au1detW\n5ebmKjQ0VKdOndJDDz3E0bOAycrKyvTPf/5T+/fvl7e3tyIiItS9e3d5enq6OhqqEOeRw3SfffaZ\nPv74YzVv3lz//Oc/tWHDBv4jAf4A2dnZKiws1Ny5c52noZ09e9bVsVDFKHKYzmazyTAMlZaWqqio\nSHfffbe+/vprV8cC3N706dPLfWdDkyZNNGPGDBcmghkocpguNjZW69evV+/evdW3b18NGzZMtWrV\ncnUswO0VFRXpwQcfdN7u1KmTSkpKXJgIZmAfOf5Qp06dUk5Ojpo3b87Rs4DJJk+erODgYEVGRqqs\nrEzJyckqLCzU0qVLXR0NVYgih2kefvjhCst6w4YNf2AaoOa5fPmy3n33XR06dEienp4KCwtTz549\n+VZFN0ORwzRHjhyRJL399tsKDg5W27ZtVVZWppSUFOXl5Wnq1KkuTgi4t23btv3q9H79+v3BSWAm\nPpbBNHfeeack6fDhw5o1a5ZzekREhB577DFXxQJqjJ9fZfDy5ctKS0vTnXfeSZG7GYocpisuLlZ8\nfHy5q5/l5eW5Ohbg9qZPn17udmlpqfPrWuE+GFqH6TIzM7Vhwwbn1c9uv/12PfzwwwoNDXV1NMCt\nFRYWlrvtcDg0ZswYffDBBy5KBDOwRQ7ThYSEqHfv3rpw4YIMw5DNZtPJkycpcsBkPXv2dP5ss9nk\n5+enRx991IWJYAa2yGG6P//5z8rLy1NISIh++nOz2Wx64YUXXJwMAKyPLXKYLi8vT2+99ZarYwA1\nRpcuXa566qfNZtNHH330ByeCmShymC4yMlJHjhxxHsUOwFzvv/++DMPQK6+8ombNmjlP/dy7d6+O\nHTvm6nioYgytw3TdunVTRkaG6tat67xYis1mU3JysouTAe5txIgR2rhxY7lpo0aN0muvveaiRDAD\nW+Qw3a5du66Y9sUXX7ggCVCz+Pj4aMmSJeVO/SwtLXV1LFQxtshhuoyMDL3xxhvKzc2VJJWUlOir\nr77Snj17XJwMcG/5+flKTEx0nvrZuHFj9evXT35+fq6OhirE1c9guhkzZuiOO+7QwYMH1alTJ3l4\neGj+/PmujgW4vbp166pZs2aKjIzUnDlzFBsbS4m7IYocpvPy8tLAgQPl7++v2NhYPfvss1fstwNQ\n9ZYuXaoNGzZo7dq1kqTNmzdr4cKFLk6FqkaRw3SGYejLL79U/fr1tXnzZiUnJ+vEiROujgW4vW++\n+UYrVqxQnTp1JEkTJ07UoUOHXJwKVY0ih+mWLVumWrVqafbs2fq///s/rV+/XjNmzHB1LMDtXb58\nWSUlJc5zys+dO6dLly65OBWqGge7wXQvvfSSxo0bV27akiVLKHPAZB9++KHWrFmjU6dOqUWLFvrP\nf/6juLg4de3a1dXRUIUocphm165dev/997Vv3z7dc889zumlpaU6dOiQPvnkExemA9zfoUOHdNtt\nt+n777+Xt7e3GjduLF9fX1fHQhWjyGGqEydOKC4uTtHR0QoPD9epU6f07rvv6oknnlBUVJSr4wFu\nbeTIkVq3bp28vPjKEHfGuwtT3XzzzSotLVWHDh106dIlbd26VU8++aReeukl55G0AMxRq1YtdevW\nTc2aNZO3t7dzOhcsci8UOUzn5eWlu+66S0uXLtV///d/KyoqSpcvX3Z1LMBtFRYWqlatWho9erSr\no+APQJHDdKWlpVqzZo0++eQTTZo0SQcOHFBBQYGrYwFua+LEibp8+bLCwsLUpk0bRUVFqXbt2q6O\nBZOwjxymO336tJKSknTffffpzjvv1I4dO3TbbbepefPmro4GuK2SkhKlpaUpJSVFqampKi4uVsuW\nLdWmTRt17NjR1fFQhShyAKgBiouLncU+YcIEV8dBFWJoHQDc1JkzZ7R69WqdP39eK1euVGZmpvr3\n7+/qWKhifLMbALipWbNmqWvXrjp37pwk6cYbb+SLmNwQRQ4AbqqsrEwdO3Z0fkXrvffeK/amuh+G\n1gHATXl5eSk5OVllZWXKzs7Whx9+qBtuuMHVsVDFONgNANxUVlaWXnjhBe3fv18+Pj5q2bKlJkyY\noODgYFdHQxWiyAHAjRUXFysrK0s333yzq6PAJOwjBwA3tX37dg0YMEBjx46VJC1cuFDbtm1zcSpU\nNYocANzUpk2btHXrVgUEBEiSpk6dqjfeeMPFqVDVKHIAcFOenp7y8fFxHrXu4+Pj4kQwA0etA4Cb\nioyM1NSpU5WZman/+Z//0aeffqr27du7OhaqGAe7AYCbMgxDX3/9tfbv3y9vb2+Fh4erVatWro6F\nKkaRA4CbGjFihDZu3OjqGDAZRQ4Abmr69OnOy5l6e3s7pw8fPtyFqVDVONgNANzMzJkzJUkeHh5q\n3Lix8vPzlZOT4/wH98IWOQC4mSFDhqikpETHjx/XbbfdVu4+m82mhIQE1wSDKShyAHAzly9fVlZW\nlpYsWaLp06dfcX/Dhg1dkApmocgBALAw9pEDAGBhFDkAABZGkQMW8d5777k6glNqaqpiYmL00ksv\nlZs+Y8YMvfPOO1X2PFu3btWUKVOqbHmAO6LIAQsoLS29ojRdKTk5Wd27d9e4ceNcHQWo8fiudcAC\n4uLidPLkST366KMKCAjQfffdpwEDBkiSnn76aTVp0kTp6em64YYbdOLECWVlZWnAgAEaNWqUiouL\nNX/+fB07dkwXL15Ur1699Oijj+q7777TnDlz5O3traKiIo0fP16dOnUq97xpaWlasmSJvLy8ZLPZ\nNGfOHOXm5mrLli0yDEO1atXShAkTrsh74sQJDRs2TJ999pkkadWqVbp8+bL++te/KioqSmPHjtXn\nn38uh8OhFStWqGnTpkpLS9Mzzzwjb29v1atXT0uXLpUk5efna8qUKTp69KhCQ0P14osvOi8CAoAt\ncsASJk6cqMDAQK1bt05Dhw7Vu+++K+nHLfXPP/9cffr0kSRlZmZq7dq12rRpk9asWaOcnBxt2LBB\nwcHBio+P1zvvvKPt27fr22+/1dtvv60uXbooPj5eL7/8snJzc6943mnTpmnmzJmKj4/XqFGjNG/e\nPLVu3Vr9+/dXnz59frXEf0t+fr6aNGmiDRs2qGfPns6h+KlTp2rBggXauHGj7rnnHu3Zs0eS9P33\n32vBggXaunWrjhw5ooMHD17vywi4JbbIAYu55557dO7cOWVkZOjEiROKioqSn5+fJKlDhw6SJH9/\nf9122206duyYUlJSdObMGX311VeSpOLiYh0/flyxsbGaMWOGTp06pc6dO6tv377lnicvL09nz55V\ny5YtJUlt2rTR3/72tyr5He69915JUmhoqI4dO6Zz584pLy9PTZo0kSQ98sgjkn7cRx4WFqZatWpJ\nkkJCQnThwoUqyQC4C4ocsKDBgwcrMTFRmZmZGjx4sHN6WVmZ82fDMGSz2eTj46Px48ere/fuVyzn\n/fffV3JysrZu3arExEQ999xzzvt+OXx9LV858ct5S0pKyk3z9PS8IufVlv/zx15rDqAmYGgdsAAP\nDw9dvnzZebtfv376+OOP9e2336pNmzbO6SkpKZKk8+fP6/jx42rcuLGioqL0wQcfSPqx6BcvXqzc\n3FzFx8frzJkz6tKlixYtWqS0tLRyz+nn5ye73e6cnpycrIiIiErlrVu3rs6fP6/CwkKVlpY6RwOu\nJiAgQPXr19eBAwckSevWrdOmTZsq9VxATccWOWABwcHBuvHGGzVgwABt3LhR9evXV6NGjXT33XeX\ne5y/v7/GjRunjIwMTZw4Uf7+/ho+fLiOHDmihx56SKWlperUqZPq16+v22+/XZMnT1adOnVUVlam\nyZMnX/G8S5cu1ZIlS+Tp6SkPDw/NnTu3Unnr1aun/v37a+DAgbrlllvUvHnz35xn2bJleuaZZ+Tl\n5SU/Pz8tW7ZMu3btqtTzATUZX9EKWFBeXp6GDh2qTZs2KSAgQNKP53BHRUWVG2oH4P4YWgcsJiEh\nQcOHD9ekSZOcJQ6g5mKLHAAAC2OLHAAAC6PIAQCwMIocAAALo8gBALAwihwAAAujyAEAsLD/ByzR\naWSakSl3AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "3druUjNTuCpg",
- "colab_type": "code",
- "outputId": "45f553fe-63c1-4c31-c5af-8d87d337bb08",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 148
- }
- },
- "cell_type": "code",
- "source": [
- "# Assigning grades to the grades according to the following criteria :\n",
- "# 0 - 40 marks : grade E\n",
- "# 41 - 60 marks : grade D\n",
- "# 60 - 70 marks : grade C\n",
- "# 70 - 80 marks : grade B\n",
- "# 80 - 90 marks : grade A\n",
- "# 90 - 100 marks : grade O\n",
- "\n",
- "def getgrade(percentage, status):\n",
- " if status == 'Fail':\n",
- " return 'E'\n",
- " if(percentage >= 90):\n",
- " return 'O'\n",
- " if(percentage >= 80):\n",
- " return 'A'\n",
- " if(percentage >= 70):\n",
- " return 'B'\n",
- " if(percentage >= 60):\n",
- " return 'C'\n",
- " if(percentage >= 40):\n",
- " return 'D'\n",
- " else :\n",
- " return 'E'\n",
- "\n",
- "data['grades'] = data.apply(lambda x: getgrade(x['percentage'], x['status']), axis = 1 )\n",
- "\n",
- "data['grades'].value_counts()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "B 260\n",
- "C 252\n",
- "D 223\n",
- "A 156\n",
- "O 58\n",
- "E 51\n",
- "Name: grades, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 193
- }
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# visualizing different types of lunch \n",
+ "\n",
+ "data['lunch'].value_counts(normalize = True)\n",
+ "data['lunch'].value_counts(dropna = False).plot.bar(color = 'yellow')\n",
+ "plt.title('Comparison of different types of lunch')\n",
+ "plt.xlabel('types of lunch')\n",
+ "plt.ylabel('count')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 627
+ },
+ "colab_type": "code",
+ "id": "CgO6Upe9XOMs",
+ "outputId": "5545fb2d-a20b-411f-af85-0f6a6b2b13e9"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABBsAAAJiCAYAAACGv8r3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3X2cVmWdP/DvwEg6ijw5oGaWFQiK\n+ZQRlgGjSVqupLtJFK6SZmom+YATyiQQSChmKesDBq6yrRhlUVKwhbhqwvpUJpawvvoFkiLioCgo\nMJzfH/tyxLxnnLHrPnMG3++/7rnu65zvZw6+fPh4zn1XZFmWBQAAAEAiHdo6AAAAALBjUTYAAAAA\nSSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQASybIsZs2aFZ/73Odi6NChccwxx8Tll18e\nGzZsaOtobzJ79uy45ppr2mz+hg0b4sQTT4xjjz026uvrk5//3nvvjb/97W8REXHttdfGpZdemnwG\nANA8ZQMAJHLVVVfF/Pnz44c//GEsWLAg5s2bF1u2bImzzjorsixr63iNvvzlL8fo0aPbbP6TTz4Z\n69evj4ULF0a3bt2Sn/+WW25pLBsAgLZRkRXp334AoJ1av359fOpTn4o777wzPvShDzWuv/baa3H/\n/ffH4MGDY8uWLTFp0qRYunRpdOjQIQYNGhQXX3xxdOzYMWpqauL000+Pn/70p7FmzZq4/PLL44EH\nHoh77703unfvHjNmzIguXbrE/vvvH5deemn85Cc/ieeeey6+8Y1vxBe/+MWIiJg+fXrMmzcvGhoa\n4kMf+lBceeWVsfvuu8e1114ba9asiT//+c/xuc99LjZs2BDPPvtsTJo0KX71q1/F9OnTo6GhISor\nK+Oyyy6LAQMGxN/+9rcYN25cPP3007HTTjvFGWecEcOGDYunn346hg8fHl/96lfjxz/+caxfvz6+\n9a1vxfHHH/+Wa7J06dKYMmVKbNq0KTp37hx1dXXRo0ePGDFiRDz//POxzz77xI9+9KPo3r174zG1\ntbXRq1eveOSRR2LFihXxhS98Id73vvfFrbfeGq+88kpcc8018ZGPfCSef/75uOSSS2L16tWxefPm\nGDlyZJx++ulxzTXXxIwZM6Jnz55x8cUXx1NPPRUrV66MhoaG+P3vfx977LFHXHvttdGrV683ZV2z\nZk2MGTMm1q5dG5s3b47Pfvaz8c1vfjOyLIspU6bEf/3Xf8VOO+0U//Iv/xJnnHFGbNu2Lb7//e/H\nggULIiLikEMOibq6uqiqqoqRI0fGYYcdFgsXLoxJkybFhz/84Zg4cWI89thjsXXr1jjnnHPi5JNP\njoiI733ve/HrX/86IiJ69eoVV1555VuyAUC7lAEA/7DFixdnn/70p5vdc+ONN2ZnnnlmtmXLlmzT\npk3ZySefnP3sZz/LsizLhgwZko0bNy7Lsiy77bbbsoMPPjhbsmRJtm3btuzkk0/O7rjjjizLsqxP\nnz7ZhAkTsizLsqeeeirr379/9sILL2R//OMfs4EDB2YbNmzIGhoastNOOy2bPn16lmVZ9oMf/CD7\n5Cc/ma1bt67x57Fjx2ZZlmUDBgzInn766SzLsuzBBx/MJk+enGVZlo0aNSq74YYbsizLsqeffjo7\n/PDDs1WrVmWrVq3KDjjggOy2227LsizL5s+fX/L3fvnll7MBAwZkDz30UJZlWfbrX/86O/bYY7OG\nhoZsyZIl2THHHFPyGl1yySXZsGHDsldeeSV78skns379+jXmmDJlSnbRRRdlWZZlEyZMyOrq6rIs\ny7KVK1dmBx54YPa3v/2t8Vo++OCDjb/rJz7xicbf8ayzzsquu+66t8ydMmVKdu2112ZZlmUbN27M\nvvnNb2Zr1qzJfvazn2XDhw/PNm/enG3YsCEbNGhQ9oc//CH75S9/2Zhz69at2dlnn914vb/85S9n\no0aNyhoaGrIsy7Jvfetb2ZgxY7KGhoZs3bp12aBBg7Inn3wyW758eXbsscdmmzdvzrIsy2699dbs\nzjvvLHldAKC98RgFACSwfv366NGjR7N7Fi9eHF/4wheisrIydt555zjhhBPi/vvvb3z/6KOPjoiI\nPn36xHve854YMGBAVFRURO/eveO5555r3Pf6/xX/4Ac/GPvtt1889thj0b9//1i8eHHstttu0aFD\nhzj00ENj1apVjcccfPDBb7qD4HU9evSI22+/PVavXh0f/ehH41vf+lZs2bIlfve738WIESMiIuK9\n731vDBgwIJYsWRIREVu3bo2TTjopIiIOPPDAko8sPPbYY7HnnnvG4YcfHhERQ4cOjfr6+li9evXb\nXssjjzwyqqqqonfv3rFt27YYMmRI43V5/TpcdtllMW7cuIiIeN/73hfV1dXx9NNPlzzf4YcfHu99\n73sjIqJv376xZs2aktfhvvvui4ceeig6deoUV199dfTs2TP++7//O4YOHRo77bRT7LbbbjF//vw4\n6KCDYvHixTFs2LCoqqqKjh07xkknnfSmP8tBgwZFhw7/969Zd999d5x66qnRoUOH6N69e3z605+O\nhQsXxu677x4vvPBC/OIXv4gXX3wxRo4cGcOGDXvb6wMA7UFlWwcAgB1Bt27dSv5H7PZeeOGF6NKl\nS+PPXbp0iXXr1jX+vOuuu0ZERIcOHRpfv/7ztm3b3nTc9q9feuml2LRpU1xxxRWxdOnSiIh48cUX\nY/DgwSWP2d71118f119/fZx00kmx1157xdixY2O//faLLMuic+fOjfte/w/jiIiOHTtGVVVVyWzb\n/6677777m9Y6d+78pt+3Ka//7hUVFdGhQ4eSs/74xz/GtGnT4plnnokOHTrE2rVrS+aIiNhtt90a\nX3fs2DEaGhresue0006Lbdu2xfjx4+O5556LL33pS3HeeedFfX39m36P17O83Z/l9u9t2LAhRo8e\nHR07doyI/3u05jOf+Uz06tUrrr322pg5c2ZMnDgxjjjiiBg/fnzstddeb3uNAKDolA0AkMAhhxwS\n69ati2XLlsWBBx7YuL5ly5a47rrr4mtf+1rssccesX79+sb31q9fH3vssUerZ9XX1zf+n/r169dH\nly5d4t///d/j//2//xc//elPY9ddd43vfe97b1t+RETsu+++ccUVV8S2bdviZz/7WVx44YVx9913\nR4cOHeLFF19s/I/mlty5sb0ePXq86XfNsixefPHF6NGjR5IPb7z44ovjX//1X+OLX/xiVFRUxFFH\nHfUPna+ysjK++tWvxle/+tX4y1/+EmeeeWYcfvjh0a1btzd9Y8bzzz8fO++8c6v+LHv27BnTp0+P\nPn36vOW9j3/84/Hxj388Nm7cGN/97nfjqquuimnTpv1DvwsAFIHHKAAggd133z3OOOOMuOSSS+Kv\nf/1rRERs2rQp6urq4oknnohddtklBg8eHHPnzo2GhobYuHFj/PznP49Bgwa1etZdd90VERFPPfVU\n/PWvf42DDz441q1bFx/84Adj1113jdWrV8c999wTGzdubPY8L7zwQpx++unx8ssvR4cOHeLggw+O\nioqKqKysjE9+8pMxZ86ciIhYuXJlPPTQQ3HkkUe2OOPrH+L46KOPNmbec889Y5999mn171vKunXr\non///lFRURF33nlnbNq0qfH3raysbPXXjdbV1TU+BrHvvvvGHnvsERUVFVFTUxN33XVXbN68OTZu\n3BgjRoyI5cuXx+DBg2PevHmxadOm2Lp1a8ydO7fJP8uampq4/fbbI+L/HkGZPHlyLFu2LO67774Y\nP358bNu2LaqqqqJv375RUVHxD1wVACgOdzYAQCLnnXdedOnSJc4+++xoaGiIDh06xNFHHx2XX355\nRESMHDkyVq1aFZ/97GejoqIiPvOZz8Rxxx3X6jndu3ePE088MdasWROXXXZZdOnSJYYPHx7f+MY3\nYujQobH//vtHbW1tnHfeeXHLLbc0e56jjjoqTj755OjYsWPstNNOMWnSpIiIGD9+fFx22WXx05/+\nNHbaaaf4zne+E3vttVeTn4vw96qqquKaa66JiRMnxsaNG6N79+5x9dVXJ/uP6fPPPz/OPffc6Nq1\nawwfPjxOOeWUGDduXPzoRz+KoUOHxgUXXBDf+MY3Wny+4cOHR11dXUycODGyLIuampoYOHBgRPzf\nV3Uee+yx8Z73vCf++Z//OQ477LDIsiyefPLJOOmkkyLLshgwYECceuqpJc89evToGD9+fAwdOjQi\nIo466qjYf//9o6GhIe66664YOnRodOrUKbp37x6TJ0/+xy8OABSAr74EgHZk//33j3vuuSf23HPP\nto4CANAkj1EAAAAASSkbAAAAgKQ8RgEAAAAk5c4GAAAAIKlCfxvF2rVNf21Vt25VUV/f/Fd65bl/\nR5lRxEx5zChipjxmFDFTHjOKmCmPGUXMlMeMImbKY0YRM+Uxo4iZ8phRxEx5zChipjxmFDFTHjOK\nmCmPGUXMlMeMImbKY0YRMzV3THV15yaPabd3NlRWdizU/h1lRhEz5TGjiJnymFHETHnMKGKmPGYU\nMVMeM4qYKY8ZRcyUx4wiZspjRhEz5TGjiJnymFHETHnMKGKmPGYUMVMeM4qYKY8ZRcz0To9pt2UD\nAAAAUEzKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAA\nAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABA\nUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApCrbOkBrjJqy\nqOT6zNqanJMAAAAATXFnAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQN\nAAAAQFLKBgAAACApZQMAAACQlLIBAAAASKqyXCfetGlT1NbWxrp16+K1116Lc845JxYsWBDLli2L\nrl27RkTEV77ylRg8eHC5IgAAAABtoGxlw9133x39+/ePM888M1avXh2jRo2KQw89NC644IIYMmRI\nucYCAAAAbaxsZcPxxx/f+PqZZ56JXr16lWsUAAAAUCBl/8yG4cOHx0UXXRRjx46NiIjZs2fHqaee\nGt/85jfjhRdeKPd4AAAAIGcVWZZl5R7ypz/9KcaMGRNjx46Nrl27Rr9+/eKmm26KZ599Nurq6po8\nbuvWhqis7Nj48wkX/rzkvl9MO7Hk+hfmnF1y/Y5Trm9FegAAAKA1yvYYxeOPPx49evSIvfbaK/r1\n6xcNDQ3Rp0+f6NGjR0RE1NTUxOWXX97sOerrN7Zo1tq1G1qVrSX7q6s7t/q8rT2miDOKmCmPGUXM\nlMeMImbKY0YRM+Uxo4iZ8phRxEx5zChipjxmFDFTHjOKmCmPGUXMlMeMImbKY0YRM+Uxo4iZ8phR\nxEx5zChipuaOqa7u3OQxZXuM4qGHHoqZM2dGRMTzzz8fGzdujLq6uli1alVERCxdujR69+5drvEA\nAABAGynbnQ3Dhw+PSy+9NEaMGBGvvvpq1NXVRVVVVYwePTp22WWXqKqqiiuuuKJc4wEAAIA2Uray\nYeedd45p06a9Zf0nP/lJuUYCAAAABVD2b6MAAAAA3l2UDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAA\nAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABI\nStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZ\nAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAA\nAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAA\nJFXZ1gGKZPkZp73x+u/e63PzLSWPuX7K4pLrZ9cOThEJAAAA2h13NgAAAABJKRsAAACApJQNAAAA\nQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBS\nygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoG\nAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJKqLNeJN23aFLW1tbFu3bp47bXX4pxzzom+\nffvGmDFjoqGhIaqrq+PKK6+MTp06lSsCAAAA0AbKVjbcfffd0b9//zjzzDNj9erVMWrUqDjssMNi\nxIgRcdxxx8XVV18dc+fOjREjRpQrAgAAANAGyvYYxfHHHx9nnnlmREQ888wz0atXr1i6dGkcffTR\nERExZMiQeOCBB8o1HgAAAGgjFVmWZeUcMHz48Hj22WfjhhtuiNNPP72xYFi5cmWMGTMmbr/99iaP\n3bq1ISorOzb+fMKFPy+57xfTTiy5/oU5Z5dcv+OU60uu33/iyU1m+cTPf1JyfcKFvyi5XjfthCbP\nBQAAADuysj1G8brbb789/vSnP8XFF18c2/caLek46us3tmjG2rUbWpWptfvLNaO6unOrz9vaY8q9\nf0eZUcRMecwoYqY8ZhQxUx4zipgpjxlFzJTHjCJmymNGETPlMaOImfKYUcRMecwoYqY8ZhQxUx4z\nipgpjxlFzJTHjCJmau6Y6urOTR5TtscoHn/88XjmmWciIqJfv37R0NAQu+66a7z66qsREbFmzZro\n2bNnucYDAAAAbaRsZcNDDz0UM2fOjIiI559/PjZu3BhHHnlkLFiwICIiFi5cGEcddVS5xgMAAABt\npGyPUQwfPjwuvfTSGDFiRLz66qtRV1cX/fv3j0suuSTmzJkTe++9dwwbNqxc4wEAAIA2UrayYeed\nd45p06a9ZX3WrFnlGgkAAAAUQNkeowAAAADenZQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZ\nAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAA\nAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAA\nJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSl\nbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkVdnW\nAd5tVj464Y3X263ve2hdk8eMfXBFyfXJR/ROFQsAAACScWcDAAAAkJSyAQAAAEhK2QAAAAAkpWwA\nAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAA\nAJJSNgAAAABJVbZ1ANIbNWVRyfWZtTWt2t/cMecuGlNyfXrN1JLry8847Y3X2633ufmWJmcDAADQ\nPrmzAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCU\nsgEAAABIStkAAAAAJFVZzpNPnTo1Hn744di6dWucddZZsWjRoli2bFl07do1IiK+8pWvxODBg8sZ\nAQAAAMhZ2cqGJUuWxIoVK2LOnDlRX18fn//85+PjH/94XHDBBTFkyJByjQUAAADaWNnKhiOOOCI+\n8pGPRETE7rvvHps2bYqGhoZyjQMAAAAKomxlQ8eOHaOqqioiIubOnRuf+tSnomPHjjF79uyYNWtW\n9OjRI8aNGxfdu3dv8hzdulVFZWXHt51VXd25Vdma2r88hxkrE53/nRzTljOaurbNnX/Chb8ouV43\n7YSS6w8vvLjx9fbX+fBjr2xyRkuzpDqmiDOKmCmPGUXMlMeMImbKY0YRM+Uxo4iZ8phRxEx5zChi\npjxmFDFTHjOKmCmPGUXMlMeMImbKY0YRM+Uxo4iZ3skxZf3MhoiI3/zmNzF37tyYOXNmPP7449G1\na9fo169f3HTTTXHddddFXV1dk8fW129s0Yy1aze0KlNr9+cxo4iZ8phRlEzV1Z1bfd7WHlPEGUXM\nlMeMImbKY0YRM+Uxo4iZ8phRxEx5zChipjxmFDFTHjOKmCmPGUXMlMeMImbKY0YRM+Uxo4iZ8phR\nxEzNHdNcAVHWb6O4995744YbbogZM2ZE586dY+DAgdGvX7+IiKipqYnly5u7lwAAAABoj8pWNmzY\nsCGmTp0aN954Y+O3T5x33nmxatWqiIhYunRp9O7du1zjAQAAgDZStsco5s+fH/X19TF69OjGtZNO\nOilGjx4du+yyS1RVVcUVV1xRrvEAAABAGylb2XDKKafEKaec8pb1z3/+8+UaCQAAABRAWT+zAQAA\nAHj3UTYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAA\nkqps6wDQVsY+uKLJ9yYf0bvk+qgpi0quz6ytSbIfAABgR+DOBgAAACApZQMAAACQlLIBAAAASErZ\nAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAA\nAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAA\nJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACRV\n2dYBgDc7d9GYkuvTa6aWXF9+xmlvvN5uvc/Nt6QLBQAA0ArubAAAAACSUjYAAAAASSkbAAAAgKSU\nDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0A\nAABAUsoGAAAAIKnKtg4A5Ov6KYubfO/s2sEl11c+OuGN19ut73toXZpQAADADsWdDQAAAEBSygYA\nAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAA\nIKnKcp586tSp8fDDD8fWrVvjrLPOioMOOijGjBkTDQ0NUV1dHVdeeWV06tSpnBEAAACAnJWtbFiy\nZEmsWLEi5syZE/X19fH5z38+Bg4cGCNGjIjjjjsurr766pg7d26MGDGiXBEAAACANlC2xyiOOOKI\n+P73vx8REbvvvnts2rQpli5dGkcffXRERAwZMiQeeOCBco0HAAAA2kjZ7mzo2LFjVFVVRUTE3Llz\n41Of+lTcd999jY9N9OjRI9auXdvsObp1q4rKyo5vO6u6unOrsjW1f3kOM1YmOv87OaYtZzR1bVNm\nak/XNmWmIl7bM+c/UnJ9xvGH/cNZ2mr/jjKjiJnymFHETHnMKGKmPGYUMVMeM4qYKY8ZRcyUx4wi\nZspjRhEz5TGjiJnymFHETHnMKGKmd3JMWT+zISLiN7/5TcydOzdmzpwZxx57bON6lmVve2x9/cYW\nzVi7dkOrMrV2fx4zipgpjxlFzJTHjCJmymNGS/dXV3du1bnLvX9HmVHETHnMKGKmPGYUMVMeM4qY\nKY8ZRcyUx4wiZspjRhEz5TGjiJnymFHETHnMKGKmPGYUMVNzxzRXQJT12yjuvffeuOGGG2LGjBnR\nuXPnqKqqildffTUiItasWRM9e/Ys53gAAACgDZStbNiwYUNMnTo1brzxxujatWtERBx55JGxYMGC\niIhYuHBhHHXUUeUaDwAAALSRsj1GMX/+/Kivr4/Ro0c3rk2ZMiUuu+yymDNnTuy9994xbNiwco0H\nAAAA2kjZyoZTTjklTjnllLesz5o1q1wjAQAAgAJo0WMUtbW1b1n7yle+kjwMAAAA0P41e2fDvHnz\n4vbbb48VK1bEl770pcb1LVu2xPPPP1/2cAAAAED702zZ8E//9E8xYMCAuOiii+K8885rXO/QoUN8\n+MMfLns4AAAAoP15289s6NWrV9x2222xYcOGWL9+feP6hg0bGr9lAgAAAOB1LfqAyO985zvxk5/8\nJLp37x5ZlkVEREVFRfz2t78tazgAAACg/WlR2bB06dJYsmRJvOc97yl3HgAAAKCda9G3Ubz//e9X\nNAAAAAAt0qI7G/bcc8/40pe+FIcffnh07Nixcf38888vWzAAAACgfWpR2dC1a9cYOHBgubMAAAAA\nO4AWlQ3nnHNOuXMAAAAAO4gWlQ0HHHBAVFRUNP5cUVERnTt3jqVLl5YtGAAAANA+tahs+POf/9z4\nevPmzfHAAw/Ek08+WbZQAAAAQPvVom+j2F6nTp1i0KBBcf/995cjDwAAANDOtejOhrlz577p52ef\nfTbWrFlTlkAAAABA+9aisuHhhx9+08+77bZbXHPNNWUJBAAAALRvLSobrrjiioiIWL9+fVRUVESX\nLl3KGgoAAABov1pUNjzyyCMxZsyYeOWVVyLLsujatWtceeWVcdBBB5U7HwAAANDOtKhsmDZtWvzb\nv/1b9OnTJyIinnjiiZg0aVL8x3/8R1nDAQAAAO1Pi76NokOHDo1FQ0TEAQccEB07dixbKAAAAKD9\nanHZsGDBgnj55Zfj5Zdfjvnz5ysbAAAAgJJa9BjF+PHjY+LEiXHZZZdFhw4dom/fvvGd73yn3NkA\nAACAdqhFdzbcf//90alTp3jwwQdj6dKlkWVZ3HPPPeXOBgAAALRDLSob5s2bF9ddd13jzzNnzoxf\n/vKXZQsFAAAAtF8teoyioaHhTZ/RUFFREVmWlS0U8O4zasqikusza2uS7D930ZgmZ0+vmVpyffkZ\np73xerv1PjffUnL/9VMWl1w/u3Zwk7NXPjrhjdfbre97aF3J/WMfXFFyffIRvZucAQAAeWtR2VBT\nUxPDhw+Pww8/PLZt2xZLliyJY489ttzZAAAAgHaoRWXDOeecEx/72Mfisccei4qKivj2t78dhxxy\nSLmzAQAAAO1Qi8qGiIiPfvQYMlo1AAAgAElEQVSj8dGPfrScWQAAAIAdQIs+IBIAAACgpZQNAAAA\nQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBS\nlW0dAIDyGTVlUZPvzaytadUxTe0HAIC/584GAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAA\nAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACS\nUjYAAAAASVW2dQAA2rdzF40puT69ZmqTxyw/47Q3Xm+33ufmW9KEAgCgTbmzAQAAAEhK2QAAAAAk\npWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAAJFXW\nsmH58uVxzDHHxOzZsyMiora2Nk444YQYOXJkjBw5MhYvXlzO8QAAAEAbqCzXiTdu3BgTJ06MgQMH\nvmn9ggsuiCFDhpRrLAAAANDGynZnQ6dOnWLGjBnRs2fPco0AAAAACqhsdzZUVlZGZeVbTz979uyY\nNWtW9OjRI8aNGxfdu3dv8hzdulVFZWXHt51VXd25Vdma2r88hxkrE53/nRzTljOaurYpM7Wna5sy\nU3u6tkX8s2jumFTXtrn9O/K1bW5/a6/thAt/UXK9btoJJdcfXnhx4+u/v8aHH3tlk7lakiXV/jxm\nFDFTHjOKmCmPGUXMlMeMImbKY0YRM+Uxo4iZ8phRxEx5zChipjxmFDHTOzmmbGVDKSeeeGJ07do1\n+vXrFzfddFNcd911UVdX1+T++vqNLTrv2rUbWpWjtfvzmFHETHnMKGKmPGYUMVMeM4qYKY8ZRcyU\nx4wiZmrpMdXVnVt17tbuz2NGETPlMaOImfKYUcRMecwoYqY8ZhQxUx4zipgpjxlFzJTHjCJmymNG\nETM1d0xzBUSu30YxcODA6NevX0RE1NTUxPLlzd1LAAAAALRHuZYN5513XqxatSoiIpYuXRq9e/fO\nczwAAACQg7I9RvH444/Hd7/73Vi9enVUVlbGggUL4stf/nKMHj06dtlll6iqqoorrriiXOMBAACA\nNlK2sqF///5x2223vWV96NCh5RoJAAAAFECuj1EAAAAAOz5lAwAAAJCUsgEAAABIStkAAAAAJKVs\nAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACCpyrYOAABFMPbBFSXXJx/Ru+T6qCmLSq7P\nrK1JlgkAoL1yZwMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBS\nygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoG\nAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAA\nACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAg\nKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICll\nAwAAAJCUsgEAAABIqrKtAwDAu8WoKYtKrs+srSm5fu6iMSXXp9dMLbm+/IzT3nj9d+/1ufmWksdc\nP2VxyfWzaweXXF/56IQ3Xm+3vu+hdSX3AwDvTu5sAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLK\nBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASZW1bFi+fHkcc8wxMXv27IiI\neOaZZ2LkyJExYsSIOP/882Pz5s3lHA8AAAC0gbKVDRs3boyJEyfGwIEDG9d+8IMfxIgRI+JHP/pR\nvP/974+5c+eWazwAAADQRspWNnTq1ClmzJgRPXv2bFxbunRpHH300RERMWTIkHjggQfKNR4AAABo\nI5VlO3FlZVRWvvn0mzZtik6dOkVERI8ePWLt2rXNnqNbt6qorOz4trOqqzu3KltT+5fnMGNlovO/\nk2PackZT1zZlpvZ0bVNmak/Xtoh/Fs0dk+raNrd/R762ze0v97Vt6rqmnJFqf8oZRf3n2JnzHym5\nPuP4w/6hLKn27ygzipgpjxlFzJTHjCJmymNGETPlMaOImfKYUcRMecwoYqZ3ckzZyoa3k2XZ2+6p\nr9/YonOtXbuhVbNbuz+PGUXMlMeMImbKY0YRM+Uxo4iZ8phRxEx5zChipjxmFDFTHjPKlam6unOr\nzt3a/TvKjCJmymNGETPlMaOImfKYUcRMecwoYqY8ZhQxUx4zipipuWOaKyBy/TaKqqqqePXVVyMi\nYs2aNW96xAIAAADYMeRaNhx55JGxYMGCiIhYuHBhHHXUUXmOBwAAAHJQtscoHn/88fjud78bq1ev\njsrKyliwYEFcddVVUVtbG3PmzIm99947hg0bVq7xAAAAQBspW9nQv3//uO22296yPmvWrHKNBAAA\nAAog18coAAAAgB2fsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAA\nACCpyrYOAACwvVFTFpVcn1lb06r9zR1z7qIxJden10wtub78jNPeeL3dep+bb2lyNgC8m7mzAQAA\nAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABI\nStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFKVbR0AAGBHdP2UxSXXz64dXHJ95aMT\n3ni93fq+h9aV3D/2wRVNzp58RO+3iwcAZeXOBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAA\nAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAA\nkqps6wAAAORj1JRFJddn1tYk2Q8Ar3NnAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJ\nKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkb\nAAAAgKQq2zoAAAA7jnMXjSm5Pr1masn15Wec9sbr7db73HxLyf3XT1nc5OyzaweXXF/56IQ3Xm+3\nvu+hdSX3j31wRcn1yUf0bnI2AG/mzgYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2\nAAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJBUZZ7Dli5dGueff3707t07IiL69OkT48aN\nyzMCAAAAUGa5lg0RER/72MfiBz/4Qd5jAQAAgJx4jAIAAABIKvc7G/73f/83vva1r8WLL74YX//6\n1+MTn/hEk3u7dauKysqOb3vO6urOrcrQ1P7lOcxYmej87+SYtpzR1LVNmak9XduUmdrTtS3in0Vz\nx6S6ts3t35GvbXP7y31tm7quKWek2p9yhn+OlW9Ge/p77Ts5Zkf4e21zx+Tx99oTLvx5yfVfTDsx\nyf7WZEl1TBFnFDFTHjOKmCmPGUXMlMeMImZ6J8fkWjZ84AMfiK9//etx3HHHxapVq+LUU0+NhQsX\nRqdOnUrur6/f2KLzrl27oVU5Wrs/jxlFzJTHjCJmymNGETPlMaOImfKYUcRMecwoYqY8ZhQxUx4z\nipgpjxlFzJTHjCJmymNGUTJVV3du9Xlbe0wRZxQxUx4zipgpjxlFzJTHjCJmau6Y5gqIXB+j6NWr\nVxx//PFRUVER++67b+yxxx6xZs2aPCMAAAAAZZZr2TBv3rz44Q9/GBERa9eujXXr1kWvXr3yjAAA\nAACUWa6PUdTU1MRFF10Uv/3tb2PLli1x+eWXN/kIBQAAANA+5Vo27LbbbnHDDTfkORIAAADIma++\nBAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACRV2dYB\nAACA5p27aEyT702vmVpyffkZp73xerv1PjffUnL/9VMWl1w/u3Zw8+EASnBnAwAAAJCUsgEAAABI\nStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZ\nAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKQq2zoAAADQPq18dMIbr7db3/fQupL7xz64ouT65CN6\nl1wfNWVRk7Nn1ta06pim9p+7aEzJ9ek1U5ucvfyM0954vd16n5tvafIYeLdxZwMAAACQlLIBAAAA\nSErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK\n2QAAAAAkpWwAAAAAklI2AAAAAElVtnUAAACAHdn1UxaXXD+7dnDJ9ZWPTnjj9d+9t++hdSWPGfvg\nipLrk4/oXXJ91JRFJddn1taUXH+nx/Du5c4GAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAA\nAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACS\nUjYAAAAASVW2dQAAAAB2POcuGlNyfXrN1JLry8847Y3Xf/den5tvKXnM9VMWl1w/u3ZwyfWVj054\n4/V26/seWldyf0TE2AdXlFyffETvkuujpiwquT6ztqZV+5s7JtW1beq6RrT+2v49dzYAAAAASSkb\nAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAA\nAICkKvMeOHny5PjDH/4QFRUVMXbs2PjIRz6SdwQAAACgjHItG/7nf/4n/vrXv8acOXPiqaeeirFj\nx8acOXPyjAAAAACUWa6PUTzwwANxzDHHRETEhz70oXjxxRfj5ZdfzjMCAAAAUGYVWZZleQ0bN25c\nDBo0qLFwGDFiREyaNCn222+/vCIAAAAAZdamHxCZY88BAAAA5CTXsqFnz57x/PPPN/783HPPRXV1\ndZ4RAAAAgDLLtWz4xCc+EQsWLIiIiGXLlkXPnj1jt912yzMCAAAAUGa5fhvFYYcdFgceeGAMHz48\nKioq4tvf/nae4wEAAIAc5PoBkQAAAMCOr00/IBIAAADY8SgbAAAAgKRy/cwGAAAAoO1kWRYVFRXN\n7nnllVcav0myuro6qqqqWj1H2QAAAAA7oPvuuy8mTZoU3bt3j0suuSTGjx8fzz33XOy6664xYcKE\n+NjHPvam/X/84x9j0qRJ8dJLL0W3bt0iy7J47rnnolevXlFXVxf7779/i2d3vPzyyy9P/Pskdc89\n98QHPvCBiIhYv359XHnllXHzzTfHsmXL4qCDDopddtnlLcesW7cupk+fHr/61a+iqqoq9tlnn8b3\nJkyYEIMGDXrT/m3btsX8+fNj1qxZcccdd8S8efPikUceiYqKisbZ/8j+iIjNmzfHr3/963jppZdi\n7733jrvuuituv/32WLlyZfTt2zcqK1ve+1x11VVx5JFHvmW9rq4u9thjj+jVq1eLzlNfXx+33XZb\nPP3009G3b9+48cYbY8aMGbFs2bI44IAD3nJtN2zYELfeemv85S9/ib59+8bs2bPjP//zP2PFihXR\nr1+/6NSpU4t/h4iIW265JQ455JCyzLjwwgtj6NChJd+76aabYp999mnx16629jq9/nv87ne/i/32\n2y9eeuml+P73vx+33nprs8c0pdR1et3vf//7mDt3bvzqV7+KxYsXx4oVK6JLly7RvXv3t+x94okn\norq6OiL+76/HW2+9Ne64445YuXJlHHDAAW/5a3DLli3xxBNPRK9evWLLli0xZ86cuPPOO2PlypWx\n//77t/iv2ZEjR8ZJJ51U8r3XXnstfvzjH8d9990XPXr0iG7duv3/9s48Koori8M/cA0m0SCSqBEj\nGnUkwdEEEYwLiKgYMYiCCyiBMK5oNAbFEdEko4kZdQwjrjEa1xw1riOKg8ElLDLiQhw0ihvIjgiy\nRaDv/OHpmm6qGnkFtE7mfudwjlbfV3d779brV1Wvpc8iIiJgZ2en2O7s2bPYs2cPDh48iKioKFy6\ndAmmpqbo0KFDnW1SU3NEx55ojQLEY6WmTonGtaKiAnv37sXGjRvx/fffY//+/Th79ixKSkrQrVs3\nmJrqv6knOvYqKytx/Phx5OXloUOHDvjpp59w9OhRZGdno0uXLrLzq7FJjQ7RsSRa10T7k1ZHfdUc\nQ9cYJWqqtaK5UOODmvFanZrqwdNQipWa2ikaK7VziqKiIsTFxSExMRH//ve/kZeXBwsLi1pfW2uK\nlZq6ZozaaYia+rnItVW0D6qZUzT0/A5o+LmwmtyJ6lAzhxRtI1qnRMe2Gh3GmLcoUVM9UDt3bshc\nGMuPhv4eqiZW8+fPx4YNG+Dg4AB/f3+Eh4cjODgYTk5O+Pzzz+Hp6akn//HHH+Mvf/kLgoKC4Onp\nCU9PT0yaNAndu3fHF198IZOvief+1ygmTZqE77//HsCTSU23bt0wePBgJCQk4MyZM1i/fr2sjb+/\nPwYPHgxzc3Ps2rULffv2xYwZM2Tn07J48WK0bdsW/fr1w7lz50BE6NmzJ3788Ue8+uqrmD9/fp3k\ngSdJe+GFF5CXl4eOHTvi4cOHGDx4MK5cuYKMjAysWbNGT76srMxgTAIDA7Fjxw7ZcXd3d7z11lso\nLi6Gj4+PbJVK6Tw9e/ZETk4O8vPz0alTJ7i6uuLKlSuIiYnB5s2b9eSnTp2KXr16obCwEElJSejd\nuzccHR2RnJyMlJQUfPPNNzXqq45SLtTocHZ2lh4D0nZn7QTKxMQE0dHRevJDhw5Fx44d8cYbb8DX\n1/epX1BF4wQAH374Idzc3DB27Fh88skn6NKlC9577z1cvXoV0dHR2LRpU53iBACrV69Gfn4++vXr\nh9jYWLRs2RIdOnTAoUOH4OrqCj8/P4PnCQsLg4mJCZycnHD+/HlkZWVh5cqVevKzZs1C9+7dMX36\ndISFhUGj0aBfv364evUq7t27J+uzANC9e3dYWlqiSZMmUi5yc3PRpk0bxVzMnDkTVlZWMDc3x6FD\nhxAQEIAPPvigRr+XLl2KoqIiODs7SxO/7OxsREVFoWPHjrLxJ2qTmpojOvZEa5SaWInWKdG4AsCc\nOXNgZWUFJycntG7dGkSE7OxsnDhxAkVFRVixYoWevOjYmzdvHszMzFBUVASNRgNTU1M4ODggOTkZ\nVVVVWL58eZ1tUqNDdCyJ1jXR/gSI1xw11xjRWiuaCzV1U3S8itYDNbFSUztFYyU6pwCAffv2Ydu2\nbejduzfMzc0lHRcvXkRQUBBGjBhRp1ipqWsNXTvV9PO6XFtr0wfVzCkaen4HNPxcWE3/ENWhZg4p\n2ka0TomObTU6jDFvEa0HavpgQ+fCWH409PdQNbHS1evq6oqoqCjpM19fX2zfvl1Pfty4cdizZ49M\n79M+U4Sec3x9faV/T5o0Se8zHx8fxTa6x6uqqmju3LkUHh5usE31Y5MnT5b+PWbMmDrL67apqKig\nQYMGUVVVlfTZxIkTZfI2Njbk5OSk9+fs7ExOTk5ka2tbo45bt27RkiVLyN3dnRYtWkQ7duygY8eO\nyeS1sdVoNOTq6lqjj7ryRETDhg0z+Jkuffv2Vfyzt7cnGxubetGxe/du8vf3p8uXL0vHvLy8FGWJ\n/utbbGwsTZkyhSZPnkzr1q2jn376Se8c1fXWNk5E+v2gusz48eNl8qJxUjqvv78/ERFVVlaSh4dH\njfLV+5ySH2PHjpX+PWHCBL3PlPosEdGZM2fIx8eHjh8/Lh2rTS6IiEpKSmjy5Mm0f/9+gzYRKcev\nps9EbapLzant2BOtUdWP1yZWonVKNK5EhvuBoc9Ex56uDy4uLgY/qw+bRHSIjiXRuiban4jEa46a\na4xorRXNhagPROLjVbQeEInHSk3tVNtvazunIHriZ3l5uex4cXExeXt7y47XpZ6L1rWGqp11mUtp\nedq1VbQPqplTNPT8Tul4fc+F63rdq40ONXNI0TaidUp0bKvRYYx5i9q5lEgfbOhcEBnHj4b+Hqpr\nF1HtYjVz5kxatWoVhYaGUkBAAIWGhlJUVBStWLGCZs+eLZNftmwZTZkyhfbu3UvR0dEUHR1NP/zw\nA/n7+9PKlSsVbTLEc/9rFAUFBTh9+jROnz6Npk2b4tq1awCAtLQ0gyvWjRs3xokTJ0BEMDU1xddf\nf420tDQsWrQIJSUlMnkiwrlz51BYWIiDBw+iefPmAJ48lqSEqDzw5DGqkpISNG7cGLNmzZIem8rN\nzcVvv/0mkw8ODsbIkSNx6tQp6S86OhqnTp2Cra2tog7tHadOnTohLCwM+/btw/Dhw1FcXIwLFy7I\n5CsrK3H//n2YmJhg0aJF0vFr166hoqJCUf7u3bu4ePEiCgsLcenSJQBAamqqojwAeHp6IigoCHFx\ncXp/8fHx6NWrV73oGDduHL7++mvs3r0bS5cuxaNHj2rc8ET7mYODA9avX4+vvvoKrVu3xqlTp7Bu\n3bo6xwkArKyssGzZMiQnJ8Pe3h7Hjh1DXl4efvzxR+nx67rECXjyGO2tW7cAAP/6179QVVUFALh5\n86aifFlZGVJTU3Hz5k2Ym5sjLS0NwJNHsZTGRcuWLbFt2zY8ePAA/fr1w5UrVwAACQkJaNasmaKO\n/v3749tvv8X169cxY8YMpKWl1ZgLjUaDX375BQBgZmaGiIgIHDlyBOvXr0dlZaXBNlevXpUd1z5y\nVleb1NQc0bFnqEaFhoYq5kLrt0isROuUobheuHDBYLxMTEwQFRWlNw4eP36Mw4cPKz6uKjr2tHUz\nIyMDRUVFSE9PB/AkR48fP64Xm9To0I6lGzdu1GosidY10f4EiNccNdcYNbVWJBeiPgD/Ha8xMTG1\nGq+i9UBNrNTUTrX9trZzCgCoqqoyWCs0Go3suGisGjdujOPHjwvVtYaunWr6uei1VbQPqplTNPT8\nDtC/Zhw6dKje58KG+oehubkaHWrmkKJtROuUiYkJTpw4UeuxrUaHaB/U2gXUvk+J1gM1fbCuuYiM\njHzqNcMYfojWQtGxpyZWX331FSwtLdG3b19s3rwZ7777Ln7++WdYWFhg2bJlMvmQkBAEBAQgIyMD\nMTExiImJQU5ODmbOnIm5c+catEsRoaWJZ8CCBQv0/uLi4ig/P59mzpxJCQkJim0yMzNpwYIFVFZW\nJh3Lz8+nw4cPK67ep6am0rRp08jNzY3mzJlDGRkZlJ6eTqtWraJbt249VT4rK4vy8/NpzZo1dPv2\nbUWboqOjyc/PT+/YmTNnaODAgXTmzBnFNgcPHqSSkhI9H4iI1q1bpyg/a9Ys2TFtGyUuXrwoW806\nduwYjRw5kn755ReZfGJiIo0ePZo++ugjunnzJk2ePJn+8Ic/kLu7O128eFFRh0ajoQ0bNuj5oeXz\nzz9/qo5JkyaRg4MDjRgxwqAOXeLj42nixImyVT5dDK1uG6J6nCoqKui7774jNzc3xThpZXbu3Ekf\nffQRDR8+nIYNG0Zubm60YcMGvX6pRRun0tJSvWNEynEiIkpKSiJ3d3dycHAgLy8vunHjBhERhYSE\n0IULF2TyPj4+5OvrSz4+PuTj40MnT54kIiI/Pz+KjIyUyT969IhWrFhBw4cPJzs7O7K1taWhQ4dS\nWFhYjf1Ky+3bt+lPf/oTDR482KDMtWvXyMfHR69//Pbbb7Ru3Tp67733FNukpKSQr68vOTs7k4eH\nB33wwQc0aNAg8vf3p5s3bz7Vpo8++oh69OhBlZWVijLVa865c+coPT29xppTfexVVFRQeno6VVRU\nKMpnZmbS/Pnzpb6glT9w4IBijSL6b6yKi4ulY5WVlRQREaEYK22dGjFihFSnYmNjKTw8XLFOpaSk\n0KRJk6S4enh4PDWu2lrr7OxMjo6O5ODgQC4uLhQaGkq5ubkyeaUVfW0/V+LEiRM0YMAAcnd3p4SE\nBHJ3d6eRI0fSwIEDKTo6ulY29enTh7p3704LFy6knJwcRR39+/enkSNHUkJCAo0cOfKpOrRjSTue\n/vnPf5JGo6EPP/xQcSxVr2t+fn7Up08fg7VTqZbHxsYajBORcs0ZP348bdy4UfFuNhHRgQMHpLGn\n22cNXWN0SUhIIB8fH9mdHl20uRg8eDA5OjqSo6Njjf2jug8uLi7k5OREa9euVaybRMpzhNjYWAoK\nCjI4XrVoa9SQIUOe6u/BgwepuLiY8vPzKS8vTzquFCtt7XRzcyM7Ozvq2bMnubq61lg7dWPVvXt3\neuutt6RYKfVbpTlFTEwMDRo0yOCc4tChQzR06FD69NNPafny5bR8+XKaO3cuubq60okTJwz6rtFo\n6PLlyzR58uQa67nu3Es3TobmXkT/7esajUYWW0M6dGsn0ZOxUZMO3X6ulScyPJdKSkqiUaNGkaOj\no3Rt1Wg0tHDhQkpKSpLJi85TleZekZGRNGrUKINzCtH5XVJSEs2ePVsvrlFRUTXqULpmaOe2tZkL\nZ2ZmEhHRN998Q4mJiTJ50bl5dR2TJk2irKwsIiIKDw9XtCkxMZE8PT2F5qnaNv7+/pSYmEh+fn7k\n6OhI7u7uivnW1qnAwEByc3Oj4cOH08SJE2njxo2Kdap6HXzadbK6jtrMIbV9Lzg4mAIDA+nIkSNE\nRBQUFETx8fGKOnTHnpLNNVGb+Z3odwwi/Vxor5UODg7k7u6u2Keq52LYsGHk4+NDGzdufKoPGo1G\ndg1QaqPkx8mTJw3apD3PggULZNfeQ4cOyZ6gJKp5LCk99UlEdP78edm8Qhur2nxfMibP/a9RDBs2\nDNHR0fjss88QFxeHkK0EeFYAABBMSURBVJAQtGjRAqWlpQZXQq9fv44mTZqgefPmiIuLw8KFC/Hi\niy+ipKQEoaGhMvldu3YhIiICABAbG4sJEybAwsIC+fn5ePfdd9GpUyc9+bS0NFhYWCAiIgJxcXEY\nN26cZJOtra3iZh6ffPIJRo8ejfz8fLRu3RoAYG9vj+joaDRq1Egmf/r0aVy4cAGjRo2SfNDqUPIB\nAEaPHo3FixdLsdJts3jxYgwaNEhPvrCwEC+//DIAyORzc3Nl5y8pKYGNjY10/rt378La2hqPHj1C\nQUGBok3vvPMOPDw8UFZWJvu5FN0VQi3Hjx/H/v37ATzJxb1799C+fXvk5+ejqKhIUUfv3r3h4eGB\n6dOnw97eHr1790ZKSoqiLABcvnwZn3/+OaZPny7loiaOHj2Kv/3tb5JNf/7zn2FhYYGysjI8ePBA\nsc3PP/+Ma9euYdOmTXqx3bNnD7p27SrLRWxsLA4cOIDTp0/LdoldunSpoo6AgADJb10/lFYoAeCX\nX37B6NGjZfLfffedovyAAQPg4eGB7du31ypOwJN+qx2vmZmZ+PXXX2FqagpnZ2fFPpibm4u8vDwE\nBgZKfufm5sLMzAx//etfFXVMmDABHh4eWLFihXQ3z9zc3OCGaF988YXU1zIyMnDz5k28/vrrGDJk\nCJYuXYr+/fvrybdo0UKS1813fn4+ysvLFXXorqBXb6OkY/Pmzfjyyy/15Nu0aYO8vDwY2rN3/Pjx\n8PDwQHl5OVq0aAEAaNSoEaZNm4Zp06bJ5K9cuQJXV1fpp43i4uIQERGB6dOn49KlS7I6lZeXh5yc\nHFhaWiI4OBiffvopKioqkJ6ejry8PHTu3FmmQ1tro6OjpX7erFkznDt3Ds7OzrJ8T5kyBcOHD9fb\nDVmbb6XdkM3MzGBmZoYXX3wRzZs3h6mpKW7duoXXXntNikF1Nm/eLO2zoI2tlZUV4uLiMGzYMNnd\njvnz5+uNi0OHDuHBgwd45ZVXFDfu0vpRfVfnJUuWwMzMTG/jTi3p6enw8fEB8GSHZ3d3d6Snp+PD\nDz/EnTt3ZBvADho0CAcPHpT+T0RYt24dpk+fDgDSXh26HD16FGZmZnBzc5OOrVu3Dm3atEFkZKSs\nje64qN5nDfXB6rtZl5SUICsrC8OGDcPSpUthb2+vJx8fHw97e3u9vEZERKB37944d+6czKYvv/wS\nixYtwoQJE/Rs2rdvH95++23ZOAIg6dT288zMTClWGRkZMnnduAJP5hhr166VjivF9vbt24iMjMTm\nzZuRnp6Ozp07o7CwEDY2NggJCZHJX758GadOnYK5uTmWLVsm9fP4+Hi4ubkpvhtdVlaGgoICvPDC\nC2jevDmsra1RVFQk7SVSnaZNmyIrKwsTJ06U+mB6ejpeeuklg3dL3d3dMWTIEFy+fBn5+fkAAEtL\nS9ja2io+cXH79m189dVXuH//PtLT02FtbQ0iwscff4yQkBDZxnJaH8aOHSvFqaioCD169FDcQwIA\nZs+ejalTp0o6dNso6YiPj0ffvn1x/PhxAPpjY9y4cbLza/OqfT9ZV/61115TtKmkpAS//fabtFfN\n/Pnzpeuxu7u7TH7o0KFYvnw52rZti4ULF2LevHmoqqpCaWkpSktLZfJ37tzRG+O6Nt24cQM2Njay\nNh4eHhg6dKhMR1lZGcLCwmQbzrVs2RLl5eVSrdHtsxYWFop+37t3D6mpqWjbti2mTp2KwMBASUfP\nnj1lc+HU1FSkpKSgtLQUb731lrTxb1BQkOJ76deuXUNSUhKmTp0q+aDRaKQ5qhImJibSXjpXrlzB\njBkzJD+UfoKvuLgYjx49wosvvoiqqio8ePBA2jywsLBQUYe5uTksLCxw//59BAYGwtraGmZmZujU\nqRPatWsnk09LS8OZM2eQmZmJjIwMWFtbIzs7G1evXkVhYaF0V7q636+//jpCQkIkv8+ePYvBgwcr\nboz5888/Y9u2bWjbti1Wr16NTz/9FFVVVdizZw+6desmaxMYGIgVK1ZI4+jBgwdYs2YNbGxsDG4w\n+P7778PJyQllZWUYOHAgQkNDpRwGBwfL8hcTE6PXzzMzM0FEcHZ2VuyDDx8+REpKCvz8/GTjQvtT\nitUpKChAfn4+0tLSsHHjRoSHh0s2KfWpmJgYbNq0CaWlpRg0aJCeD4b2ATl58iSWLVsm+b1y5Urp\n+6SS37m5ubh8+TL69u0rxcnFxQUuLi4GdSQnJyM+Ph4DBw7Ui627uzv27t0rk7e2tpa+h+piaCwB\ngJ2dnfR9CdCfyxtq88x4dusctWP06NHSyt/EiRPp3r17RET04MEDvfci69JG9073hAkTJPmcnBzF\n93jU2OTj40Pnz5+nyZMn04IFC+j8+fMG73oay++Gllfjt2gu1Ogwhk2isRo3bhxlZ2fTr7/+Svb2\n9pSSkkJEROnp6QbfO2tov0Xl1fqdk5PT4H5rqU3+1ORbtI2oTdo2In67uLjQmDFjKDw8XPobMGCA\n9O/qVM/FtWvXiKjmXDR0P1djk2hs1fRzUbuUcjFw4ECDuRDNnZo2avpg9fzVt99qbBL1W01sfX19\nJVtSU1NpyZIlRER0+vRpxad1ROOkVodo7Xz8+DHt3r2bgoKCyNvbm7y9vWnWrFm0d+9exSe9RG0S\nlVfTxhj5Fo2tl5cX3b9/nxITE8nJyUmSz83NJU9Pz3qxSVSHmlyI6hgzZgwVFBRQVVUV/fDDD+Tl\n5UVFRUVEpPwUm+j51fhhDB3GsMkY+dbN3549e+o9f2r8FrVJtA/WVUdt5J/WRunp6h07dhj8M/T0\noJo2z4rn/smGyspK6Q7WSy+9JP18SKtWraRdROujjRbtrsPAk7uVSndL1ZzfxMQEdnZ22Lp1K5KT\nk7F3716EhoaiRYsWaN26NTZu3Gh0v+sq3759+3r3W5fa5EKNDmPYJBqrJk2awNLSEpaWlnj55ZfR\nvXt3AED79u0Vn3wxht9q4qTG7zZt2qBNmzYN6reW2uZPrXxt26ixSdTvo0ePIiIiAtevX8eCBQvQ\nvn17nD17FjNnzlQ8f/VcaH9DuaZcNHQ/V2OTaGzV9HNRu0RzISqvpo2aPlg9f/XttxqbjBHbx48f\nS7a88cYbuH79OoAnT3+Fh4fL5EXjpFaHaO0MDg6GlZUV/P39Zbvih4SEyHbFF7VJVF5NG2PkWzS2\nTZs2Rbt27dCuXTtYWlpK8hYWFopPjKixSVSHmlyI6mjUqBFatWoFAPDy8oK5uTkCAgKwfv16xXfg\nRc+vxg9j6DCGTcbIt27+vL290bp163rNnxq/RW0S7YN11VEb+ae1UWLr1q1wcHCApaWl7DND+5ep\nafOseO4XG7Q/79avXz+0atUK06dPR69evZCQkICxY8fWS5sbN25g9uzZICLcvXsXkZGRGD58OLZs\n2YKXXnqpXmzSnXi//fbbePvttwEAOTk5iq8sGMPvusrPmDGj3v0WzYUaHcawSTRWLVu2xOrVq1FQ\nUAArKyssXrwY/fv3x6VLlwy+wtDQfovKP69+i+ZPTb6NoUPU72bNmmHOnDm4desWPvvsM/Tq1Uvx\ncWwtanLR0PlWY5NobNX0c1G7RHMhKq+mjZo+2NB+q7HJGLHt2rUr5s6dC1tbW5w9e1Z6dWPhwoXo\n0qVLneNkLB25ublYvXq13jErKyvY2dlJr/nUxSZReTVtjJFv0di2bt0a3377LQICAqSfg8vKysKW\nLVsUX9VQY5OoDjW5ENXRu3dvTJkyBWvWrEHz5s3h4uKCZs2awc/PDw8fPqzz+dX4YQwdxrDJGPlu\n6Pyp8VvUJlH551XH2rVrpVcbq78Gl5CQoKhDTZtnhQk97Vb/c8DDhw8RGxuL+/fvg4hgYWGBfv36\nyd7lU9vm/Pnzev/v2LEjXn31VRw5cgTOzs6K7waL2rRv3z6MGTPmufLbGPKifqvJhagOY9gEiMWq\ntLQUBw4cwCuvvAI3NzccPnwYSUlJ6NixI7y9vRXfTWxov9X0WeD581s0f2rybQwdavOh5eDBgzh9\n+rTsy4YWNbkAGjbfamwSja2auKqNlZan5aKu8rVpo6YPNrTfamutiA418kSE6Oho3LlzB127dsWA\nAQMAPHkXu1u3brK7W2riZAwdvr6+8PX1hZOTE5o0aQLgyR3REydO4MCBA9iyZUudbBKVV9tGl4bI\nt2hsy8vLcerUKb39Uq5evYrExESMHz/e4F1cEZtEdaiJqxo/EhIS0KdPH73zFRcX49ixY/Dy8qrz\n+UX9MIYOY9hkjHwDDZs/teNCxCY18s+rjrKyMjRr1ky2V9TVq1cV93FR2+ZZ8D+x2MAwDMMwDMOo\nJysrC2vWrMH58+eln8Nr0aIFHBwcMHPmTMXHcRmGYRimLvBiA8MwDMMwzP8xz93u5QzDMMzvgud+\nzwaGYRiGYRimbuzcudPgZ9nZ2Ua0hGEYhvl/gRcbGIZhGIZhfuf8L+1ezjAMw/w+4MUGhmEYhmGY\n3zn/S7uXMwzDML8PeM8GhmEYhmGY/wP+V3YvZxiGYX4f8GIDwzAMwzAMwzAMwzD1iunTRRiGYRiG\nYRiGYRiGYWoPLzYwDMMwDMMwDMMwDFOv8GIDwzAMwzAMwzAMwzD1Ci82MAzDMAzDMAzDMAxTr/BP\nXzIMwzAMI0x2djbmzZsHACgvL4e3tzfeffddhIaGQqPRoFmzZli+fDleffVVREREICYmBo0bN8ab\nb76JRYsWITs7G9OmTUPXrl3x5ptvYurUqVi1ahWSkpJQXl4OOzs7BAcHw8TE5Bl7yjAMwzCMGvjJ\nBoZhGIZhhImMjIS1tTW2b9+OHTt2oLy8HGFhYQgICMDOnTvh6emJyMhIXLx4EVFRUdi5cyd27dqF\ngoICHD16FACQmpqKGTNmYOrUqYiMjER2djZ27NiBffv24d69e/jpp5+esZcMwzAMw6iFn2xgGIZh\nGEaY/v37Y9euXViwYAEGDhwIb29vrFy5En369AEAjBgxAgCwdetW2NnZoUmTJgCAPn36IDk5GXZ2\ndmjZsiWsra0BAAkJCbh06RJ8fX0BAI8ePUJ6evoz8IxhGIZhmPqAFxsYhmEYhhGmc+fO+Mc//oHE\nxEQcP34c27ZtAwBoNBo9ueqvQRCRdEy7AAEATZs2hZeXFwICAhrYcoZhGIZhjAG/RsEwDMMwjDBH\njhxBcnIyHB0dERYWhszMTNja2uLs2bMAgGPHjmHVqlX44x//iISEBFRUVAAA4uLi0LNnT9n53nnn\nHZw8eRKVlZUAgL///e+4c+eO0fxhGIZhGKZ+4ScbGIZhGIYRpkuXLggLC0PTpk1BRAgMDMR7772H\n0NBQ7Nq1C40bN8ayZcvQtm1bjBgxAhMnToSpqSlsbGzw/vvvIyMjQ+98rq6uuHTpEsaNG4dGjRqh\nR48e6NChwzPyjmEYhmGYumJCRPSsjWAYhmEYhmEYhmEY5vcDv0bBMAzDMAzDMAzDMEy9wosNDMMw\nDMMwDMMwDMPUK7zYwDAMwzAMwzAMwzBMvcKLDQzDMAzDMAzDMAzD1Cu82MAwDMMwDMMwDMMwTL3C\niw0MwzAMwzAMwzAMw9QrvNjAMAzDMAzDMAzDMEy98h/YWMAK0A52OgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "7eKwrPxG02aF",
- "colab_type": "code",
- "outputId": "3d6bc2f6-82d7-4519-d7f9-d1b76675e5be",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 401
- }
- },
- "cell_type": "code",
- "source": [
- "# plotting a pie chart for the distribution of various grades amongst the students\n",
- "\n",
- "labels = ['Grade 0', 'Grade A', 'Grade B', 'Grade C', 'Grade D', 'Grade E']\n",
- "sizes = [58, 156, 260, 252, 223, 51]\n",
- "colors = ['yellow', 'gold', 'lightskyblue', 'lightcoral', 'pink', 'cyan']\n",
- "explode = (0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001)\n",
- "\n",
- "patches, texts = plt.pie(sizes, colors=colors, shadow=True, startangle=90)\n",
- "plt.legend(patches, labels)\n",
- "plt.axis('equal')\n",
- "plt.tight_layout()\n",
- "plt.show()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAGACAYAAAC6OPj9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xmc1PWd7/tXLb9ae19oaHakwC1N\nxKgQE804ZsEQjSYmnhFjco73RmeQuVfnHsljBp0xoxz1oc6JB3seimdUzuPOuXcmx4sYNRPQJBPU\nGJEo4srWNHRXr9VrdXVtv/tHQUOxN13Vv6pfvZ+PRz+wfxT1+5QN3e/6fr6LwzRNExEREZEi5rS6\nABEREZGJUqARERGRoqdAIyIiIkVPgUZERESKngKNiIiIFD0FGhERESl6CjQiIiJS9BRoREREpOgp\n0IiIiEjRU6ARERGRoqdAIyIiIkVPgUZERESKngKNiIiIFD0FGhERESl6CjQiIiJS9NxWFyAiIiKT\nr6WlhbVr19LT0wNAY2Mj9913HzU1NeN+roceeohQKMQNN9xw2se+8cYbPPbYY7hcLq644gr+4i/+\nYtz3OxGN0IiIiFjOkeOPU0ulUtx5553cdttt/Mu//Av/8i//wgUXXMADDzyQ6xd2nL//+7/niSee\n4J//+Z/ZunUru3btysnzaoRGRESkxGzdupVQKMQXvvCFsWu33XYbpmkCsHr1agzDoK+vj7Vr13L3\n3XcTjUaJxWKsWbOGpqYmNm7cyPr162loaMDn8xEKhUilUqxZs4bW1laSySSrVq1i6dKlY/dobW2l\nsrKSadOmAXDllVfy5ptvMn/+/Am/JgUaERGRErNnzx4WLlyYdc3pzG7aVFZW8tOf/pS9e/dy4403\ncvXVV/Pmm2/y9NNP87Of/YzHH3+cn//851RUVIy1mjZt2kR9fT0PPvggvb293HrrrWzatGnsObu6\nurJaWjU1NbS2tubkNSnQiIiIlBin00kymRz7/I477mBoaIhwOMyLL74IQFNTEwB1dXU8+eSTPPPM\nM8TjcQKBAJFIhGAwSG1tLQCLFy8GYPv27Wzbto13330XgNHRUeLxOB6PJ++vSYFGRESkxIRCIZ5/\n/vmxz5ubmwG46qqrSKfTABiGAcBzzz1HQ0MDjzzyCDt27ODhhx8Gskd0DreqDMPg9ttvZ/ny5Se8\n75QpU+ju7h77vKOjgylTpuTkNWlSsIiISIlZsmQJ4XCY1157bezazp07GR4exuVyZT02Eokwa9Ys\nADZv3kwikaCqqorBwUEGBgZIJBJjIzKLFi1iy5YtAPT09PDYY49lPdeMGTMYGhriwIEDJJNJXn/9\ndS6//PKcvCaN0IjIOKWBbiAMdAC9QBxIHvpIjf13lCDN/G+4yHyzOfpXA6gG6o/6KJ/cFyJSshwO\nB+vXr+f+++9n3bp1GIZBIBCgubkZn8+X9djrrruOe+65h1dffZWbb76Zl156iRdeeIGVK1eyYsUK\npk+fTigUAmDZsmW89dZb3HTTTaRSKVauXHncvf/2b/+Wu+++G4BrrrmGuXPn5uY1mYfHiUSkhJlk\ngsnhkHKqX7vIhJbT6+Q8GvjwjKvwAnWHPg6HnKP/ux6YBSwAKs/4WUWkFGiERqSkJIHPgJ3AB4d+\n3QnsJjPKYq1R4OChj9OZQibYHP5YCFwIzEO9dJFSpEAjYluDwHbgHeBd4H3gEyYzuCRT6Ux/KQ86\nD3387pjrAeAC4HNA06FfFwNV+SlDRAqEAo2ILcSBt4E/ANvIhJjPyMx3sc5oPA7+yb1nlMz/hT8c\ndc1JJtxceejjCqB2cssSkTzTHBqRorUHeAV4FXgdGLa2nBPYG5vHPN9uq8s4joPMKM6VR33kZuGo\niFhFgUakaETJBJdXD33k5vyTfCrUQHMi55IdcBqtLUdExkmBRqSg7eRIgPl3MtNmi0cxBZpjXQhc\nf+jjIotrEZHTU6ARKSgDwGaOhJjcnHFilWIONEeby5Fw80W0ikrsoaWlhbVr19LT0wNAY2Mj9913\nX9ZZS2fqoYceIhQKjZ3pdDqjo6NcfvnlrFy5kh/+8Ifjvt+JaFKwiOWSZObCbAA2ATFry5Hj7AUe\nO/Sx6WAHy0dGYUoNVJRZXJnYxseO3D7fuaceq0ilUtx5553ce++9YyduP/XUUzzwwAM8+uijua3l\nBH79619TV1fHyy+/rEAjUvzeIRNi/pnMZnVS6CpMk6/uOQjpNBzsBJ83E2ym1EBwkpdziUzA1q1b\nCYVCY2EG4Lbbbhs7k2n16tUYhkFfXx9r167l7rvvJhqNEovFWLNmDU1NTWzcuJH169fT0NCAz+cj\nFAqRSqVYs2YNra2tJJNJVq1axdKlS4+7/0svvcSqVat46KGHaG1tZebMmRN+TRo5FZlMyTCMNJNZ\nY3MJ8DMUZorH8lgcb/qopfCxUdjfDu/szHy0huGoE4xFCtWePXtYuHBh1jWn05l1jlNlZSVPPPEE\nXV1d3HjjjWzYsIG77rqLp59+GtM0efzxx3n22Wdpbm6mpaUFgE2bNlFfX8+GDRtYt24dDz744HH3\nHhoa4g9/+ANXXXUV11xzDS+//HJOXpNGaETyzUzD8C+h72kY2gSe2TCv+OeVlKLvdvac/DeHR2DP\nAdjXBlNrYfoUCGjURgqT0+kkeVT4vuOOOxgaGiIcDvPiiy8C0NTUBEBdXR1PPvkkzzzzDPF4nEAg\nQCQSIRgMUlub2dFp8eLFAGzfvp1t27aNHVY5OjpKPB7H4/GM3euXv/wlX/rSl/D5fCxfvpzVq1fz\n4x//eMKvSYFGJF9SvRD5R+h7CpItR67Hd9PfMYXKhk7rapNx88XjfG3fQTK72JxCOg1tXZmP6gqY\n0ZD51ZHjORIiExAKhXj++efHPm9ubgbgqquuIn1oFNIwDACee+45GhoaeOSRR9ixYwcPP/wwkAlF\nhx1uVRmGwe23387y5ctPeu+XXnqJ/fv3c9111wGwb98+du3axfz58yf0mtRyEsm1+F7oWAW7ZkH3\nX2eHmUNGO3wn+INSyC5v7yB4ujBzrMgA7Pgs045q64TUmR3qKZJvS5YsIRwO89prr41d27lzJ8PD\nw1ltJ4BIJMKsWbMA2Lx5M4lEgqqqKgYHBxkYGCCRSIyNyCxatIgtW7YA0NPTw2OPPZb1XF1dXeza\ntYtf/vKXbNy4kY0bN/LjH/+Yl156acKvSYFGJFdG3oGD34c9IYg8AebJd+6tcnWQjOfpkCPJixu7\nI2f/h6Mx+Gw/vPU+7G7NzL0RsZDD4WD9+vVs3LiR73znO9x00008+uijNDc34/Nlv+G67rrr+Kd/\n+if+43/8jzQ1NdHV1cULL7zAypUrWbFiBatWrSIUCgGwbNkyAoEAN910E7fffjsXX3xx1nO9/PLL\nLF++HLf7SIPo+uuv55VXXpn4a9I+NCITYJow/DL0PAIjvxnXH+0yZlJ/TnHvM3M6dtmHxptI0PXG\nHykf7wjNqdRVZ+bZVJXn7jlFSpjm0IicDTMF/Rug9xGIf3hWT+EcTOS4KMmXy9vDuQ0zAN2RzEdZ\nAOY0Qq3OAxeZCAUakfEa+Dl0/w3EP57Q01R7O4j2lxOoHMxRYZIv3+2aQLvpdIai8MEuqCyDeTO0\nWZ/IWdIcGpEzNfwa7LsU2r474TAD4HSYDB4Y/xbjMrm8iQQ3D8Xzf6P+Idj+MXy4G0a0W7TIeGmE\nRuR0YtugczVEN+f8qctSEcw0OPTWomAtbe+gYjJv2BWB7j6YVg+zp4HHmMy7ixQtfRsVOZn4Z3Dw\ne5j7LslLmAEIegaItDXk5bklN76Tz3bTyZhmZpn32zugpU3LvUXOgEZoRI6V6oGuv4G+9UAy11NB\nj5Ps8cCMPN9EzoonmWTFUIzTbqaXL6l0Zufhti6Y3QjT6rRBn8hJKNCIHGaa0P9P0HUPpLon7bY1\n7jCJUQPDq1VPheay9g6qrAozR4sn4LMWONgBc6dnlnyLTFBLSwtr166lpydzpEdjYyP33XcfNTXj\nn9v30EMPEQqFuOGGG0772FtuuYVoNEogEGBkZIQrr7ySO++8c9z3PJYCjQhAbAd03AEjWyf91m5X\ngs6WmUxZYO89aYrRd7t6rS4hWzQGO3dnVkItnK2zomzkv2zP7Rua1Redeu5VKpXizjvv5N577x07\ncfupp57igQce4NFHH81pLSeydu1aFixYQCqV4pprruH73/8+U6ZMmdBzKtBIaUsPQ/ffYvb+Aw6s\nOyXZGNHOsYXGsLrddCoDQ7Dtw0wbauZUtaFk3LZu3UooFBoLMwC33Xbb2JlMq1evxjAM+vr6WLt2\nLXfffTfRaJRYLMaaNWtoampi48aNrF+/noaGBnw+H6FQiFQqxZo1a2htbSWZTLJq1SqWLl160joO\nH7UQCAQm/JoUaKR0Df4vzI7/A0ey1fIfWdXeTgZ7qiiv7bO4Ejns0nAHNabVfzNOIW3C3oOZFVEL\n50BQozVy5vbs2cPChQuzrh192CRAZWUlP/3pT9m7dy833ngjV199NW+++SZPP/00P/vZz3j88cf5\n+c9/TkVFxViradOmTdTX1/Pggw/S29vLrbfeyqZNm467/09+8hMCgQC7d+/mP/2n/0RZ2cT3X1Kg\nkdIT3wcdK2H4F5YHmaNF2ysVaArIdwqt3XQyg8OZ0Zo5Gq2RM+d0Okkmj4xK33HHHQwNDREOh3nx\nxRcBaGpqAqCuro4nn3ySZ555hng8TiAQIBKJEAwGqa2tBWDx4sUAbN++nW3bto0dVjk6Oko8Hsfj\n8WTd/3DLKR6Ps3LlSs477zy++MUvTug1KdBIael7FrNjFQ6z8HbnrTC7SafAqTMrLWckk9wyUERt\nQPPwaE0EFs7VaI2cVigU4vnnnx/7vLm5GYCrrrqKdDoNgGFk5uE899xzNDQ08Mgjj7Bjxw4efvhh\nIHtE53CryjAMbr/9dpYvX35GdXg8Hq688kreeeedCQca7UMjpSHVg3nguxD+UUGGGQC/MUzvgUar\nyxDgknAndVYXcTYGo5nRmpa2TMgROYklS5YQDod57bXXxq7t3LlzbE7L0SKRCLNmzQJg8+bNJBIJ\nqqqqGBwcZGBggEQiMTYis2jRIrZs2QJAT08Pjz322Glref/995k7d+6EX5NGaMT+hv+N9MEf4Ex3\nWF3JaZl9TphtdRVyQ7G0m07ENDN71xyeW1M28cmWYj8Oh4P169dz//33s27dOgzDIBAI0NzcjM/n\ny3rsddddxz333MOrr77KzTffzEsvvcQLL7zAypUrWbFiBdOnTycUCgGwbNky3nrrLW666SZSqRQr\nV6484f0Pz6FJJBIsXLiQb37zmxN/TaapGC82lY5hdv5fEFmHw1Ecf81TaReJ2Qa+oD3O8tkbm8c8\n326ryxgXdypF2++2U291IbngcMCsaZkjFDS3RmxOLSexp9h2Uns+j6PvvxVNmAFwOVP0t05sLwaZ\nmC+EO+wRZiAzWtPSBu9+pAMvxfYUaMReTBN6HiG99zJcyU+sruas+EeHrS6hpF3fWcTtppMZimZC\nTW+/1ZWI5I0CjdhHapBU67eh6z/jdBTvMQIV3h76O2qtLqMkuVIpfjA4YnUZ+ZFMwY7PoKXd6kpE\n8kKBRuxh9BMSuz6PK/qi1ZXkRKxj4ptMyfhd3NHJ1ELeTC8X9h3MHJ+gE7zFZhRopOil+v8/krsX\nY5h7rC4lZ6qcnaSS+uc52a7v7LG6hMnRHcm0oKKaVyP2oe+YUrxMk/jB/4yz7QbczqjV1eSU1z1C\n7/5pVpdRUlzpNLcO2LTddCLRWCbU9Gh3arEH7UMjxSnVz8ie6/GnXi/IswNzwTlQPKuz7OCijk6m\n2b3ddKxUCj7YlTnkUku7S05LSwtr166lpyczMtnY2Mh9991HTU3NuJ/roYceIhQKjZ3pdCrJZJJ/\n+Id/4He/+x1+vx/DMPjrv/7r486WGi8FGik6ZuxD4nu+jt95wOpS8qra287IQBB/hVY9TYbrO7qt\nLsE6LW2ZlVDnzgW3zt6wQv/f/V1On6/yvvtO+fupVIo777yTe++9d+zE7aeeeooHHniARx99NKe1\nHGv9+vUMDAzwwgsv4HA4ePfdd1m5ciWvvPIKbvfZxxIFGikqqcHNmK3X4nXavzXgdJgMHKjDf74C\nTb5l2k0lPp+kpw+2fwQXnAMBnQVld1u3biUUCo2FGYDbbrtt7Eym1atXYxgGfX19rF27lrvvvpto\nNEosFmPNmjU0NTWxceNG1q9fT0NDAz6fj1AoRCqVYs2aNbS2tpJMJlm1ahVLly7Nuvf//J//kxdf\nfBHHoRHBxYsX8/Of/3xCYQY0h0aKyEjHf4fWb+AugTBzWDCpfUMmw6KOTqarw3dkXo32q7G9PXv2\nHNficTqdWec4VVZW8sQTT9DV1cWNN97Ihg0buOuuu3j66acxTZPHH3+cZ599lubmZlpaWgDYtGkT\n9fX1bNiwgXXr1vHggw9m3WNwcBCv10tFRUXW9WM/PxsaoZGiENn9N1TGH8TpLK2fOmWePiJt9VQ3\ndlldiq19u1RWN52JVDozr+a8eVBfbXU1kidOp5NkMjn2+R133MHQ0BDhcJgXX8xsf9HU1ARAXV0d\nTz75JM888wzxeJxAIEAkEiEYDFJbm9kza/HixQBs376dbdu2jR1WOTo6Sjwex+PxjN0rlactAxRo\npOB17byFetf/sO3k39NJdPtBh3DnjTOd5of9pTPqd0ZMEz7cnZlT06BNHu0oFArx/PPPj33e3NwM\nwFVXXUU6nQbAMAwAnnvuORoaGnjkkUfYsWMHDz/8MJAJRYcdblUZhsHtt9/O8uXLT3jf8vJykskk\n3d3d1NUdOdN+586dnH/++WNtqLOhlpMULDOdoOu9r2bCTAmrdoVJxvXeI18WdXYxs7QG/s7cx3uh\nrdPqKiQPlixZQjgc5rXXXhu7tnPnToaHh7PaTgCRSIRZs2YBsHnzZhKJBFVVVQwODjIwMEAikRgb\nkVm0aBFbtmwBoKenh8cee+y4e998882sXbt2bIRo27ZtrF69mng8PqHXpO+SUpDSySEiH1xBvW+7\n1aVYznDF6do/k/r5rVaXYkvXqd10ap/tz7ShZk61uhLJIYfDwfr167n//vtZt24dhmEQCARobm7G\n5/NlPfa6667jnnvu4dVXX+Xmm2/mpZde4oUXXmDlypWsWLGC6dOnEwqFAFi2bBlvvfUWN910E6lU\nipUrVx5379tuu41//Md/5Prrr6eyspLy8nKam5vxer0Te03m4XEikQKRincy+OFSqnz22fl3onpj\nU6n5fNjqMsZtb2we83y7rS7jpBzpNHu2vsuctNWVFIFZ02DudKurEDkptZykoIxG2xjauVhh5hjV\n3jDDfeVWl2E7n+vqVpg5U/vbYZdGCaVwKdBIwRjq30f048uo9B+0upSC43DA0MHx794pp/btUt5M\n72wc7IBP92UmDYsUGAUaKQi9nZ8Q3/VlqgP23v13IsrTvZgaTcgZRzrND/vtdQbYpGjvzkwWVqiR\nAqNAI5brCn9EuuVr1AQVZk4lYAwSOaiJmblyQXc3cxUQz05nL+zcDWn9D5TCoUAjlurp+gyzdRl1\n5futLqUopHq1MDFXrgur3TQhPX2ZDfgUaqRAKNCIZXq795Dc+3WmlLdYXUrRqDbCxGOe0z9QTslh\nmvxI7aaJiwzAJ/vUfpKCoLd7YolITwvxPV9jasVeq0spKm5nko6WWTQs1IjWRJzf1c05GljIjc5e\n8Hpg3gyrK5FxamlpYe3atfT0ZPZiamxs5L777qOmZvwLEB566CFCoRA33HDDaR97yy23EI1GCQQC\nJBIJLr/8cv78z//8uA39xkuBRiZdfyTMyGdfp7GqcPcnKWTemLbpn6hvaXVTbrWGM6Fm+hSrKyle\nv3knt8935RdO+dupVIo777yTe++9d+zE7aeeeooHHniARx99NLe1nMDatWtZsGAB8Xicn/70pzz+\n+OP81V/91YSeU4FGJlV/fzfdH1zLOfWfWF1K0arydjHYXUV5XZ/VpRQlh2nyo75hq8uwn137wWtA\nnQ60LAZbt24lFAqNhRnI7OB7eK/d1atXYxgGfX19rF27lrvvvptoNEosFmPNmjU0NTWxceNG1q9f\nT0NDAz6fj1AoRCqVYs2aNbS2tpJMJlm1ahVLly49aR0ej4ef/OQnfOMb3+Av//Ivx86POhuaQyOT\nZnCgl9Ztf8Y59X+wupSiF22vtLqEonVudw8L1G7Kj4/2wsCQ1VXIGdizZw8LFy7MuuZ0OrPaPpWV\nlTzxxBN0dXVx4403smHDBu666y6efvppTNPk8ccf59lnn6W5uZmWlsxcyE2bNlFfX8+GDRtYt24d\nDz744GlrCQQCTJs2jfb29gm9Jo3QyKQYHhrg4zd/zCWzf2V1KbZQ6eginXLgdGky5nhd29FldQn2\nlU5nVj59/lwI+E7/eLGM0+kcOxwS4I477mBoaIhwOMyLL74IQFNTEwB1dXU8+eSTPPPMM8TjcQKB\nAJFIhGAwSG1t5jT2xYsXA7B9+3a2bds2dljl6Ogo8Xgcj+fUixmGh4ezTu8+Gwo0kneJRJz3/n01\nl83+X1aXYhs+d5Tu1kbq5rRZXUpRcZgmP4yo3ZRXiSTs+AwuOhc8Z98+kPwKhUI8//zzY583NzcD\ncNVVV5E+tBT/cPvnueeeo6GhgUceeYQdO3bw8MMPA2QFkMOtKsMwuP3221m+fPkZ19Lf38/AwACN\njY0Tek1qOUlepdNp3tyylotn/hMup8b5c6rPYXUFRWdBTw/n6q9h/sVG4YPPIJWyuhI5iSVLlhAO\nh3nttdfGru3cuZPh4eHjVhtFIhFmzZoFwObNm0kkElRVVTE4OMjAwACJRGJsRGbRokVs2bIFgJ6e\nHh577LFT1pFMJnnwwQf5wQ9+oBEaKVymafLmb9ZzUcN/xeuOWV2O7VR72okN+/EFterpTH1Lm+lN\nnsEofLgHLpyfOYxMCorD4WD9+vXcf//9rFu3DsMwCAQCNDc34/Nltwuvu+467rnnHl599VVuvvlm\nXnrpJV544QVWrlzJihUrmD59OqFQCIBly5bx1ltvcdNNN5FKpVi5cuUJ7/+Tn/wEv99Pf38/X/nK\nV/jRj3408ddkmtoRSfJj2+9fZAYraajUCb350sFsGs4t3I0J98bmMc9XOMvzP/jdNi5I6VvepJpW\nBwvmWF2FlAC1nCQvPv3obcpH/k5hJs/8o4NWl1A0Qj09CjNWaO+G/RNbvSJyJhRoJOfaD+6me9da\nFkx91+pSbK/C20tfuM7qMorCt9q1usky+9qgX8u5Jb8UaCSn+vu7+eMb/5VL5v3C6lJKxmhnwOoS\nisKt+oFqHdOEj/ZkVkCJ5IkCjeRMMpngt796ii/O/2cMV8LqckpGtbOTVEL/lE9lfk8vTfpZaq3R\neOYgS5E80XdByZl/f/3/4XNT/5lKv1aSTCaPO0bv/ont32B33wyr3VQQevrgYIfVVYhNKdBITux8\n/98JJP4Hc+o+sLqUkuQc1H4fp/LDiNpNBWP3gcySbpEc0z40MmGd4X20fvwcX71ws9WllKxqb5ho\nfxmBSv3gPta83l4+r9VNhcM04aPdcPH5cMwGbjK5WlpaWLt2LT09PQA0NjZy3333UVNTM+7neuih\nhwiFQtxwww2nfewtt9xCNBolEDgy/+973/se3/rWt8Z936Mp0MiEjI6O8OZv/4k/XfivuJwaJbCK\n02EyeKBWgeYEvqnVTYVnZBQ+bYHz5lldScHI9daDp4vwqVSKO++8k3vvvXfsxO2nnnqKBx54gEcf\nfTTH1Rxv7dq1LFiwIKfPqUAjZ800TX6z5f/moun/L2XefqvLKXnBVJ/VJRSkH/Yp5BWkzl6oroCp\n2nbAClu3biUUCo2FGYDbbrtt7Eym1atXYxgGfX19rF27lrvvvptoNEosFmPNmjU0NTWxceNG1q9f\nT0NDAz6fj1AoRCqVYs2aNbS2tpJMJlm1ahVLly6dlNekOTRy1v64bTP+xCZm1X5sdSkClHn6iRyc\nYnUZBWVOJMLipNpNBeuz/TCsozussGfPHhYuXJh1zel0Zp3jVFlZyRNPPEFXVxc33ngjGzZs4K67\n7uLpp5/GNE0ef/xxnn32WZqbm2lpyexYvmnTJurr69mwYQPr1q3jwQcfnLTXpBEaOSsHWj9l90ev\n8K3P/5vVpchREt1emG51FYXjm+2dVpcgp5JOZ/anWXweTPBgQhkfp9NJMnlkL4M77riDoaEhwuEw\nL774IgBNTU0A1NXV8eSTT/LMM88Qj8cJBAJEIhGCwSC1tbUALF68GIDt27ezbdu2scMqR0dHicfj\neDyerPv/5Cc/yZpD8+CDDzJz5swJvSYFGhm3WCzKG7/5V754zst4Db27KiTV7g4So24MrzZdAbhV\nq5sK3/AI7GqFBbOtrqSkhEIhnn/++bHPm5ubAbjqqqtIpzNH0huGAcBzzz1HQ0MDjzzyCDt27ODh\nhx8GyDod+3CryjAMbr/9dpYvX37K++djDo0isYzbG7/5V2ZUvs2Mmk+sLkWOYbjiRPZPs7qMgjCr\nr49L1G4qDu1d0K05YJNpyZIlhMNhXnvttbFrO3fuZHh4OKvtBBCJRJg1axYAmzdvJpFIUFVVxeDg\nIAMDAyQSibERmUWLFrFlyxYAenp6eOyxxybpFWmERsZp92fv0tu5jWsv+qXVpchJGMNxq0soCGo3\nFZldLVBVDm4t5Z4MDoeD9evXc//997Nu3ToMwyAQCNDc3IzP58t67HXXXcc999zDq6++ys0338xL\nL73ECy+8wMqVK1mxYgXTp08nFAoBsGzZMt566y1uuukmUqkUK1euPOH9j205XXbZZSd97Bm/JvPw\nOJHIaYxEh3jx5//Al+Y/z/Tqz6wuR05hqKGSsmrrV57tjc1jnm+3Jfd+Y+u7LE2mLbm3nKXpU2D+\nLKurkCKllpOcsa2//VdmVf9BYaYIDB+ssroES83s61eYKUYHO2FA857k7CjQyBn57JN36O96l4vn\nqNVUDMrNHtIlvM/hsnadF1S0Pm3J7CYsMk4KNHJa0eFB3n37VS6e+zoe96jV5cgZCBhDRA6W7uTg\nH0QGrS5BztbwCLSGra5CipDoCvw1AAAgAElEQVQCjZzWG7/9V6r9u3TwZJFJR0pzcuX0/n4uT+gd\nflFraYeY3jzJ+CjQyCl9+tHbhNs/45K5r1pdioxTjdHOaNRrdRmTbplWNxW/dBp2t1pdhRQZBRo5\nqfhojO3bfsWCae9RHdSchGLjcqboa22wuoxJ94NetZtsobsPeq1fqSfFQ4FGTuoPv/8FTrOfphmv\nW12KnCVfLGp1CZOqcWCALye0usk2drVmRmtEzoACjZxQb087+3a/x6KZr+PT8QZFq9LbTX9njdVl\nTJpvaHWTvYzEMku5Rc6AAo0cxzRN3n5jE9XBLuY3bLO6HJmgWEe51SVMmlt61G6ynZY2GNXu13J6\nCjRynD27/khX134unvMKTodWixS7SkcnqaTD6jLyburAIF9Ru8l+UmnYe9DqKqQIKNBIllQqyR+3\n/Yo5dZ/SUNFidTmSAz73CJHWRqvLyLtvtGvvEtvq6IGh0poPJuOnQCNZtr/zK0aig3xuxq+tLkVy\nacD+I203a3WTve1vt7oCKXAKNDJmcCDCpx/9nrn1H1IV6LK6HMmhGk+YkaHA6R9YpBoGB7k6rnaT\nrXVFMrsIi5yEAo2M+cObm3CQ5sIZv7G6FMkxpyPNwP56q8vIm6+3aXVTSWjRKI2cnAKNANDVuZ+2\nA58yp24Hlf4eq8uRPAgkBqwuIW9W6Oym0tDVC1GN0siJKdAIANvf2YzL5eTC6b+1uhTJk3JvhL52\n+43S1A8N8dXREj5avNRolEZOQoFGCLfvpSO8h7n171Hu77W6HMmjeJff6hJy7mtqN5WWzl6Ixqyu\nQgqQAo3w/rtbcLscGp0pAVWuDpJxe53CvULn/ZQerXiSE1CgKXHhtt10hPcxr/6PlPn6rC5H8szj\nGrXVnjR1Q8N8LaZ2U8np6MkciyByFAWaEvfeu6/hdjm5YPq/W12KTBLnYMLqEnLmq+1hnA7774Is\nJ6C5NHIMBZoS1nZgF50d+5hV+yFlXg3bl4pqbwfDffY43+nmHvuu3JLT6OyFkVGrq5ACokBTwt7f\nvgWXy2Dh1N9bXYpMIqfDZOhg8Z/AXTM8zLJY0uoyxCqmqbk0kkWBpkQd2P8JXZ2t1AQPUld+wOpy\nZJKVpSKYRb6x7lfb1G4qeR09ENMojWQo0JSoDz/4HS6XW6MzJSroGSDS1mB1GRPyZzq7SUwTDmjZ\nvmQo0JSgSG8HHe178BmDzKrdaXU5YpFkj8fqEs5adTTKNSP2mdwsE9DRC+kiH26UnFCgKUE73/8t\nLpdBqOEdXE59IyhVNe4wiVHD6jLOylfbwrjVbhKAZBK6teWEKNCUnER8lNaWnTgdSeZP2WZ1OWIh\ntytBpGWq1WWclZt6tCpPjtLeZXUFUgAUaErMBzv+nVQqzey6D/B7hq0uRyxmFOGy16polG+NaHWT\nHKVvUJODRYGmlJimyd7PtuN0OjUZWACo9nYy2FNldRnj8qdtHWo3yfHau62uQCymQFNC9u1+n+Hh\nPmqCbdQEw1aXIwUi2l5pdQnj8h/UbpIT6ejOrHqSkqVAU0I++egtXC6DuXXvWV2KFJAKs5t0kRyH\nVDkywrVa3SQnMpoAHVRa0hRoSkR310E6O/fjIK2l2pLFbwzTe6A4Dqy8qi2MoXaTnIzaTiVNgaZE\nfLRzK26XwbSq3ZoMLMcx+4rjW4HaTXJKvf0Q1wheqSqO72IyIalUirYDnwEwp+59i6uRQlRjtBMb\n9lldxilVxGJ8O6ofVnIKpglhjdKUKgWaErBv93vER0dwu0aZUf2x1eVIAXI5U/S3TrG6jFP6E7Wb\n5Ewo0JQsBZoSsG/vDlwuN7NqPsTt0v4dcmK+0cJuRX6/R7vByhkYGc3sSyMlR4HG5uLxGOG23QDM\nqdthcTVSyCq9PfR31FpdxgmVx2J8R+0mOVMapSlJCjQ298mHb2Ga4PcMMKVin9XlSIGLdZRZXcIJ\nfaUtjAe1m+QM9fRpT5oSpEBjc637P8bpdDKndgdOh/6By6lVOTtJJQvv28L3u7W6ScYhmYL+Iaur\nkElWeN+5JGcGBnrp7moFYEbNJxZXI8XA6x6hd/80q8vIEhwd5TsjcavLkGKjOVclR4HGxj758E1c\nTjced5TasgNWlyNFwjlQWCN5X2kL41O7ScZLuwaXHAUamzJNk7bWT3A4HDRW7lK7Sc5YtbedkYGg\n1WWM+V633mnLWYjGdAJ3iVGgsalIb5j+vsxM/8bqzyyuRoqJ02EycKDO6jKATLvpxqjaTXKWtLN0\nSVGgsam9u/6Iy23gIM20ql1WlyNFJpgsjB8EV7SH8avdJGerV6N7pUSBxqY6O1pwOBzUlbfidces\nLkeKTJmnj0ib9TsHf1/tJpmIvkFIFclR8jJhCjQ2FI/H6OnKTAKeXv2pxdVIsUp0W3u2kz8e53vD\najfJBKRNiGjX4FKhQGNDuz/bDo7Ml7axSvNn5OxUu8Ik427L7n9Fm9pNkgNa7VQyFGhsKNy2G6fT\nSdDbR1Wgy+pypEgZrjgRC/ekubE7Ytm9xUYUaEqGAo3NpNNpujr3AzBNozMyQa4ha1o+/nic76vd\nJLkwGoehqNVVyCRQoLGZcNtuRmOZU5MbylssrkaKXbW3g+G+8km/75faw5Sp3SS5olGakqBAYzP7\n932Iy2UAUF+x3+JqpNg5HDB0sGbS73tjl1Y3SQ5pP5qSoEBjM10dmVGZMm8vAY9m98vElad7MdOT\ndz9fIsF/GNYOr5JDg8OQnsS/xGIJBRobGY1F6Yt0ADClQu0myY2AMUjk4NRJu9/lajdJrpkmDGs/\nLrtToLGRln07cTgzX9KwewnvDX6XWKpwzuSR4pXqnbzl29/t0uomyYOhYasrkDyzbpMJybnuzv04\nnS4AdlX8kI/df8UrsSSB+H7q039ktuu3LPT/glqvRm9kfKqNMPGYB48vvyuPvIkENw+NgkZoJNcG\no2DdLgQyCRRobKS3px2AtNNL0lubueh0E/XNo4V5tHADv03/A57+LqqTO5nh2ErI90tm+d7CqbE6\nOQW3M0lHyywaFuZ3ovkX2zsoV5iRfBjUCI3dKdDYxGh8lD17d1NTVc5o+fTM8pSTiHvq6fB8hQ6+\nwjb+GudwlIr4J0zlD8zzvMaCwC/xufSPX7J5YyN5v8d3u3rzfg8pUcMjmYnBevdmWwo0NrH/YJhh\nd4jergE8FTPHNTkq7Q7Q576IPi7iY/53Xo4lCcZbqEv9kdnu33Ju4CVqPK15q12KQ5W3i4Huairq\n8jPHxZtI8GdqN0m+mGYm1JRrXqFdKdDYRFu4k/LySsrLKxmpncOEzpd1uhn2ncMw59DCd/ht6r/i\n6e+kJvkB051vEPL9G3P8b+WqdCkiI+0VeQs0S8IdVCnMSD4NRhVobEyBxia6e4/8kEn7K3P+/HHP\nFMKeqwhzFdv4G5yDw1SOtam2sCDwS7yu/LckxFqVji7SKQdOl5nz5/6OVjdJvg0NA/VWVyF5okBj\nA6ZpjgUa0+nC9JTl/Z5pd5CIezERFvMRP+YXsSTB0Rbq09vH2lTVngN5r0Mml88dpbu1kbo5bTl9\nXiOZZMVQDLWbJK8GdaaTnSnQ2MDQcJTh6Agej0HaV3nKCcF543Qz7M+0qfbxXX6T+hmevg5qkh8w\nw/kG8/2/ZI7/7cmvS3KvL/d/v5a0d1BtKsxInmlisK0p0NjA/rZ2XO7M/jNpX+7bTWcr7m0g7G0g\nzJ/yDmtwDQ5REf+Eabw9tprK49LuncWm2tNObNiPL5i7FuN3tLpJJoMmBtuaAo0N9Eb6cB16x5GP\n+TO5knKXEXFfTISL+ZA7IJYkGN/HlPS7zHb9hoWBX1DtyW0rQ3LP5UzT3ToF37m52aDRSCa5Re0m\nmSyDwwo0NqVAYwN9/UcOoSykEZrTcroZ9s1nL/PZy/f4dfK/4Y12Up3cwQznGyzwv8Is/zarq5QT\n8I/m7uDTS8Od1KjdJJNF82hsS4HGBvoGBsb+u6gCzbEcDkbH2lRX8w734hocojL+MVN5+9Bqql+p\nTVUAKry99IXrqJraPeHn+k5nTw4qEjlDUX3/sCsFmiKXSqXoHxgEhwPT5cE0fFaXlFMpdxm97i/Q\nyxf4kD/HEUsQHN1LvbmdOe7fcq7/F1SqTWWJ0c4ATPAQbiOZ5JbB0dwUJHImRvN7HplYR4GmyPX2\n9RNPJDMrnDwBq8vJO9NpMORfwBAL2Mv3eT353/BGO6hJvc9M5xuEfK8y0/+u1WWWhGpnJ6mEE5eR\nPuvn+EJHJ3U5rEnktOKJzORgK1aDSl4p0BS51rYwhpH5MpqeEpzo5nAw6p1KO1Np52u8zd/iGhyk\nMv4x03ibczybmR/4FR6X3pXlmscdo2v/DOrPOfv9hm5Qu0kmm2lmQo3XY3UlkmMKNEWuv38Qx6F3\nGulSDDQnkHKX0+u+hF4uYSd/MdammmK+y2z3bzg38AsqjbDVZdqCc/DsD9lwp1L8YFCrm8QCo3EF\nGhtSoClyQ9EjM/bNEmg5nY2j21R7uInXEybe4TC1yR3McG1lge8VZvj/aHWZRanaGybaX0agcmjc\nf/bicCdTtLpJrKB5NLakQFPkjg40GqE5Qw4Ho95ptHmn0cbXeJu/wzUwQFXiY6Y5fs88zxbm+zer\nTXUGnA6TwQO1ZxVoru9Su0ksokBjSwo0RW54+OgRGgWas5UyKugxLqWHS/mAOw+1qfbQkH6XOcav\nWRh4mQqjw+oyC1Iw1TfuP+NKpbh1YAS1m8QSsYTVFUgeKNAUsVQqxfBIDJfr0C7BajnlTKZNtZAh\nFrKb/8CWhIl3uJ3a5A5mHmpTTfe/Z3WZBaHM00/k4BSqp3ee8Z+5uKOTqWo3iVXiGqGxIwWaIjYw\nNEwymcTl8mA63eDSJLe8cTgY9TbS5m2kja/ze+4/1Kb6iGmO3zPfs5n5/i24XaX5zi/R7YXpZ/74\nb3fq7CaxUEyBxo4UaIpYZ3cv7kOHUppue22oVwwybarL6OEyPmAVjlicstHdTDHfZc6h1VTlRpfV\nZU6KancHiVE3hjd52se60ml+MJC7gy1Fxk1zaGxJgaaI9Q3043IdDjQanbGa6fQw6D+PQc5jNzez\nJZHGN9xObep9Zji3stD3Co3+HVaXmReGK07n/plMCbWe9rGf7+hkujkJRYmcjDbXsyUFmiIWHT5y\nJompdlPhcTiJeadzkOkcZBm/5+9xD/RTmfiIRn7POd5fMd//um3aVMbwmb3rvb5Dq5ukAIzGwee1\nugrJIQWaIhYdPSrQaISmKCSNSnqMJfSwhB38JY6RUcrie2gwtzHb/WvODbxMuTHxAx+tUO3rYChS\nSVl1/0kf40qnuXVQ7SYpAKMJBRqbUaApYvGjZuqbLv3DLEamyzvWptrFikNtqjZqk+9nVlP5X6bR\nt9PqMs/Y8MGqUwaaps4uZpz90U8iuaOVTrajQFPERo+a2KYRGptwOIl5Z3DQO4ODXMNb5gO4B/qp\nSnxII28x37uZeYHXcDvP/siBfCo3e0inwOk68e9f31Gco09iQykla7tRoClio/Gj5l5oDo1tJY1K\nuo2ldLOU9/k/cURHKY/vZoq5jbnu1zk38DJBozCWQQeMIQ60TGPGvPbjfs+ZTvOD/ijaTE8KQloz\n0+1GgaaIxRNHAo3pVsupVJguLwP+8xngfHZxC79KpPENHaQu9T4zXb9jof9lpvo+sqy+VOTEwzNN\nnV3M1mZ6UihMBRq7UaApUqZpZlpOh34+mE59KUuWw0nMN5MDzOQA3+RNcy3ugQjViY+Y5niL+d5f\nMc//60lrUzX62hmJBvAHolk/NK7tVLtJCkhaLSe70U/BIpVMpUgmk7iNQ19Ch9PagqSgJI1quowv\n0sUXeZ+7cERjlMd302C+wxz3rzk3+DJBdyQv9zZcKQ62zmTOwk8wDwUaRzrND/u1ukkKiEZobEeB\npkjFYqOkzPSRL6ACjZyC6fIx4L+AAS7gM27lV/E0/sGD1KbeY5brdyz0/4IG3yc5u18wNggcmS3z\nua5u5uoNsRQSzaGxHQWaIhUdiWW9wTAVaGQ8HE5GxtpUy3nD/C+H2lQf0uh4i3O8v+Ic/69xOc8u\nhdR72+jubIBDB8Bfp9VNUmjUcrIdBZoilUgkcTqPmmCpLbxlgjJtqsvp4nLe4+5DbapdTDXfYY6R\nWU0VcJ98j5ljRQ6U4TkvhSOd5tb+aB4rFzkLajnZjgJNkUokEziODjFOjdBIbmXaVBcywIV8yg/5\nt3ga/+AB6tJ/zLSpfC8zxffpSf98oztMV3oaF3T3cI7eDEuhUcvJdhRoilQylcSZNSqjQCN55nAy\n4ptFK7No5Vq2mg/j7u+lOplpU81z/4L5ZW+OtamCnmF2t03j2pjaTVKATKVsu1GgKVLJZCprhMbU\nCI1YIOmpocvzJbr4Eu/xVziGoxix3dSk3+Nz3tdxGQf50ciw1WWKHE8jNLajQFOkEscEGu2+KoXA\ndAeIl32OMJ8jzApqu/dw7Y5XOFhWAcEyXP4gHl+AoNeH121YXa6UMs2hsR0FmiKVTh0baPSPUwpP\nfeQgvsF+GMyeTBwDBj1eEuUVpIIVOAJBDH8Qv89PwPDi0oij5JtGaGxHgaZIpY75x+hIpxVppODU\nDHSc9PeM+ChGTxf0dI1dSwMDQLysgmRZOWawHJc/iNcfwO/149eojuSKlm3bjgJNkTKPndBmFubp\ny1LayiInDzQn4wR8QwMwNJB1PQ5E3Qbx8kpSZeU4AmUY/iA+n5+Ax4dbozoyHurS244CjV3o3YYU\noNp4bo87cCcTuCPdEDmycsoEhoB4oIxEWQVmWWZUx3NoVCdg6CR6OQHXiQ9RleKlQFOkXK7sd6MO\njdBIgXGkk5Qn45NzL8AbHcIbHYLOI9cTQI/LTby8glRZBY5gGW5/EJ/XT8Drw3Dqh1rJcuvHn93o\nK1qkXE4XpmkemRisPRWkwFT3HqQQ4oI7lcTd1wt9vVnXh4G4P0CyrIJ0sAJn4Miojt/wHLPPk9iO\nuxD+dkouKdAUKcNwkzZNXIe/6aY1QiOFpa53v9UlnJID8I5E8Y5EoSs8dj0J9Dldh0Z1yiFQjtsf\nxOv3E/D48ahVYQ8KNLajQFOkPIYHM22ObRDs0AiNFJia/vDpH1SgXOkU/v4I9Eeyro8A/V4fifJK\n0mXlOANlGL7A2HJzjeoUEQUa21GgKVIew31opdOhf5TppKX1iByrerj39A8qQp7RGJ7RGHQfWcGV\nAvocDuJlmbk6ZrAcdyCI1xcg4PXhdelbbcHRHBrb0Ve0SBmGQfqovWgcyVELqxE5XuXIkNUlTCqX\naeI/ySaCA4c2EUwHK3AGM6M6meXmXlwOLTe3hEZobEeBpkhlRmgUaKRApdOUJ/R38jBPfBTPiTYR\ndDgYDZaPjeq4jhrV8WkTwfxSoLEdBZoi5Xa7s44+UKCRQlLV16ZvLmfAaZr4T7CJ4Cgw7DYYragk\nHSzHESwfG9UJenw6GiIXFGhsR99zipTP58V51F40CjRSSAp9hVMxcCcTuHu7oTd7E8FBDm0iWF4B\nwczEZM+hUR2/NhE8c5pDYzv6ihYpw+3GOOofpCM1ORuYiZyJYl7hVOiyNhE8SuZoCPfYxOQjmwgG\nCHq9uLWJYDaN0NiOAk2Rcjgc+DweYvFMkNEIjRSS6qEeq0soSe7kiTcRHALi/iCJ8sxcncwmgsHM\nqI7bk9W+LgkuJ5Taay4BCjRFzOtVoJHCVDUyaHUJcpTMJoLDeEeGgfax6wlgxOU6MqoTKBtbbh70\n+DDsuomgRmdsSYGmiHm8nkxDncy5OaST4NSXVKynFU7Fw51K4T7BJoJRIO7zZzYRPDxXxx/InINV\n7EdDaP6MLemrWsR8x0wAdMRHMH3lFlUjklHR145x1JYCUrw8sRE8sZGsoyEymwg6iZeXkyyrxBEs\nw+Uvsk0EPVoSb0dF8DdPTsbn9WZ97owPkVKgEYtphZP9ucw0/oF+GDjBJoJeH4myisyoTrAMwx/E\n781sIlgwozp+7+kfI0VHgaaIebzHjtAMW1SJyBG1fe2nf5DY1tjRED2dY9dSQL/DQbysnERZRebA\nz0BwbLn5pG8iqEBjSwo0RSxwzD9K56gCjVivSiuc5AScpolvcADf4PGbCA4ZHhLllaQOHfjp9gcz\nmwga3vxsIuhToLEjBZoiVl1ZSSqVwnVoJYJTIzRSAKpGBk7/IJGjGIk4Rm8X9B45GsIEBoB4sJxk\neQVmsAyX/9Amgj4//omM6vh9E65ZCo8CTRFrqKvNCjSOeGkdBiiFqSIes7oEsQkn4BsehOHsbQAy\nmwgaxMuPLDc3/EG8h46GcJ9uVMenHZXtSIGmiJWXBXEftfxQIzRitbKBTjxa4SSTwJ1M4I70QCS7\nxTkExANBEmWVmGWZUR3D56e6qgZnKo3DY4Bd99cpcQo0RczpdFIWDBAdybwjdqQSkIyDW+8+xBp1\nPS1WlyAlLnM0xDDe6DAcmZfMEIDXh+fCC/GzyKLqJJ90ZGuRCwYDWZ87R7VDq1hHK5ykoI3GyMzO\nETtSoCly5YFjAk2s/ySPFMm/6qHu0z9IxELOujqrS5A8UaApckEFGikgVVGtcJLCpkBjXwo0Ra6i\nLIh51CRM54gCjVhHK5yk0LmmTLG6BMkTBZoi1zi1gUQiOfa5RmjEKoGhHrxm2uoyRE7KEQzirKiw\nugzJEwWaIldXU4XHOGrpdnIURzxqYUVSqrTCSQqdq7HR6hIkjxRoipzL5aK8LPtASudIn0XVSCmr\n7WuzugSRU3JNm2Z1CZJHCjQ2UF2lQCPWqxnUCicpbBqhsTcFGhuoOqYn7BqJWFSJlLLKqOZvSWFT\noLE3BRobaKivI5VKjX3uHNY7ZZl8lfERq0sQOSlHWRnO8vLTP1CKlgKNDcyaPpV0+qil28lRHDHt\nGCyTxxvtw5fWCicpXBqdsT8FGhvw+3yUB4NZ11wapZFJVK8VTlLgXNOnW12C5JkCjU3U1VRlfe4a\n7rKoEilFdZGDVpcgckruOXOsLkHyTIHGJupra7I+d+lMHZlE1VrhJIXMMDRCUwIUaGxizszpJOJH\n7RgcH8KR0CRNmRxVUW0VIIXLPXMmDpfL6jIkzxRobGJaQz1eryfrmlY7yWSpGFV4lsLlUrupJCjQ\n2ITT6aS+tjrrmtpOMhk8sSEC6dTpHyhiEffcuVaXIJNAgcZGjp9H02FRJVJK6rr3Wl2CyMl5PFqy\nXSIUaGxkxrSpJJJH5tG4YgM44sMWViSloK5PK5ykcLlnzcLh1I+6UqCvso3MntmIy5k98c010G5R\nNVIqqge0RYAULrWbSocCjY0Ybjf1NdnzaNwKNJJnVTrDSQqYe8ECq0uQSaJAYzONU6dkfe4a7IR0\n8iSPFpm4ylG1NaUwOWtrcdXVWV2GTBIFGpsJzZtNIpEY+9xhpnANqSUg+WHEowRSWuEkhcm9cKHV\nJcgkUqCxmWlT6ik79lwntZ0kT2q79+GwugiRkzAUaEqKAo3NOBwOGhuy206aRyP5ojOcpFA5gkFc\nM2daXYZMIgUaG5o1fSqpo9oAzvgwzhFtTS+5VzPQaXUJIifkDoVwODR+WEoUaGxo4fx5OBzZX1p3\nZL9F1Yid6QwnKVRqN5UeBRob8hgGDXW1Wdfcfa0WVSN2VhnTCicpQIaB+5xzrK5CJpkCjU1Nn9aA\naZpjnzvjwziHeyysSOzGFY8RSGlLACk8xnnn4TAMq8uQSaZAY1OLzl9AKpXOuqa2k+RSXW+LvoFI\nQTKamqwuQSyg70c2VV5WxtQp2RtKuftawUyf5E+IjE9t5IDVJYgcx1FWpuMOSpQCjY3NnjE9u+2U\njGmTPcmZmn6tcJLCY3zuczqMskTpq25ji85fgJk2s66p7SS5UjUcsboEkeN41G4qWQo0Nhbw+487\n28ndf0BnO0lO6AwnKTTOKVNwTZ1qdRliEQUam5s3ewbp9JF5M45UQku4ZcKcyThlycTpHygyiTQ6\nU9oUaGzuwoULcBxz2o7RvduiasQuanv265uHFBanU6ubSpy+J9mcx2Mwo7Eh65or2otzRPMf5Oxp\nhZMUGuPcc3GWl1tdhlhIgaYEXLAwRCqZvVzb6N5jUTViBzUDHVaXIJLFc8klVpcgFlOgKQGhubMp\nLwtkXXNHWiClORBydqqHeq0uQWSMc8oU3HPmWF2GWEyBpgQ4HA7mz52dtSeNI53UEm45azrDSQqJ\nRmcEFGhKxsVNF2Bmb0mD0aPJwTJ+jnSSsmTc6jJEMrxerW4SQIGmZAQDfmZPn5Z1zTXSh1M7B8s4\n1fS04rK6CJFDPIsW4fB4rC5DCoACTQm58LwFJJOprGuezo8tqkaKVW1E+xhJ4VC7SQ5ToCkh82bN\noLIie1mja6Ad50i/RRVJMart1wonKQzuBQtw1dWd/oFSEhRoSojD4WDhOXOydw4GDI3SyDhohZMU\nCu+Xv2x1CVJAFGhKzBcWXYjb7c665o7sxxHXqhU5M5WxIatLEME1dy7uGTOsLkMKiAJNifEYBgvP\nmZu9hBsTo+tTC6uSopFOUZYYtboKEXxf+pLVJUiBUaApQUsWL4Jjz3fq2QNJ/aCSU6uKHMR9+oeJ\n5JVr+nTc8+ZZXYYUGAWaEhQM+Jk/Z2bWNUc6hdG9y6KKpFjU92ozRrGeV6MzcgIKNCXqssWLSKWy\nz3fydH0K2jBNTqGmP2x1CVLinFOm4F640OoypAAp0JSomqpKZs9ozLrmSCXwdH5iUUVSDLTCSazm\nveIKHA7H6R8oJUeBpoRd9vnPHbfRntH1KY7EiEUVSaHTCiexkquxEeP8860uQwqUAk0JmzZ1CtOn\nNWRdc5gpjI6PLKpIClo6TYVWOImFfFdfrdEZOSkFmhL3pS9clLXRHoDRvRvHqN6JS7bK/nbcx55w\nKjJJ3Oecg3vuXKvLkAKmQFPipk2dwqzpx8ylwcQT/sCiiqRQ1fVohZNYx3f11VaXIAVOgUb48mUX\nHzdK447sxznSZ1FFUqlTitoAABUBSURBVIhqBrTCSaxhNDXhmjrV6jKkwCnQCLXVVZwze9YxuweD\np32HdUVJwakZ7LG6BClFLhe+P/kTq6uQIqBAIwB8+bLFHLt7sHugHVd/mzUFScGpHBm0ugQpQZ5L\nLsFZVWV1GVIEFGgEgIrycs6bPy9rlAbAe3A7pFMn+VNSSioSMatLkBLjCAbxXXml1WVIkVCgkTFf\nunQxLqcr65ozPoyhzfZKXll/B4ZWOMkk8119NQ6fz+oypEgo0MgYn8/LRReeRyqVPSLj6fgIR3zY\noqqkENT3tFhdgpQY14wZGIsWWV2GFBEFGsly2eImKivKs645zBTeg3+0qCIpBLX97VaXIKXE4cD/\nzW9qEz0ZFwUayeJ0OrniskuOOxLB3X8Q14B+qJWq6sFuq0uQEuK59FIt05ZxU6CR48ybPYO5M6dr\ngrCMqRoZsLoEKRGO8nIt05azokAjJ/Qnl1+K85jhXufoEB6d81SSKuJa4SSTw/+Nb+Dweq0uQ4qQ\nAo2cUEV5OZ+/8DxSx57z1PERzpGIRVWJFYKDXXi0wkkmgXHBBTpNW86aAo2c1JLFi6gIBrOuOTDx\n7v8DmOmT/CmxmzqtcJLJEAjgu+Yaq6uQIqZAIyflcrm4cumlxy3jdo30YXR8bFFVMtlq+zQZXPIv\n8K1v4QwErC5DipgCjZzSvNkzCM2dc9wEYU/Hh2o9lQitcJJ8M5qaMM491+oypMgp0MhpXf3lpfiO\nmaTnMNN4W97WqqcSoBVOkk9mMIh/2TKryxAbUKCR0/J4DK5cegmpVPa8GVesH0/4Q4uqkslSER+x\nugSxseC3v63jDSQnFGjkjCyYN4dzZs88rvVkdH6Mc6jToqok3/zDvfjSmgAu+WEsXowxf77VZYhN\nKNDIGfvqFV/Ef2zrCRPfvrdw6CRmW6rr1gonyZPaWvzf+IbVVYiNKNDIGfN6PXzl8stIH/OO3ZmM\n4d3/e9BeJbZT29dmdQliQ2mXi7KbbsJhGFaXIjaiQCPjMn/OLM6dP++4UOMe7MDo1FJuu6kZ0gon\nyb3gtdfiqquzugyxGQUaGbc//dISqiorjrvuaf8Ap34A2kpVtN/qEsRmHBdeiKepyeoyxIYUaGTc\nXC4X37z6ShzHnPXkwMTX8iYkRy2qTHKtYlQrnCR3UlVVlF97rdVliE0p0MhZqa2qOuFSbmdiBN/+\ntzWfxga8IwP4tc+Q5Eja5aLy5ps1b0byRoFGztqFC0OE5s0+fj7NQDue8E6LqpJcqe/eZ3UJYhMm\nmf1mNG9G8kmBRibka1dcTmV5+XHXjY4PcUdaLahIcqWm76DVJYhNuJYswXPhhVaXITanQCMT4na7\nuOZPr8B53Hwa8O5/G2e015rCZMJqBrusLkFsIDFrFmVf+5rVZUgJUKCRCauvreGKJZeQPmY+jcNM\n4du7FUdCE0uLUdWwVjjJxMTKyqhdseK4BQQi+aBAIzlx4bkhms5feOJJwnu36hDLIlQZj1pdghSx\nuNtN3W23aRKwTBoFGsmZK5dewszGqced9+SK9uJtfceiquRsGLEh/CmFUDk7KYeDihUrcFVWWl2K\nlBAFGskZh8PBt772J1SUlR33e0akBUMncxeNup4W1CSQs2EC7q9/He/s2VaXIiVGgUZyynC7ue7r\nf4rhdh/3e97wB7i7d1tQlYxXXUQrnOTsJC69lIrLLrO6DClBCjSSc1WV5XzjT758XOsJwHvgXVx9\nByyoSsajeqDT6hKkCA2FQtQvW2Z1GVKiFGgkL2bPaORLly4+bpJw5niEt3ANdlhUmZyJ6mif1SVI\nkYlMncr0P/szq8uQEqZAI3lz0YXnc9GF55E6ZnKpw0zj27tVe9QUsP+/vTt9juLM7wD+ffqY7p5L\nGo00QuhCQpYwGLAx2IAxsN41hrUh2XhtknW8PrK84C9x8iLXq9RWzqq8TqVSdtXGu97YGC/GBgPm\nsMUhQOhEYkbSCEkzfeaFBMuuRhICST098/1UTUkU1xdK9Hx5+vf0E89zhxM9vExFBZqOHPE7BpU5\nFhpaVi8+/yyebFs763gE4drQrx+HyI37lIzmopiTiDi23zEoIEbDYTQePQpJ4tsJ+YtfgbSshBB4\nec9ONDfUzyo1kp2Hcf0YBJ93UlS4w4keVlbTsProUSia5ncUIhYaWn5CCLz2oz2orameNSgsmZMw\nrn0KYU74lI7+WHWGQ9u0sDFVRc3Ro1ALPKaByA8sNLQiZFnGn/34ZVTG4wVKzQSMa5+x1BQJ7nCi\nhYyqKiqPHIHOB+dREWGhoRWjKgp++to+RIzwrO+TzAkYVz+FyN/1IRk9iDucaD4ZVUX8nXcQr6nx\nOwrRH2ChoRVl6DreOLgPhqbPXqmxJqdXavIcFPZTPMeVMioso6qIvPUWEvX1fkchmoWFhlZcLBrF\nm4deQSRssNQUGcnKcYcTFZRWVcTefhspHmlARYqFhnwRi0bx5sEDiITDBUrN1PTtp9yYT+nKV036\nFi8KNMudUAjxn/8c1Y2NfkchmhOvXeSbaCSMw4cOIBopUGrsHMJXP4V0d9indOUpOcIdTvSH+jQN\nFe++i+qGBr+jEM2LhYZ8FQkbOHzoAGKRyKxSIxwTRtfnPPtpBVVleSQF/d71cBi177+P6ro6v6MQ\nLYiFhnwXNgwc/pMDiEejs0uN50C/eQLq8FWf0pWXygnucCLAA/BdLIY1776LZCrldxyih8JCQ0XB\n0HUcPnQAyUTl7GMSAGh9ZxHqP+9PuDJSkeO2+XLnADhfVYUN772HBLdmU4Cw0FDR0HUNhw8dQOPq\nulmlBgBCQ53Qur8CXKfAz6bHJdkmorbldwzykSkEztfV4blf/ALxRMLvOESLwkJDRUWWZfzp/h9i\nXVvrrFO6AUAd6YZ+/Thg531IV9qqMtzhVM7GJQmXWlvx4vvvQzcMv+MQLRqvX1R0hBDYt+cFPPfM\npoIrNcrdIYSvfAJpivMeS4lnOJWvQUXBjc2bsftnP4OsKH7HIXokLDRUtHY8+zT27nxu1qAwMHNU\nwpXfQhm55UOy0sQdTuXpsqYh+8IL2HXwICSJbwkUXPzqpaK26ckO/PilPZDE7C9V4TnQu09ODwt7\ns1dyaHESEyN+R6AVZAM4FYkgum8ftu3dCyGE35GIHgsLDRW9tWsa8eah/Qgbs49KAKaHhTlX8/i4\nw6l8TEoSTlZVYf0bb2D9li1+xyFaEiw0FAjVVQn85esHUZeqgeMUmKsZvz0zV8NVhkchXBtRy/Q7\nBq2AQUXBNw0N2P3OO1jNc5mohLDQUGCEVBWvv7oPzzy1ruCw8L25GnX4ig/pgq0q0wvZ7xC0rFwA\nFzUN/Rs34sDbbyMWj/sdiWhJsdBQoAghsHv7Nuzb8wKkAvf8hedC6zsHvetzCCvnQ8JgSmZ6/I5A\ny2hCknA8EkF0717sPXiQO5moJLHQUCCta2vFG6/tR2SOuRplfBDG5V9Dzg76kC54qsb491SqekMh\n/K6qCk//5CfYvH07h3+pZAmv0LsBUUDk8yY+/uwL3OjphSzPvmniAbBq2mHWbQQk3lSZy4FPf4k1\n42m/Y9ASsoTAecPAZH099r72GqK8xUQljoWGSsK5S504ceoM3Dm+nB2jErnm7fB0XtQL+fNf/S0S\nFneJlYohRcE5w0Dzli3Yuns3ny9DZYGFhkpGenQUv/rkc6THxiAXuIB7QoK5agOsVAdQ4Lk2Zct1\ncOSjvwGnKoLPFAKXDAO343Hs3LcPjS0tfkciWjEsNFRSXNfFZye+xsXL1yBJhWcFHCOBfNM2uEbl\nCqcrTpWZHvzFF//pdwx6TIOqinOahsSaNdjz6qvQdN3vSEQrioWGStL17l58cvwE8qZZcAjSg4BV\nuw5m7fqyn61pu/Y7vPzdMb9j0CMyhcDFcBgDuo7NO3Zg/ZYtHPylssRCQyVrKpfDb46dwPWeXigF\nBoYBwNWiyDdshRNLrXC64vHc6f/Cs/2X/Y5Bj6A3FMK3qopEUxN27d/PZ8tQWWOhoZLXee0GPj95\nap7VGsBONMNcvQmeaqx8QJ/t/+yf0ZId9jsGLcKYLOOCYSBrGHh6506s27yZqzJU9lhoqCzk8yY+\nOf4lrt3sLri9GwA8SYFZ+ySsmvayug11+H//DlUmH0IYBKYQ6DQMXJdl1DU3Y9crryAcjfodi6go\nsNBQWblxqxefnfga4xMTc25ldUMR5FdvhlPZsMLp/HHkww+g8DJQ1DwA3ZqG73Udnqbh2RdfRPtT\nT/kdi6iosNBQ2bFtB5+fPI1Ll69CzLETCgDsaA3M+mdKejdUfKQfbx3/D79j0DzSioKL4TBGhcCa\n9nY894MfQDfK79Yo0UJYaKhspUdHcezEKdzqH5hzaNiDgJ1sgVm7Hl4ovMIJl19r10m8cun//I5B\nBYzJMjoNAwOShGQqhedfegk1dXV+xyIqWiw0VPa6unvwxVffYDSbnXu+Rkiwkmth1a4rqcHhbWf+\nG1t7v/c7Bj1gXJJwORxGv6IgpOt4escOtG/cyKFfogWw0BBh+oF8p89fwpnzl2DZ9pxvHp6QYVW3\nwUp1wFOD/+Cyfcf+BWvHhvyOQQAmJQlXDAM9oRA8AG0bNmDb7t1QVNXvaESBwEJD9IBcLo9jJ0/h\ncteNec+/8SQFVnUbzFQHoGgrmHBpvfnx3yOZn/I7RlmbkiRc03V0axpsx0FDayue3bULlcmk39GI\nAoWFhqiA9Mgovjx1Fl23eiHLCxcbq+aJQN6K+qsPP0CIlwBfZGUZXbqOvlAItutiVUMDtuzahZpV\nq/yORhRILDRE8xhOZ3Di9Fl09/RBmmO+BpiesbErG2GlOgKzKyo6dhtvH/tXv2OUnTuKgi5dx1Ao\nBMe2UVNXh6d37sTqpia/oxEFGgsN0UO4PZzGl6fP4mZvPxRl/ofu2dEUrFQHnNgqoIgHOVtufI39\nFz7xO0ZZ8AAMqCquGQbGFAW2ZaGqpgabd+xAc1ub3/GISgILDdEiDNwexonTZ9E7MDjnjqh7XC0O\nM9UOO9EESMoKJXx4W8/+D7b1XPI7RknLCYFbmoZbmoYpWYZt26hZtQobtm5Fc1sbdy4RLSEWGqJH\nMHQnja/PXcSN7h5AYN43Jk9SYSeaYCVb4IarVjDl/H50/N/wxMig3zFKjgdgWFHQreu4rarwhIBj\n26hvacHGbdtQW1/vd0SiksRCQ/QYJqem8NWZC7jcdR15y4I8z84oAHD0CtjJVliJJt93R/30439A\nTX7S1wylJP/AasykLOPepbW5rQ2bt29HRVXxlFmiUsRCQ7QEbNvBuUvf42LnVYxmxxecs/GEBLui\nHnZVC5xYChDzF6Hl8P6HH0DjP//HYgMYDIXQHwph6N5qjONANww0t7dj8/PPwwiX3hOmiYoRCw3R\nEvI8D1dvdONi51X09g9CSGLBOQlX0eFU1MOubIQTrV6RchMeT+OdT3+57L9PKXIADKkq+kKh6Z1K\nQsDzPLiOg9r6ejzx1FNoWbdu3ucYEdHSY6EhWiYTk1M4c+E7dN3swejYGBR14cFgV9Fmyk0DnOjy\nrdw0dX+DV7/9eFl+7VLkAEjPlJjBUAj2TEl1bBt6OIymtWuxYetWxCuDsWWfqBSx0BAtM8/zcKuv\nHxc7r+LGrT64nvtQ/3v35ND0bamK1dPlRl66R+Bv+fYjPN99fsl+vVI0JQSGZm4lDasqnJkS47ou\nPM/DqoYGtK5bh7Xr13M1hqgIsNAQrSDTsnD+u8u42dOH/tvTZyg9VLmBgBtJwo6tghOrhRtOPNbq\nzQ+/+He0ZwYe+eeXIg/AiKLgtqpiSFWRVX6/ouZ5HhzHQaquDg0tLWjftAm6EbwnQxOVMhYaIp/k\n8yYudF5ZdLkBZlZvYik4sVVwoil4WnRRv/frv/5HpHITi85cSjxMHz+QVhSkVRVpRYH1wN+/53lw\nbBvJVAr1LS3o2LQJkVjMv8BENC8WGqIiYJoWLl6+ghs9fegfGILruQs+uO9BrqLBDSfhRJJww1Vw\nwlXz3qJ676O/hu66SxE9MGwAo4qCzMxrRFFg/1GBdBwHQghU19YiNTPgW5FI+BOYiBaFhYaoyJiW\nhSvXu9HbP4DBoWGMjE1vA1/MU2U9AK5eATeShBOugqNXwNPigKLCmBjBu7/9p+X7AxSBnBDIyjKy\nioKsLGNMUXBXkgoeRWGZJsKxGGrr67G6qQktHR1QQyEfUhPR42ChISpyY9lxdHZdx8DgMAaH08jl\n8lDUh1+9AYBsJoPKXBZGqhGyHELHnVuIOg6ijoOI42Dpxo1XjgcgJ0mYkCRMShLuyvL9EpOf59ad\nY9uQZRmJVAo1tbVY09GBmro6HkNAFHAsNEQB4rou+gaHcLO3D+n0CO5kRjE+cReyLM87f5Pp6cGa\nCmPOHxNyXRgzL/2Bz++9NNfFSu7j8QBYQiAvBExJQl6I6fIiy5iUJEzOfHQXKCGe58G2LGi6jkR1\nNZK1tVjd3Iy6pqZF3dIjouLHQkMUcON3J9DV3YPhO2kMZ0aRGRmFaVlQVeX+qsN4bzcaKx9voFX2\nPKieB9V1pz8+8FI8D8Lz7pceCYDwPAjg/ssF4AgBB4ArxKzPHywwphDwFrli4nkeLNNEKBRCPJFA\nrLISlckkGltbkayt5QoMUYljoSEqMY7jYCidQd/AbYyMZjE6nsVA53eokAVcz4OiKIF+c7+36gIA\nRjiMeCKBimQS8cpK1Dc3o7K6ms+FISpDLDREZcIyTWSGhzHU34+JbBaTExPITU7e/2jm8xBCQFFV\nXwvPve3SjuNAURQY0SjCkQgisRjCsRgi0SiSqRQSNTV8FgwR3cdCQ0TwPA/5qSmMZjIYuXMHUxMT\nMHM5mKYJyzRhWRZs07z/bds0Yds24HnTp0rPnGeEmcvJvcuKJEkQQkBIEiRJgqIokGbmfRRFQcgw\noGkaVE2DpuvTL8NArKICsYoKRONxyMrCR0YQEbHQENEj8zxv+igA14XrefDufT7zjBtZUe6XmCDf\n5iKi4sdCQ0RERIHHyTkiIiIKPBYaIiIiCjwWGiIiIgo8FhoiIiIKPBYaIiIiCjwWGiIiIgo8Fhoi\nIiIKPBYaIiIiCjwWGiIiIgo8FhoiIiIKPBYaIiIiCjwWGiIiIgo8FhoiIiIKPBYaIiIiCjwWGiIi\nIgo8FhoiIiIKPBYaIiIiCjwWGiIiIgo8FhoiIiIKPBYaIiIiCrz/B7j+LQajBpprAAAAAElFTkSu\nQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# visualizing maths score\n",
+ "\n",
+ "data['math score'].value_counts(normalize = True)\n",
+ "data['math score'].value_counts(dropna = False).plot.bar(figsize = (18, 10))\n",
+ "plt.title('Comparison of math scores')\n",
+ "plt.xlabel('score')\n",
+ "plt.ylabel('count')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 627
+ },
+ "colab_type": "code",
+ "id": "nwoEGMVuTU89",
+ "outputId": "80fb69df-b0ba-4b29-b274-b32e1ddda724"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABBsAAAJiCAYAAACGv8r3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xmc3fO9P/DXJCNlyCIxiaqlWktC\nlFK1VUmIlG4pt5Wm4hZVrRahtipB1VJbra2lxcV1pY1St1SSurgoKXVbRIvr0dtYYxKJhATJ5Pv7\nozW/pMnEiM+ZyeH5/GfO93vO63ze58zMMXn5fs9pqKqqCgAAAEAh3bp6AAAAAODdRdkAAAAAFKVs\nAAAAAIpSNgAAAABFKRsAAACAopQNAAAAQFHKBgAopKqqXHnllfnMZz6T4cOHZ9ddd81JJ52UOXPm\ndPVoi7n22mtz3nnnddn6c+bMyec///nstttumTlzZvH7v/vuu/Pcc88lSS688MJ873vfK74GALBs\nygYAKOTss8/Orbfemp/97GeZMGFCbr755syfPz8HHXRQqqrq6vHa7LPPPhkzZkyXrf/4449n1qxZ\nmThxYlZfffXi93/VVVe1lQ0AQNdoqFakv34AoE7NmjUrn/zkJ3PjjTfmwx/+cNv+119/Pffee292\n3nnnzJ8/P6eeemomT56cbt26ZaeddspRRx2V7t27Z+jQodlvv/3yy1/+MtOmTctJJ52U++67L3ff\nfXf69u2byy+/PL17987GG2+c733ve7nhhhvy4osv5tBDD82Xv/zlJMnFF1+cm2++Oa2trfnwhz+c\ns846K7169cqFF16YadOm5S9/+Us+85nPZM6cOXnhhRdy6qmn5je/+U0uvvjitLa2prGxMccff3y2\n2WabPPfccznhhBPyzDPPZKWVVsrXvva1jBgxIs8880xGjhyZr3/96/nFL36RWbNm5bvf/W722GOP\nJZ6TyZMn54wzzsi8efPSs2fPjB07Nv369cuoUaMyffr0rL322rnuuuvSt2/ftsyxxx6bAQMG5KGH\nHsqTTz6ZL33pS1lnnXVy9dVX59VXX815552Xj3zkI5k+fXqOOeaYPPvss3njjTcyevTo7Lfffjnv\nvPNy+eWXp3///jnqqKPy1FNPZerUqWltbc0f//jHrLHGGrnwwgszYMCAxWadNm1ajj766LS0tOSN\nN97Ipz/96Rx++OGpqipnnHFGJk2alJVWWilf/OIX87WvfS0LFy7M+eefnwkTJiRJtthii4wdOzZN\nTU0ZPXp0ttxyy0ycODGnnnpqNthgg5xyyil5+OGHs2DBghx88MHZa6+9kiQ/+tGPcttttyVJBgwY\nkLPOOmuJ2QCgLlUAwDt25513VsOGDVvmbS699NLqwAMPrObPn1/Nmzev2muvvaqbbrqpqqqqGjJk\nSHXCCSdUVVVV11xzTbX55ptX999/f7Vw4cJqr732qn7+859XVVVVG220UfX973+/qqqqeuqpp6rB\ngwdXL730UvXII49U2223XTVnzpyqtbW1+upXv1pdfPHFVVVV1QUXXFB94hOfqGbMmNG2fdxxx1VV\nVVXbbLNN9cwzz1RVVVUPPPBAddppp1VVVVX7779/dckll1RVVVXPPPNMtdVWW1VPP/109fTTT1eb\nbLJJdc0111RVVVW33nrrUh/3K6+8Um2zzTbVgw8+WFVVVd12223VbrvtVrW2tlb3339/teuuuy71\nOTrmmGOqESNGVK+++mr1+OOPV4MGDWqb44wzzqiOPPLIqqqq6vvf/341duzYqqqqaurUqdWmm25a\nPffcc23P5QMPPND2WHfYYYe2x3jQQQdVF1100RLrnnHGGdWFF15YVVVVzZ07tzr88MOradOmVTfd\ndFM1cuTI6o033qjmzJlT7bTTTtWf/vSn6te//nXbnAsWLKi++c1vtj3f++yzT7X//vtXra2tVVVV\n1Xe/+93q6KOPrlpbW6sZM2ZUO+20U/X4449XTzzxRLXbbrtVb7zxRlVVVXX11VdXN95441KfFwCo\nN06jAIACZs2alX79+i3zNnfeeWe+9KUvpbGxMSuvvHI++9nP5t577227fpdddkmSbLTRRnnf+96X\nbbbZJg0NDdlwww3z4osvtt3uzf8r/qEPfSjrr79+Hn744QwePDh33nlnVltttXTr1i0f/ehH8/TT\nT7dlNt9888WOIHhTv379cv311+fZZ5/Nxz72sXz3u9/N/Pnz87vf/S6jRo1KknzgAx/INttsk/vv\nvz9JsmDBguy5555Jkk033XSppyw8/PDDWXPNNbPVVlslSYYPH56ZM2fm2Weffcvncvvtt09TU1M2\n3HDDLFy4MEOGDGl7Xt58Ho4//viccMIJSZJ11lknzc3NeeaZZ5Z6f1tttVU+8IEPJEkGDhyYadOm\nLfV5uOeee/Lggw+mR48eOffcc9O/f//893//d4YPH56VVlopq622Wm699dZsttlmufPOOzNixIg0\nNTWle/fu2XPPPRf7Xu60007p1u3vf2bdcccd2XfffdOtW7f07ds3w4YNy8SJE9OrV6+89NJL+c//\n/M+8/PLLGT16dEaMGPGWzw8A1IPGrh4AAN4NVl999aX+I3ZRL730Unr37t223bt378yYMaNte9VV\nV02SdOvWre3ym9sLFy5cLLfo5dmzZ2fevHk5/fTTM3ny5CTJyy+/nJ133nmpmUX95Cc/yU9+8pPs\nueeeef/735/jjjsu66+/fqqqSs+ePdtu9+Y/jJOke/fuaWpqWupsiz7WXr16LbavZ8+eiz3e9rz5\n2BsaGtKtW7elrvXII4/knHPOyfPPP59u3bqlpaVlqXMkyWqrrdZ2uXv37mltbV3iNl/96lezcOHC\nnHzyyXnxxRfzla98JYccckhmzpy52ON4c5a3+l4uet2cOXMyZsyYdO/ePcnfT6351Kc+lQEDBuTC\nCy/MFVdckVNOOSVbb711Tj755Lz//e9/y+cIAFZ0ygYAKGCLLbbIjBkzMmXKlGy66aZt++fPn5+L\nLroo3/jGN7LGGmtk1qxZbdfNmjUra6yxxttea+bMmW3/p37WrFnp3bt3/u3f/i3/93//l1/+8pdZ\nddVV86Mf/egty48kWXfddXP66adn4cKFuemmm/Kd73wnd9xxR7p165aXX3657R/NHTlyY1H9+vVb\n7LFWVZWXX345/fr1K/LmjUcddVT+9V//NV/+8pfT0NCQHXfc8R3dX2NjY77+9a/n61//ev7617/m\nwAMPzFZbbZXVV199sU/MmD59elZeeeW39b3s379/Lr744my00UZLXLfttttm2223zdy5c/PDH/4w\nZ599ds4555x39FgAYEXgNAoAKKBXr1752te+lmOOOSZ/+9vfkiTz5s3L2LFj89hjj2WVVVbJzjvv\nnPHjx6e1tTVz587Nr371q+y0005ve61bbrklSfLUU0/lb3/7WzbffPPMmDEjH/rQh7Lqqqvm2Wef\nzV133ZW5c+cu835eeuml7LfffnnllVfSrVu3bL755mloaEhjY2M+8YlPZNy4cUmSqVOn5sEHH8z2\n22/f4RnffBPH//mf/2mbec0118zaa6/9th/v0syYMSODBw9OQ0NDbrzxxsybN6/t8TY2Nr7tjxsd\nO3Zs22kQ6667btZYY400NDRk6NChueWWW/LGG29k7ty5GTVqVJ544onsvPPOufnmmzNv3rwsWLAg\n48ePb/d7OXTo0Fx//fVJ/n4KymmnnZYpU6bknnvuycknn5yFCxemqakpAwcOTENDwzt4VgBgxeHI\nBgAo5JBDDknv3r3zzW9+M62trenWrVt22WWXnHTSSUmS0aNH5+mnn86nP/3pNDQ05FOf+lR23333\nt71O37598/nPfz7Tpk3L8ccfn969e2fkyJE59NBDM3z48Gy88cY59thjc8ghh+Sqq65a5v3suOOO\n2WuvvdK9e/estNJKOfXUU5MkJ598co4//vj88pe/zEorrZQf/OAHef/739/u+yL8s6amppx33nk5\n5ZRTMnfu3PTt2zfnnntusX9MH3bYYfnWt76VPn36ZOTIkdl7771zwgkn5Lrrrsvw4cNzxBFH5NBD\nD+3w/Y0cOTJjx47NKaeckqqqMnTo0Gy33XZJ/v5Rnbvttlve97735V/+5V+y5ZZbpqqqPP7449lz\nzz1TVVW22Wab7Lvvvku97zFjxuTkk0/O8OHDkyQ77rhjNt5447S2tuaWW27J8OHD06NHj/Tt2zen\nnXbaO39yAGAF4KMvAaCObLzxxrnrrruy5pprdvUoAADtchoFAAAAUJSyAQAAACjKaRQAAABAUY5s\nAAAAAIpaoT+NoqWl/Y+tWn31psycueyP9JKTk3vv5uphRjk5ufrL1cOMcnJy9Zerhxnl5Jamubln\nu7m6PbKhsbG7nJyc3Aqxlpyc3HsnVw8zysnJ1V+uHmaUk3u76rZsAAAAAFZMygYAAACgKGUDAAAA\nUJSyAQAAAChK2QAAAAAUpWwAAAAAimqs1R3Pmzcvxx57bGbMmJHXX389Bx98cCZMmJApU6akT58+\nSZIDDjggO++8c61GAAAAALpAzcqGO+64I4MHD86BBx6YZ599Nvvvv38++tGP5ogjjsiQIUNqtSwA\nAADQxWpWNuyxxx5tl59//vkMGDCgVksBAAAAK5CGqqqqWi4wcuTIvPDCC7nkkkty1VVXpaWlJfPn\nz0+/fv1ywgknpG/fvu1mFyxoTWNj91qOBwAAABRW87IhSf785z/n6KOPznHHHZc+ffpk0KBBueyy\ny/LCCy9k7Nix7eZaWua0e11zc89lXi8nJ/feztXDjHJycvWXq4cZ5eTk6i9XDzPKybV3XXtq9mkU\njz76aJ5//vkkyaBBg9La2pqNNtoogwYNSpIMHTo0TzzxRK2WBwAAALpIzcqGBx98MFdccUWSZPr0\n6Zk7d27Gjh2bp59+OkkyefLkbLjhhrVaHgAAAOgiNXuDyJEjR+Z73/teRo0alddeey1jx45NU1NT\nxowZk1VWWSVNTU05/fTTa7U8AAAA0EVqVjasvPLKOeecc5bYf8MNN9RqSQAAAGAFULPTKAAAAID3\nJmUDAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAAAICilA0AAABAUcoGAAAAoKjG\nrh7g7Wie1Gvx7UUutwyb3bnDAAAAAEvlyAYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAA\nilI2AAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAoStkAAAAAFKVsAAAAAIpS\nNgAAAABFNXb1AJ2heVKvxbcXudwybHbnDgMAAADvco5sAAAAAIpSNgAAAABFKRsAAACAopQNAAAA\nQFHKBgAAAKAoZQMAAABQlLIBAAAAKErZAAAAABSlbAAAAACKUjYAAAAARSkbAAAAgKKUDQAAAEBR\nygYAAACgKGUDAAAAUJSyAQAAACiqsasHWJE1T+q1+PYil1uGze7cYQAAAKBOOLIBAAAAKErZAAAA\nABSlbAAAAACKUjYAAAAARSkbAAAAgKKUDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAU\npWwAAAAAilI2AAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAoStkAAAAAFKVs\nAAAAAIpSNgAAAABFKRsAAACAopQNAAAAQFHKBgAAAKAoZQMAAABQlLIBAAAAKErZAAAAABTVWKs7\nnjdvXo499tjMmDEjr7/+eg4++OAMHDgwRx99dFpbW9Pc3JyzzjorPXr0qNUIAAAAQBeoWdlwxx13\nZPDgwTnwwAPz7LPPZv/998+WW26ZUaNGZffdd8+5556b8ePHZ9SoUbUaAQAAAOgCNTuNYo899siB\nBx6YJHn++eczYMCATJ48ObvsskuSZMiQIbnvvvtqtTwAAADQRRqqqqpqucDIkSPzwgsv5JJLLsl+\n++3XVjBMnTo1Rx99dK6//vp2swsWtKaxsfv/33FdQ/sLjVrGw3i35wAAAGAFUrPTKN50/fXX589/\n/nOOOuqoLNprdKTjmDlz7mLbzcu4bUvLnHave7fnFruP5p4dvq2c3Ls5Vw8zysnJ1V+uHmaUk5Or\nv1w9zCgn19517anZaRSPPvponn/++STJoEGD0tramlVXXTWvvfZakmTatGnp379/rZYHAAAAukjN\nyoYHH3wwV1xxRZJk+vTpmTt3brbffvtMmDAhSTJx4sTsuOOOtVoeAAAA6CI1O41i5MiR+d73vpdR\no0bltddey9ixYzN48OAcc8wxGTduXNZaa62MGDGiVssDAAAAXaRmZcPKK6+cc845Z4n9V155Za2W\nBAAAAFYANTuNAgAAAHhvUjYAAAAARSkbAAAAgKKUDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAAChK\n2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAoStkA\nAAAAFKVsAAAAAIpSNgAAAABFKRsAAACAopQNAAAAQFHKBgAAAKAoZQMAAABQlLIBAAAAKErZAAAA\nABSlbAAAAACKauzqAXjnmif1Wnx7kcstw2Z37jAAAAC85zmyAQAAAChK2QAAAAAUpWwAAAAAilI2\nAAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAoStkAAAAAFKVsAAAAAIpSNgAA\nAABFKRsAAACAopQNAAAAQFGNXT0AXad5Uq/Ftxe53DJsdvEcAAAA7w2ObAAAAACKUjYAAAAARSkb\nAAAAgKKUDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAA\nAICilA0AAABAUcoGAAAAoChlAwAAAFBUY1cPwHtH86Rei28vcrll2OwOZRbNtZd5JzkAAADeOUc2\nAAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAoStkAAAAAFKVsAAAAAIpSNgAA\nAABFKRsAAACAopQNAAAAQFGNtbzzM888M3/4wx+yYMGCHHTQQfmv//qvTJkyJX369EmSHHDAAdl5\n551rOQIAAADQyWpWNtx///158sknM27cuMycOTNf+MIXsu222+aII47IkCFDarUsAAAA0MVqVjZs\nvfXW+chHPpIk6dWrV+bNm5fW1tZaLQcAAACsIBqqqqpqvci4cePy4IMPpnv37mlpacn8+fPTr1+/\nnHDCCenbt2+7uQULWtPY2P3/77iuof1FRi3jYcjVb64eZnwnOQAAgHehmr5nQ5L89re/zfjx43PF\nFVfk0UcfTZ8+fTJo0KBcdtllueiiizJ27Nh2szNnzl1su3kZ67S0zGn3Orn6zdXDjO8kt8T9NPd8\nW7eXWzHWkpOTe+/k6mFGOTm5+svVw4xycu1d156afhrF3XffnUsuuSSXX355evbsme222y6DBg1K\nkgwdOjRPPPFELZcHAAAAukDNyoY5c+bkzDPPzKWXXtr26ROHHHJInn766STJ5MmTs+GGG9ZqeQAA\nAKCL1Ow0iltvvTUzZ87MmDFj2vbtueeeGTNmTFZZZZU0NTXl9NNPr9XyAAAAQBepWdmw9957Z++9\n915i/xe+8IVaLQkAAACsAGr6ng0AAADAe4+yAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAA\nAICilA0AAABAUcoGAAAAoChlAwAAAFBUY1cPAO9lzZN6LbnvH19bhs0ungMAAOgMjmwAAAAAilI2\nAAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAoStkAAAAAFKVsAAAAAIpSNgAA\nAABFKRsAAACAopQNAAAAQFHKBgAAAKAoZQMAAABQlLIBAAAAKKqxqwcAOk/zpF5L7vvH15Zhszt3\nGAAA4F3LkQ0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAoStkAAAAAFKVsAAAAAIpSNgAAAABFKRsA\nAACAopQNAAAAQFHKBgAAAKAoZQMAAABQlLIBAAAAKErZAAAAABSlbAAAAACKauzqAYAVX/OkXkvu\n+8fXlmGzO3cYAABghefIBgAAAKAoZQMAAABQlLIBAAAAKErZAAAAABSlbAAAAACKUjYAAAAARSkb\nAAAAgKKUDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEU1dvUA\nwLtX86ReS+77x9eWYbM7dxgAAKDTOLIBAAAAKErZAAAAABSlbAAAAACKUjYAAAAARSkbAAAAgKKU\nDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAAimqs5Z2feeaZ+cMf/pAFCxbk\noIMOymabbZajjz46ra2taW5uzllnnZUePXrUcgQAAACgk9WsbLj//vvz5JNPZty4cZk5c2a+8IUv\nZLvttsuoUaOy++6759xzz8348eMzatSoWo0AAAAAdIGanUax9dZb5/zzz0+S9OrVK/PmzcvkyZOz\nyy67JEmGDBmS++67r1bLAwAAAF2kZkc2dO/ePU1NTUmS8ePH55Of/GTuueeettMm+vXrl5aWlmXe\nx+qrN6WxsXuH1mtu7rlcc8rVb64eZpRbztx1DUve/s0Lo6oO55oX3ahF7p+sUM+hnJxczXL1MKOc\nnFz95ephRjm5t6Om79mQJL/97W8zfvz4XHHFFdltt93a9lfVW/8BP3Pm3MW2m9u5XZK0tMxp9zq5\n+s3Vw4xy793cYvfR3LPDt5WTk6vfXD3MKCcnV3+5ephRTq6969pT00+juPvuu3PJJZfk8ssvT8+e\nPdPU1JTXXnstSTJt2rT079+/lssDAAAAXaBmZcOcOXNy5pln5tJLL02fPn2SJNtvv30mTJiQJJk4\ncWJ23HHHWi0PAAAAdJGanUZx6623ZubMmRkzZkzbvjPOOCPHH398xo0bl7XWWisjRoyo1fIAAABA\nF6lZ2bD33ntn7733XmL/lVdeWaslAQAAgBVATd+zAQAAAHjvUTYAAAAARSkbAAAAgKKUDQAAAEBR\nygYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEU1dvUAAPWqeVKvxbcXudwy\nbPYKkwMAgM7myAYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEV1qGw49thj\nl9h3wAEHFB8GAAAAqH+Ny7ry5ptvzvXXX58nn3wyX/nKV9r2z58/P9OnT6/5cAAAAED9WWbZ8LnP\nfS7bbLNNjjzyyBxyyCFt+7t165YNNtig5sMBAAAA9WeZZUOSDBgwINdcc03mzJmTWbNmte2fM2dO\n+vTpU9PhAAAAgPrzlmVDkvzgBz/IDTfckL59+6aqqiRJQ0NDbr/99poOBwAAANSfDpUNkydPzv33\n35/3ve99tZ4HAAAAqHMd+jSK9dZbT9EAAAAAdEiHjmxYc80185WvfCVbbbVVunfv3rb/sMMOq9lg\nAAAAQH3qUNnQp0+fbLfddrWeBYAaaJ7Ua/HtRS63DJtdPAcAAB0qGw4++OBazwEAAAC8S3SobNhk\nk03S0NDQtt3Q0JCePXtm8uTJNRsMAAAAqE8dKhv+8pe/tF1+4403ct999+Xxxx+v2VAAAABA/erQ\np1EsqkePHtlpp51y77331mIeAAAAoM516MiG8ePHL7b9wgsvZNq0aTUZCAAAAKhvHSob/vCHPyy2\nvdpqq+W8886ryUAAAABAfetQ2XD66acnSWbNmpWGhob07t27pkMBAAAA9atDZcNDDz2Uo48+Oq++\n+mqqqkqfPn1y1llnZbPNNqv1fAAAAECd6VDZcM455+THP/5xNtpooyTJY489llNPPTX//u//XtPh\nAAAAgPrToU+j6NatW1vRkCSbbLJJunfvXrOhAAAAgPrV4bJhwoQJeeWVV/LKK6/k1ltvVTYAAAAA\nS9Wh0yhOPvnknHLKKTn++OPTrVu3DBw4MD/4wQ9qPRsAAABQhzp0ZMO9996bHj165IEHHsjkyZNT\nVVXuuuuuWs8GAAAA1KEOlQ0333xzLrroorbtK664Ir/+9a9rNhQAAABQvzp0GkVra+ti79HQ0NCQ\nqqpqNhQA9at5Uq/Ftxe53DJs9gqR++fMorllrQUAQMd0qGwYOnRoRo4cma222ioLFy7M/fffn912\n263WswEAAAB1qENlw8EHH5yPf/zjefjhh9PQ0JATTzwxW2yxRa1nAwAAAOpQh8qGJPnYxz6Wj33s\nY7WcBQAAAHgX6NAbRAIAAAB0lLIBAAAAKErZAAAAABSlbAAAAACKUjYAAAAARSkbAAAAgKKUDQAA\nAEBRygYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAU1djVAwBAvWie1GvJff/42jJsdt3nAABKcWQD\nAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAA\nAFCUsgEAAAAoStkAAAAAFFXTsuGJJ57IrrvummuvvTZJcuyxx+azn/1sRo8endGjR+fOO++s5fIA\nAABAF2is1R3PnTs3p5xySrbbbrvF9h9xxBEZMmRIrZYFAAAAuljNjmzo0aNHLr/88vTv379WSwAA\nAAAroJqVDY2NjVl55ZWX2H/ttddm3333zeGHH56XXnqpVssDAAAAXaRmp1Eszec///n06dMngwYN\nymWXXZaLLrooY8eObff2q6/elMbG7h267+bmnss1k1z95uphRjk5ufrL1cOMNctd17Dk7d+8MKoq\nt06d5+phRjk5ufrL1cOMcnJvR6eWDYu+f8PQoUNz0kknLfP2M2fOXWy7uZ3bJUlLy5x2r5Or31w9\nzCgnJ1d/uXqYsZ5yS9xPc8+3dft6ytXDjHJycvWXq4cZ5eTau649nfrRl4ccckiefvrpJMnkyZOz\n4YYbdubyAAAAQCeo2ZENjz76aH74wx/m2WefTWNjYyZMmJB99tknY8aMySqrrJKmpqacfvrptVoe\nAAAA6CI1KxsGDx6ca665Zon19WloAAAgAElEQVT9w4cPr9WSAAAAwAqgU0+jAAAAAN79lA0AAABA\nUcoGAAAAoChlAwAAAFCUsgEAAAAoStkAAAAAFKVsAAAAAIpSNgAAAABFKRsAAACAopQNAAAAQFGN\nXT0AAFDfmif1WnLfP762DJtdPAcArPgc2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAAAICilA0AAABA\nUcoGAAAAoChlAwAAAFCUsgEAAAAoStkAAAAAFKVsAAAAAIpSNgAAAABFKRsAAACAopQNAAAAQFHK\nBgAAAKCoxq4eAADg7Wie1GvJff/42jJsdvEcAPD2ObIBAAAAKErZAAAAABSlbAAAAACKUjYAAAAA\nRSkbAAAAgKKUDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEUp\nGwAAAICilA0AAABAUY1dPQAAwIqseVKvxbcXudwybHbnDgMAdcKRDQAAAEBRygYAAACgKGUDAAAA\nUJSyAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCU\nsgEAAAAoStkAAAAAFKVsAAAAAIpSNgAAAABFKRsAAACAopQNAAAAQFHKBgAAAKAoZQMAAABQlLIB\nAAAAKErZAAAAABSlbAAAAACKUjYAAAAARSkbAAAAgKKUDQAAAEBRygYAAACgKGUDAAAAUFRNy4Yn\nnngiu+66a6699tokyfPPP5/Ro0dn1KhROeyww/LGG2/UcnkAAACgC9SsbJg7d25OOeWUbLfddm37\nLrjggowaNSrXXXdd1ltvvYwfP75WywMAAABdpGZlQ48ePXL55Zenf//+bfsmT56cXXbZJUkyZMiQ\n3HfffbVaHgAAAOgijTW748bGNDYufvfz5s1Ljx49kiT9+vVLS0vLMu9j9dWb0tjYvUPrNTf3XK45\n5eo3Vw8zysnJ1V+uHmaUq5PcdQ2L33bRjVHVipP7JyvUcygn9x7K1cOMcnJvR83KhrdSVW/9H72Z\nM+cutt3czu2SpKVlTrvXydVvrh5mlJOTq79cPcwoJ9dZucXuo7lnh28rJydXLlcPM8rJtXddezr1\n0yiampry2muvJUmmTZu22CkWAAAAwLtDp5YN22+/fSZMmJAkmThxYnbcccfOXB4AAADoBDU7jeLR\nRx/ND3/4wzz77LNpbGzMhAkTcvbZZ+fYY4/NuHHjstZaa2XEiBG1Wh4AAADoIjUrGwYPHpxrrrlm\nif1XXnllrZYEAAAAVgCdehoFAAAA8O6nbAAAAACKUjYAAAAARSkbAAAAgKKUDQAAAEBRygYAAACg\nKGUDAAAAUJSyAQAAAChK2QAAAAAU1djVAwAA0HWaJ/VafHuRyy3DZhfPAfDe4MgGAAAAoChlAwAA\nAFCUsgEAAAAoStkAAAAAFKVsAAAAAIpSNgAAAABFKRsAAACAopQNAAAAQFHKBgAAAKAoZQMAAABQ\nlLIBAAAAKErZAAAAABSlbAAAAACKUjYAAAAARTV29QAAALx3NE/qtfj2Ipdbhs3u3GEAqBlHNgAA\nAABFKRsAAACAopQNAAAAQFHKBgAAAKAoZQMAAABQlLIBAAAAKErZAAAAABSlbAAAAACKUjYAAAAA\nRSkbAAAAgKKUDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAACiqsasHAACAt9I8qdfi24tcbhk2e4XJ\nAfB3jmwAAAAAilI2AAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAoStkAAAAA\nFKVsAAAAAIpSNgAAAABFKRsAAACAopQNAAAAQFHKBgAAAKAoZQMAAABQlLIBAAAAKKqxqwcAAIB3\ng+ZJvZbc94+vLcNmv2dzwHuTIxsAAACAopQNAAAAQFHKBgAAAKAoZQMAAABQlLIBAAAAKErZAAAA\nABSlbAAAAACKUjYAAAAARSkbAAAAgKKUDQAAAEBRygYAAACgqMbOXGzy5Mk57LDDsuGGGyZJNtpo\no5xwwgmdOQIAAABQY51aNiTJxz/+8VxwwQWdvSwAAADQSZxGAQAAABTV6Uc2/O///m++8Y1v5OWX\nX863v/3t7LDDDu3edvXVm9LY2L1D99vc3HO55pGr31w9zCgnJ1d/uXqYUU5Orv5y9TBjzXLXNSx5\n+zcvjKrKrVPnuXqYUU7u7ejUsuGDH/xgvv3tb2f33XfP008/nX333TcTJ05Mjx49lnr7mTPnLrbd\nvNRb/V1Ly5x2r5Or31w9zCgnJ1d/uXqYUU5Orv5y9TBjPeWWuJ/mnm/r9vWUq4cZ5eTau649nXoa\nxYABA7LHHnukoaEh6667btZYY41MmzatM0cAAAAAaqxTy4abb745P/vZz5IkLS0tmTFjRgYMGNCZ\nIwAAAAA11qmnUQwdOjRHHnlkbr/99syfPz8nnXRSu6dQAAAAAPWpU8uG1VZbLZdccklnLgkAAAB0\nMh99CQAAABSlbAAAAACKUjYAAAAARSkbAAAAgKKUDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAAChK\n2QAAAAAU1djVAwAAAPyz5km9ltz3j68tw2bXfQ7e7RzZAAAAABSlbAAAAACKUjYAAAAARSkbAAAA\ngKKUDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAAChK2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAAAICi\nlA0AAABAUcoGAAAAoKjGrh4AAADgvaZ5Uq/Ftxe53DJs9gqTg+XlyAYAAACgKGUDAAAAUJSyAQAA\nAChK2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAo\nStkAAAAAFKVsAAAAAIpSNgAAAABFNXb1AAAAAKyYmif1Wnx7kcstw2bXfY7acWQDAAAAUJSyAQAA\nAChK2QAAAAAUpWwAAAAAilI2AAAAAEUpGwAAAICilA0AAABAUcoGAAAAoChlAwAAAFCUsgEAAAAo\nStkAAAAAFKVsAAAAAIpSNgAAAABFKRsAAACAopQNAAAAQFGNXT0AAAAAdIXmSb0W317kcsuw2StE\n7p8zi+bezlq1zv0zRzYAAAAARSkbAAAAgKKUDQAAAEBRygYAAACgKGUDAAAAUJSyAQAAAChK2QAA\nAAAUpWwAAAAAilI2AAAAAEUpGwAAAICilA0AAABAUY2dveBpp52WP/3pT2loaMhxxx2Xj3zkI509\nAgAAAFBDnVo2/P73v8/f/va3jBs3Lk899VSOO+64jBs3rjNHAAAAAGqsU0+juO+++7LrrrsmST78\n4Q/n5ZdfziuvvNKZIwAAAAA11lBVVdVZi51wwgnZaaed2gqHUaNG5dRTT83666/fWSMAAAAANdal\nbxDZiT0HAAAA0Ek6tWzo379/pk+f3rb94osvprm5uTNHAAAAAGqsU8uGHXbYIRMmTEiSTJkyJf37\n989qq63WmSMAAAAANdapn0ax5ZZbZtNNN83IkSPT0NCQE088sTOXBwAAADpBp75BJAAAAPDu16Vv\nEAkAAAC8+ygbAAAAgKKUDQAAAEBRygYAAACgqO4nnXTSSV09xFt5/fXX84tf/CL33HNP+vXrl9VX\nX73tuh//+MfZeuutO3xf3/nOdzJ8+PC3PcPo0aOz5557LvM2b7zxRm677bbMnj07a621Vm655ZZc\nf/31mTp1agYOHJjGxqV/+MfYsWOzxhprZMCAAW9rpjlz5uTqq6/OX//61wwcODDXXntt/uM//iNP\nPvlkBg0alB49erSb+93vfpf1118/s2fPzvnnn5+rr746U6ZMySabbJJVVlllqbkFCxbktttuy/Tp\n07POOuvkjjvuyK9//etMmzYtG2ywQbp1W3p39dhjj6W5ubntObr66qvz85//PFOnTs0mm2zS7vPy\nzzr6vbv77rtz/fXX56abbsrEiRPzxz/+Md26dcs666zToXX+2VVXXZUttthiqdfNnz8/jz32WAYM\nGJD58+dn3LhxufHGGzN16tRsvPHGHX5sizr77LOz/fbbL/W6yy67LGuvvfbb/sjY5f1ZmTFjRi6+\n+OL85je/SVNTU9Zee+22677//e9np512Wmpu/vz5+cUvfpHLLrssV199dW644YbcfffdefXVV7Px\nxhu3+7Myc+bMXHPNNXnmmWcycODAXHrppbn88svf8mez5GvEm5b1fU+SP/7xjxk/fnx+85vf5M47\n78yTTz6Z3r17p2/fvu1mlvfn5a677soHP/jBJMmsWbNy1lln5ac//WmmTJmSzTbbrN3nZWk68lq2\nvL+zCxcuzK233porr7wyP//5z3PzzTfnoYceSkNDQ9v8S7O8r4FJMnv27Nx333154IEH8thjj2X6\n9OlZY4012v2ZXt6fzeV93VyWZf2uL+/v3vL+rCzv9y5Zvtfc5f3v5fK+Bi7va0uyfL/ry/uau7zf\nh+X9eVne52V5/x5Ynp/P5X1syfL9vi/v79A7+Rlrz7JeI97J7+zyrLe8r4Hv5PX9n3Xkv18lX6s7\nst7yPr6u+O/lP+vo87k8r2XL0lk/12/1+Jb374F38prUmf92eyevSSV/zuri0yi+/e1vZ911103f\nvn3zq1/9KgcccEBGjBiRJNl3331z9dVXLzU3dOjQNDQ0JEnefJhv/iHa0NCQ22+/fam5gQMHpn//\n/llppZXaci0tLWlubl5mbsyYMVlllVUyffr0rLfeepk1a1Z22WWXPPzww3nuuedy/vnnLzX3uc99\nLoMHD84rr7ySffbZJx//+Mc79Lx84xvfyEc/+tG8/PLLeeihh7Lllltm++23zyOPPJI///nPueCC\nC5aa22+//bLHHnvki1/8Yr7zne9kgw02yCc+8YlMmTIlt99+ey6//PKl5o488sg0NTVl9uzZWbhw\nYbp165btttsujzzySFpbW3P66acvNbfo9+jEE09MQ0NDhgwZkt///vd54YUXcs455yyRWd7v3ckn\nn5zZs2dn6NChbX8ITps2LRMnTsx6662XY445ZhnP6NIt62fs0EMPzcCBA3PwwQfnxBNPzMKFC7PD\nDjtkypQpmTp1arvf83nz5rW73oEHHphrr712qdcNHz486623Xj74wQ9m9OjRHS5QlvdnZf/9988u\nu+ySvn375rrrrsu2226bb33rW0mW/bwcfvjhWXfddTNkyJD069cvVVVl2rRpmTBhQmbPnp0zzzyz\n3ce++eab58UXX8yMGTOy/vrrZ7fddsvDDz+cO++8Mz/96U+Xmlve14hlWVbuRz/6UWbMmJH/1965\nR0V1Xn//izcsaDCgGGNjGkzUSsRqgohGQUQErFi8AAoIUalXtDEJXioiptXENKaWCsYkJq5464oJ\n3ipeihGlwEjF+xKjeGPkfgkKggKz3z9Yc95hmHOGeZiMP7L2Zy3Wghm+s/d+9n72OTznnIfRo0cj\nIyMDdnZ2eOmll3Dw4EH4+PggMjLSoE60XnR9effddzFw4ECMHz8eKpUKZ86cwbZt2wzqRHuZyJwF\nmg5Offr0wejRo5Geng4iwtChQ/H999+jd+/esvNPtAfu378fO3fuxPDhw2Fvby/V2YULFxAdHY1J\nkya10IjWpmjfFJ3ronNPtFZEcyfac0WPl6I9ULS3iM510Z4rmgfRehEdF3OcD7S2PkVjA8Tmu+gc\nEh1L0R4hWiui9kR7oGh/Fz1+ifopak80PksfL0XjE+1llq5rkfhEzwfa0pMs+bebaE8CxOvMINQO\nCAsLk76vqamhiIgI+u6771q8p8/evXtpzpw5dOnSJem1oKAgo/bOnDlDYWFhdOzYMZN0Wl/q6+vJ\n09OTGhsbpfdCQ0ON6m7fvk3r1q2jgIAAWrNmDe3atYuOHj0qqwsPD5e+9/X1lX1Pn+nTp7ewrWXm\nzJlG/SQi8vb2ln1PSac/DnI60dwp+a/03siRIw1+ubm5kbOzs6xuxowZ0vezZs1q9p5Szp2dnWnc\nuHHNvry8vGjcuHHk4uIiq9OOV0ZGBs2fP58iIiIoKSmJfvjhh2ZjpY9orejmp7GxkZYvX04JCQkt\n3tNHKXal97S+aDQa8vHxkfVFyU9TeoRo3vU/c86cOURE1NDQQIGBgbI60XrRzdHs2bMVfdGlrb3M\nkF+tzQMRUUREhPS9bt+R05naA4OCgqiurq7F69XV1RQcHGxQI1qbon2zrXOdyLS5J1ororkT7blt\nPV6K9sC29Bai1s91c/RcItPnEJFYvbRlXEw5HxCpT9HYiMTmu+gcEh1Lc/QIotbXiqi9tp47mtrf\nRY9fon629XhpanyWPl6Kxifayyxd1yLxiZ4PtKUnWfJvN9GepPu+qXVmiHaxZ4NGo8HVq1cBADY2\nNkhMTMThw4exbds2NDQ0yOpCQkLw8ccfY+/evYiPj8ejR4+kq+VKjBkzBl9++SVu3LiBxYsXIz8/\nv1W6+vp61NTUoFOnTli6dKl0+01paSmePHkiq9N+9iuvvIK4uDjs378ffn5+qK6uxvnz52V1DQ0N\nuHfvHi5cuICqqipcvHgRAJCXl4f6+npZXb9+/bBhwwZcuXIFbm5uOHr0KMrKyvD9999Lt04rxVdQ\nUICHDx9CrVYDaLpN5+nTp7K62tpa5OXl4datW7C3t0d+fj6ApluCampqDGpEc6fRaHDt2rUWr2tv\nwZJj2rRpiI6ORmZmZrOvrKwsDBs2TFZnZ2eHnTt3oqKiAqNHj8bly5cBACqVCtbW1rK6mJgYTJ48\nGadOnZK+UlNTcerUKbi4uMjqtDG4u7tj27Zt+Oijj+Dg4IBTp04hKSlJVidaK506dcLx48dBROjQ\noQM+/vhj5OfnY82aNbK50/p54sSJZp/99OlTHDp0SPGWu4aGBjx48ABWVlZYs2aN9Hpubq6in6I9\nQjTvT58+xe3btwEA//vf/9DY2AgAuHXrlqwGEK+XyspKpKWlIS0tDV26dEFubi4AID8/X/HqgWgv\n087ZmzdvtnrOAk13IaWnp6OqqgoHDhxA165dATTdlqyEaA9sbGw0mF8igkajkbUlUpuifVN0rsvN\nvdjYWMUciNaKaO7keu758+cVa62tx0uRHijSW0TnumjPFc1Dp06dcOzYMZPrRXRcRM8HtPV5+vTp\nVten6FwAxOa7iI+A+FiK9gjdWjl48GCra0XUnmgPFO3voscvUT9F7YnGZ+njpWh8or3MHHVtyriI\nxCd6PiDXb42dGwPm+9stJSXFaF2L9iRAvM4MYtLSxDMiNzeXwsLCqLq6WnqtoaGBEhMT6a233mrV\nZ2RlZVFoaGiLVSRj3Llzh/74xz/S+PHjjf5uamoqRUZGNnvtzJkz5OHhQWfOnJHVLV26tMVr5eXl\nRu1lZ2fT1KlTad68eXTr1i2aPXs2ubu706RJk+jChQuyuvr6etq9ezfNmzeP/Pz8yNfXl/z9/emz\nzz6j2tpaWd3x48dpzJgxNHnyZFKpVDR58mSaPHkyeXh4UGpqqqwuLCyMwsPDKSwsjMLCwujkyZNE\nRBQZGUkpKSlG41SpVBQWFtZiVc4Q169fp/DwcPLy8qLAwED6wx/+QJ6enjRnzhy6deuWrE6j0dBn\nn31Gjx8/bvYaEdEHH3wgq3v06BFt2rSJ/Pz8yNXVlVxcXGjixIkUFxdnNIcHDhygmpoa6Wft7ycl\nJclqlFY9ldCvlYiICPrtb39LAQEBirVSWFhIK1eubFYX5eXldOjQIdkrx7o6Ly8vGjVqFLm7u5O3\ntzfFxsZSaWmprO7ChQu0bNmyZq8dPXqUJk+eTFevXpXVaXuE7ng+efKEkpKSFHuENu+6Oi1Kec/J\nyaGAgAByd3enoKAgunnzJhERrVq1is6fPy+r09aLv78/ubq60tChQ8nHx8dovaxcubLZV2ZmJpWX\nl9OSJUtIpVLJ6nS5c+cOzZs3jwYPHkwNDQ2Kv6uds9p5+5///Ic0Gg29/fbbinM2Ly+PFi5cSP7+\n/vTOO+9QQUEBqdVq2rx5M92+fVtWp98D6+vrSa1WU319vaKfBw8epIkTJ9L7779PGzdupI0bN9Ly\n5cvJx8eHjh8/blCjrc3x48fToEGD6PXXX5dqs6SkRNaWft/09vamcePG0datWxX7JhFRcnKyVGO6\nsSnN9cLCQlqxYoX02VpdcnKy4tzTr5X09HRSq9VGa0U/d0VFRVReXk5btmyhO3fuyOquX79Os2fP\nlnpuYGBgq3quoePl6dOnydPTU/F4aehqjLZXK6HfW+rr6+mrr74if39/xd6Sk5NDU6ZMoVGjRklz\nXaPR0OrVqyknJ0dWp99zIyMjacSIEUZ7rjYPkyZNkvKQkZFBCQkJinnQ7dXl5eVUVlZGRGS0Vxvq\nuSkpKTRlyhTFcTl+/DiNHTuWAgICSKVSUUBAQKvOB7R1GRMTQ1FRUXT48GEiIoqOjqasrCzZ2HTn\nAlHTnS3GYtNqdY9FI0aMoEGDBtHq1atl57uhfpuRkUHR0dGKcygnJ4eWLVtGGo1GysGJEyeMjiVR\n0/lAdXV1s9wRKZ8PGKoV7ZxV6rdEzXsSUdN4GrNn6Nxx5syZtH37doN3mGnR9nfdcTEVU87FtX5G\nRUWRv78/+fn5UWhoKG3fvt1or9a3N2HCBKO/a+gcXjueSuj23NmzZ1NRURERESUkJJh0vCRq3d8M\nWjQaDV26dIkiIiJaNZ7Z2dk0bdo0k88ficTOc/WPRYWFhURE9I9//IOys7NbFZ9+/rSfoY/u+cCo\nUaNo1KhRrTpXFT03Jvr/46k9RkZGRpK7uzsFBAQoxqdf176+vhQWFkbbt2+Xjc9Qfz958qRRW0SG\n60xLVVWVolYf03evewbMnDkTgYGBqKurg62tLQCgY8eOWLhwIRYuXCirGz58OAIDA7Fo0SK4ublh\n+PDhuH79ulF7aWlpSE1Nxfr161FYWIgff/wRHTp0gJeXF9auXQtPT0+DunfffRdTp05FeXk5HBwc\nAABubm5ITU1Fx44dZe1NnToVa9euxfr165GZmYnVq1fD1tYWjx8/VrR37NgxfPfddwCAjIwM3L9/\nH3379kV5eTkePnwoa++///0vcnNz8fnnnzezt2/fPgwYMEDW3ooVKzB16lQsWrQIDg4OOHjwICoq\nKvD888/LbqICAFevXm2m0/LVV1/JatLT0/HXv/4V9vb2WLFiBWpqalBUVARfX1/Ex8fDzc3NoG7W\nrFkIDAzEpk2bJJ/s7e2NbtSYkZGB5ORkpKWlYcWKFYiPj0dJSQlsbW0RHx8vqxs7diwCAwPxzTff\nNIvNGGlpaTh//jymTJnSIuexsbGyukuXLuGDDz5oMZbGqKmpgbOzs1Rj9+7dg5OTEx49eoTKykpZ\n3Y0bN9C5c2d07dpV8rNbt26oqalR9FOrS01NlXTW1tZIT0+Hl5eXbI1VVVXhueeeA4AW41JaWipr\nr7S0FGVlZYiKipLyV1paChsbG/ztb3+T1b3xxhsIDAxEbW0tbGxsmr2nuwqsz9y5c6XeopuHDRs2\nyGqApvydOnUK9vb22LBhg+RnVlYW/P39ZZ+J8/X1lXpSZmYmVq1aJY2L0ir6X/7yFymOgoIC3Lp1\nC7/+9a8xYcIExMfHY8yYMQZ18+fPbzb/4uPjsW7dOtjY2DTbfFOfPXv2IDExEUDTnJo1axZ69uyJ\n8vJyvPnmm3jllVcM6nRX5TMyMvDnP/9Z0in5GRAQgAkTJuDSpUsoLy8HADg6OsLFxUX2TpHa2lpU\nVlbiV7/6Fbp27QonJyc8fPhQevZcjg8//BBr1qzBrFmzmvm4f/9+DBkyRNZH3Rzox6a0P/MXX3yB\nDz/8sJmuV69eKCsrU9TZ2trK2qurq5PV5efno2fPnkhMTERmZiZCQkKkGnNxcZHdmKusrAwlJSVw\ndHRETEwM3n//fdTX10OtVqOsrAz9+/c3qOvSpQuKiooQGhoq1ZharUb37t0VryjNnz8ffn5+zWpT\nO9fXr18vO4eOHDmCv//97y3Gpba2FhUVFbL2ampq8OTJE2n/iRUrVkjHhoCAAFmdWq1GWFgYAODK\nlSsICAiAWq3G22+/jbt378puPnv58mX4+PiAiGBlZYXMzEwkJiZi0aJFuHjxomwetHU9Y8YMqNVq\n9O/fHw8fPsTgwYNl978AgLt378LT0xMHDhwA0HRVMSkpCYsWLcLNmzfh7OxsUGdjYwMbGxt069YN\nXbt2RYcOHXD79m288MIL0nmaIaKiorBp0yY8ePAAarUaFRUV2LJlC5ydnWVjy8rKwsiRI3Hs2LEW\nPoaEhMjaAprmkXb/CG3e+/Xrh8zMTPj6+hq8Iqg9v9DmoLCwULJXUFAga8vOzg51dXVSrvv374+q\nqio4OzujZ8+esro7d+4gJSUFX3zxRQvdqlWrZHX3799HXl4e+vTpgwULFiAqKgqNjY2ora3F0KFD\nZfutNtcnTpyQ4tTG98ILL8jaO3LkCGxsbODv7y+9lpSUhF69eiElJUXaJ0mfZcuWYcGCBVLOdWtz\n1apVshvQnT59Ghs3bkSfPn2wevVqFBYWgojg5eWFuLg42U348vPzcebMGRQWFqKgoABOTk4oLi7G\ntWvXUFVVJV0plxsXLb6+vti6dav0ulx8uvMHaD6eSjorKytpv5PLly9j8eLFUt71z0d0CQwMxMSJ\nE6Vxee+996S8K43LnTt38NFHH0l5cHJyAhHhT3/6k2Ieqqur8ejRI3Tr1g2NjY2oqKiQNimsqqqS\n9TMtLQ2JiYlITk5u4efatWtldXl5ebh+/ToeP36M119/XdoMODo6WnE/hJMnT2LDhg2ora2Fh4cH\nPvnkE+n8KCYmxqAuKysLbm5uzY4biYmJGD58ONLT02Vzl5ubi5ycHCxYsECKTaPRSH+3KVFZWYny\n8nLk5+dj+/btSEhIkGJUiu/06dP4/PPP8fjxY3h6eiI2NtaorrS0FJcuXcLIkSPh4eGB2NhYeHt7\nw9vb2+jeEkrHjSVLlpAZ+7gAAAlmSURBVJi2F5pJSxPPiLCwMDp37hxFRETQypUr6dy5c0aveLVF\nN3XqVGlFKzQ0lO7fv09ERBUVFc2euX7W9nSvcs+aNUvSlZSUKD6nZOn4RHQhISFUXFxMP/74I7m5\nuVFubi4REanVaqPPBor4qG/v+vXrP6u99lJj7UUXEhJCJSUlFsufueqstXXdlnrRYkqP0B/P1vop\n2pNEdU+fPqW9e/dSdHQ0BQcHU3BwMC1dupS+/fZb2bs3wsPDpc/Py8ujdevWERFRWlpaq59RN8VH\nS+ssfVwQrRXROSvaq0XHRdRPb29vmj59OiUkJEhfHh4e0vem6MaOHWtUJ1rXovba0iNM9VPURyKx\neWTpHIjqgoKC6MGDB5SdnU3jxo2TarO0tJSmTZsmqxONz9LjIhqfpefCL31cRO2J6qZPn06VlZXU\n2NhI//rXvygoKIgePnxIRMr7DOjq9u3b1yqdaJ8WjU3UT9FxEbVFRLRr1y7Zr9bcaa5Lu7izwcrK\nCq6urvj6669x5coVfPvtt4iNjYWtrS0cHBywfft2s+oaGhqklfnu3bujb9++AIAePXpIO5z+nPa0\n/0LFmD1dtDtkA01XCZWu5Fs6PhFd586d4ejoCEdHRzz33HMYOHAgAKBv376Kd4mI+qhvb9CgQT+r\nPdGcW7qmRf20tL3OnTujV69e6NWrl0XyZ646a21dt6VetJjSI/THs7V+6mKKPVFdTEwM+vXrhzlz\n5rTYSXrVqlUGd5J++vSp9Pm/+c1vcOPGDQBNdyklJCTI2hIdS0vrdGnLcUF07rW2VkTnrGiv1qUt\nc6G19o4cOYLExETcuHEDK1euRN++fXH27FksWbJE0TdRnWhdi9oTzbuIn6I+AmLzyNI5ENV16dIF\nL774Il588UU4OjpKtdmzZ0/FPYDaS22KxmfpufBLHxdRe6K6jh07okePHgCAoKAg2NvbY+7cudi2\nbZviHgy6uuDgYDg4OBjVieZONDZRP/V1rR0XUVtA079/d3d3h6OjY4v3lPZCM0S7WGzQPdEZMmQI\nhgwZAgAoKSlRvLVaVKf9t3mjR49Gjx49sHjxYgwbNgwqlQozZsz42e0tWrSoVfZu3ryJZcuWgYhw\n7949pKSkwM/PDzt27ED37t3/z8QnorOzs8Onn36KyspK9OvXD2vXrsWYMWNw8eJFxccHRH20tD3R\nnFu6pkX9tLQ9S+fP0nVm6R4h6qeoPVFdaWkpPv3002av9evXD66urtIt7PoMGDAAy5cvh4uLC86e\nPSvdMr169Wq8+uqr/2dis7TO0nPP0jpLzwVra2u88847uH37NtavX49hw4YpPqbTVp1oXYvaEx0X\nET9FfQTE8m7pHIjqHBwc8OWXX2Lu3LnYt28fAKCoqAg7duxQfByivdSmaHyWngu/9HERtSeqGz58\nOObPn48tW7aga9eu8Pb2hrW1NSIjI/HTTz+ZVSeaO9HYLB2fqC0A2Lp1q/QYqP6jjSqVSlGrjxW1\n9tL5M2T//v2YPn26xXQA8NNPPyEjIwMPHjwAEaFnz54YPXq07DNNz8LeuXPnmv388ssvo3fv3jh8\n+DC8vLwUn5u0ZHwiusePHyM5ORnPP/88/P39cejQIeTk5ODll19GcHCw7PNsoj5a2h7QPmqsvegs\nnT9L1xlg2R4h6qeoPVFdeHg4wsPDMW7cOHTu3BlA09Wb48ePIzk5GTt27GihISKkpqbi7t27GDBg\nAMaOHQug6RnMgQMHyq72Wzo2S+sAy849S+ssPRf0OXDgANLS0losjplLJ1rXovZEx8Ucfpoylm2Z\nD6baE41NVFdXV4dTp04120Ph2rVryM7OxsyZM41eYTU1PlGdpeOz9FwQ1bWXcRG115b6VKlUGDFi\nRDOfqqurcfToUQQFBZldp6W1uWvr3LNkfG0Zk9raWlhbW7fYl+/atWuy+/kYol0sNjAMwzCMPkVF\nRdiyZQvOnTsn/Us6W1tbuLu7Y8mSJQZv/2MYhmEYhmEsAy82MAzDML84jO20zDAMwzAMw/y8tIs9\nGxiGYRhGn927d8u+V1xcbEFPGIZhGIZhGH14sYFhGIZpl5hzt2SGYRiGYRjGvPBiA8MwDNMuMedu\nyQzDMAzDMIx54T0bGIZhmHaLuXZLZhiGYRiGYcwLLzYwDMMwDMMwDMMwDGNWOhj/FYZhGIZhGIZh\nGIZhmNbDiw0MwzAMwzAMwzAMw5gVXmxgGIZhGIZhGIZhGMas8GIDwzAMwzAMwzAMwzBmhf/1JcMw\nDMMwJlNcXIz33nsPAFBXV4fg4GC8+eabiI2NhUajgbW1NTZu3IjevXsjMTERp0+fRqdOnfDaa69h\nzZo1KC4uxsKFCzFgwAC89tprWLBgATZv3oycnBzU1dXB1dUVMTExsLKyesaRMgzDMAwjAt/ZwDAM\nwzCMyaSkpMDJyQnffPMNdu3ahbq6OsTFxWHu3LnYvXs3pk2bhpSUFFy4cAEnTpzA7t27sWfPHlRW\nVuLIkSMAgLy8PCxevBgLFixASkoKiouLsWvXLuzfvx/379/HDz/88IyjZBiGYRhGFL6zgWEYhmEY\nkxkzZgz27NmDlStXwsPDA8HBwfjkk08wYsQIAMCkSZMAAF9//TVcXV3RuXNnAMCIESNw5coVuLq6\nws7ODk5OTgAAlUqFixcvIjw8HADw6NEjqNXqZxAZwzAMwzDmgBcbGIZhGIYxmf79++Pf//43srOz\ncezYMezcuRMAoNFomv2e/mMQRCS9pl2AAIAuXbogKCgIc+fO/Zk9ZxiGYRjGEvBjFAzDMAzDmMzh\nw4dx5coVjBo1CnFxcSgsLISLiwvOnj0LADh69Cg2b96M3/3ud1CpVKivrwcAZGZmYujQoS0+7403\n3sDJkyfR0NAAAPjnP/+Ju3fvWiwehmEYhmHMC9/ZwDAMwzCMybz66quIi4tDly5dQESIiorCW2+9\nhdjYWOzZswedOnXChg0b0KdPH0yaNAmhoaHo0KEDnJ2d8fvf/x4FBQXNPs/HxwcXL15ESEgIOnbs\niMGDB+Oll156RtExDMMwDNNWrIiInrUTDMMwDMMwDMMwDMP8cuDHKBiGYRiGYRiGYRiGMSu82MAw\nDMMwDMMwDMMwjFnhxQaGYRiGYRiGYRiGYcwKLzYwDMMwDMMwDMMwDGNWeLGBYRiGYRiGYRiGYRiz\nwosNDMMwDMMwDMMwDMOYFV5sYBiGYRiGYRiGYRjGrPw/2uzLVcH0EUYAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "qSTFx72A27Hp",
- "colab_type": "code",
- "outputId": "5dd0f3f9-2cc3-41f9-af64-5dc96cb85394",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 426
- }
- },
- "cell_type": "code",
- "source": [
- "# comparison parent's degree and their corresponding grades\n",
- "\n",
- "x = pd.crosstab(data['parental level of education'], data['grades'])\n",
- "x.div(x.sum(1).astype(float), axis = 0).plot(kind = 'bar', stacked = True, figsize = (9, 5))"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 195
- },
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhkAAAGGCAYAAADWwpOAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlYVGX/BvD7zLDIJksCgrgg7uCG\nSrmUG5avS/maJS6Iub35qzf3XCjNBZMwS03TykLF1ExL08pMLUtRckEELVMTxVhlkU0YmOf3hzCv\nBMo2x8OB+3NdXhfnnGG4fZyR7zznWSQhhAARERGRkWmUDkBERES1E4sMIiIikgWLDCIiIpIFiwwi\nIiKSBYsMIiIikgWLDCIiIpKFyaP+gcnJmY/6R1aJvb0l0tJylI5Ra7A9jYdtaVxsT+NiexqXGtrT\n0dHmgdfYk/EAJiZapSPUKmxP42FbGhfb07jYnsal9vZkkUFERESyYJFBREREsmCRQURERLJgkUFE\nRESyYJFBREREsmCRQURERLJgkUFERESyqFCRcfnyZfj6+iIsLKzUtRMnTmDEiBEYOXIk1q1bZ/SA\nREREpE7lFhk5OTlYunQpunfvXub1ZcuWYe3atdi+fTuOHz+OK1euGD0kERERqU+5RYaZmRk+/vhj\nODk5lbp28+ZN2NrawsXFBRqNBr1790Z4eLgsQYmIiEhdyi0yTExMUK9evTKvJScnw8HBwXDs4OCA\n5ORk46UjIiIi1XrkG6TZ21safS32yd+eNerzyeXjQd5KR6gQtqdxqaE92ZbGxfY0Lran8TzqtqxW\nkeHk5ISUlBTDcWJiYpm3Ve5X03eTk5NadqBVC7an8bAtjYvtaVxsT+ORoy1l24XVzc0NWVlZiIuL\nQ0FBAY4ePYqePXtW5ymJiIiolii3JyM6OhrBwcG4desWTExMcPDgQfTr1w9ubm4YMGAA3nrrLcya\nNQsAMGjQILi7u8semoiIiGq+cosMLy8vbN269YHXu3Xrhp07dxo1FFFt8rLJdqUjVMBCpQMQUS3E\nFT+JiIhIFo98dgkREVFtxF7L0tiTQURERLJgkUFERESyYJFBREREsmCRQURERLJgkUFERESyYJFB\nREREsmCRQURERLLgOhlERHWUOtZ1ALgirXqxJ4OIiIhkwSKDiIiIZMEig4iIiGTBIoOIiIhkwSKD\niIiIZMEig4iIiGTBIoOIiIhkUSvWyeBcbyIiopqHPRlEREQkCxYZREREJItacbuEqCY7cPAppSOU\na2pnpROQEtTw2gT4+lQz9mQQERGRLFhkEBERkSxqxe0SdvkRERHVPLWiyCDj4pRgIqLKU8MH3kf9\nYZe3S4iIiEgW7MkgItVofPiW0hEqpltLpRMQ1QjsySAiIiJZsMggIiIiWbDIICIiIlmwyCAiIiJZ\nsMggIiIiWXB2CZWihrneABc3IyKq6diTQURERLJgkUFERESyYJFBREREsmCRQURERLJgkUFERESy\nYJFBREREsmCRQURERLJgkUFERESyYJFBREREsmCRQURERLKo0LLiy5cvx/nz5yFJEhYsWIAOHToY\nrm3btg379u2DRqOBl5cXAgMDZQtLRERE6lFuT0ZERARiY2Oxc+dOBAUFISgoyHAtKysLmzZtwrZt\n27B9+3ZcvXoVkZGRsgYmIiIidSi3yAgPD4evry8AwMPDAxkZGcjKygIAmJqawtTUFDk5OSgoKEBu\nbi5sbW3lTUxERESqUG6RkZKSAnt7e8Oxg4MDkpOTAQDm5uZ45ZVX4Ovri759+6Jjx45wd3eXLy0R\nERGpRqW3ehdCGL7OysrCxo0b8f3338Pa2hoBAQH4/fff0aZNmwd+v729JUxMtFVLq3KOjjZKR6hV\n2J7Gw7Y0LrancbE9jedRt2W5RYaTkxNSUlIMx0lJSXB0dAQAXL16FY0bN4aDgwMAoGvXroiOjn5o\nkZGWllPdzKqVnJypdIRahe1pPGxL42J7Ghfb03jkaMuHFS7l3i7p2bMnDh48CACIiYmBk5MTrK2t\nAQCNGjXC1atXcffuXQBAdHQ0mjVrZoTIREREpHbl9mR4e3vD09MTfn5+kCQJixYtwp49e2BjY4MB\nAwZg4sSJGDduHLRaLTp37oyuXbs+itxERERUw1VoTMbs2bNLHN9/O8TPzw9+fn7GTUVERESqxxU/\niYiISBYsMoiIiEgWLDKIiIhIFiwyiIiISBYsMoiIiEgWLDKIiIhIFiwyiIiISBYsMoiIiEgWLDKI\niIhIFiwyiIiISBYsMoiIiEgWLDKIiIhIFiwyiIiISBYV2oWViKgm6H8lVOkIFdRH6QBENQJ7MoiI\niEgW7MmgUvhpkahu4Hud5MaeDCIiIpIFiwwiIiKSBYsMIiIikgWLDCIiIpIFiwwiIiKSBYsMIiIi\nkgWLDCIiIpIFiwwiIiKSBYsMIiIikgWLDCIiIpIFiwwiIiKSBYsMIiIikgWLDCIiIpIFiwwiIiKS\nBYsMIiIikgWLDCIiIpIFiwwiIiKShYnSAYyh/5VQpSNUUB+lAxARET0y7MkgIiIiWbDIICIiIlmw\nyCAiIiJZsMggIiIiWbDIICIiIlmwyCAiIiJZ1IoprEREREpTx3IKfR7pT2NPBhEREcmCRQYRERHJ\nokK3S5YvX47z589DkiQsWLAAHTp0MFyLj4/HzJkzodPp0K5dOyxZskS2sERqxC5UIqqryu3JiIiI\nQGxsLHbu3ImgoCAEBQWVuL5ixQpMmDABX375JbRaLf7++2/ZwhIREZF6lFtkhIeHw9fXFwDg4eGB\njIwMZGVlAQD0ej3OnDmDfv36AQAWLVoEV1dXGeMSERGRWpRbZKSkpMDe3t5w7ODggOTkZABAamoq\nrKys8Pbbb2PUqFF499135UtKREREqlLpKaxCiBJfJyYmYty4cWjUqBGmTJmCn376CX369Hng99vb\nW8LERFulsA9y2ajPJh9HRxulI1QI29O41NCebEvjYnsaF9vTeB51W5ZbZDg5OSElJcVwnJSUBEdH\nRwCAvb09XF1d0aRJEwBA9+7d8eeffz60yEhLy6lmZPVKTs5UOkKtwvY0HralcbE9jYvtaTxytOXD\nCpdyb5f07NkTBw8eBADExMTAyckJ1tbWAAATExM0btwY169fN1x3d3c3QmQiIiJSu3J7Mry9veHp\n6Qk/Pz9IkoRFixZhz549sLGxwYABA7BgwQLMmzcPQgi0atXKMAiUiIiI6rYKjcmYPXt2ieM2bdoY\nvm7atCm2b99u3FRERESkelzxk4iIiGTBIoOIiIhkwSKDiIiIZMEig4iIiGTBIoOIiIhkwSKDiIiI\nZMEig4iIiGTBIoOIiIhkwSKDiIiIZMEig4iIiGTBIoOIiIhkwSKDiIiIZMEig4iIiGTBIoOIiIhk\nwSKDiIiIZMEig4iIiGTBIoOIiIhkwSKDiIiIZMEig4iIiGTBIoOIiIhkwSKDiIiIZMEig4iIiGTB\nIoOIiIhkYaJ0ACKiilo92knpCBWyTukARDUEezKIiIhIFiwyiIiISBYsMoiIiEgWLDKIiIhIFiwy\niIiISBYsMoiIiEgWLDKIiIhIFlwng0rhWgRERGQM7MkgIiIiWbDIICIiIlmwyCAiIiJZsMggIiIi\nWbDIICIiIllwdgkRUR3FmWQkN/ZkEBERkSxqRU9GRavxq6HnYN+xIRw6u8icqGysxomIqC5hTwYR\nERHJokb3ZGzZ8im++GI7GjZ0waBBQ/H551vwr38NQUpKMq5cuYwBAwZixAg/xO3/A1lX0yAK9bBq\naovGw9pC0mqQl5qLG7tiUJCTD8vGthB6YXju7Nh03PruTxTeLYCJpSmajPCEuYMFdHfycGP3Reiy\n8iAK9LBr7wwXXw8FW4GIiEidKlRkLF++HOfPn4ckSViwYAE6dOhQ6jHvvvsuIiMjsXXrVqMEu3bt\nKj7/fAvCwr6EjY0NZs36r+FaePhxhIZuh52dHX766TCyY9PR+lUfCL3A5Q2/IT06CfYdGyL+0FVY\nN7eHywAP5MTdwZ+fnIFDZxcU5hXgr8+j0PQFL9i0cEBaVAJiv4hGq5e7ITn8Jqya2aFhX3fo8wtx\nc+8l6DLzYGpjbpS/FxERUV1R7u2SiIgIxMbGYufOnQgKCkJQUFCpx1y5cgW//fabUYOdP38OnTt3\nQYMGDWBubo7Bg581XGvXzgt2dnYAgD59+qPlf7pB0mqgMdXCslF95KXmArjXW2HX/t54DUu3+qjX\nwNJw3rS+OWxaOAAA7Ds0RF5qLvLT78LEyhSZV24jKzYdkokGTV/wYoFBRERUBeX2ZISHh8PX1xcA\n4OHhgYyMDGRlZcHa2trwmBUrVmDGjBn44IMPjBYsM/MObGzqG44dHf83uLN+/f+dT0tLw809F5ET\nnwlJkqDLyofjE24AgMJcHbTm//srai3ufV14twD5qbn4fc1JwzWNVkJBTj4cuzeG0Avc2v8HdJn5\naODTCM593SFJktH+bkREVPuoYUrwo56AUG6RkZKSAk9PT8Oxg4MDkpOTDUXGnj174OPjg0aNGhk1\nmJWVFXJzcw3Ht2+nlPm4jz5aD0krofUrj0NjokHslzGGa9p6JijMKzAcF2TrAACmNuYwd7RCq5e7\nlfmczk81g/NTzZCXkoNrWyNh1cTO0OtBREREFVPpgZ9C/G/wZHp6Ovbs2YPPPvsMiYmJFfp+e3tL\nmJhoy31cjx4+CA39BFqtDtbW1jh8+HtotRpYWZkjM9MUjo42AICcnDuo52QNjYkGuQmZyL6RAVNr\nMwCAZWNbZFxMhkVDG2TfyDDcRrF0qw9dZh6yb2bAqrEt8lJzkXj0GhoPb4e4b/6AXTsn2LRwgJmD\nBUyszQEjdWIUZybjUEt7XlY6QAWopS3Vgu1pXGxP43nUbVlukeHk5ISUlP/1IiQlJcHR0REAcPLk\nSaSmpmLMmDHIz8/HjRs3sHz5cixYsOCBz5eWllOhYC4u7njmmcF47rlhcHZ2Rr9+T+Ovv64jOzsP\nd+/qkJycCQAYPtwPv7zxX6Sei4dVUzu4PtMCN/f+Dks3W7g+3QKxu2KQdj4Blm62sPG41xuhMdWi\n2cj2uPXtZejzCiFpNWjY/94tkce6NULcvt9x69vLgADqt34M1s3tK5S5PMWZyTjYnsbDtjQutqdx\nsT2NR462fFjhUm6R0bNnT6xduxZ+fn6IiYmBk5OT4VbJwIEDMXDgQABAXFwc5s+f/9ACo7JeeWUa\nXn11OgDgxIlfYW1tjYkT/1PiMR07dkbbGT1KnLPz/N99sVZTy74lYtXEFq3+U/qapYtNmeeJiIio\ncsqdXeLt7Q1PT0/4+flh2bJlWLRoEfbs2YNDhw7JGiwtLQ2DB/siISEeQggcOXIInp6lp84SERFR\nzVShMRmzZ88ucdymTZtSj3FzczPaGhkAYG9vjylTpmLatKmQJAlNmjTDK69MM9rzExERkbxq9Iqf\nw4aNwLBhI5SOQURERFXAvUuIiIhIFiwyiIiISBYsMoiIiEgWLDKIiIhIFiwy/iEtKgHn3zqKgux8\npaMQERGpWo2dXTJhxZFKPHpguY+w8Pm+Qs+UHpUIcwcLpF9MRoNuxt2PhYiIqC5hT8Z9CnJ0yLl1\nB67PtEB6VMX2YiEiIqKysci4T0ZMEuq3bgCblo8hLzUHujt5SkciIiJSLRYZ90mLSoRde2dIGgl2\n7ZyQfoG9GURERFVVY8dkPGr5GXeRc+sO/v7+CiABel0htPVM4NizidLRiIiIVIlFRpH0C4lo4NMI\nrgNbAgCEEPh99UnkpebA3MFS4XRERETqwyKjSPqFRDQe3s5wLEkSHDo1RPqFJDj3bqZcMFK91aOd\nlI5QrnVKByCiWqnGFhmfzutX4ce+cuT1av+8VlN9Sp1z7uNe7eclIiKqqzjwk4iIiGTBIoOIiIhk\nwSKDiIiIZMEig4iIiGTBIoOIiIhkwSKDiIiIZFFjp7AqIT8tF3+si4CFqw0AQBTo4fJMC1g3tVM4\nGRERkfrU2CLDGGtfVIV5A0u0mOANAMi6nobEn67DOqCTIlmIiIjUjLdLHqIgSwfT+uZKxyAiIlKl\nGtuToZS8lBxc+fQsRIEeujt5aD6OvRhERERVwSLjH+6/XXI3ORuxO6PRamo3SFp2+hAREVUGf3M+\nRD1HK0imGuTfyVM6ChERkeqwyHiIghwdCjLzYWrDcRlERESVxdsl/1A8JgO4N4W10eBW0JiwFiMi\nIqqsGltkrOv3ToUfa6zprmb2Fmj/Rm+jPBcREVFdx4/oREREJAsWGURERCQLFhlEREQkCxYZRERE\nJIsaO/CTiOifciMGKh2hYvopHYCoZmBPBhEREcmCPRn3ybudg1vf/omCnHxAD1g2sYXrMy24TgYR\nEVEV1Ngi4/Kk8RV+7LQKPGb1aKeHXhd6ges7LqDRoFawdreHEAK3vv0TiT/9BRdfjwpnISIiontq\nbJHxqGVeTYV5AytYu9sDACRJguvTHoAkKZyMiIhInVhkFMlLzoFFQ+sS5zSmWoXSEBERqR8HGxST\nAAihdAoiIqJag0VGEfMGlsiJu1PinL5Aj9zELIUSERERqRuLjCI2Hg7Iz7iLjN9TANwbCBr/wxWk\nRycpnIyIiEidOCajiKSR0HxcJ8Tt/R2JP/0FSSvBxsMBzn3clY5GRESkShUqMpYvX47z589DkiQs\nWLAAHTp0MFw7efIkVq1aBY1GA3d3dwQFBUGjqX4HSatPQiv8WGNt9W5qYw73sR2N8lxERER1XbnV\nQEREBGJjY7Fz504EBQUhKCioxPWFCxdizZo12LFjB7Kzs/HLL7/IFpaIiIjUo9wiIzw8HL6+vgAA\nDw8PZGRkICvrf4Mh9+zZg4YNGwIAHBwckJaWJlNUIiIiUpNyi4yUlBTY29sbjh0cHJCcnGw4tra+\nt7ZEUlISjh8/jt69e8sQk4iIiNSm0gM/RRlrSdy+fRsvv/wyFi1aVKIgKYu9vSVMTOrmIleOjjZK\nR6hV2J7Gw7Y0LrancbE9jedRt2W5RYaTkxNSUlIMx0lJSXB0dDQcZ2VlYfLkyZg+fTp69epV7g9M\nS8upYlT1S07OVDpCrcL2NB62pXGxPY2L7Wk8crTlwwqXcm+X9OzZEwcPHgQAxMTEwMnJyXCLBABW\nrFiBgIAAPPXUU0aISkRERLVFuT0Z3t7e8PT0hJ+fHyRJwqJFi7Bnzx7Y2NigV69e+PrrrxEbG4sv\nv/wSADBkyBCMHDlS9uByyE/LxR/rImDhagOIe2tnOD3VFDYeDkpHIyIiUp0KjcmYPXt2ieM2bdoY\nvo6OjjZuoiIfrvipwo/1wqByHxPt822Fnsu8gSVaTPAGAOSl5uCvbVFo+oJXqc3TarPciIFKR6iY\nfkoHICKih+Gy4g9h7mAJ56eaISUiTukoREREqsMioxwWjWyQl5StdAwiIiLVYZFRDn1eIaCRlI5B\nRESkOiwyypHzdyYsXDhHm4iIqLJYZDxEXmoOkk/cgGP3xkpHISIiUp06s9V7RWZM6HJScTfxDC6/\nfx1CXwAhBBzbjEHh5VbINUYIzoYgIqI6pMYWGVPn9anwYyesOGKUn2lq6YCW/1pmlOciIqrpOF3d\nuFTRno+4LXm7hIiIiGTBIoOIiIhkwSKDiIiIZMEig4iIiGTBIoOIiIhkwSKDiIiIZFFjp7AqQZeT\nius/r0I9W7cS5127joPWzFKhVEREROpUY4uMG+eWVPixbz1Tgccc7FWh5zKzdkTjHi9X+GcTERFR\n2Xi7hIiIiGTBIoOIiIhkUWNvlyglPysZN09sMBybWTvCucPzCiYiIiJSJxYZ/8AxGURERMbB2yVE\nREQkC/Zk/MM/b5cAQIO2g2Bh30ShREREROpUY4uMJp0XVvix3OqdiIio5qmxRQZRbZEbMVDpCOXr\np3QAIqqNOCaDiIiIZMEig4iIiGTBIoOIiIhkwSKDiIiIZMEig4iIiGTB2SX3yc++jeSYfSjIywSE\nHhYOzdCg7WBotKZKRyMiIlKdGltkLPjtzwo/tmH/xuU+JuHwzYdeF0KP+DNb4NhuCCwbtAQApF79\nGYlRu+HS2a/CWYiIiOge3i4pkpP8J0ytHA0FBgDYN38Kd9NvoCAvS8FkRERE6sQio0h+VhLq2bqW\nOCdJEsxtGkKXnaJQKiIiIvVikWEgQQhR6qwQApAkBfIQERGpG4uMImbWjribHlfinBAC+VmJMLNy\nVCgVERGRerHIKGLp2BK6nFRkJV4ynEv/6xdYOLhDa2apYDIiIiJ1qrGzSx41SdLA7fFJSLywB7cv\n/wAIgXp2bnDyfE7paERERKpUY4uM5d1alv+gIsba6t2kng0adQswynMRERHVdbxdQkRERLJgkUFE\nRESyYJFBREREsmCRQURERLJgkUFERESyYJFBREREsqhQkbF8+XKMHDkSfn5+iIqKKnHtxIkTGDFi\nBEaOHIl169bJEpKIiIjUp9wiIyIiArGxsdi5cyeCgoIQFBRU4vqyZcuwdu1abN++HcePH8eVK1dk\nC0tERETqUW6RER4eDl9fXwCAh4cHMjIykJV1b+vzmzdvwtbWFi4uLtBoNOjduzfCw8PlTUxERESq\nUG6RkZKSAnt7e8Oxg4MDkpOTAQDJyclwcHAo8xoRERHVbZVeVrys7dArw9HRplrfX5Zv3uX+IsbE\n9jQutqfxsC2Ni+1pXGzP0srtyXByckJKSorhOCkpCY6OjmVeS0xMhJOTkwwxiYiISG3KLTJ69uyJ\ngwcPAgBiYmLg5OQEa2trAICbmxuysrIQFxeHgoICHD16FD179pQ3MREREamCJCpw/2PlypU4ffo0\nJEnCokWLcPHiRdjY2GDAgAH47bffsHLlSgDA008/jYkTJ8oemoiIiGq+ChUZRERERJXFFT+JiIhI\nFiwyiIiISBYsMoiIiEgWLDLuk5CQgNOnTwMA8vPzFU6jfmxPqokKCgqwf/9+bNq0CQBw+fJl6HQ6\nhVOpG9/r1Zebm/vQP2rFgZ9FQkND8f333yMnJwf79u1DUFAQHB0dMWXKFKWjqRLbs/qeeOIJSJIE\noPQieJIkcQn/Kpo/fz4cHBwQERGBXbt2ISwsDGfPnsWqVauUjqZKfK8bR79+/SBJUpkLXkqShMOH\nDyuQyggECSGEGDNmjBBCiLFjxwohhNDr9eLFF19UMpKqsT2ppgoICBBC/O+1KcT/Xq9UeXyvyyM9\nPV3cuXNH6RjVVullxWurwsJCADB8cszLy0NBQYGSkVSN7Wk8ly5dwvLly3Hjxg0UFhaiVatWCAwM\nhIeHh9LRVEmn0+HOnTuG1+bVq1fZxV8NfK8b14kTJ7B48WKYm5tDp9NBo9FgyZIl6NKli9LRqoS3\nS4ps27YNBw8eRGxsLPr06YNTp04hICAAo0aNUjqaKrE9jWfMmDGYP38+vLy8AACRkZFYtWoVtmzZ\nonAydTp9+jSCgoJw/fp1NGzYEAAQFBQEb29vhZOpU1nv9XHjxmH06NFKR1MlPz8/rFmzxrBFR3x8\nPGbNmoXPP/9c4WRVwyLjPnFxcYiKioKZmRk8PT3h4uKidCRVY3sax7hx40oVFAEBAdi8ebNCiWqH\n27dvw9TUFPXr11c6iurxvW48/v7+2Lp1a4lzZf0foBa8XVIkKysL+/fvx+3btxEYGIiTJ0/CysqK\n/wFVEdvTeOrXr49PPvkEPj4+AICTJ0/C1tZW4VTqdfnyZaxYsQLZ2dnYuXMnQkND0a1bN3h6eiod\nTZXmz59f4vjw4cPQarVo0qQJ/Pz8+J6vJDc3NyxevBg+Pj4QQuDkyZNo0qSJ0rGqjFNYi8ybNw/1\n69fHhQsXAACpqamYNWuWwqnUi+1pPCtWrEBeXh42bNiAjRs3Qq/X4+2331Y6lmotXboUgYGBMDMz\nAwD06tULy5YtUziVetnb2yM3Nxfdu3dHjx49UFBQABsbGwDge74Kli5dio4dO+Ls2bOIjIxEt27d\nsHjxYqVjVRmLjCLZ2dkYPXo0TE1NAQCDBg3C3bt3FU6lXmxP47G2tkbXrl3h4+Nj+GNlZaV0LNUy\nMTEpMWi2RYsW0Gj4X2FVxcTE4P3338ezzz6LoUOHIiQkBH/++SemTJmi6vUdlCKEgF6vLzGVtXhQ\nrRrxdkkRvV6PGzduGP4xjx07Br1er3Aq9WJ7Gk9QUBDi4uLg4+OD/Px8rF+/Hp6enpgxY4bS0VTJ\nxsYGX375JXJzc3H+/HkcOnQIjz32mNKxVOvOnTs4fPgwOnfuDI1Gg+joaCQmJuLy5cv8YFEFCxYs\ngK2tLXx8fKDT6RAREYFTp06ptreNAz+LXL16FUuXLkVUVBQsLS3RunVrLFiwgNMEq4jtaTxjxozB\ntm3bSpwbO3YswsLCFEqkbtnZ2di8eTPOnTsHU1NTdOzYEWPHjmXvUBX98ccfWLduHa5evQohBJo0\naYKpU6cCAMzMzNC2bVuFE6oLB37WUpGRkQgNDVU6Rq3B9jSegoIC3L17F/Xq1QMA5OTkGNYmoMp7\n77338MYbbygdo9Zo3bo1Vq5cicTERDRu3FjpOKqn0+mQmJgIZ2dnAPeWbFfzuiMsMoocP34cnTp1\n4idtI2F7Gk9AQACeffZZNGvWzHAbas6cOUrHUi0hBHbu3IkOHToYxgwB98ZmUOUdOHAAH374IQBg\n//79WLZsGby8vDBs2DCFk6nTjBkzMH78eGg0Guj1esNiXGrF2yVFnn76acTFxcHCwsLwHw/3h6g6\ntqdx5eTk4Pr169BoNGjatCksLCyUjqRa/v7+pc5JkqTa7miljR49GqGhoZg4cSK2bt2KvLw8+Pv7\n44svvlA6mqplZGRAo9EYZuqoFXsyivzwww9KR6hV2J7G8+uvv2LHjh3IzMwsMeKcvxSr5p/3u6l6\ntFotzMzMDIO8i6cGU9Xs2bMHW7duLfV+V+sGaSwyiowbN67UOa1Wi8aNG2PKlClwc3NTIJV6sT2N\nJygoCIGBgYZ7tFQ9vXv3RnJyMrRaLSRJQmFhIezs7GBra4sFCxagV69eSkdUFW9vb8yZMweJiYn4\n6KOPcOTIEXTv3l3pWKq1adMmfPDBB7Xm/c4io0iXLl2Qn59v2G732LFjAICWLVti/vz5/PRTSWxP\n42natCl/8RnRv/71LzzxxBN+BAFdAAAfB0lEQVTo3bs3gHs9RWfPnoWfnx/++9//sq0racaMGTh9\n+jRatWoFMzMzzJ07F507d1Y6lmp5eHjA3d1d6RhGwyKjyOnTp0v84vP29saECRMwffp01W5MoyS2\nZ/UVT1t1dnbGtGnT0KVLF2i1WsP1MWPGKBVN1SIjIzFv3jzD8ZNPPokNGzZg2rRpql706FH757Rq\nS0tLAMDFixdx8eJFvj4rKTg4GJIkwdTUFH5+fujYsWOJ9/vrr7+uYLqqY5FRRKfTYfPmzfD29jYs\nKJOWloZz586BY2Mrj+1ZfWlpaQAAR0dHODo64s6dOwonqh1cXFzwyiuvlHhtWllZ4YcffoCrq6vS\n8VSj+PVJxtGqVSsA93p7axPOLimSmJiI0NDQEgvKjBs3DjqdDlZWVtxVsJLYnsaj1+sRHR2NDh06\nAADCw8PxxBNP8FN3FRUUFOCXX34p8drs27cvcnNzYWVlBRMTfvaqiCtXrjz0OqcEV01OTg7Cw8PR\nv39/AMDXX3+Np59+2tBTpDZ8NxVxdnZGQEAA4uLi0LVrV+Tn53OUdDWwPY1n3rx5cHJyMhQZv/32\nG77++msEBwcrnEy9srKyIEkSJk2ahMuXL0OSJO5sW0mLFy+GJEmGnsniolcIwSnB1TBz5swSA2fz\n8vIwa9Ysw1okasMio0hoaCi+//575ObmYu/evQgJCYGjoyOmTJmidDRVYnsaz99//4133nnHcPza\na6+VudYDVcybb74JBwcHREREYOLEiYiIiMCGDRuwatUqpaOpyv1jrrKzsxEbGwuNRoNmzZoZVqel\nysvMzERAQIDheOTIkdi/f7+CiaqHWw8W+fHHH7Fjxw7Ur18fwL1NatQ6L7kmYHsajyRJ+Omnn5CR\nkYG0tDR8++237NKvhvj4eMyZM8fwi3Ds2LFISkpSOJV67du3D//+97+xdu1ahISE4LnnnsOhQ4eU\njqVa1tbWCAsLw8WLFxEdHY2PP/5Y1Qty8X+qIsV7QRR3+eXl5al6vXilsT2NJzg4GO+99x5CQkKg\n1WrRvn17vP3220rHUi2dToc7d+4YXptXr15Ffn6+wqnUa9u2bdi7d69hFdrs7GxMnDgRAwYMUDiZ\nOq1cuRKbNm3C+++/b3i/39+TqTYsMooMGTIE48aNQ2xsLBYtWoRTp06VuaAUVQzb03icnZ0xd+5c\nNGjQANeuXcO1a9dgb2+vdCzVmjFjBgICAnD9+nUMHDgQkiSpdhvtmkCj0ZRY5p6DZ6tHkiQ8++yz\nmD59Ok6dOoVLly6pugjm7JL7xMXFISoqCmZmZvD09OQMiGpiexrHjBkzMHjwYLRp0wZTp07FoEGD\n8Mcff+D9999XOpqq3b59G2ZmZqruiq4JQkJCcOXKFXTr1g1CCJw6dQpeXl6YPn260tFUadKkSZg8\neTIcHBwwb948BAQE4MCBA9i4caPS0aqkzhcZ8+fPf+h1dktXDtvT+Pz9/bF161Z89NFHsLOzw4sv\nvoiXXnoJn332mdLRVKV49dmySJKEH3/88REnqj1Onz6N6OhoAECHDh3g7e2tcCL1GjduHLZs2YI1\na9bA3d0dQ4cOxfjx4xEaGqp0tCqp831azzzzDADgyJEj0Gg08PHxMVTjnHJZeWxP47t79y7OnDmD\nffv2YcuWLbhz5w4yMjKUjqU6+/fvhxACGzduRJs2bfD4449Dr9fj5MmTiI2NVTqeal25cgUnTpzA\na6+9BgBYsmQJbGxsat2iUo9Kfn4+9u3bhwMHDmD37t2Ii4tDZmam0rGqTpAQQojx48eXOjdlyhQF\nktQObE/j+fXXX8XLL78s9u7dK4QQYt26deKrr75SOJV6jRkzptS5sl6vVDGjR48Wv/32m+E4Jiam\nzDamirl48aJYunSpOHHihBBCiLCwMHHs2DGFU1Vdne/JKJaeno6jR4+iU6dOhqWGExISlI6lWmxP\n4+nZsyd69uxpOP6///s/BdOon5mZGVasWIHOnTtDo9HgwoULhtlQVHkFBQXo2rWr4bhdu3bcOqAa\n2rZtizfeeMNwrPY9YOr8mIxily9fxvr16w1LDTdv3hwvv/wy2rVrp3Q0VWJ7Uk2VlZWFffv2GV6b\n7u7uGDZsGAeAVlFQUBASExPh7e0NvV6PU6dOoXnz5pg7d67S0agGYJFBRETVEh4ejpiYGMO6Dvf3\nbFDdxiKDqIYr3jDpn4O/hg0bplAiIpJLQkICfvjhB2RmZpa47fTqq68qmKrqOCaDqIabOHEiXF1d\n4eTkZDjHHViJaqepU6fiySefhLOzs9JRjIJFRpH4+HgkJyejQ4cO2Lt3L6KjozFq1Cg0b95c6Wiq\nxPY0Hq1Wi3fffVfpGLXGr7/+ioyMDAwePBgLFizAtWvXuAw21Ri2traYOXOm0jGMhhukFZkzZw5M\nTU0RGRmJ3bt3Y+DAgQgKClI6lmqxPasvNzcXubm56N27N37++WdkZWUZzuXm5iodT7XWrl2L3r17\n49ChQ9BqtQgLCyuxoyhVTkJCAt58803DOhkHDhzArVu3FE6lPleuXMGVK1fg7e2Nbdu24ffffzec\nu3LlitLxqow9GUW0Wi3atm2L4OBgBAQEoEuXLpzWVg1sz+obPHgwJEkqczqgJEnc1baKzMzMYG1t\njR9//BEjR46EiYkJX5vVEBgYiHHjxuHjjz8GAMNy2CzcKmfx4sUljr///nvD15IkYcuWLY86klGw\nyChSWFiIDz/8EEeOHMH06dMRFRWF7OxspWOpFtuz+o4cOaJ0hFqpQYMGeOmll5CdnQ1vb2/s27ev\nxAZfVDl6vR69e/fGJ598AgDo3r071q1bp3Aq9amtRRmLjCIhISE4ePAgPvjgA5ibmyMuLq5UZUkV\nx/Y0nrJ2r9VqtWjcuDGmTJkCNzc3BVKpV0hICC5fvmwYH9SiRQusWrVK4VTqZWJigvDwcOj1eqSk\npODQoUMwNzdXOpZq9e/fv9S54vf7zJkz4enpqUCqqqvzU1g/+OADAMDYsWNhZ2encBr1Y3sa3+rV\nq5Gfn2/Y4OvYsWMAgJYtW2LHjh219hOQsfn7+0OSJLzzzjto2LCh0nFqjaSkJKxevRrnzp2DmZkZ\nOnTogFdffbXEbCiquI0bN8LGxsZQbBw7dgypqal4/PHHERwcjO3btyucsHLqfE+Gj48PALC71EiK\n2zM/P1/hJLXH6dOnSxQS3t7emDBhAqZPn47PP/9cwWTqUtyGP//8M4sMI3JycsL8+fORmZkJvV4P\nSZJQUFCgdCzVOnbsGLZt22Y4fuGFFzBu3Dj85z//UTBV1bHIKPqlmJWVhc8++wy3b99GYGAgTp48\niXbt2qF+/foKJ1SX4vYcO3YswsLCFE5TO+h0OmzevBne3t6GvTbS0tJw7tw57hFRBWFhYejcuTPf\n20Yye/ZsnD17Fg4ODgAAIQQkScKXX36pcDJ1Mjc3x/Lly0u833U6HY4fPw5LS0ul41Vanb9dUuzV\nV19Fjx49sG/fPuzYsQPffvstvvrqK8OIaaqcGTNmID4+Hu3bt4epqanh/Ouvv65gKnVKTExEaGio\nYa+Npk2bwt/fHzqdDlZWVnBxcVE6oqqMGjUKv//+O5o0aQJTU1P+UqymF154Abt27VI6Rq2RlZWF\nr7/+usT7fdiwYcjNzYWNjY3q9tip8z0ZxbKzszF69Gh89913AIBBgwap7t5XTfLUU08pHUH1bt26\nhUaNGiEzMxPPP/98iWs6nQ4tWrRQKJm6rVy5UukItcrAgQPxww8/oG3bttBqtYbzrq6uCqZSn/Pn\nz6Njx444c+YMGjdujMaNGxuuRUVFoXfv3gqmqzoWGUX0ej1u3LhhWK752LFj0Ov1CqdSr8GDB2P/\n/v24ePEitFotvLy8MHjwYKVjqcqWLVswf/78MmflqHnevNJsbW0RFhZW6tYoVU1MTAy2bt2Kxx57\nzHCOPUOVd+rUKXTs2LHE+hj3U2uRwdslRa5evYqlS5ciKioKlpaWaN26NQIDA7kMdhXNmTMHtra2\n8PHxgU6nQ0REBAoLC7Fs2TKlo1Edx1ujxvX8889j9+7dSseoVbKyskptkKbWniH2ZBS5ceMGQkND\nS5zbv38/i4wqSkhIQEhIiOF48ODBZa73QOVbv349wsLCSg3yDA8PVyiRuvHWqHE988wzCA8PR/v2\n7UvcLuGMvapZuHAhjh07hgYNGgBQ/0DaOl9kREVF4cKFC9iyZQv+/vtvw/nCwkJ88sknGDJkiILp\n1Eun0yExMdGwk2BCQgKntVXRd999hx9//FGVI8trIt4aNa5du3Zhx44dJc5x2fuqi46OxtGjR2vN\nTst1vshwdHSEpaUldDod0tLSDOclSUJwcLCCydRtxowZGD9+PDQaDfR6PTQaDZYsWaJ0LFVq06YN\nTEzq/FvVaBYuXIiFCxciOjoavXr1QuvWrbF06VKlY6nWoUOHAAAZGRnQaDSqm/1Q03Ts2BFpaWmG\nKcFqxzEZRVJTU0v8o+p0OixevJhjCKopIyMDkiRxTYIqeO211yBJErKzs3Ht2jW0a9euRHf06tWr\nFUynXkePHkXfvn1LnNu/fz97LavoxIkTWLx4MczNzaHT6QwfKLp06aJ0NFV5/vnnIUkS9Ho9rl+/\njqZNm0Kr1fJ2SW1x5MgRrF69GmlpaTAzM4Ner0efPn2UjqU6xW+UB1HrG0UJY8eOVTpCrcJbo/JY\ns2YNtm7dalhGPD4+HrNmzeJqtJW0Zs0apSPIgkVGkR07duDHH3/EpEmTsHXrVhw+fBhxcXFKx1Kd\n2vpGUULx6qlkHA+7NbpixQoFk6mbqalpiX1KXFxceHuvCho1aqR0BFnwlVDE3Nzc0N2n1+vRv39/\n+Pv7IyAgQOloqlL8RsnKyuJaBFSjuLi44N///jd69+4NIQQee+wxXLt2DdeuXWPXfjW4ublh8eLF\n8PHxgRACJ0+eRJMmTZSORTWERukANUX79u0RFhaGXr16ISAgAHPmzMHdu3eVjqVa8+bNQ/369XHh\nwgUA98a8zJo1S+FURMDSpUtx7tw5xMXFYdq0afjzzz8xd+5cpWOp1tKlSw0rVUZGRqJbt25lLiBH\ndRN7MorMmzcP+fn5MDMzw+OPP460tDT06NFD6ViqxbUIqKZKSUmBr68vPvroI/j7++PFF1/ESy+9\npHQs1UpOTkbz5s0xbNgwfP3114iKioKnpyfXGKqihIQErFu3DhkZGVizZg0OHDiATp06qfZ2Sp3v\nySie3x0cHIz3338f77zzDo4ePYrIyEisX79e4XTqxbUIqKa6e/cuzpw5g3379sHX1xd37txBRkaG\n0rFUa86cOTA1NUVkZCT27NmDgQMHIigoSOlYqhUYGAhfX1+kpqYCABwcHDBv3jyFU1VdnS8yiqvD\nVq1aoWXLlqX+UNXcvxZBz549sXnzZq6TQTXCtGnT8Mknn2Dy5MlwcHBAWFgYV6OtBq1Wi7Zt2+Lg\nwYMICAhAly5dUFhYqHQs1dLr9ejdu7fhA1r37t1LrfarJnX+dsmTTz4JAOjRoweOHj0KPz8/AMDG\njRvx73//W8loqubh4VFqmXaimqBXr17o1auX4Xjy5MlYvHgxhg0bpmAq9SosLMSHH36II0eOYPr0\n6YiKikJ2drbSsVTLxMQE4eHh0Ov1SElJwaFDh2Bubq50rCqr8z0ZxYoHKhZr3bq1qruolLZu3Tr0\n6NED3bt3L/GHSGm7du3Ck08+CS8vL3h7e6Nbt27IyspSOpZqhYSEwMLCAh988AHMzc0RFxfHgZ/V\nEBQUhP379yMtLQ2TJk3CpUuX8Pbbbysdq8q44meRUaNGlRqY6O/vj61btyqUSN2GDh2KnTt3cr8N\nqnFGjBiBbdu2lVoTh9PVqaYo3oVVr9cbbptwF1aVc3V1RXBwMLy9vaHX6xEeHq7af9SagPttUE3F\nNXGoJps9ezbOnj1r2OZC7cuKsyejSEFBAb766itcunQJGo0G7du3x6BBg2Bqaqp0NFV50H4bxW8U\n7rdBSluxYgXc3NyQnp6OU6dOoWHDhrh+/Tp27dqldDQivPDCC7XqtciPmkWEENBqtdBoNIY/929G\nRRXD/Taopvvnmjjp6ekcL0Q1xsCBA/HDDz+gbdu2JX4HqbVnnT0ZRebMmQNbW1v4+PhAp9MhIiIC\nhYWF3IW1ipKSknDkyBHDbJ2PPvoIw4YNK7HHAZESoqKicODAAWRmZpaYGqjmwXVUe8ycORNnz57F\nY489Zjin5tsl7MkokpCQgJCQEMPx4MGDOXe+GubOnYsXXnjBcNyyZUvMmzcPn376qYKpiO59oJg8\neTIaNGigdBSiUmJjY/HTTz8pHcNoWGQU0el0SExMhLOzM4B7RUdBQYHCqdTr7t27GDRokOG4b9++\nLDCoRmjevDmef/55w6h9oprkmWeeQXh4ONq3b1/idomFhYWCqaqORUaRGTNmYPz48dBoNNDr9dBo\nNFyhshr+OVvn5MmTqr2nSLXLkCFDMGzYMLRu3brEf+K8XUI1wa5duwzbXRSTJAmHDx9WKFH1cEzG\nP2RkZKCwsBBarRa2trZKx1Gt4tk6Fy9ehFarhZeXFwYPHszZOqS4AQMGYMqUKXB0dCxxvk+fPsoE\nIipDRkYGNBoNbGxslI5SLezJKPLRRx+hfv36GDp0KF566SXY2dmhY8eOmDZtmtLRVMnExASdOnVC\ns2bNAAD5+fkYPnw4vvnmG2WDUZ3n4eFRYrwQUU1y4sQJLF682LCWS3GvepcuXZSOViUsMoocOXIE\nO3bswBdffIH+/fvjlVdewfjx45WOpVoLFy7EtWvXcO3aNXTo0AHR0dGYNGmS0rGIYG9vjzFjxsDL\ny6vE7ZLXX39dwVRE96xZswZbt241zMSLj4/HrFmz8PnnnyucrGpYZBTR6/XQ6/X45ptvDGMxuMlP\n1V25cgWff/45/P39sWHDBsTHx2P9+vVKxyKCj48PfHx8lI5BVCZTU9MSU/1dXFxUvXqyepMbma+v\nL3r27ImBAwfC3d0d69atQ8eOHZWOpVqFhYWGTadSU1Ph4uKC33//XeFURODuylSjubm5YfHixfDx\n8YEQAidPnkSTJk2UjlVlHPhZBr1ej8TERLi4uCgdRbW++eYb5ObmwtbWFkuWLIGJiQl69OjBEfxE\nRA9RUFCA/fv3Izo6usQWF2pdgZpFRpH7B376+/vDzs4OnTp1wmuvvaZ0NFVLT083zNaxs7NTOg4R\nUY0WHx+P5ORkdOjQAV9//TViYmIwatQoNG/eXOloVaJROkBNUbwE9oEDB9C/f398+umnOHv2rNKx\nVGvPnj3o3bs3xo4di4CAAAwfPhz79+9XOhYRUY02Z84cmJqaIjIyEnv27MHAgQMRFBSkdKwq45iM\nIhz4aVyhoaHYu3evofciNTUVL730EoYMGaJwMiKimkur1aJt27YIDg5GQEAAunTpgsLCQqVjVRl7\nMooUD/xs0aIFB34aQcOGDVG/fn3Dsb29vaoHLxERPQqFhYX48MMPceTIEfTq1QtRUVGq/sDLMRkP\nkJWVhUOHDnEkeiUFBwdDkiTExcXh+vXr6NKlCyRJQmRkJNzd3fHuu+8qHZGIqMaKj4/HwYMH0bNn\nT7Rs2RLffvstmjVrhnbt2ikdrUpYZBS5cOECPv74Y6SnpwO4t2FaSkoKDh06pHAydfnqq68eep1F\nGxFR3cEio8jIkSMxY8YMrFy5Em+99RYOHTqETp06oW/fvkpHIyIiUiWOyShSr149PPHEEzAzM4OX\nlxdmzJiBsLAwpWMRERGpFmeXFLGwsMDhw4fh5uaGVatWoXHjxoiPj1c6FhERkWrxdkmRrKwspKSk\noEGDBggNDUV6ejqee+45tG/fXuloREREqsQig4iIiGTBMRlEREQkCxYZREREJAsWGUS1yM8//2xY\n6+VB/P39ceLEiRLnTp06hVGjRhk1S+vWrVFQUFChxxYWFmLUqFEYOXIkdDpdpX/We++9h7Vr11b6\n+x5m7969AIDk5GRulEhURSwyiGqR0NBQZGRkKB2j0pKSkhAbG4udO3fC1NRU6TgoLCzE+vXrAQCO\njo5Ys2aNwomI1IlTWIlkcurUKbz//vtwdXXFrVu3YGNjg/feew/W1tZYvXo1wsPDAdzb5yUkJASm\npqbw9vbGiBEjoNfr8cYbb2Dr1q347rvvUFhYiObNm2PRokVISUnB1KlTS+xrsHHjRhw+fBinT5/G\n7Nmz8fbbb+Ovv/7CJ598AjMzMxQWFuKdd96Bm5tbubn//vtvLF68GLm5ucjJycHMmTPh6OiIV199\nFQcPHgRwb+njF198ET/99BMOHjyIsLAwCCHg4OCAZcuWwd7evsznzsnJwZtvvomEhAQUFBTgueee\nw+jRozF//nzcuXMH/v7+2LRpE8zMzAzfU1Yb1KtXD++99x6OHj0KFxcXWFhYwMPDA8C9HpSYmBiY\nmJhgz549OHHiBFauXInz589j+fLlMDU1ha2tLYKDg6HRaDB37lykp6cjOzsbAwcOxJQpU7BgwQLc\nunULEyZMwJIlSzB69GgcO3YMKSkpCAwMRE5ODvLz8zFp0iQMGDAAa9euRXp6OhISEhAbG4vHH38c\nb775ZnVfQkTqJ4hIFidPnhTt27cXCQkJQgghZs+eLTZv3ix0Op3YuHGjKCwsFEIIMWHCBHHkyBEh\nhBCtW7cWv/76qxBCiPPnzwt/f3+h1+uFEEIEBQWJLVu2iJs3b4q2bduKy5cvCyGEmDdvnvjss8+E\nEEL07dtXXL9+XQghxJdffilu3bolhBBiw4YNYsWKFUIIIcaOHSuOHz9eKqufn58QQojJkyeL8PBw\nIYQQSUlJom/fvkKn04lnn31WXLp0SQghxKZNm8SKFSvE33//LYYOHSry8vKEEEKEhoaKt99+Wwgh\nRKtWrYROpyvxczZs2CDeeustIYQQubm5om/fvuLGjRvi5s2b4sknnyzVhg9qg2vXrom+ffuKvLw8\nodPpxLBhw8SaNWtK/dzdu3eLWbNmCSGEGDBggPjjjz+EEEJ89tlnYv/+/eLGjRviq6++EkIIkZeX\nJ7y9vUVmZmaJPPd//eabb4qPP/5YCCFESkqK6NGjh8jMzBRr1qwRfn5+oqCgQOTm5opOnTqJ9PT0\nUn8forqGPRlEMmrRogWcnZ0BAN7e3rh06RJMTEyg0WgwevRomJiY4Nq1a0hLSwMACCHg7e0N4F5P\nyI0bNzBu3DgA93oBTEzuvWXt7e3RsmVLAICrq2uZ4zAaNGiAuXPnQgiB5ORkdO7cuUKZT506hezs\nbKxbtw4AYGJigtu3b2Po0KE4ePAg2rRpg2+//RZLly7FuXPnkJycjIkTJwIA8vPzH9pbcv78eQwf\nPhzAvVV2vby8EBMTAy8vrwdmKasNLl++DE9PT0OPR9euXR/6d0pNTcWdO3fQqlUrAMD48eMNz3fm\nzBns2LEDpqamyMvLe+iYlvPnzxvGrjz22GNwdnbGX3/9BQDo0qULtFottFot7O3tkZGRAVtb24fm\nIqrtWGQQyUjctwyNEAKSJOHMmTPYvXs3du/eDUtLy1KDCovHJJiZmaFfv35YuHBhietxcXHQarUP\n/DnAvQ3+pk+fjq+++grNmjVDWFgYoqOjK5TZzMwMa9euhYODQ4nzQ4YMwaRJkzB8+HDk5eWhbdu2\nuHXrFjp06ICNGzdW6LklSSqV+5/n/pmlrDb4/vvvS3yfXq8v8/uLB5FKklSqjQBg8+bNyM/Px/bt\n2yFJEh5//PFK5b//XHn/JkR1EQd+Esno2rVrSEpKAgCcOXMGrVu3xu3bt9GoUSNYWlri1q1biIyM\nRH5+fqnv9fb2xrFjx5CdnQ0A2LZtG86dO/fQnydJEgoKCpCdnQ2NRoNGjRohLy8Phw8fLvNnlKVL\nly747rvvANzrAQgKCgJwb+yIvb09Nm3ahGeffRYA0L59e0RFRSE5ORkA8N133+HHH3984HN37NgR\nv/zyC4B7vQgxMTHw9PR84OMf1AYeHh64ePEi8vPzodPpEBERYfgea2trw5YAp06dAnCv58fOzg5R\nUVEAgE8//RTbtm3D7du34eHhAUmScPjwYdy9exf5+fnQaDRlzoy5P39iYiKSkpLg7u5eXpMS1Vns\nySCSUYsWLbBq1SrExsbC1tYWw4YNgxACn376KUaNGoWWLVviv//9L9atW1fqU3T79u0xZswY+Pv7\nw9zcHE5OThg+fDhu3779wJ/Xq1cvvPzyywgODsaQIUMwYsQIuLq6YuLEiXj99dcNxcPDBAYGYuHC\nhThw4ADy8/MxdepUw7WhQ4diyZIlhkLC2dkZgYGB+M9//gMLCwvUq1cPwcHBD3xuf39/vPnmmxgz\nZgzy8/Pxf//3f3Bzc0NcXFyZj39QG1hYWMDX1xcvvvgiXF1d0bZtW8P3TJkyBRMnTkTTpk3Rpk0b\nQ8EREhKC5cuXw8TEBDY2NggJCcHNmzcxc+ZM/Prrr+jfvz+GDh2K2bNn44svvkCDBg0wfPjwEn+f\n1157DYGBgfD390deXh6WLl0KKyurctuUqK7isuJEMimeXbJ9+3aloxARKYK3S4iIiEgW7MkgIiIi\nWbAng4iIiGTBIoOIiIhkwSKDiIiIZMEig4iIiGTBIoOIiIhkwSKDiIiIZPH/tW+c4lGH2e0AAAAA\nSUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# visualizing reading score score\n",
+ "\n",
+ "data['reading score'].value_counts(normalize = True)\n",
+ "data['reading score'].value_counts(dropna = False).plot.bar(figsize = (18, 10), color = 'orange')\n",
+ "plt.title('Comparison of reading scores')\n",
+ "plt.xlabel('score')\n",
+ "plt.ylabel('count')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 627
+ },
+ "colab_type": "code",
+ "id": "04Y4oXmfdpnN",
+ "outputId": "65f0de4b-2e08-42cf-9df2-931af2ce18fb"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABBsAAAJiCAYAAACGv8r3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XucVnWdB/DvDCPpKHIdRk0zKx1A\nTPMSohkCJmk3kt0kEjctsyySTIFUJhFR85amlsqmLbIuFF6WTRK2Vk0NZqW2TCh0fbWBqDjgoKOg\nwHD2j3TWWWZwBn/PmQO+3/88c878zvP5nmdgHD6eM09ZlmVZAAAAACRS3tkDAAAAADsWZQMAAACQ\nlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbACCRLMvitttui09+8pMxYsSIOO644+Kiiy6K\nxsbGzh6thZkzZ8a1117bafmNjY3xmc98Jo4//vhoaGhI/vwPPfRQPPPMMxERcf3118cFF1yQPAMA\n2DplAwAkctVVV8W8efPixz/+ccyfPz/mzp0bGzdujDPPPDOyLOvs8ZqdcsopMX78+E7LX7ZsWaxd\nuzYWLFgQPXv2TP78P/nJT5rLBgCgc5RlRfrpBwC2U2vXro2PfvSjcffdd8f73//+5v2vvfZaPPLI\nI3HsscfGxo0bY9q0aVFXVxfl5eUxZMiQOO+886JLly4xbNiwOO200+Kuu+6KVatWxUUXXRQLFy6M\nhx56KHr16hXTp0+P7t27R01NTVxwwQVx5513xvPPPx/f/OY34/Of/3xERNx4440xd+7caGpqive/\n//1x5ZVXxu677x7XX399rFq1Kv785z/HJz/5yWhsbIznnnsupk2bFr/4xS/ixhtvjKampqioqIgL\nL7wwBg0aFM8880xMnjw5nn766dhpp53iy1/+cowcOTKefvrpGD16dHzlK1+Jn/3sZ7F27dr4zne+\nEyeeeOIWr0ldXV1cfvnlsX79+ujWrVvU1tZG7969Y8yYMbF69erYe++944477ohevXo1HzNp0qSo\nrq6O3/3ud/Hkk0/G5z73udhnn31ixowZ8corr8S1114bH/zgB2P16tUxceLEWLlyZWzYsCHGjh0b\np512Wlx77bUxffr06Nu3b5x33nnx1FNPxfLly6OpqSl+//vfR58+feL666+P6urqFrOuWrUqJkyY\nEPX19bFhw4b4xCc+Ed/61rciy7K4/PLL49///d9jp512ir//+7+PL3/5y7F58+a47rrrYv78+RER\nccghh0RtbW1UVlbG2LFj49BDD40FCxbEtGnT4gMf+EBMnTo1Hnvssdi0aVOcddZZMWrUqIiI+P73\nvx/33XdfRERUV1fHlVdeucVsALBdygCAt+2BBx7IPvaxj211zc0335ydccYZ2caNG7P169dno0aN\nyu65554sy7Js6NCh2eTJk7Msy7Lbb789O/jgg7NFixZlmzdvzkaNGpX99Kc/zbIsyw444IDs4osv\nzrIsy5566qls4MCB2QsvvJD98Y9/zAYPHpw1NjZmTU1N2Re/+MXsxhtvzLIsy37wgx9kH/nIR7I1\na9Y0b59//vlZlmXZoEGDsqeffjrLsix79NFHs0svvTTLsiw7/fTTs5tuuinLsix7+umns8MOOyxb\nsWJFtmLFimzAgAHZ7bffnmVZls2bN6/V83755ZezQYMGZYsXL86yLMvuu+++7Pjjj8+ampqyRYsW\nZccdd1yrr9HEiROzkSNHZq+88kq2bNmyrH///s1zXH755dm5556bZVmWXXzxxVltbW2WZVm2fPny\n7MADD8yeeeaZ5tfy0UcfbT7Xo48+uvkczzzzzOyGG27YIvfyyy/Prr/++izLsmzdunXZt771rWzV\nqlXZPffck40ePTrbsGFD1tjYmA0ZMiT7wx/+kP385z9vnnPTpk3Z1772tebX+5RTTslOP/30rKmp\nKcuyLPvOd76TTZgwIWtqasrWrFmTDRkyJFu2bFn2xBNPZMcff3y2YcOGLMuybMaMGdndd9/d6usC\nANsbt1EAQAJr166N3r17b3XNAw88EJ/73OeioqIidt555/jUpz4VjzzySPPnhw8fHhERBxxwQLzr\nXe+KQYMGRVlZWey///7x/PPPN6974/+Kv+9974v99tsvHnvssRg4cGA88MADsdtuu0V5eXl86EMf\nihUrVjQfc/DBB7e4guANvXv3jlmzZsXKlSvj8MMPj+985zuxcePG+M1vfhNjxoyJiIh3v/vdMWjQ\noFi0aFFERGzatClOOumkiIg48MADW71l4bHHHos99tgjDjvssIiIGDFiRDQ0NMTKlSvf8rU86qij\norKyMvbff//YvHlzDB06tPl1eeN1uPDCC2Py5MkREbHPPvtEVVVVPP30060+32GHHRbvfve7IyKi\nX79+sWrVqlZfh4cffjgWL14cXbt2jWuuuSb69u0bv/71r2PEiBGx0047xW677Rbz5s2Lgw46KB54\n4IEYOXJkVFZWRpcuXeKkk05q8bUcMmRIlJf/7ces+++/P0499dQoLy+PXr16xcc+9rFYsGBB7L77\n7vHCCy/Ev/3bv8WLL74YY8eOjZEjR77l6wMA24OKzh4AAHYEPXv2bPUfsW/2wgsvRPfu3Zu3u3fv\nHmvWrGne3nXXXSMiory8vPnjN7Y3b97c4rg3f/zSSy/F+vXr47LLLou6urqIiHjxxRfj2GOPbfWY\nN/vRj34UP/rRj+Kkk06KPffcM84///zYb7/9Isuy6NatW/O6N/5hHBHRpUuXqKysbHW2N5/r7rvv\n3mJft27dWpxvW94497KysigvL281649//GNcffXV8eyzz0Z5eXnU19e3OkdExG677db8cZcuXaKp\nqWmLNV/84hdj8+bNMWXKlHj++efjC1/4QowbNy4aGhpanMcbs7zV1/LNn2tsbIzx48dHly5dIuJv\nt9Z8/OMfj+rq6rj++uvj1ltvjalTp8YRRxwRU6ZMiT333PMtXyMAKDplAwAkcMghh8SaNWtiyZIl\nceCBBzbv37hxY9xwww3x1a9+Nfr06RNr165t/tzatWujT58+Hc5qaGho/j/1a9euje7du8c//dM/\nxf/8z//EXXfdFbvuumt8//vff8vyIyLiPe95T1x22WWxefPmuOeee+Lb3/523H///VFeXh4vvvhi\n8z+a23Plxpv17t27xblmWRYvvvhi9O7dO8kvbzzvvPPiH/7hH+Lzn/98lJWVxTHHHPO2nq+ioiK+\n8pWvxFe+8pX4y1/+EmeccUYcdthh0bNnzxbvmLF69erYeeedO/S17Nu3b9x4441xwAEHbPG5I488\nMo488shYt25dfO9734urrroqrr766rd1LgBQBG6jAIAEdt999/jyl78cEydOjL/+9a8REbF+/fqo\nra2NpUuXxi677BLHHntszJkzJ5qammLdunXxr//6rzFkyJAOZ917770REfHUU0/FX//61zj44INj\nzZo18b73vS923XXXWLlyZTz44IOxbt26rT7PCy+8EKeddlq8/PLLUV5eHgcffHCUlZVFRUVFfOQj\nH4nZs2dHRMTy5ctj8eLFcdRRR7V7xjd+ieN//dd/Nc+8xx57xN57793h823NmjVrYuDAgVFWVhZ3\n3313rF+/vvl8KyoqOvx2o7W1tc23QbznPe+JPn36RFlZWQwbNizuvffe2LBhQ6xbty7GjBkTTzzx\nRBx77LExd+7cWL9+fWzatCnmzJnT5tdy2LBhMWvWrIj42y0ol156aSxZsiQefvjhmDJlSmzevDkq\nKyujX79+UVZW9jZeFQAoDlc2AEAi48aNi+7du8fXvva1aGpqivLy8hg+fHhcdNFFERExduzYWLFi\nRXziE5+IsrKy+PjHPx4nnHBCh3N69eoVn/nMZ2LVqlVx4YUXRvfu3WP06NHxzW9+M0aMGBE1NTUx\nadKkGDduXPzkJz/Z6vMcc8wxMWrUqOjSpUvstNNOMW3atIiImDJlSlx44YVx1113xU477RSXXHJJ\n7Lnnnm3+XoT/r7KyMq699tqYOnVqrFu3Lnr16hXXXHNNsn9Mn3322fH1r389evToEaNHj46TTz45\nJk+eHHfccUeMGDEizjnnnPjmN7/Z7ucbPXp01NbWxtSpUyPLshg2bFgMHjw4Iv72Vp3HH398vOtd\n74q/+7u/i0MPPTSyLItly5bFSSedFFmWxaBBg+LUU09t9bnHjx8fU6ZMiREjRkRExDHHHBM1NTXR\n1NQU9957b4wYMSK6du0avXr1iksvvfTtvzgAUADe+hIAtiM1NTXx4IMPxh577NHZowAAtMltFAAA\nAEBSygYAAAAgKbdRAAAAAEm5sgEAAABIqtDvRlFf3/bbVvXsWRkNDVt/S6881+8oGUWcKY+MIs6U\nR0YRZ8ojo4gz5ZFRxJnyyCjiTHlkFHGmPDKKOFMeGUWcKY+MIs6UR0YRZ8ojo4gz5ZFRxJnyyCji\nTHlkFHGmrR1TVdWtzWO22ysbKiq6FGr9jpJRxJnyyCjiTHlkFHGmPDKKOFMeGUWcKY+MIs6UR0YR\nZ8ojo4gz5ZFRxJnyyCjiTHlkFHGmPDKKOFMeGUWcKY+MIs6UR0YRZ9rWY7bbsgEAAAAoJmUDAAAA\nkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCU\nsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIB\nAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSFZ09QEdULV3Wcvv1x/oBNfkP\nAwAAALTKlQ0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsA\nAACApJQNAAAAQFLKBgAAACCpilI98fr162PSpEmxZs2aeO211+Kss86K+fPnx5IlS6JHjx4REfGl\nL30pjj322FKNAAAAAHSCkpUN999/fwwcODDOOOOMWLlyZZx++unxoQ99KM4555wYOnRoqWIBAACA\nTlaysuHEE09s/vjZZ5+N6urqUkUBAAAABVLy39kwevToOPfcc+P888+PiIiZM2fGqaeeGt/61rfi\nhRdeKHU8AAAAkLOyLMuyUof86U9/igkTJsT5558fPXr0iP79+8ctt9wSzz33XNTW1rZ53KZNTVFR\n0eX/djy4uPWFQw5vfX9H1wMAAABvW8luo3j88cejd+/eseeee0b//v2jqakpDjjggOjdu3dERAwb\nNiwuuuiirT5HQ8O6FttVbayrr29sdX9H17c4tqpbu9a9nWOKmFHEmfLIKOJMeWQUcaY8Moo4Ux4Z\nRZwpj4wizpRHRhFnyiOjiDPlkVHEmfLIKOJMeWQUcaY8Moo4Ux4ZRZwpj4wizpRHRhFn2toxVVXd\n2jymZLdRLF68OG699daIiFi9enWsW7cuamtrY8WKFRERUVdXF/vvv3+p4gEAAIBOUrIrG0aPHh0X\nXHBBjBkzJl599dWora2NysrKGD9+fOyyyy5RWVkZl112WaniAQAAgE5SsrJh5513jquvvnqL/Xfe\neWepIgEAAIACKPm7UQAAAADvLMoGAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAA\nAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAA\nSSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkp\nGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsA\nAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSqujsAYqkaumylttv\n+rh+QE2HjmlrPQAAAOzoXNkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACAp\nZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUD\nAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAA\nAJCUsgEAAABIqqJUT7x+/fqYNGlSrFmzJl577bU466yzol+/fjFhwoRoamqKqqqquPLKK6Nr166l\nGgEAAADoBCUrG+6///4YOHBgnHHGGbFy5co4/fTT49BDD40xY8bECSecENdcc03MmTMnxowZU6oR\nAAAAgE5QstsoTjzxxDjjjDMiIuLZZ5+N6urqqKuri+HDh0dExNChQ2PhwoWligcAAAA6SVmWZVkp\nA0aPHh3PPfdc3HTTTXHaaac1FwzLly+PCRMmxKxZs9o8dtOmpqio6PJ/Ox5c3PrCIYe3vj/V+pQZ\nAAAAsIMr2W0Ub5g1a1b86U9/ivPOOy/e3Gu0p+NoaFjXYruqjXX19Y2t7k+1PmVGi2OrurVr3ds5\nptTrd5SMIs6UR0YRZ8ojo4gz5ZFRxJnyyCjiTHlkFHGmPDKKOFMeGUWcKY+MIs6UR0YRZ8ojo4gz\n5ZFRxJnyyCjiTHlkFHGmrR1TVdWtzWNKdhvF448/Hs8++2xERPTv3z+amppi1113jVdffTUiIlat\nWhV9+/YtVTwAAADQSUpWNixevDhuvfXWiIhYvXp1rFu3Lo466qiYP39+REQsWLAgjjnmmFLFAwAA\nAJ2kZLdRjB49Oi644IIYM2ZMvPrqq1FbWxsDBw6MiRMnxuzZs2OvvfaKkSNHlioeAAAA6CQlKxt2\n3nnnuPrqq7fYf9ttt5UqEgAAACiAkt1GAQAAALwzKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQ\nlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSy\nAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEA\nAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAA\nSErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEiq\norMHeKepWrqs5fbrj/UDapIeAwAAAJ3FlQ0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAA\nJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACRV\n0dkDkF7V0mUtt19/rB9Q06H123JMqvUAAABsv1zZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSU\nDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAkqoo5ZNfccUV8dvf/jY2bdoU\nZ555ZvzHf/xHLFmyJHr06BEREV/60pfi2GOPLeUIAAAAQM5KVjYsWrQonnzyyZg9e3Y0NDTEZz/7\n2TjyyCPjnHPOiaFDh5YqFgAAAOhkJSsbjjjiiPjgBz8YERG77757rF+/PpqamkoVBwAAABREWZZl\nWalDZs+eHYsXL44uXbpEfX19bNy4MXr37h2TJ0+OXr16tXncpk1NUVHR5f92PLi49YVDDm99f6r1\neWS0tT6PjHfqeQMAAFASJf2dDRERv/zlL2POnDlx6623xuOPPx49evSI/v37xy233BI33HBD1NbW\ntnlsQ8O6FttVbayrr29sdX+q9XlktLU+j4x36nm3OLaqW7vWvZ1jiphRxJnyyCjiTHlkFHGmPDKK\nOFMeGUWcKY+MIs6UR0YRZ8ojo4gz5ZFRxJnyyCjiTHlkFHGmPDKKOFMeGUWcaWvHVFV1a/OYkr4b\nxUMPPRQ33XRTTJ8+Pbp16xaDBw+O/v37R0TEsGHD4oknnihlPAAAANAJSlY2NDY2xhVXXBE333xz\n87tPjBs3LlasWBEREXV1dbH//vuXKh4AAADoJCW7jWLevHnR0NAQ48ePb9530kknxfjx42OXXXaJ\nysrKuOyyy0oVDwAAAHSSkpUNJ598cpx88slb7P/sZz9bqkgAAACgAEr6OxsAAACAdx5lAwAAAJCU\nsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACCpis4eADpL1dJl\nLbff9HH9gJoOHZNqPQAAwI7AlQ0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAA\nAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACS\nUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2\nAAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIqqKzBwBaqlq6rOX264/1A2qS\nrAcAACg1VzYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwA\nAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJBURWcPAOSraumylttv+rh+QE2H\njmlrPQAA8M7mygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICk\nlA0AAABAUsoGAAAAICllAwAAAJBURSmf/Iorrojf/va3sWnTpjjzzDPjoIMOigkTJkRTU1NUVVXF\nlVdeGV27di3lCAAAAEDOSlY2LFq0KJ588smYPXt2NDQ0xGc/+9kYPHhwjBkzJk444YS45pprYs6c\nOTFmzJhSjQAAAAB0gpLdRnHEEUfEddddFxERu+++e6xfvz7q6upi+PDhERExdOjQWLhwYaniAQAA\ngE5SsisbunTpEpWVlRERMWfOnPjoRz8aDz/8cPNtE7179476+vqtPkfPnpVRUdHlLbOqqrp1aLaO\nrs8jo4gz5ZFRxJnyyCjiTEkzHlzcct0bHww5PP9ZEq3fUTKKOFMeGUWcKY+MIs6UR0YRZ8ojo4gz\n5ZFRxJnyyCjiTHlkFHGmPDKKOFMeGUWcKY+MIs60LceU9Hc2RET88pe/jDlz5sStt94axx9/fPP+\nLMve8tiGhnUttqvaWFdf39jq/lTr88hoa30eGc47/wznvXVVVd3avTaP9TtKRhFnyiOjiDPlkVHE\nmfLIKOJMeWQUcaY8Moo4Ux4ZRZwpj4wizpRHRhFnyiOjiDPlkVHEmbZ2zNYKiJK+G8VDDz0UN910\nU0yfPj26desWlZWV8eqrr0ZExKpVq6Jv376ljAcAAAA6QcnKhsbGxrjiiivi5ptvjh49ekRExFFH\nHRXz58+PiIgFCxbEMcccU6p4AAAAoJOU7DaKefPmRUNDQ4wfP7553+WXXx4XXnhhzJ49O/baa68Y\nOXJkqeIBAACATlKysuHkk0+Ok08+eYv9t912W6kiAQAAgAJo120UkyZN2mLfl770peTDAAAAANu/\nrV7ZMHfu3Jg1a1Y8+eST8YUvfKF5/8aNG2P16tUlHw4AAADY/my1bPj0pz8dgwYNinPPPTfGjRvX\nvL+8vDw+8IEPlHw4AAAAYPvzlr+zobq6Om6//fZobGyMtWvXNu9vbGxsfpcJAAAAgDe06xdEXnLJ\nJXHnnXdGr169IsuyiIgoKyuLX/3qVyUdDgAAANj+tKtsqKuri0WLFsW73vWuUs8DAAAAbOfa9W4U\n++67r6IBAAAAaJd2Xdmwxx57xBe+8IU47LDDokuXLs37zz777JINBgAAAGyf2lU29OjRIwYPHlzq\nWQAAAIAdQLvKhrPOOqvUcwAAAAA7iHaVDQMGDIiysrLm7bKysujWrVvU1dWVbDAAAABg+9SusuHP\nf/5z88cbNmyIhQsXxrJly0o2FAAAALD9ate7UbxZ165dY8iQIfHII4+UYh4AAABgO9euKxvmzJnT\nYvu5556LVatWlWQgAAAAYPvWrrLht7/9bYvt3XbbLa699tqSDAQAAABs39pVNlx22WUREbF27doo\nKyuL7t27l3QoAAAAYPvVrrLhd7/7XUyYMCFeeeWVyLIsevToEVdeeWUcdNBBpZ4PAAAA2M60q2y4\n+uqr44c//GEccMABERGxdOnSmDZtWvzzP/9zSYcDAAAAtj/tejeK8vLy5qIhImLAgAHRpUuXkg0F\nAAAAbL/aXTbMnz8/Xn755Xj55Zdj3rx5ygYAAACgVe26jWLKlCkxderUuPDCC6O8vDz69esXl1xy\nSalnAwAAALZD7bqy4ZFHHomuXbvGo48+GnV1dZFlWTz44IOlng0AAADYDrWrbJg7d27ccMMNzdu3\n3npr/PznPy/ZUAAAAMD2q123UTQ1NbX4HQ1lZWWRZVnJhgLeeaqWLmu5/fpj/YCakq7PI6Ot9Xll\nAABA3tpVNgwbNixGjx4dhx12WGzevDkWLVoUxx9/fKlnAwAAALZD7SobzjrrrPjwhz8cjz32WJSV\nlcV3v/vdOOSQQ0o9GwAAALAdalfZEBFx+OGHx+GHH17KWQAAAIAdQLt+QSQAAABAeykbAAAAgKSU\nDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICkKjp7\nAABKp2rpspbbb/q4fkBNh45paz0AAPx/rmwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAA\nICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACAp\nZQMAAACQVEVnDwDA9q1q6bKW268/1g+oSXoMAADbD1c2AAAAAEkpGwAAAICklA0AAABAUsoGAAAA\nICllAwAAAJCUsgEAAABIStl5q/omAAAgAElEQVQAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApEpa\nNjzxxBNx3HHHxcyZMyMiYtKkSfGpT30qxo4dG2PHjo0HHniglPEAAABAJ6go1ROvW7cupk6dGoMH\nD26x/5xzzomhQ4eWKhYAAADoZCW7sqFr164xffr06Nu3b6kiAAAAgAIq2ZUNFRUVUVGx5dPPnDkz\nbrvttujdu3dMnjw5evXq1eZz9OxZGRUVXd4yq6qqW4dm6+j6PDKKOFMeGUWcKY+MIs6UR0YRZ8oj\no4gz5ZGRdKYHF7dc98YHQw7v2PqtHdPeWRKtzyOjiDPlkVHEmfLIKOJMeWQUcaY8Moo4Ux4ZRZwp\nj4wizpRHRhFnyiOjiDNtyzElKxta85nPfCZ69OgR/fv3j1tuuSVuuOGGqK2tbXN9Q8O6FttVbayr\nr29sdX+q9XlktLU+jwznnX+G884/w3nnn7G9nXeL46u6tWvdtq7PI6OIM+WRUcSZ8sgo4kx5ZBRx\npjwyijhTHhlFnCmPjCLOlEdGEWfKI6OIM23tmK0VELm+G8XgwYOjf//+ERExbNiweOKJJ/KMBwAA\nAHKQa9kwbty4WLFiRURE1NXVxf77759nPAAAAJCDkt1G8fjjj8f3vve9WLlyZVRUVMT8+fPjlFNO\nifHjx8cuu+wSlZWVcdlll5UqHgAAAOgkJSsbBg4cGLfffvsW+0eMGFGqSAAAAKAAcr2NAgAAANjx\nKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASVV0\n9gAAUARVS5e13H79sX5ATZL1AADvJK5sAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACAp\nZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUD\nAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAA\nAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJKRsAAACApJQNAAAAQFLKBgAAACApZQMAAACQ\nlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSy\nAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAElVdPYAAPBOUbV0Wcvt1x/rB9SUdH0eGW2tBwDemVzZ\nAAAAACSlbAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAA\nAAAkpWwAAAAAkipp2fDEE0/EcccdFzNnzoyIiGeffTbGjh0bY8aMibPPPjs2bNhQyngAAACgE5Ss\nbFi3bl1MnTo1Bg8e3LzvBz/4QYwZMybuuOOO2HfffWPOnDmligcAAAA6ScnKhq5du8b06dOjb9++\nzfvq6upi+PDhERExdOjQWLhwYaniAQAAgE5SUbInrqiIioqWT79+/fro2rVrRET07t076uvrt/oc\nPXtWRkVFl7fMqqrq1qHZOro+j4wizpRHRhFnyiOjiDPlkVHEmfLIKOJMeWQUcaY8Moo4Ux4ZW13/\n4OKWa9/4YMjh+c+yA2cUcaY8Moo4Ux4ZRZwpj4wizpRHRhFnyiOjiDPlkVHEmbblmJKVDW8ly7K3\nXNPQsK7FdlUb6+rrG1vdn2p9Hhltrc8jw3nnn+G8889w3vlnOO/8M3aU825xbFW3dq3b1vU7SkYR\nZ8ojo4gz5ZFRxJnyyCjiTHlkFHGmPDKKOFMeGUWcaWvHbK2AyPXdKCorK+PVV1+NiIhVq1a1uMUC\nAAAA2DHkWjYcddRRMX/+/IiIWLBgQRxzzDF5xgMAAAA5KNltFI8//nh873vfi5UrV0ZFRUXMnz8/\nrrrqqpg0aVLMnj079tprrxg5cmSp4gEAAIBOUrKyYeDAgXH77bdvsf+2224rVSQAAABQALneRgEA\nAADs+JQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASVV09gAA\nAG9WtXRZy+3XH+sH1HRo/bYck2o9ALzTubIBAAAASErZAAAAACSlbAAAAACSUjYAAAAASSkbAAAA\ngKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICk\nlA0AAABAUhWdPQAAwI6oaumyltuvP9YPqCnp+q0dAwB5cWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwA\nAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAA\nAJJSNgAAAABJVXT2AAAA5KNq6bKW268/1g+oSbIeAN7gygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAA\nAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEAAABIStkAAAAA\nJKVsAAAAAJJSNgAAAABJVXT2AAAA7Diqli5ruf36Y/2AmpKuzyOjrfUAbMmVDQAAAEBSygYAAAAg\nKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAIKmK\nPMPq6uri7LPPjv333z8iIg444ICYPHlyniMAAAAAJZZr2RAR8eEPfzh+8IMf5B0LAAAA5MRtFAAA\nAEBSuV/Z8N///d/x1a9+NV588cX4xje+EUcffXSba3v2rIyKii5v+ZxVVd06NENH1+eRUcSZ8sgo\n4kx5ZBRxpjwyijhTHhlFnCmPjCLOlEdGEWfKI6OIM+WRUcSZ8sgo4kx5ZGx1/YOLW65944Mhh6dZ\n35FZEh1TxIwizpRHRhFnyiOjiDPlkVHEmbblmFzLhve+973xjW98I0444YRYsWJFnHrqqbFgwYLo\n2rVrq+sbGta12K5qdVVEfX1jq/tTrc8jo631eWQ47/wznHf+Gc47/wznnX+G884/w3nnn/FOPe8W\nx1Z1a9e6t3NMETOKOFMeGUWcKY+MIs6UR0YRZ9raMVsrIHK9jaK6ujpOPPHEKCsri/e85z3Rp0+f\nWLVqVZ4jAAAAACWWa9kwd+7c+PGPfxwREfX19bFmzZqorq7OcwQAAACgxHK9jWLYsGFx7rnnxq9+\n9avYuHFjXHTRRW3eQgEAAABsn3ItG3bbbbe46aab8owEAAAAcuatLwEAAICklA0AAABAUsoGAAAA\nICllAwAAAJCUsgEAAABIStkAAAAAJKVsAAAAAJJSNgAAAABJVXT2AAAAwNZVLV3WcvtNH9cPqOnQ\nManWA2yNKxsAAACApJQNAAAAQFLKBgAAACApZQMAAACQlLIBAAAASErZAAAAACSlbAAAAACSUjYA\nAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkVdHZAwAAANunqqXL\nWm6//lg/oKak6/PIaGv9th4D7zSubAAAAACSUjYAAAAASSkbAAAAgKSUDQAAAEBSygYAAAAgKWUD\nAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAIKmKzh4A\nAABgR1a1dFnL7dcf6wfUdGj9thyTav22HsM7lysbAAAAgKSUDQAAAEBSygYAAAAgKWUDAAAAkJSy\nAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICklA0AAABAUsoGAAAAICllAwAAAJCUsgEA\nAABIStkAAAAAJFXR2QMAAACw46lauqzl9uuP9QNqOrR+W45JtT6PjB3lvP8/VzYAAAAASSkbAAAA\ngKSUDQAAAEBSygYAAAAgKWUDAAAAkJSyAQAAAEhK2QAAAAAkpWwAAAAAklI2AAAAAEkpGwAAAICk\nKvIOvPTSS+MPf/hDlJWVxfnnnx8f/OAH8x4BAAAAKKFcy4b//M//jL/+9a8xe/bseOqpp+L888+P\n2bNn5zkCAAAAUGK53kaxcOHCOO644yIi4v3vf3+8+OKL8fLLL+c5AgAAAFBiZVmWZXmFTZ48OYYM\nGdJcOIwZMyamTZsW++23X14jAAAAACXWqb8gMseeAwAAAMhJrmVD3759Y/Xq1c3bzz//fFRVVeU5\nAgAAAFBiuZYNRx99dMyfPz8iIpYsWRJ9+/aN3XbbLc8RAAAAgBLL9d0oDj300DjwwANj9OjRUVZW\nFt/97nfzjAcAAABykOsviAQAAAB2fJ36CyIBAACAHY+yAQAAAEgq19/ZAAAAAHSeLMuirKxsq2te\neeWV5neSrKqqisrKyg7nKBsAAABgB/Twww/HtGnTolevXjFx4sSYMmVKPP/887HrrrvGxRdfHB/+\n8IdbrP/jH/8Y06ZNi5deeil69uwZWZbF888/H9XV1VFbWxs1NTXtzu5y0UUXXZT4fJJ68MEH473v\nfW9ERKxduzauvPLK+Md//MdYsmRJHHTQQbHLLrtsccyaNWvixhtvjF/84hdRWVkZe++9d/PnLr74\n4hgyZEiL9Zs3b4558+bFbbfdFj/96U9j7ty58bvf/S7Kysqas9/O+oiIDRs2xH333RcvvfRS7LXX\nXnHvvffGrFmzYvny5dGvX7+oqGh/73PVVVfFUUcdtcX+2tra6NOnT1RXV7freRoaGuL222+Pp59+\nOvr16xc333xzTJ8+PZYsWRIDBgzY4rVtbGyMGTNmxF/+8pfo169fzJw5M/7lX/4lnnzyyejfv390\n7dq13ecQEfGTn/wkDjnkkJJkfPvb344RI0a0+rlbbrkl9t5773a/7WpHX6c3zuM3v/lN7LfffvHS\nSy/FddddFzNmzNjqMW1p7XV6w+9///uYM2dO/OIXv4gHHnggnnzyyejevXv06tVri7VLly6Nqqqq\niPjbn8cZM2bET3/601i+fHkMGDBgiz+DGzdujKVLl0Z1dXVs3LgxZs+eHXfffXcsX748ampq2v1n\nduzYsXHSSSe1+rnXXnstfvazn8XDDz8cvXv3jp49ezZ/7oc//GEcccQRrR730EMPxaxZs+Kee+6J\nBQsWxO9///soLy+PffbZ523PtC3fczr6d6+j36MiOv5abcv3qY6+rhs3boyf/exnccstt8SMGTPi\nzjvvjIceeiheeeWVqKmpifLylnfqdfTv3qZNm+K+++6L1atXxz777BP3339//PznP49Vq1bFBz7w\ngS2ef1tm2paMjv5d6uj3tY7+eXojI9X3nLb+G9OarX2v7ejXYlvOYVv+vv5/W/t+8FZae6225Xtn\nR1+rbf2Z4qWXXoqFCxfGo48+GkuXLo3Vq1dHnz592v3f1q29VtvyfS2P751t2dqf8478t7Wjfwa3\n5WeKUv98F1H6n4W35WvX0Yxt+Rmyo8d09PtUR/9ub0tGHj+3tGZr3w+29WfnUn4t8jqPUv87dFte\nq4kTJ8bNN98cgwcPjtNPPz2uv/76mDBhQgwdOjSmTp0ao0aNarF+/PjxMW3atBg3blyMGjUqRo0a\nFaeeemr069cvLrnkki3Wb03h343i1FNPjRkzZkTE336oqampieHDh0ddXV38+te/jptuummLY04/\n/fQYPnx49OrVK+6444448sgj4+tf//oWz/eG2tra2HPPPePoo4+Ohx9+OLIsi4MPPjjuuuuuqK6u\njokTJ76t9RF/+6LtsssusXr16th3331j7dq1MXz48HjsscfimWeeieuuu67F+vXr17f5mpxxxhkx\nc+bMLfZ/+tOfjoEDB8bLL78cp5xyyhYtVWvPc/DB/9vemQdFceVx/IsXLmo0iCRqghGNcSXiSkQE\nDw4RESMGD1ABQZAVFXQ1XrgimmxhNKuuYUWjxmh5pjTrueKxGPDgXFFECo3iBXIfgnIoML/9w5re\nGaYH6QZGN/v7VFGlPb/Xv+u9X7953f1mEAoKClBcXIzevXvDyckJN2/eRExMDHbt2qUmHxgYiMGD\nB6OsrAwpKSmwsLCAjY0N0tLSkJGRge+++65BffURy4UcHQ4ODsJjQMrurJxA6enpITo6Wk1+7Nix\n6NWrFz766CN4e3u/9guq1DgBwKxZs+Di4oKpU6fiyy+/RN++fTFixAikp6cjOjoaO3fubFKcAGDz\n5s0oLi7G8OHDERcXh86dO+PDDz/EiRMn4OTkBF9fX63nCQsLg56eHuzt7ZGUlIS8vDxs3LhRTX7B\nggXo378/5s2bh7CwMCgUCgwfPhzp6el4/PixRp8FgP79+8PY2Bht27YVclFYWIhu3bqJ5iIoKAgm\nJiYwNDTEiRMn4O/vjy+++KJBv9euXYvy8nI4ODgIE7/8/HycP38evXr10hh/Um2SU3Okjj2pNUpO\nrKTWKalxBYBFixbBxMQE9vb26Nq1K4gI+fn5OHfuHMrLy7FhwwY1ealjb8mSJTAwMEB5eTkUCgVa\ntWoFa2trpKWloa6uDuvWrWuyTXJ0SB1LUuua1P4ESK85cq4xUmut1FzIqZtSx6vUeiAnVnJqp9RY\nSZ1TAMDRo0exd+9eWFhYwNDQUNBx/fp1BAcHY/z48U2KlZy61tK1U04/b8q1tTF9UM6coqXnd0DL\nz4Xl9A+pOuTMIaW2kVqnpI5tOTp0MW+RWg/k9MGWzoWu/Gjp76FyYqWq18nJCefPnxc+8/b2xr59\n+9Tkp02bhsOHD2vofd1notBbjre3t/DvmTNnqn3m5eUl2kb1eF1dHS1evJgiIiK0tql/zMfHR/j3\nlClTmiyv2qampobs7Oyorq5O+MzT01ND3szMjOzt7dX+HBwcyN7enszNzRvUcf/+fVqzZg25urrS\nqlWraP/+/XTmzBkNeWVsFQoFOTk5NeijqjwRkbOzs9bPVBk2bJjon5WVFZmZmTWLjkOHDpGfnx+l\npqYKx9zd3UVlif7rW1xcHM2ZM4d8fHxo27Zt9Msvv6ido77exsaJSL0f1JeZPn26hrzUOImd18/P\nj4iIamtryc3NrUH5+n1OzI+pU6cK/54xY4baZ2J9lojo0qVL5OXlRWfPnhWONSYXREQVFRXk4+ND\nP//8s1abiMTj19BnUm1qSs1p7NiTWqPqH29MrKTWKalxJdLeD7R9JnXsqfrg6Oio9bPmsEmKDqlj\nSWpdk9qfiKTXHDnXGKm1VmoupPpAJH28Sq0HRNJjJad2yu23jZ1TEL3ys7q6WuP48+fPycPDQ+N4\nU+q51LrWUrWzKXMpJa+7tkrtg3LmFC09vxM73txz4aZe9xqjQ84cUmobqXVK6tiWo0MX8xa5cykp\nfbClc0GkGz9a+nuoql1EjYtVUFAQbdq0iUJDQ8nf359CQ0Pp/PnztGHDBlq4cKGGfHh4OM2ZM4eO\nHDlC0dHRFB0dTT/99BP5+fnRxo0bRW3Sxlv/axSlpaWIjY1FbGws2rVrh9u3bwMAsrKytK5Yt2nT\nBufOnQMRoVWrVvj222+RlZWFVatWoaKiQkOeiHDlyhWUlZXh+PHjaN++PYBXjyWJIVUeePUYVUVF\nBdq0aYMFCxYIj00VFhbixYsXGvLLli3DhAkTcPHiReEvOjoaFy9ehLm5uagO5R2n3r17IywsDEeP\nHsW4cePw/PlzXLt2TUO+trYWT548gZ6eHlatWiUcv337NmpqakTlHz16hOvXr6OsrAw3btwAAGRm\nZorKA8DkyZMRHByM+Ph4tb+EhAQMHjy4WXRMmzYN3377LQ4dOoS1a9fi2bNnDW54ovzM2toa27dv\nx/r169G1a1dcvHgR27Zta3KcAMDExATh4eFIS0uDlZUVzpw5g6KiIvzjH/8QHr9uSpyAV4/R3r9/\nHwDw73//G3V1dQCAe/fuicpXVVUhMzMT9+7dg6GhIbKysgC8ehRLbFx07twZe/fuRUlJCYYPH46b\nN28CABITE6Gvry+qY+TIkfjhhx9w584dzJ8/H1lZWQ3mQqFQ4NatWwAAAwMDREZG4tSpU9i+fTtq\na2u1tklPT9c4rnzkrKk2yak5UseethoVGhoqmgul31JiJbVOaYvrtWvXtMZLT08P58+fVxsHL1++\nxMmTJ0UfV5U69pR1MycnB+Xl5cjOzgbwKkcvX75sFpvk6FCOpbt37zZqLEmta1L7EyC95si5xsip\ntVJyIdUH4L/jNSYmplHjVWo9kBMrObVTbr9t7JwCAOrq6rTWCoVCoXFcaqzatGmDs2fPSqprLV07\n5fRzqddWqX1Qzpyiped3gPo148SJE80+F9bWP7TNzeXokDOHlNpGap3S09PDuXPnGj225eiQ2geV\ndgGN71NS64GcPtjUXERFRb32mqELP6TWQqljT06s1q9fD2NjYwwbNgy7du3CkCFDcPXqVRgZGSE8\nPFxDPiQkBP7+/sjJyUFMTAxiYmJQUFCAoKAgLF68WKtdokhamngDrFixQu0vPj6eiouLKSgoiBIT\nE0Xb5Obm0ooVK6iqqko4VlxcTCdPnhRdvc/MzKS5c+eSi4sLLVq0iHJycig7O5s2bdpE9+/ff618\nXl4eFRcX05YtW+jBgweiNkVHR5Ovr6/asUuXLpGtrS1dunRJtM3x48epoqJCzQciom3btonKL1iw\nQOOYso0Y169f11jNOnPmDE2YMIFu3bqlIZ+cnEyTJk2i2bNn071798jHx4d+//vfk6urK12/fl1U\nh0KhoO+//17NDyVff/31a3XMnDmTrK2tafz48Vp1qJKQkECenp4aq3yqaFvd1kb9ONXU1NCPP/5I\nLi4uonFSyhw4cIBmz55N48aNI2dnZ3JxcaHvv/9erV8qUcapsrJS7RiReJyIiFJSUsjV1ZWsra3J\n3d2d7t69S0REISEhdO3aNQ15Ly8v8vb2Ji8vL/Ly8qILFy4QEZGvry9FRUVpyD979ow2bNhA48aN\nI0tLSzI3N6exY8dSWFhYg/1KyYMHD+iPf/wjjR49WqvM7du3ycvLS61/vHjxgrZt20YjRowQbZOR\nkUHe3t7k4OBAbm5u9MUXX5CdnR35+fnRvXv3XmvT7NmzacCAAVRbWysqU7/mXLlyhbKzsxusOfXH\nXk1NDWVnZ1NNTY2ofG5uLi1fvlzoC0r5Y8eOidYoov/G6vnz58Kx2tpaioyMFI2Vsk6NHz9eqFNx\ncXEUEREhWqcyMjJo5syZQlzd3NxeG1dlrXVwcCAbGxuytrYmR0dHCg0NpcLCQg15sRV9ZT8X49y5\nczRq1ChydXWlxMREcnV1pQkTJpCtrS1FR0c3yqahQ4dS//79aeXKlVRQUCCqY+TIkTRhwgRKTEyk\nCRMmvFaHciwpx9O//vUvUigUNGvWLNGxVL+u+fr60tChQ7XWTrFaHhcXpzVOROI1Z/r06bRjxw7R\nu9lERMeOHRPGnmqf1XaNUSUxMZG8vLw07vSooszF6NGjycbGhmxsbBrsH/V9cHR0JHt7e9q6dato\n3SQSnyPExcVRcHCw1vGqRFmjxowZ81p/jx8/Ts+fP6fi4mIqKioSjovFSlk7XVxcyNLSkgYNGkRO\nTk4N1k7VWPXv358+/fRTIVZi/VZsThETE0N2dnZa5xQnTpygsWPH0tKlS2ndunW0bt06Wrx4MTk5\nOdG5c+e0+q5QKCg1NZV8fHwarOeqcy/VOGmbexH9t68rFAqN2GrToVo7iV6NjYZ0qPZzpTyR9rlU\nSkoKTZw4kWxsbIRrq0KhoJUrV1JKSoqGvNR5qtjcKyoqiiZOnKh1TiF1fpeSkkILFy5Ui+v58+cb\n1CF2zVDObRszF87NzSUiou+++46Sk5M15KXOzevrmDlzJuXl5RERUUREhKhNycnJNHnyZEnzVGUb\nPz8/Sk5OJl9fX7KxsSFXV1fRfCvrVEBAALm4uNC4cePI09OTduzYIVqn6tfB110n6+tozBxS2feW\nLVtGAQEBdOrUKSIiCg4OpoSEBFEdqmNPzOaGaMz8Tup3DCL1XCivldbW1uTq6irap+rnwtnZmby8\nvGjHjh2v9UGhUGhcA8TaiPlx4cIFrTYpz7NixQqNa++JEyc0nqAkangsiT31SUSUlJSkMa9Qxqox\n35d0yVv/axTOzs6Ijo7GV199hfj4eISEhKBDhw6orKzUuhJ6584dtG3bFu3bt0d8fDxWrlyJjh07\noqKiAqGhoRryBw8eRGRkJAAgLi4OM2bMgJGREYqLizFkyBD07t1bTT4rKwtGRkaIjIxEfHw8pk2b\nJthkbm4uupnHl19+iUmTJqG4uBhdu3YFAFhZWSE6OhqtW7fWkI+NjcW1a9cwceJEwQelDjEfAGDS\npElYvXq1ECvVNqtXr4adnZ2afFlZGd555x0A0JAvLCzUOH9FRQXMzMyE8z969AimpqZ49uwZSktL\nRW367LPP4ObmhqqqKo2fS1FdIVRy9uxZ/PzzzwBe5eLx48fo2bMniouLUV5eLqrDwsICbm5umDdv\nHqysrGBhYYGMjAxRWQBITU3F119/jXnz5gm5aIjTp0/jb3/7m2DTn//8ZxgZGaGqqgolJSWiba5e\nvYrbt29j586darE9fPgw+vXrp5GLuLg4HDt2DLGxsRq7xK5du1ZUh7+/v+C3qh9iK5QAcOvWLUya\nNElD/scffxSVHzVqFNzc3LBv375GxQl41W+V4zU3Nxe//vorWrVqBQcHB9E+WFhYiKKiIgQEBAh+\nFxYWwsDAAH/9619FdcyYMQNubm7YsGGDcDfP0NBQ64Zof/nLX4S+lpOTg3v37uGDDz7AmDFjsHbt\nWowcOVJNvkOHDoK8ar6Li4tRXV0tqkN1Bb1+GzEdu3btwjfffKMm361bNxQVFUHbnr3Tp0+Hm5sb\nqqur0aFDBwBA69atMXfuXMydO1dD/ubNm3BychJ+2ig+Ph6RkZGYN28ebty4oVGnioqKUFBQAGNj\nYyxbtgxLly5FTU0NsorXpwkAAA3eSURBVLOzUVRUhD59+mjoUNba6OhooZ/r6+vjypUrcHBw0Mj3\nnDlzMG7cOLXdkJX5FtsN2cDAAAYGBujYsSPat2+PVq1a4f79+3j//feFGNRn165dwj4LytiamJgg\nPj4ezs7OGnc7li9frjYuTpw4gZKSErz77ruiG3cp/ai/q/OaNWtgYGCgtnGnkuzsbHh5eQF4tcOz\nq6srsrOzMWvWLDx8+FBjA1g7OzscP35c+D8RYdu2bZg3bx4ACHt1qHL69GkYGBjAxcVFOLZt2zZ0\n69YNUVFRGm1Ux0X9PqutD9bfzbqiogJ5eXlwdnbG2rVrYWVlpSafkJAAKysrtbxGRkbCwsICV65c\n0bDpm2++wapVqzBjxgw1m44ePYqBAwdqjCMAgk5lP8/NzRVilZOToyGvGlfg1Rxj69atwnGx2D54\n8ABRUVHYtWsXsrOz0adPH5SVlcHMzAwhISEa8qmpqbh48SIMDQ0RHh4u9POEhAS4uLiIvhtdVVWF\n0tJS/O53v0P79u1hamqK8vJyYS+R+rRr1w55eXnw9PQU+mB2djY6deqk9W6pq6srxowZg9TUVBQX\nFwMAjI2NYW5uLvrExYMHD7B+/Xo8efIE2dnZMDU1BRHhT3/6E0JCQjQ2llP6MHXqVCFO5eXlGDBg\ngOgeEgCwcOFCBAYGCjpU24jpSEhIwLBhw3D27FkA6mNj2rRpGudX5lX5frKq/Pvvvy9qU0VFBV68\neCHsVbN8+XLheuzq6qohP3bsWKxbtw7du3fHypUrsWTJEtTV1aGyshKVlZUa8g8fPlQb46o23b17\nF2ZmZhpt3NzcMHbsWA0dVVVVCAsL09hwrnPnzqiurhZqjWqfNTIyEvX78ePHyMzMRPfu3REYGIiA\ngABBx6BBgzTmwpmZmcjIyEBlZSU+/fRTYePf4OBg0ffSb9++jZSUFAQGBgo+KBQKYY4qhp6enrCX\nzs2bNzF//nzBD7Gf4Hv+/DmePXuGjh07oq6uDiUlJcLmgWVlZaI6DA0NYWRkhCdPniAgIACmpqYw\nMDBA79690aNHDw35rKwsXLp0Cbm5ucjJyYGpqSny8/ORnp6OsrIy4a50fb8/+OADhISECH5fvnwZ\no0ePFt0Y8+rVq9i7dy+6d++OzZs3Y+nSpairq8Phw4fxySefaLQJCAjAhg0bhHFUUlKCLVu2wMzM\nTOsGg59//jns7e1RVVUFW1tbhIaGCjlctmyZRv5iYmLU+nlubi6ICA4ODqJ98OnTp8jIyICvr6/G\nuFD+lGJ9SktLUVxcjKysLOzYsQMRERGCTWJ9KiYmBjt37kRlZSXs7OzUfNC2D8iFCxcQHh4u+L1x\n40bh+6SY34WFhUhNTcWwYcOEODk6OsLR0VGrjrS0NCQkJMDW1lYttq6urjhy5IiGvKmpqfA9VBVt\nYwkALC0the9LgPpcXlubN8abW+doHJMmTRJW/jw9Penx48dERFRSUqL2XmRT2qje6Z4xY4YgX1BQ\nIPoejxybvLy8KCkpiXx8fGjFihWUlJSk9a6nrvxuaXk5fkvNhRwdurBJaqymTZtG+fn59Ouvv5KV\nlRVlZGQQEVF2drbW985a2m+p8nL9LigoaHG/lTQmf3LyLbWNVJuUbaT47ejoSFOmTKGIiAjhb9So\nUcK/61M/F7dv3yaihnPR0v1cjk1SYyunn0u1SywXtra2WnMhNXdy2sjpg/Xz19x+y7FJqt9yYuvt\n7S3YkpmZSWvWrCEiotjYWNGndaTGSa4OqbXz5cuXdOjQIQoODiYPDw/y8PCgBQsW0JEjR0Sf9JJq\nk1R5OW10kW+psXV3d6cnT55QcnIy2dvbC/KFhYU0efLkZrFJqg45uZCqY8qUKVRaWkp1dXX0008/\nkbu7O5WXlxOR+FNsUs8vxw9d6NCFTbrIt2r+Dh8+3Oz5k+O3VJuk9sGm6miM/OvaiD1dvX//fq1/\n2p4elNPmTfHWP9lQW1sr3MHq1KmT8PMhXbp0EXYRbY42SpS7DgOv7laK3S2Vc349PT1YWlpiz549\nSEtLw5EjRxAaGooOHTqga9eu2LFjh879bqp8z549m91vVRqTCzk6dGGT1Fi1bdsWxsbGMDY2xjvv\nvIP+/fsDAHr27Cn65Isu/JYTJzl+d+vWDd26dWtRv5U0Nn9y5RvbRo5NUv0+ffo0IiMjcefOHaxY\nsQI9e/bE5cuXERQUJHr++rlQ/oZyQ7lo6X4uxyapsZXTz6XaJTUXUuXltJHTB+vnr7n9lmOTLmL7\n8uVLwZaPPvoId+7cAfDq6a+IiAgNealxkqtDau1ctmwZTExM4Ofnp7ErfkhIiMau+FJtkiovp40u\n8i01tu3atUOPHj3Qo0cPGBsbC/JGRkaiT4zIsUmqDjm5kKqjdevW6NKlCwDA3d0dhoaG8Pf3x/bt\n20XfgZd6fjl+6EKHLmzSRb5V8+fh4YGuXbs2a/7k+C3VJql9sKk6GiP/ujZi7NmzB9bW1jA2Ntb4\nTNv+ZXLavCne+sUG5c+7DR8+HF26dMG8efMwePBgJCYmYurUqc3S5u7du1i4cCGICI8ePUJUVBTG\njRuH3bt3o1OnTs1ik+rEe+DAgRg4cCAAoKCgQPSVBV343VT5+fPnN7vfUnMhR4cubJIaq86dO2Pz\n5s0oLS2FiYkJVq9ejZEjR+LGjRtaX2Foab+lyr+tfkvNn5x860KHVL/19fWxaNEi3L9/H1999RUG\nDx4s+ji2Ejm5aOl8y7FJamzl9HOpdknNhVR5OW3k9MGW9luOTbqIbb9+/bB48WKYm5vj8uXLwqsb\nK1euRN++fZscJ13pKCwsxObNm9WOmZiYwNLSUnjNpyk2SZWX00YX+ZYa265du+KHH36Av7+/8HNw\neXl52L17t+irGnJskqpDTi6k6rCwsMCcOXOwZcsWtG/fHo6OjtDX14evry+ePn3a5PPL8UMXOnRh\nky7y3dL5k+O3VJukyr+tOrZu3Sq82lj/NbjExERRHXLavCn06HW3+t8Cnj59iri4ODx58gREBCMj\nIwwfPlzjXT65bZKSktT+36tXL7z33ns4deoUHBwcRN8NlmrT0aNHMWXKlLfKb13IS/VbTi6k6tCF\nTYC0WFVWVuLYsWN499134eLigpMnTyIlJQW9evWCh4eH6LuJLe23nD4LvH1+S82fnHzrQofcfCg5\nfvw4YmNjNb5sKJGTC6Bl8y3HJqmxlRNXubFS8rpcNFW+MW3k9MGW9lturZWiQ448ESE6OhoPHz5E\nv379MGrUKACv3sX+5JNPNO5uyYmTLnR4e3vD29sb9vb2aNu2LYBXd0TPnTuHY8eOYffu3U2ySaq8\n3DaqtES+pca2uroaFy9eVNsvJT09HcnJyZg+fbrWu7hSbJKqQ05c5fiRmJiIoUOHqp3v+fPnOHPm\nDNzd3Zt8fql+6EKHLmzSRb6Bls2f3HEhxSY58m+rjqqqKujr62vsFZWeni66j4vcNm+C/4nFBoZh\nGIZhGEY+eXl52LJlC5KSkoSfw+vQoQOsra0RFBQk+jguwzAMwzQFXmxgGIZhGIb5P+at272cYRiG\n+U3w1u/ZwDAMwzAMwzSNAwcOaP0sPz9fh5YwDMMw/y/wYgPDMAzDMMxvnP+l3csZhmGY3wa82MAw\nDMMwDPMb539p93KGYRjmtwHv2cAwDMMwDPN/wP/K7uUMwzDMbwNebGAYhmEYhmEYhmEYpllp9XoR\nhmEYhmEYhmEYhmGYxsOLDQzDMAzDMAzDMAzDNCu82MAwDMMwDMMwDMMwTLPCiw0MwzAMwzAMwzAM\nwzQr/NOXDMMwDMNIJj8/H0uWLAEAVFdXw8PDA0OGDEFoaCgUCgX09fWxbt06vPfee4iMjERMTAza\ntGmDjz/+GKtWrUJ+fj7mzp2Lfv364eOPP0ZgYCA2bdqElJQUVFdXw9LSEsuWLYOent4b9pRhGIZh\nGDnwkw0MwzAMw0gmKioKpqam2LdvH/bv34/q6mqEhYXB398fBw4cwOTJkxEVFYXr16/j/PnzOHDg\nAA4ePIjS0lKcPn0aAJCZmYn58+cjMDAQUVFRyM/Px/79+3H06FE8fvwYv/zyyxv2kmEYhmEYufCT\nDQzDMAzDSGbkyJE4ePAgVqxYAVtbW3h4eGDjxo0YOnQoAGD8+PEAgD179sDS0hJt27YFAAwdOhRp\naWmwtLRE586dYWpqCgBITEzEjRs34O3tDQB49uwZsrOz34BnDMMwDMM0B7zYwDAMwzCMZPr06YN/\n/vOfSE5OxtmzZ7F3714AgEKhUJOr/xoEEQnHlAsQANCuXTu4u7vD39+/hS1nGIZhGEYX8GsUDMMw\nDMNI5tSpU0hLS4ONjQ3CwsKQm5sLc3NzXL58GQBw5swZbNq0CX/4wx+QmJiImpoaAEB8fDwGDRqk\ncb7PPvsMFy5cQG1tLQDg73//Ox4+fKgzfxiGYRiGaV74yQaGYRiGYSTTt29fhIWFoV27diAiBAQE\nYMSIEQgNDcXBgwfRpk0bhIeHo3v37hg/fjw8PT3RqlUrmJmZ4fPPP0dOTo7a+ZycnHDjxg1MmzYN\nrVu3xoABA/Dhhx++Ie8YhmEYhmkqekREb9oIhmEYhmEYhmEYhmF+O/BrFAzDMAzDMAzDMAzDNCu8\n2MAwDMMwDMMwDMMwTLPCiw0MwzAMwzAMwzAMwzQrvNjAMAzDMAzDMAzDMEyzwosNDMMwDMMwDMMw\nDMM0K7zYwDAMwzAMwzAMwzBMs8KLDQzDMAzDMAzDMAzDNCv/AWsOl6+8/9tMAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "Om9KcvtS6zoC",
- "colab_type": "code",
- "outputId": "7653c751-cecc-455a-ac69-26d4a231693e",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 418
- }
- },
- "cell_type": "code",
- "source": [
- "# for better visualization we will plot it again using seaborn\n",
- "\n",
- "sns.countplot(x = data['parental level of education'], data = data, hue = data['grades'], palette = 'pastel')\n",
- "plt.show()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "/usr/local/lib/python3.6/dist-packages/seaborn/categorical.py:1468: FutureWarning: remove_na is deprecated and is a private function. Do not use.\n",
- " stat_data = remove_na(group_data[hue_mask])\n"
- ],
- "name": "stderr"
- },
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFYCAYAAACVhB8+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlcVOX+B/DPMDAiiogIKBZYbqTi\nbr60yFDKNC3yelNR7JaWS7hUCijuqLjvlZZC5XLFH+rNXELFzDJEM5fcFRURFRABkXUYnt8fXOaC\nDHBEDsMZPu+/YDhznu88c858eM45cx6VEEKAiIiIFMHM2AUQERGRdAxuIiIiBWFwExERKQiDm4iI\nSEEY3ERERArC4CYiIlIQc2MXUJakpHRjl0BERFSl7O2ty/w7R9xEREQKwuAmIiJSEAY3ERGRgjC4\niYiIFITBTUREpCAMbiIiIgVhcBMRESkIg5uIiEhBGNxP8PX9BImJCcYug4iIyCAGNxERkYJU61ue\nVkRSUiIWLJiDJk2eh7m5Gjdv3kROTjbs7R3w8cdjcPjwIdy4EYPHj9PRr98AeHr2wdatP+Dvv8/B\n0bER0tJSAQAxMdfxzTdfokGDhlCpgM8/90ds7C1s2PA16tWzQUbGY0ybNhtWVlZGfsVERFSTmFxw\n79nzI958sy/69u2PLVu+x82bN5Gc/ABff70RKpUK9evbYu7cYKSmpsLf/zP07NkL+/fvwaZN26HT\n6TBw4NsAgPXr12Ls2Al44YUXERr6LX799Rc8fJgMN7f2GDrUB3fvxgMQxn2xRERU45hccCcmJqJ9\n+44AgGbNWuDEiWg4OTWBSqWCEALp6Y+wePF8aDS1kJOTg7S0NNjY1AcAqNVqNGrUGABw9248tm79\nAQDw+HE6bG0bYMAAL2ze/B0mTBgDF5emGD/+M+O8SCIiqrFMLrhtbW3x4EESACAm5tp/H1UBAK5f\nv4YzZ05j2bLVuHMnDqdP/4l69eohJeUhACAvL++/I2nAyakJRo4cjUaNGiMh4T6sra0RG3sLgwcP\nw6hRY7B+/Zc4fvwP9OzZq8pfY011Ki1Z0nKdbexkroSIyHhMLrj7938XwcFz8fff56DT5UGlAsR/\nj2g3buyEzMwMBAfPhYtLU2g0GkRF/Y433ngLU6ZMhIODI+zt7QEAn3zyKVatWoY6deogI+Mx/PwC\n8fhxOubMCUSDBnbIzMzA4MHDjPhKiYioJlIJIartidqKzMedlJSIhw8folUrV+zfvwd37sTh44/H\nylAdVTWOuImoJihvPm6TG3Gr1Wp8/fVq2Nk1RFpaKvz8Ao1dEhERUaUxuRE3mS6OuImoJqhxI24q\naV+MtP/N+jVTyVwJERE9K945jYiISEEY3ERERArC4CYiIlIQnuOugHv37mLEiCFo1coVKpUKubm5\nGDduItq372Ds0oiIyMQpPrilXnglldQLtJydXbB27TcAgDNn/sL332/A8uVrK7UWIiKiJ/FQeSV4\n+PAhGja0N3YZRERUAyh+xG0st2/Hwtf3E+Tm5uLBgyQsW7bG2CUREVENwOCuoKKHymNjb2HGDH+E\nhGyBuTm7lIiI5CNryuzevRsbNmyAubk5JkyYgFatWsHPzw86nQ729vZYsmQJNBqNnCVUCReXpqhV\nqxYSExPg5NTE2OUQEZEJk+0cd0pKCr788kts3boV69atQ2RkJFavXg1vb29s3boVLi4uCA8Pl6v5\nKvXoURqSk5Nhb+9g7FKIiMjEyTbijoqKQvfu3VG3bl3UrVsXQUFB6NWrF+bMmQMA8PDwQEhICLy9\nveUqQVaF57gBIDc3F599NgUWFhZGroqIiEydbMF9584dZGdnY8yYMXj06BHGjx+PrKws/aFxOzs7\nJCUlPXM7xri/duPGTjh48GiVt0tERCTrOe7U1FSsXbsWd+/exYgRI1B0IjIpk5LZ2lrB3FwtZ4k1\nQ8wjSYuVNyON0UmcHazavw4iomcgW3Db2dmhY8eOMDc3h7OzM+rUqQO1Wo3s7GxYWloiISEBDg5l\nnxNOScmUqzwywFSmUTWV10FENVN5gw/ZLk579dVXcfz4ceTn5yMlJQWZmZno0aMHIiIiAAAHDhyA\nu7u7XM0TERGZJNlG3I6OjujTpw/ef/99AMD06dPh5uYGf39/hIWFwcnJCV5eXnI1T0REZJJUQsrJ\nZiPhIc/KIfV+7sa40O9pnJJ4jruzjZ3MlZCpbFNE1ZHRDpUTERFR5WNwV9DBgz+jZ89uSE1NNXYp\nRERUgyj+xto/aw9X6vresuglabmDByPQpMlzOHLkELy8BlVqDURERKXhiLsCHj1Kw6VLF+Dr+xkO\nHTpg7HKIiKgGYXBXwOHDh9Cjx6vo1q074uJuIykp0dglERFRDcHgroBDhyLg6dkHarUaHh69ERnJ\nUTcREVUNxZ/jrmqJiQm4ePE81q5dCZVKhezsbFhb18WQIcONXRoREdUADO6ndOhQBN57758YP/4z\nAAX3XB8y5D3Ex99BkybPGbk6IiIydQzup3ToUASmT5+j/12lUqFv3/44dCgCH3ww0oiVEREVSLgq\nbYphx5ZamSshOSg+uKV+fauyhIRsKfHYv/41qkprICKimosXpxERESkIg5uIiEhBGNxEREQKwuAm\nIiJSEAY3ERGRgjC4iYiIFETxXwczlvj4O1i1ahkePkxGfr4Obm7tMW7cBNSqZWns0oiIyIQpPrgt\nj+yt1PVlv/52ucvk5+cjMNAPvr6T0KXLywCAf/97MxYvno8ZM4IqtR4iIqKieKi8Ak6cOI7nn3fW\nhzYADBkyDBcuXEBKykMjVkZERKaOwV0Bt2/fQsuWrYo9plKp8OKLzRAXd9tIVRERUU3A4K4QFXQ6\nXYlHhRAwM1MboR4iIqopGNwV4OLSFFeuXCr2mBACN2/egLOzs5GqIiKimkDxF6cZQ9eu3fDVV6sR\nFfU7und/FQAQFrYF7dt3QL16Nkaujoiocp1KS5a0XGcbO5krIYDBXSFmZmZYvnwNli4NxoYN6yFE\nPlq1ao1Jk6YYuzQiIjJxig9uKV/fkoOdXUMEBy8zSttERFRz8Rw3ERGRgih+xE1ENUfCVQtJyzm2\n1MpcCZHxcMRNRESkIAxuIiIiBWFwExERKQiDm4iISEF4cVoF3Lt3FyNGDEGrVq4AALVaDR+fD4tN\nOkJERCQHxQe31KtMpZJ6NaqzswvWrv0GQMHc3P7+n2H27AVo3rxFpdZDRERUFA+VV4ImTZ7DiBEf\nYefO7cYuhYiITByDu5K4ur6EW7duGrsMIiIycQzuSpKZmQkzM3YnERHJS7Zz3NHR0Zg4cSJatCg4\n59uyZUuMGjUKfn5+0Ol0sLe3x5IlS6DRaOQqoUpdvnwRLVu2MnYZRERk4mS9OO3ll1/G6tWr9b9P\nnToV3t7e6Nu3L5YvX47w8HB4e3vLWUKViI+/g23btmLlyq+MXQoREZm4Kr2qPDo6GnPmzAEAeHh4\nICQkRLHBfft2LHx9P4FWq0V+vg5ffOGHRo0aGbssIiIycbIG9/Xr1zFmzBikpaXB19cXWVlZ+kPj\ndnZ2SEpKKvP5trZWMDdXl7mMvX2llftfluUuYW/fCmfOnK7shuUT80jSYvb21jIX8ozSkiUtVu1f\nhykw0jaVcDW7Utv9+fotScu91byppOWqi8ruJ+571Ytswd20aVP4+vqib9++iIuLw4gRI6DT6fR/\nF0KUu46UlEy5yiMDkpLSjV1CpTCV12EKKv+9kHbfhspuV3nbFPtJycr7B0i2y6AdHR3Rr18/qFQq\nODs7o2HDhkhLS0N2dsF/ggkJCXBwcJCreSIiIpMkW3Dv3r0bGzduBAAkJSUhOTkZAwcOREREBADg\nwIEDcHd3l6t5IiIikyTbofJevXph8uTJiIyMhFarxezZs/HSSy/B398fYWFhcHJygpeXl1zNExER\nmSTZgrtu3bpYt25dicdDQ0PlapKIiMjk8VZfRERECqL42cGM4clpPQstWLAE9erZGKkqIiKqCRQf\n3LVrR1bq+rKyektarui0nkRERFWFh8qJiIgUhMFNRESkIIo/VG4shfcqL+Ts7AI/v0AjVkRERDUB\ng7uCeI6biIiMgYfKiYiIFIQj7gp68lA5AIwbNwGtW7c1UkVEVN3siyl/MiUA6NdMJXMlVJqEq9Im\nZHFsqZW5EukUH9xSv75VmRo3dsLBg0ervF0iIiIeKiciIlIQBjcREZGCMLiJiIgUhMFNRESkIAxu\nIiIiBWFwExERKYjivw5mLHFxt7F69TKkpqZAp8uHm1s7fPrpJGg0GmOXRkREJkzxwX0qLblS19fZ\nxq7cZXQ6HaZP98OkSVPQsWNnCCGwcuUShIZ+i9GjP63UeoiIagLerEY6xQe3MZw8GQ1n56bo2LEz\nAEClUmHcuAlQqXjmgYiI5MXgroDbt2+hRYuWxR6rVcvSSNUQEVFNwiFihaiQn59v7CKIiKgGYnBX\ngItLU1y8eKHYY7m5ubhx47qRKiIiopqCwV0BXbt2Q0LCPfz+e8FEI/n5+fj66zWIjDxo5MqIiMjU\n8Rx3BZiZmWHZsrVYvHg+QkO/hYWFBbp27YYPP/zY2KUREZGJU3xwS/n6lhwaNmyIxYtXGKVtIiKq\nuXionIiISEEY3ERERArC4CYiIlIQBjcREZGCMLiJiIgUhMFNRESkIAxuIiIiBWFwExERKQiDm4iI\nSEEUf+c0qr4SrlpIWs6xpVbmSoiITIesI+7s7Gx4enpi586duHfvHnx8fODt7Y2JEyciNzdXzqaJ\niIhMkqzB/fXXX8PGxgYAsHr1anh7e2Pr1q1wcXFBeHi4nE0TERGZJNmCOyYmBtevX8frr78OAIiO\njkbv3r0BAB4eHoiKipKraSIiIpMlW3AvWrQIAQEB+t+zsrKg0WgAAHZ2dkhKSpKraSIiIpMly8Vp\n//nPf9ChQwc8//zzBv8uhJC0HltbK5ibqyuztJop5pGkxeztrSu12YSr2ZXbblpy5a6PKo7blDTs\nJ+lMpa+qgCzBfeTIEcTFxeHIkSO4f/8+NBoNrKyskJ2dDUtLSyQkJMDBwaHc9aSkZMpRHpUiKSm9\nktco7aryym638l8HVRS3KWOt3zT7SZ42jNNXZSnvnwRZgnvlypX6n9esWYMmTZrg9OnTiIiIwLvv\nvosDBw7A3d1djqaJiIhMWpXdgGX8+PH4z3/+A29vb6SmpsLLy6uqmiYiIjIZst+AZfz48fqfQ0ND\n5W6OiIjIKE5JvBags43dM7XDW54SEREpCIObiIhIQRjcRERECsLgJiIiUhAGNxERkYIwuImIiBSE\nwU1ERKQgDG4iIiIFYXATEREpCIObiIhIQRjcRERECsLgJiIiUhBJwR0QEFDisZEjR1Z6MURERFS2\nMmcH2717N7Zt24Zr165h2LBh+se1Wi0ePHgge3FUtX7WHpa03FsWvWSuhEwFtymiyldmcL/zzjvo\n1q0bJk+eXGx6TjMzMzRv3lz24oiIiKi4cufjdnR0xKZNm5Ceno7U1FT94+np6ahfv76sxREREVFx\n5QY3AMybNw87duxAgwYNIIQAAKhUKkRGRspaHBERERUnKbijo6Nx/Phx1KpVS+56iIiIqAySrip3\ncXFhaBMREVUDkkbcjRo1wrBhw9C5c2eo1Wr94xMnTpStMCIiIipJUnDXr18f3bt3l7sWIiIiKoek\n4B43bpzcdRAREZEEkoK7devWUKlU+t9VKhWsra0RHR0tW2FERERUkqTgvnz5sv7n3NxcREVF4cqV\nK7IVRURERIY99SQjGo0GPXv2xLFjx+Soh4iIiMogacQdHh5e7Pf79+8jISFBloKIiIiodJKC+9Sp\nU8V+r1u3LlauXClLQURERFQ6ScEdHBwMAEhNTYVKpYKNjY2sRREREZFhkoL7r7/+gp+fHzIyMiCE\nQP369bFkyRK4ubnJXR8REREVISm4ly1bhq+++gotW7YEAFy8eBHz58/Hli1bZC2OiIiIipMU3GZm\nZvrQBgq+11301qfGsi9GSFquXzNV+QsREREpgKSvg5mZmSEiIgKPHz/G48ePsW/fvmoR3ERERDWN\npBH3nDlzEBQUhOnTp8PMzAyurq6YN2+e3LURERHREySNuI8dOwaNRoOTJ08iOjoaQgj8+uuvctdG\nRERET5AU3Lt378batWv1v4eEhGDPnj2yFUVERESGSTpUrtPpip3TVqlUEELahWFUtlNpyZKW62xj\nJ3MlRESkBJKCu1evXhgyZAg6d+6M/Px8HD9+HG+++WaZz8nKykJAQACSk5ORk5ODcePGwdXVFX5+\nftDpdLC3t8eSJUug0Wgq5YUQERHVBJLn43755Zdx7tw5qFQqzJo1Cx06dCjzOb/88gvatm2Ljz/+\nGPHx8fjoo4/QqVMneHt7o2/fvli+fDnCw8Ph7e1dKS+EiIioJpAU3ADQpUsXdOnSRfKK+/Xrp//5\n3r17cHR0RHR0NObMmQMA8PDwQEhICIObiIjoKUgO7ooaMmQI7t+/j3Xr1uHDDz/UHxq3s7NDUlJS\nmc+1tbWCuXkZ3xePeSSpBnt7a8n1VjmJ57if6TVI7CeppNaScDW7UtdXJX1F0nCbksZIn1GK6yfA\nNPqqij6jZA/ubdu24dKlS5gyZUqxC9qkXNyWkpJZKTUkJaVXynqMqTq9Bum1WFTy+qSpTn1F0tT0\nbary12+a/SRPG1XfV+Wtq7xgl/R1sIo4f/487t27BwB46aWXoNPpUKdOHWRnF/x3k5CQAAcHB7ma\nJyIiMkmyBfeff/6JkJAQAMCDBw+QmZmJHj16ICIiAgBw4MABuLu7y9U8ERGRSZLtUPmQIUMQGBgI\nb29vZGdnY+bMmWjbti38/f0RFhYGJycneHl5ydU8ERGRSZItuC0tLbFs2bISj4eGhsrVJBERkcmT\n7VA5ERERVT4GNxERkYIwuImIiBRE9u9xExERVZaftYclLfeWRS+ZKzEejriJiIgUhMFNRESkIAxu\nIiIiBWFwExERKQiDm4iISEEY3ERERArC4CYiIlIQBjcREZGCMLiJiIgUhMFNRESkIAxuIiIiBWFw\nExERKQiDm4iISEEY3ERERArC4CYiIlIQBjcREZGCMLiJiIgUhMFNRESkIAxuIiIiBWFwExERKQiD\nm4iISEEY3ERERArC4CYiIlIQBjcREZGCMLiJiIgUhMFNRESkIObGLqAq/Kw9LGm5tyx6yVwJERHR\ns+GIm4iISEEY3ERERArC4CYiIlIQBjcREZGCyHpx2uLFi3Hq1Cnk5eVh9OjRcHNzg5+fH3Q6Hezt\n7bFkyRJoNBo5SyAiIjIpsgX38ePHce3aNYSFhSElJQXvvfceunfvDm9vb/Tt2xfLly9HeHg4vL29\n5SqBiIjI5Mh2qLxr165YtWoVAKBevXrIyspCdHQ0evfuDQDw8PBAVFSUXM0TERGZJNmCW61Ww8rK\nCgAQHh6O1157DVlZWfpD43Z2dkhKSpKreSIiIpMk+w1YDh06hPDwcISEhODNN9/UPy6EKPe5trZW\nMDdXl75AzKPKKFHP3t66UtcnSVqypMWeqTYj9VPC1exKXV+V9BVJw21KGon9VNnbrOL6CTCNbaqK\nPqNkDe7ffvsN69atw4YNG2BtbQ0rKytkZ2fD0tISCQkJcHBwKPP5KSmZcpZXQlJSepW29zSqU23S\na7Go5PVJU536iqSp6dtU5a/fNPvpaVTnbaq8dZUX7LIdKk9PT8fixYuxfv161K9fHwDQo0cPRERE\nAAAOHDgAd3d3uZonIiIySbKNuPft24eUlBRMmjRJ/9jChQsxffp0hIWFwcnJCV5eXnI1T0REZJJk\nC+7Bgwdj8ODBJR4PDQ2Vq0kiUijLI3ulLehkmv/scyIkehq8cxoREZGCMLiJiIgUhMFNRESkIAxu\nIiIiBWFwExERKQiDm4iISEEY3ERERArC4CYiIlIQBjcREZGCMLiJiIgUhMFNRESkIAxuIiIiBWFw\nExERKYhss4OZsoSr0iZed2yplbkSIqKKq107UtqCaR3kLUQBJPVVFfUTR9xEREQKwuAmIiJSEAY3\nERGRgvAcN1EF/Kw9LGm5tyx6yVwJEdU0HHETEREpCIObiIhIQRjcRERECsLgJiIiUhBenEZUxL4Y\nIWk5M2eZC3kGp9KSJS3X2cZO5kqISA4ccRMRESkIg5uIiEhBGNxEREQKwnPcRVge2SttQScveQsh\nIiIqBUfcRERECsLgJiIiUhAGNxERkYLwHDc9NV4LQERkPBxxExERKQiDm4iISEEY3ERERArC4CYi\nIlIQBjcREZGCyBrcV69ehaenJzZv3gwAuHfvHnx8fODt7Y2JEyciNzdXzuaJiIhMjmzBnZmZiaCg\nIHTv3l3/2OrVq+Ht7Y2tW7fCxcUF4eHhcjVPRERkkmQLbo1Gg2+//RYODg76x6Kjo9G7d28AgIeH\nB6KiouRqnoiIyCTJdgMWc3NzmJsXX31WVhY0Gg0AwM7ODklJSWWuw9bWCubm6tIXiHn0zHXKyd7e\nuvyF0pIrb12lqeb9VLt2pLQF0zpIWqw69dUz1VJR3Kakvza5+8pI21PC1exKbVeq6rRNVee+etbP\nBaPdOU0IUe4yKSmZVVCJfJKS0qvlukxddeqr6lTLk6pzbc+qsl9bdekr6XVYyFpHaapLPwHVu6/K\nq628YK/Sq8qtrKyQnV3w301CQkKxw+hERERUvioN7h49eiAiIgIAcODAAbi7u1dl80RERIon26Hy\n8+fPY9GiRYiPj4e5uTkiIiKwdOlSBAQEICwsDE5OTvDy4iQURERET0O24G7bti02bdpU4vHQ0FC5\nmiRSpISr0s6xObbUylwJESkB75xGRESkIAxuIiIiBWFwExERKQiDm4iISEEY3ERERArC4CYiIlIQ\nBjcREZGCMLiJiIgUxGiTjBDVBJZH9pa/kBPvIEhE0nHETUREpCAMbiIiIgVhcBMRESkIg5uIiEhB\nGNxEREQKwuAmIiJSEAY3ERGRgjC4iYiIFIQ3YCEik1O7dqS0BdM6yFsIkQw44iYiIlIQBjcREZGC\nMLiJiIgUhOe4ZSTpPBvPsRERVTpJE/wAipzkhyNuIiIiBWFwExERKQiDm4iISEF4jpuISCFM+bwt\nSccRNxERkYIwuImIiBSEwU1ERKQgDG4iIiIFYXATEREpCIObiIhIQRjcRERECsLgJiIiUhAGNxER\nkYJU+Z3TFixYgLNnz0KlUmHatGlo165dVZdARESkWFUa3CdOnEBsbCzCwsIQExODadOmISwsrCpL\nICIiUrQqPVQeFRUFT09PAECzZs2QlpaGx48fV2UJREREilalwf3gwQPY2trqf2/QoAGSkpKqsgQi\nIiJFUwkhRFU1NmPGDPTs2VM/6h46dCgWLFiAF154oapKICIiUrQqHXE7ODjgwYMH+t8TExNhb29f\nlSUQEREpWpUG9yuvvIKIiAgAwIULF+Dg4IC6detWZQlERESKVqVXlXfq1Alt2rTBkCFDoFKpMGvW\nrKpsnoiISPGq9Bw3ERERPRveOY2IiEhBGNxEREQKUi2De+fOnVi0aFGFnx8dHY0JEyZIWvbOnTsY\nOHCg5PWuWbPmqWr55ZdfEBAQ8FTPqUl8fHxw9epVrFmzBps3bzZ2ORVy9+5dnDt3TvLyPj4+T7X+\njIwM9OrV62nLqpaOHj2KrVu3lvr38vrSFPbB0j6f5s+fj7i4uFKf16tXL2RkZDxz+5Wxr3Xr1u2Z\n65BLaZ/p33zzDU6fPl3q8wo/i57Vs+YXUP57XeX3KicyNcePH0dmZibvuy/Ba6+9Vubfa3JfBgYG\nGrsEk/bJJ58Yu4RKU22D+86dO/j4449x//59fPDBBxg0aBB2796NzZs3w8zMDC1atEBQUBC0Wi0C\nAgIQHx+PWrVqYfHixQAKRimTJ0/GlStX0KdPH/j6+uL69euYO3cuVCoV6tSpg4ULFxZrMzo6GitW\nrIC5uTkcHR0RHByMPXv24OjRo0hMTMSKFSvQokUL3L17F1OmTIGZmRl0Oh2WLFmCJk2a6Ndz5coV\n+Pv7w8bGBs7OzvrHt2zZgp9++glmZmbw9PTERx99hPv372PixImwsLBAly5dcOrUKWzatAlvvvkm\nWrdujVdeeQUdO3YsUXe9evUMrq80hmp2cHDAzJkzERcXh9zcXEyYMAGvvvoqPD098f777+Pnn3+G\ni4sL2rRpo/952bJlSEhIQGBgILRaLdRqNebNmwcnJ6di7c2bNw/nzp2DWq3GnDlz0LJlSyxevBh/\n/fUXdDodhg0bBi8vL4O1rlixAn/++Sd0Oh2GDx+O/v374/LlywgICIC1tTXatm2LlJQULFy48Kn6\noKidO3fi5MmTSElJwbVr1/DZZ59hz549iImJwdKlS9G+fXsEBwfj3LlzyMnJwdChQ/HPf/4Tv//+\nO1auXAlLS0vY2dlh1qxZWLt2LczNzdG4cWO4uLiUeK8ePXqEKVOmwMrKCsOHD8eiRYug1WoxZcoU\nJCUlITc3F+PHjy8Wao8fP8b48eORk5ODzp076x//888/sXz5cn17QUFBUKlUmDJlCu7evYuOHTti\n//79OHr0KHx8fNCiRQsAwOeff45p06YhLS0NOp0O06dPh6urq359QME+5+zsjJycHMyYMQPt2rXD\nN998g4MHD8LMzAweHh4YM2aMwccM7TsqlarEvnns2DFcu3YN/v7+Jfq3d+/e5fZlu3btFLsPFmXo\n88nHxwczZsxAvXr1DNZTWP+vv/4KnU6HDRs2FPs67ZPb5tKlS5GYmIiAgADodDo4OTnpR4JXr17F\n6NGjcevWLQQGBuK1117Dvn378N1330GtVqNNmzaYPn060tPTERAQgEePHiEvLw/Tp09HmzZtJL3G\noqr680cIgVmzZuHvv/9GmzZtEBQUhICAAPTp0wddunTBhAkTkJ2djZ49e2L79u04fPgwAGD//v2Y\nP38+UlNT8fXXXxdb78WLFzFnzhxoNBpoNBqsWLECADB58mQ8fvwY1tbW+n0pMTER48ePx/Xr1zFy\n5EgMGjSo1H3EUB+US1RDO3bsEP379xe5ubni4cOHwt3dXeTn54tt27aJtLQ0IYQQ3t7e4vLly2L7\n9u1iwYIFQggh9uzZI7Zs2SLnYDWHAAAU00lEQVSOHz8uevbsKTIzM8Xjx49Ft27dhBBCjBgxQty8\neVMIIcTmzZvFV199JeLi4sR7770nhBCiT58+4u7du0IIIebMmSPCw8PFjh07xPvvvy/y8/P19YWE\nhIi1a9cKIYQ4f/68OH36dLH6J0yYIA4ePCiEEGLmzJnC399f3L59WwwfPlzk5+eL/Px8MXjwYBEf\nHy+Cg4NFaGioEEKIRYsWieHDhwshhHB1dRVXr14tte7S1lcaQzXv2rVLzJw5UwghxP3798Wbb74p\nhBDCw8ND/PbbbyI/P1+89tprYt++fUIIIXr27CnS0tLE1KlTxbFjx4QQQhw5ckQEBgYWa+vYsWPi\n008/FUIIceLECbFixQpx4sQJMWrUKCGEEBkZGaJ3794iPT1dDB8+XFy5ckWsXr1abNq0SZw8eVJ8\n8cUXQgghcnJyRL9+/URWVpbw9fUVBw4c0PdvWX0qxY4dO8SQIUNEfn6+CAsLE/379xd5eXli+/bt\nYt68eSI7O1t8//33QgghsrKyxCuvvCKEEGL06NHi5MmTQgghIiIiRGJior720t6ruLg40b59e/Hw\n4UN9++fPnxcjRowQQgiRlpYmdu/eXay+zZs3i/nz5wshhNi7d6/w8PAQQgjx7rvvipSUFCFEwfby\n448/isjISDFmzBghhBCHDx8WrVq1EkIIMXz4cLF161YhhBBr164V27dvF0IIce3aNfGvf/2r2Ppu\n3Lghxo4dK3788Ufxxx9/CF9fXyGEEN26dRNarVbk5+eLLVu2lPqYoX3H0L65Y8cOsXDhwlL7t7y+\nLKTEfbBQaZ9PhftCafV4eHiIw4cPCyGE+Oyzz/Svr5ChbfOLL74Qhw4d0q/rzJkzYvXq1WL8+PFC\nCCGOHj0qxo4dKx4/fiw8PT3F48eP9euKiooSa9asEevXrxdCCHHu3DkxbNgwIYQQL7/8crmvs6iq\n/PyJi4sTHTp0EImJiUKn0wl3d3eRlpYm/P39xeHDh8UPP/wggoKChBAF72XhvjV8+HD9trd06VL9\ne1AoKChI7Nq1SwghxB9//CGuX78uli9frt+OQ0NDxcGDB8WOHTvEP//5T5GXlydiYmLEO++8I4Qw\nvI+U1QeF74Uh1XbE3alTJ1hYWMDW1hZ169ZFSkoKbGxsMG7cOABATEwMUlNTceHCBXTv3h0A8Pbb\nbwMoGDm3bt0atWvXBlDw3xcAnDt3DjNmzAAA5Obmws3NTd9eamoqVCoVGjduDKDgHM7JkyfRunVr\nuLm5QaVS6Zd95ZVX4Ovri/T0dPTp0wcdO3YsVntMTAw6deqkX8/Ro0fx999/IzY2FiNGjABQ8B93\nfHw8YmJi0K9fPwAF5zX+/vtvAEDt2rX1oyVDdZe2vif/8yyr5j179ujPVTk6OkKj0SA1NRUA0K5d\nO6hUKtjZ2aF169YACu4tn56ejtOnT+PmzZv4+uuvodPp0KBBg2JtXbhwQf/6u3btiq5duyI0NBRd\nu3YFAFhZWaF58+aIjY0tUedff/2Fs2fP6s8D5+fnIykpqVif9urVC1FRUU/dB09q27YtVCoV7O3t\n0apVK6jVajRs2BB//fUXatWqhbS0NAwZMgQWFhZISUkBALz11luYNWsWBgwYgLfffrvEnf9K28ae\nf/75Yvfpf/HFF5GRkYEpU6bgjTfe0G+7hWJiYvT99fLLLwMouNd/bGwsxo8fDwDIzMyEra0tEhIS\n9H3Ts2dPmJv/b7cuPOR8+vRpPHz4ELt37wYAZGVlFVtfXl4eYmJicPnyZdja2sLKygoA0KdPH3z4\n4Yfo378/3nnnHYOPlbbv5OXlldg3d+7cCQCl9q+UvgSUuQ8WZejzqWjthuoBoD/64ujoiPT09GLP\nM7RtXrx4UX8I3s/PD0DBdQaFfVO4nlu3bsHFxQV16tQBULDNXbp0CefPn8fYsWMBAG5ubgb3WSmq\n8vMHAJydnfX7ZsOGDYv1VUxMjH6f6t27NzZu3GiwfwtrKdS7d2/Mnj0bt27dQr9+/dCsWTNcvHgR\nEydOBAD861//AlCwjbdv3x5qtVrfv6XtI4U/G+qDslTb4C4alEDBB/jcuXPx448/wt7eHqNHjwYA\nqNVq5Ofnl3h+0Q+vQrVr18YPP/xQbN137tzRt1d0B9JqtfrlLCwsiq2nZcuW+PHHH3Hs2DEsX74c\n//jHP4od9hVC6J9bWJuFhQVef/11zJ07t9i61q9fr1+2aF1F2zRU98GDBw2urzSGai6stVBubi7M\nzAquV1Sr1frHi/4shICFhQVWrVoFBwcHg20Zek+efD+1Wq2+raI0Gg0GDRqkf3+LtvtkP5XWp1IV\n3UaK/iyEwIkTJ3D8+HFs2rQJFhYW+mDw8vKCu7s7Dh06hLFjx2LVqlXF1lnaNvbkNlS7dm1s374d\nf/31F3bt2oVffvkFwcHBxWoo7J+i25CDg4P+sGmhb775Rv8ePdnPhe1aWFhgxowZxQIuLS1Nv761\na9eic+fOmDx5Mv7++2/9Kac5c+YgJiYG+/fvh4+PD/7v//6vxGMbN240uO+Utm8CKLV/y+vLQkrc\nB4sy9PlkqPYnX/uT+2JRhrZNtVpdYjlD7Rv6/KtVq1aJx0t7P8tTlZ8/Tz7nyXaK7ltP07/du3dH\neHi4/mJHPz8/yflTWr4IIUrtg7JUy6vKAeDMmTPQ6XR4+PAhsrKyoFaroVarYW9vj3v37uH8+fPQ\narVwc3PD8ePHARRcPbpu3bpS1+nq6oqjR48CAPbu3YuoqCj932xsbKBSqXD37l0ABR8sbdu2Nbie\nvXv34tq1a/D09MTEiRNx/vz5Yn9/4YUX9I9FR0cDANq0aYPo6GhkZWVBCIF58+YhOzsbzs7O+mUL\na5NSd2nrK42hmt3c3PT13bt3D2ZmZqhXr16p6yjUvn17HDp0CEDBVK0//fRTsb8XXW/heaG2bdvq\nH8vIyMDt27fh4uJSYt3t2rXDL7/8gvz8fOTk5CAoKAgADPbT0/bB00hJSUGjRo1gYWGByMhI6HQ6\n5Obm4ssvv4S5uTkGDx6Mfv36ISYmBiqVCnl5eQDK3saKunDhAn766Sd06dIFs2fPRkxMTLG/G9qG\nbGxsAADXr18HAGzatAmXL18u1je///47dDpdifaKvmfXr19HaGhosfWlpKQgPj4ely9fxqFDh6DV\napGeno61a9eiWbNm8PX1hY2NDRISEko8ZmZmZnDfKWvfLK1/pfalEvdBqaTUY4ihbbNt27b692DV\nqlX4448/DD63adOmiI2N1U+zXPQ9LOy/M2fO6I9APK2q/PwpT0X7d/PmzUhNTcU777yDDz74AJcu\nXSrWv9u2bcOuXbsMPre0fKloH1TbEfeLL76IiRMnIjY2FpMmTYKtrS1eeeUV/OMf/4CrqytGjRqF\n4OBg7Nq1C3/88QeGDx8Oc3NzLFq0CLdu3TK4zsDAQMyYMQPffvstatWqhWXLlhWbDzwoKAhffPEF\nzM3N8fzzz+Ptt9/WH1osqmnTppg1axasrKygVqsxffr0Yn8fO3Yspk6dih9++AHPP/88tFotnJyc\nMGLECAwbNgxqtRqenp6wtLTEiBEjMGnSJERERKB9+/YG/9syVHf9+vUNrq80hmp2cXHBiRMn4OPj\nA61WK3nk4Ovri2nTpmHv3r1QqVTFRopAweHxyMhIeHt7AwBmzZqFVq1aoW3bthg2bBjy8vLwxRdf\n6A/HFtWpUyd069YNgwcPhhBCv46xY8di+vTp+P7779G8eXOkp6eX2qeVoUePHvj2228xfPhweHp6\n4vXXX8fs2bPRtWtXfPjhh6hXrx7q1auHDz/8EHXq1IG/vz8aNGhQ7jZW6LnnnsPy5csRFhYGtVqN\nkSNHFvu7l5cXPv30U3zwwQfFLk6bP38+pk6dqh99Dx48GC+88AJ27NiBoUOH4uWXX0b9+vVLtDd8\n+HBMnToV3t7eyM/P1x8+LVxfbm4u4uLikJKSAh8fH+zZswcHDhxASkoKBg0aBCsrK3Ts2BFNmjQp\n8Vj9+vUN7jv5+fkl9s1jx46V2b9vv/12mX1ZSIn7oFRS6jHEycmpxLbp5uaGqVOnYuvWrWjcuDF8\nfX1x6tSpEs+1srKCn58fRo0aBTMzM3Tu3BldunSBq6srpk2bhhEjRkAIgZkzZ1boNVXl50953nvv\nPYwbNw4+Pj7o0aOH5P51dnbGxIkTYW1tDY1Gg+DgYNSqVQt+fn7w8fFBnTp1sHTpUhw4cMDg8w3t\nIwAq1Ae85amRXbt2DY8ePULnzp2xZ88eREdH60eZ9D9nzpyBpaUlXF1dsX79egghMGbMGGOXVS2k\npqYiOjoaffr0QUJCAj744AP8/PPPxi5LMarbPljd6jE18fHxuHHjBtzd3XH69GmsWbMGISEhxi7r\nqVTbEXdNUadOHcycORMqlQpmZmZP/d9jTaHRaBAYGAhLS0tYWloWG33VdHXq1MH+/fuxceNG5Ofn\nY+rUqcYuSVGq2z5Y3eoxNdbW1vjuu+/w5ZdfAlDm9+c54iYiIlKQantxGhEREZXE4CYiIlIQBjcR\nEZGCMLiJqolff/213Lsm+fj4lPgubnR0NIYOHVqptbRq1Ur/fery6HQ6DB06FIMHD4ZWq33qtlas\nWPHUM36V58cffwQAJCUlSZ4pkEgpGNxE1cR3332HtLQ0Y5fx1BITExEbG4uwsLASd4gzBp1Oh6++\n+goAYG9vj9WrVxu5IqLKxa+DERkQHR2NlStXwsnJCfHx8bC2tsaKFStQt25drFq1Sn8Xr0aNGmHJ\nkiWwsLBAp06dMGjQIOTn52P69OnYtGkT9u/fD51OhxdffBGzZs3CgwcPMHbsWLz66qs4d+4cMjIy\nsH79ekRGRuLPP//E5MmTERwcjJs3b2LDhg3QaDTQ6XRYvHgxnnvuuXLrvnv3LubMmYOsrCxkZmbi\n888/h729PXx9fREREQGg4A5N77//Po4cOYKIiAhs3rwZQgg0aNAA8+bNK3ZP9aIyMzMxY8YM3L9/\nH3l5eXj33Xfh7e2NqVOn4tGjR/rbn2o0Gv1zDPWBpaUlVqxYgV9++QWNGzdG7dq10axZMwAFI/0L\nFy7A3NwcO3fuxB9//IGlS5fi7NmzWLBgASwsLGBjY4NFixbBzMwM/v7+SE1NRUZGBt566y188skn\nmDZtGuLj4/HRRx9h7ty58Pb2xtGjR/HgwQMEBgYiMzMTubm5GDVqFN544w2sWbMGqampuH//PmJj\nY9GtWzf9fcmJqqVSpx8hqsGOHz8u3NzcxP3794UQQkyePFl8//33QqvVivXr1wudTieEEOKjjz7S\nz9jUqlUr8fvvvwshhDh79qzw8fHRzyo3f/588cMPP4i4uDjx0ksv6WedCggI0M9C5OHhIW7duiWE\nECI8PFw/09S6devEwoULhRAFMxgVzoxUtNYhQ4YIIYT4+OOPRVRUlBBCiMTEROHh4SG0Wq145513\nxKVLl4QQQmzcuFEsXLhQ3L17VwwYMEDk5OQIIYT47rvvRHBwsBBCiJYtWwqtVlusnXXr1onZs2cL\nIQpm9PLw8BC3b98WcXFxwt3dvUQfltYHN27cEB4eHiInJ0dotVrh5eUlVq9eXaLdHTt26GeKe+ON\nN8SVK1eEEAWzMO3Zs0fcvn1bP1tTTk6O6NSpk0hPTy9WT9GfZ8yYIb799lshhBAPHjwQPXr0EOnp\n6WL16tViyJAhIi8vT2RlZYkOHTqI1NTUEq+HqLrgiJuoFM2bN4ejoyOAgluxXrp0Cebm5jAzM4O3\ntzfMzc1x48YN/cxWQgj9rEvR0dG4ffu2fuaozMxM/cQDtra2+ns+Ozk5GTyv3bBhQ/j7+0MIgaSk\nJIOTcBgSHR2NjIwM/c0lzM3NkZycjAEDBiAiIgKurq7Yt28fgoKCcPr0aSQlJelvt5qbm1vmqP7s\n2bMYOHAgAMDS0hJt27bFhQsXSr2nf2l9cPXqVbRp00Y/Mu/SpUuZr+nhw4d49OgRWrZsCeB/szBl\nZmbi1KlT2LZtGywsLJCTk1PmNQJnz57VXwtgZ2cHR0dH3Lx5E0DBrFCF8yHY2toiLS1Nfy93ouqG\nwU1UCvHEjEIqlQqnTp3Cjh07sGPHDlhZWZW48KnwHK9Go0GvXr1K3Nv5zp07Zc5cBBTMHDRp0iTs\n2rULTZs2xebNm0tMolEajUaDNWvWlJjqsH///hg1ahQGDhyInJwcvPTSS4iPj0e7du2wfv16Set+\nciYlUWQWq9JqMdQHP//8c7HnlTbjVOGFbk/OrFTo+++/R25uLv79739DpVLpp0eUWn/Rx8p7T4iq\nE16cRlSKGzduIDExEQBw6tQptGrVCsnJyWjSpAmsrKwQHx+PM2fOIDc3t8RzO3XqhKNHjyIjIwMA\nsGXLFpw+fbrM9gpnxsrIyICZmRmaNGmCnJwcREZGGmzDkM6dO2P//v0ACkaq8+fPB1BwLt7W1hYb\nN27Uz6vt5uaGc+fOISkpCQCwf/9+/axLhrRv3x6//fYbgILR7oULF9CmTZtSly+tDwrnMc7NzYVW\nq8WJEyf0z6lbty7u3bsH4H+zetna2qJ+/fo4d+4cACAkJARbtmxBcnIymjVrBpVKhcjISGRnZ+un\nRTR0RXzR+hMSEpCYmIgXXnihvC4lqnY44iYqRfPmzbF8+XLExsbCxsYGXl5eEEIgJCQEQ4cORYsW\nLTB+/Hh8+eWXJUZ7bm5uGDZsGHx8fFCrVi04ODhg4MCBSE5OLrW9V199FWPGjMGiRYvQv39/DBo0\nCE5OThg5ciT8/Pz0gVyWwMBAzJw5E3v37kVubi7Gjh2r/9uAAQMwd+5cfTg7OjoiMDAQo0ePRu3a\ntWFpaYlFixaVum4fHx/MmDEDw4YNQ25uLsaNG4fnnntOP6f9k0rrg9q1a8PT0xPvv/8+nJyc8NJL\nL+mf88knn2DkyJFwcXGBq6urPsSXLFmCBQsWwNzcHNbW1liyZAni4uLw+eef4/fff0fv3r0xYMAA\nTJ48Gdu3b0fDhg0xcODAYq9nwoQJCAwMhI+Pj37K2Dp16pTbp0TVDe9VTmRA4VXl//73v41dChFR\nMTxUTkREpCAccRMRESkIR9xEREQKwuAmIiJSEAY3ERGRgjC4iYiIFITBTUREpCAMbiIiIgX5f63s\n9BiOiXFcAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# visualizing writing score\n",
+ "\n",
+ "data['math score'].value_counts(normalize = True)\n",
+ "data['math score'].value_counts(dropna = False).plot.bar(figsize = (18, 10), color = 'pink')\n",
+ "plt.title('Comparison of writing scores')\n",
+ "plt.xlabel('score')\n",
+ "plt.ylabel('count')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 318
+ },
+ "colab_type": "code",
+ "id": "pfAaNUKvVGJY",
+ "outputId": "22ec3315-902c-4199-d5ef-72660cbb35fd"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "V6TBXagn5F7H",
- "colab_type": "code",
- "outputId": "de6f5eff-5403-4084-9b95-4085e19482d1",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 418
- }
- },
- "cell_type": "code",
- "source": [
- "# comparing the distribution of grades among males and females\n",
- "\n",
- "sns.countplot(x = data['grades'], data = data, hue = data['gender'], palette = 'cubehelix')\n",
- "#sns.palplot(sns.dark_palette('purple'))\n",
- "plt.show()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "/usr/local/lib/python3.6/dist-packages/seaborn/categorical.py:1468: FutureWarning: remove_na is deprecated and is a private function. Do not use.\n",
- " stat_data = remove_na(group_data[hue_mask])\n"
- ],
- "name": "stderr"
- },
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAFYCAYAAACoFn5YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlAVPXC//HPwIhclBSQUXGXW7a4\ny62r5i1TU7tWWrn8UMuyxavZ8jOXfMgNc+2WuaRdKzWUmzdvGZqFjy3eFqQFQ23T3EWFwUCJRbZ5\n/uhpHikFNGbOfOH9+gvOmTnfzxzO+PGcM3OOzeVyuQQAAIzkZ3UAAABw6ShyAAAMRpEDAGAwihwA\nAINR5AAAGIwiBwDAYHarA1wKpzPH6ggAAHhNeHjwBeexRw4AgMEocgAADEaRAwBgMIocAACDUeQA\nABiMIgcAwGAUOQAABqPIAQAwGEUOAMAFvPzyi0pM3GJ1jHJR5AAAGMzIS7QCAFAepzNDc+bMVJMm\nzWS3+6ugoED16tWX05mhoqIiDRp0lzp3jtI99/w/9e59s06fPq309JOKjZ2nlJQvtGbNy2rVKlKH\nDx9U06bNlJeXq7lzY1WnTh3l5+dp3LjHVFJSopkzYxQe7tADD4xR8+YtLXmtFDkAoNrZvPkt3Xxz\nf/XvP0Dr1q3RZ58lKzc3V7Gx81RQUKDx4x/SypVrlJeXq/79b1WDBg30wAN36/TpbK1e/ZL+679m\nqGHDRpo27UlJ0saNb6hTpy66447B+uqrFL366ioNH363Tp3K1PLlL8tms1n2WilyAEC1k5GRoQ4d\nOkmSIiMv18aN/9bp03X19NMzJEn+/v4qLS2Vn5+fGjRoIEmqXTtQZ8+eVWamUw5HQ0lSREQTSdLx\n48d0/Phxffvt1yopKVHt2rXd860scamaFvktTw3w+phbYjd7fUwAwPmFhIQoM9MpSdq/f58iIpqq\nYcOGmjp1ulwulw4dOig/v/N/TCw0NEzp6SfVqFFjHTlyWK1atVZERFNdc0079e8/QLm5Pyk3N1cl\nJSWSrC1xqZoWOQCgZhsw4HbNnTtLu3fvUklJsSIiIhQcHKzZs6frp59ydN113dSqVevzPnfkyHsV\nGztNLVq0VHFxkSTp9tsHacGCOdq580udOnVK99xzn8LDHd58SRdkc7lcLqtDXKyK7kfOHjkA1GxO\nZ4Z+/PFHtWlzpd55Z7OOHTuqBx74m9WxLll59yNnjxwAUO34+/tr+fLFCgtroNOnszVp0n9ZHclj\nKHIAQLUTGhqmRYtesDqGV3BBGAAADEaRAwBgMIocAACDUeQAABiMIgcAQFJxcbEeeOAezZ49vcqW\neeLEcY0ePbLKlnc+fGodAOCTqvqaIBVd7yMzM1NFRUWKiZlZpeN6GkUOAICkJUv+rrS0Y5ozZ6by\n8nKVk5OjkpISPfbYRP3xj5dryJDbdeutg/Thh++padOmatPmKn3wwTY1bdpc06fP1r59e/Xss/Nl\nt9vl5+en2Nh5ZZafmrpTL764THa7XQ5HQ02eHKNatWr97twcWgcAQNLDDz+u5s1bKCKiia67rpue\nf365JkyYoqVLn5MklZaWqk2bK/XSS69q9+5datQoQitXvqrU1J3KyclRdvaPevzxiVqy5EW1a9dB\nW7e+U2b5ixYt1Lx5f9fixSsUGhqqDz7YViW52SMHAOAcu3fvUnZ2lhITt0iSzp4tcM+76qprZLPZ\nFBISqiuuaCNJCgkJVW7uTwoJCdPy5Ut09myBMjOd6tOnn/t5P/54SseOHdXUqRMlyX1/9Krg0SLf\nu3evxo4dq1GjRmnEiBHu6R999JHuv/9+ff/995KkhIQErVmzRn5+fhoyZIgGDx7syVgAAFxQrVp2\nPf74RLVt2/438/z9/c/7s8vl0vPPP6Phw+/Rn//cTfHxccrPz3PPt9trqUGDcC1d+o8qz+uxQ+t5\neXmKjY1V165dy0w/e/as/vGPfyg8PNz9uGXLlmn16tWKi4vTmjVrlJ2d7alYAACU6+qr2+o///lQ\nknTw4AG99traSj3v9OlsNWnSVIWFhdqx4xMVFxe751122WXu5UnShg2v6Ycf9lVJXo8VeUBAgFau\nXCmHo+xt3lasWKHo6GgFBARIklJTU9WuXTsFBwcrMDBQnTt3VkpKiqdiAQBQrrvuGqq0tKMaO/Z+\nzZ8/Wx07dq7U8+68c6iefPIJPfXUZN1551C9885m/fTTT+75U6ZM05w5MzV27P3atStVzZu3qJK8\nHr+N6ZIlSxQSEqIRI0bo4MGDWrBggZYvX66bbrpJ77//vjZt2qTdu3dr6tSpkqRFixapcePGGjp0\n6AWXWVxcIrvd/4Lz/zTmhip/HRX5fMV2r48JAIBXP+w2d+5cxcTElPuYyvy/Iisrr8LHeFtF90gH\nAOBSlXc/cq99/Sw9PV0HDhzQE088oSFDhigjI0MjRoyQw+FQZmam+3EZGRm/ORwPAADOz2t75A0b\nNtS2bf/3nbmbbrpJa9euVUFBgWJiYnTmzBn5+/srJSXFfZgdAACUz2NFvmfPHs2fP19paWmy2+1K\nTEzUkiVLVL9+2e/NBQYGasKECRo9erRsNpvGjRun4OALH0IAgHMdfmOnJeO2uKOTJeMCv+bxD7t5\nQkXno6v6+ryVUdE1fAF4BkWOmsAnzpEDAICqR5EDAPA7PP30DH3yyUeWjc+11gEAPqmqT5tU19Mh\nFDkAAP9ry5ZN+uqrFGVnZ+vgwQN68MG/adu2RB06dFDTps3W++9v1TfffK3CwkINHHinbr11oPu5\nJSUlWrDgaR0/nqbi4mLdf/8YdenyJ49npsgBADjH0aNH9MILL2nTpo1au3a1Xnllnd55Z5O2bElQ\ny5atNX78/9fZswUaMmRgmSL/7/9+V2FhDfTkk9OUnZ2tRx8dozVrXvN4XoocAIBzXHnl1bLZbAoL\na6DIyMvl7++vkJAwFRUV6cyZ0xoz5j7Z7XZlZ2eVed6ePbuUmrpTu3Z9Jennm4QVFRWpVq1aHs1L\nkQMAcI4L3ar0xInjSks7pqVL/yG73a4+fXqUeZ7dXkt3331fmfuQewOfWgcAoBK+++5bORwNZbfb\n9fHH21VSUqqioiL3/KuvbquPP/75BlpZWT/qxReXeSUXRQ4AQCVERV2rY8eO6OGHH1Ra2jF163a9\nnnlmrnv+TTf11h/+EKQxY+7TpEmPq337jl7JxZXdqghXdgOswZXdUBNwZTcAAKopihwAAINR5AAA\nGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBgMG6aAgDwWVyps2LskQMAYDCKHAAAg1Hk\nAAAYjHPkAACcw7Q76rFHDgCAwShyAAAMRpEDAGAwihwAAINR5AAAGMyjRb5371717t1ba9eulSSd\nOHFCo0aN0ogRIzRq1Cg5nU5JUkJCgu68804NHjxYr7/+uicjAQBQrXisyPPy8hQbG6uuXbu6py1a\ntEhDhgzR2rVr1adPH61atUp5eXlatmyZVq9erbi4OK1Zs0bZ2dmeigUAQLXisSIPCAjQypUr5XA4\n3NOmT5+uvn37SpJCQkKUnZ2t1NRUtWvXTsHBwQoMDFTnzp2VkpLiqVgAAFQrHrsgjN1ul91edvFB\nQUGSpJKSEsXHx2vcuHHKzMxUaGio+zGhoaHuQ+4XEhISJLvdv+pD/w7h4cFWRwBqpMMWjct7HlXt\nUrcpr1/ZraSkRJMmTdKf//xnde3aVZs2bSoz3+VyVbiMrKw8T8W7ZE5njtURAHgR73lUtfK2qfJK\n3uufWn/yySfVokULPfzww5Ikh8OhzMxM9/yMjIwyh+MBAMCFebXIExISVKtWLT3yyCPuaR06dNDu\n3bt15swZ5ebmKiUlRVFRUd6MBQCAsTx2aH3Pnj2aP3++0tLSZLfblZiYqFOnTql27doaOXKkJCky\nMlIzZszQhAkTNHr0aNlsNo0bN07BwZx7AgCgMjxW5G3btlVcXFylHtuvXz/169fPU1EAAKi2uLIb\nAAAGo8gBADAYRQ4AgMEocgAADEaRAwBgMIocAACDUeQAABiMIgcAwGAUOQAABqPIAQAwGEUOAIDB\nKHIAAAzmsZum1DSH39hpybgt7uhkybgAAN/AHjkAAAajyAEAMBhFDgCAwShyAAAMRpEDAGAwihwA\nAINR5AAAGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBgMIocAACDUeQAABiMIgcAwGAe\nLfK9e/eqd+/eWrt2rSTpxIkTGjlypKKjo/Xoo4+qsLBQkpSQkKA777xTgwcP1uuvv+7JSAAAVCse\nK/K8vDzFxsaqa9eu7mmLFy9WdHS04uPj1aJFC23YsEF5eXlatmyZVq9erbi4OK1Zs0bZ2dmeigUA\nQLXisSIPCAjQypUr5XA43NOSk5PVq1cvSVLPnj2VlJSk1NRUtWvXTsHBwQoMDFTnzp2VkpLiqVgA\nAFQrdo8t2G6X3V528fn5+QoICJAkhYWFyel0KjMzU6Ghoe7HhIaGyul0eioWAADViseKvCIul+ui\npp8rJCRIdrt/VUcyUnh4sNURAEsdtmhc3nuoape6TXm1yIOCglRQUKDAwEClp6fL4XDI4XAoMzPT\n/ZiMjAx17Nix3OVkZeV5OqoxnM4cqyMANRLvPVS18rap8kreq18/69atmxITEyVJW7duVY8ePdSh\nQwft3r1bZ86cUW5urlJSUhQVFeXNWAAAGMtje+R79uzR/PnzlZaWJrvdrsTERD3zzDOaMmWK1q9f\nr4iICA0cOFC1atXShAkTNHr0aNlsNo0bN07BwRyyAgCgMjxW5G3btlVcXNxvpq9ateo30/r166d+\n/fp5KgoAANUWV3YDAMBgFDkAAAajyAEAMBhFDgCAwShyAAAMRpEDAGAwihwAAINR5AAAGIwiBwDA\nYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBgMIocAACDUeQAABiMIgcAwGAUOQAABqPIAQAwGEUO\nAIDBKHIAAAxGkQMAYDCKHAAAg9mtDgCg+rjlqQFeH3N5p1ivjwn4EvbIAQAwWKWKfMqUKb+ZNnr0\n6CoPAwAALk65h9YTEhL02muvad++fRo+fLh7elFRkTIzMz0eDgAAlK/cIr/tttt03XXX6YknntD4\n8ePd0/38/PTHP/7R4+EAAED5KvywW8OGDRUXF6ecnBxlZ2e7p+fk5Kh+/foeDQcAAMpXqU+tz549\nW//+978VGhoql8slSbLZbHrvvfcuarDc3FxNnjxZp0+fVlFRkcaNG6fw8HDNmDFDktSmTRvNnDnz\n4l4BLpkVnzCWpC2xmy0ZFwCqo0oVeXJysnbs2KHatWv/rsHefPNNtWrVShMmTFB6erruuecehYeH\na+rUqWrfvr0mTJig7du364Ybbvhd4wAAUFNU6lPrLVq0+N0lLkkhISHuw/NnzpxR/fr1lZaWpvbt\n20uSevbsqaSkpN89DgAANUWl9sgbNWqk4cOHq0uXLvL393dPf/TRRy9qsL/+9a9644031KdPH505\nc0bLly/XrFmz3PPDwsLkdDovapkAANRklSry+vXrq2vXrr97sLfeeksRERF6+eWX9d1332ncuHEK\nDg52z//l/HtFQkKCZLf7V/zAGiA8PLjiB/kYEzMDv8Z2jKp2qdtUpYp87Nixl7TwX0tJSdH1118v\nSbryyit19uxZFRcXu+enp6fL4XBUuJysrLwqyVMdOJ05Vke4aCZmBn6N7RhVrbxtqrySr1SRX331\n1bLZbO7fbTabgoODlZycfBERfz7Xnpqaqr59+yotLU116tRRkyZN9MUXXygqKkpbt27VyJEjL2qZ\nAADUZJUq8u+++879c2FhoZKSkvT9999f9GBDhw7V1KlTNWLECBUXF2vGjBkKDw/XtGnTVFpaqg4d\nOqhbt24XvVwAAGqqi777WUBAgG644Qa98sorevDBBy/quXXq1NHzzz//m+nx8fEXGwMAAKiSRb5h\nw4Yyv588eVLp6ekeCQQAACqvUkX+5Zdflvm9bt26WrRokUcCAQCAyqtUkc+dO1eSlJ2dLZvNpnr1\n6nk0FAAAqJxKFXlKSoomTZqk3NxcuVwu1a9fXwsXLlS7du08nQ8AAJSjUkX+97//XS+88IKuuOIK\nSdI333yjp59+WuvWrfNoOAAAUL5KXWvdz8/PXeLSz98rP/dSrQAAwBqV2iP38/NTYmKiunfvLkn6\nz3/+Q5Hjkh1+Y6fXx2xxRyevjwkA3lCpIp85c6ZiY2MVExMjPz8/XXnllZo9e7answEAgApU6tD6\nJ598ooCAAH3++edKTk6Wy+XS9u3bPZ0NAABUoFJFnpCQoKVLl7p/f+WVV7R582aPhQIAAJVTqSIv\nKSkpc07cZrNV+pajAADAcyp1jvymm27SsGHD1KVLF5WWlmrHjh26+eabPZ0NAABUoNL3I7/22mu1\na9cu2Ww2TZ8+XR07dvR0NgAAUIFK3/0sKipKUVFRnswCAAAuUqXOkQMAAN9EkQMAYDCKHAAAg1Hk\nAAAYjCIHAMBgFDkAAAajyAEAMBhFDgCAwShyAAAMRpEDAGAwihwAAINR5AAAGIwiBwDAYBQ5AAAG\no8gBADAYRQ4AgMHs3h4wISFBL730kux2ux555BG1adNGkyZNUklJicLDw7Vw4UIFBAR4OxYAAEby\n6h55VlaWli1bpvj4eK1YsULvvfeeFi9erOjoaMXHx6tFixbasGGDNyMBAGA0rxZ5UlKSunbtqrp1\n68rhcCg2NlbJycnq1auXJKlnz55KSkryZiQAAIzm1UPrx44dU0FBgcaMGaMzZ85o/Pjxys/Pdx9K\nDwsLk9PprHA5ISFBstv9PR3XCOHhwVZHMALrCVWNbQpV7VK3Ka+fI8/OztbSpUt1/Phx3X333XK5\nXO555/5cnqysPE/FM47TmWN1BCOwnlDV2KZQ1crbpsorea8eWg8LC1OnTp1kt9vVvHlz1alTR3Xq\n1FFBQYEkKT09XQ6Hw5uRAAAwmleL/Prrr9eOHTtUWlqqrKws5eXlqVu3bkpMTJQkbd26VT169PBm\nJAAAjObVQ+sNGzZU3759NWTIEElSTEyM2rVrp8mTJ2v9+vWKiIjQwIEDvRkJAACjef0c+bBhwzRs\n2LAy01atWuXtGAAAVAtc2Q0AAINR5AAAGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBg\nMIocAACDUeQAABiMIgcAwGAUOQAABqPIAQAwGEUOAIDBKHIAAAxGkQMAYDCKHAAAg1HkAAAYjCIH\nAMBgFDkAAAajyAEAMBhFDgCAwShyAAAMRpEDAGAwihwAAIPZrQ4A+LpbnhpgybhbYjdbMi4As7BH\nDgCAwShyAAAMRpEDAGAwS4q8oKBAvXv31htvvKETJ05o5MiRio6O1qOPPqrCwkIrIgEAYCRLinz5\n8uWqV6+eJGnx4sWKjo5WfHy8WrRooQ0bNlgRCQAAI3m9yPfv368ffvhBN954oyQpOTlZvXr1kiT1\n7NlTSUlJ3o4EAICxvP71s/nz5+upp57Sxo0bJUn5+fkKCAiQJIWFhcnpdFa4jJCQINnt/h7NaYrw\n8GCrIxjBxPVkYuaahL8PqtqlblNeLfKNGzeqY8eOatas2Xnnu1yuSi0nKyuvKmMZzenMsTqCEUxc\nTyZmrkn4+6CqlbdNlVfyXi3yDz/8UEePHtWHH36okydPKiAgQEFBQSooKFBgYKDS09PlcDi8GQkA\nAKN5tcgXLVrk/nnJkiVq0qSJdu7cqcTERN1+++3aunWrevTo4c1IAAAYzfLvkY8fP14bN25UdHS0\nsrOzNXDgQKsjAQBgDMuutT5+/Hj3z6tWrbIqBgAARrN8jxwAAFw6ihwAAINR5AAAGIwiBwDAYBQ5\nAAAGo8gBADAYRQ4AgMEocgAADEaRAwBgMIocAACDUeQAABiMIgcAwGCW3TQFAGqqW54aYMm4W2I3\nWzIuPIs9cgAADEaRAwBgMIocAACDUeQAABiMIgcAwGAUOQAABqPIAQAwGEUOAIDBKHIAAAxGkQMA\nYDCKHAAAg1HkAAAYjCIHAMBgFDkAAAajyAEAMBhFDgCAwezeHnDBggX68ssvVVxcrIceekjt2rXT\npEmTVFJSovDwcC1cuFABAQHejgUAgJG8WuQ7duzQvn37tH79emVlZWnQoEHq2rWroqOj1b9/fz37\n7LPasGGDoqOjvRkLAABjefXQ+p/+9Cc9//zzkqTLLrtM+fn5Sk5OVq9evSRJPXv2VFJSkjcjAQBg\nNK8Wub+/v4KCgiRJGzZs0F/+8hfl5+e7D6WHhYXJ6XR6MxIAAEbz+jlySdq2bZs2bNigV155RTff\nfLN7usvlqtTzQ0KCZLf7eyqeUcLDg62OYAQT15OJmWsSE/8+h9/Yacm4UQ/9xZJxTXOp25TXi/yj\njz7SihUr9NJLLyk4OFhBQUEqKChQYGCg0tPT5XA4KlxGVlaeF5KawenMsTqCEUxcTyZmrkn4+1Qe\n66pyyltP5ZW8Vw+t5+TkaMGCBXrxxRdVv359SVK3bt2UmJgoSdq6dat69OjhzUgAABjNq3vkW7Zs\nUVZWlh577DH3tHnz5ikmJkbr169XRESEBg4c6M1IAAAYzatFPnToUA0dOvQ301etWuXNGAAAVBtc\n2Q0AAINR5AAAGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEsuUQrgIpZdTnNFnd0smRcAJeGPXIAAAxG\nkQMAYDCKHAAAg1HkAAAYjCIHAMBgFDkAAAajyAEAMBhFDgCAwShyAAAMRpEDAGAwihwAAINR5AAA\nGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBgMIocAACDUeQAABiMIgcAwGAUOQAABrNb\nHeAXc+bMUWpqqmw2m6ZOnar27dtbHQkAAJ/nE0X+2Wef6fDhw1q/fr3279+vqVOnav369VbHAgDA\n5/nEofWkpCT17t1bkhQZGanTp0/rp59+sjgVAAC+zyeKPDMzUyEhIe7fQ0ND5XQ6LUwEAIAZfOLQ\n+q+5XK5y54eHB5c7//MV26syTrXFeqoc1lPlsa4qh/VUeayrivnEHrnD4VBmZqb794yMDIWHh1uY\nCAAAM/hEkXfv3l2JiYmSpK+//loOh0N169a1OBUAAL7PJw6td+7cWddcc42GDRsmm82m6dOnWx0J\nAAAj2FwVnZAGAAA+yycOrQMAgEtDkQMAYDCfOEdusmPHjunWW29V27ZtJUmFhYWaOHGioqKiLE7m\nezZv3qzJkyfro48+UmhoqNVxfNaRI0c0Z84cOZ1OlZaWqnPnzpo4caICAwOtjuZTzn3vuVwu+fv7\na8yYMeratavV0XzKr/+N+sWSJUtUv359i1L5pkOHDmnOnDn68ccfVVpaqk6dOmny5MkKCAiwOlr5\nXPhdjh496ho0aJD7988++8x13333WZjIdz300EOuvn37uuLj462O4rNKSkpct912m+vTTz91T3v5\n5ZddTzzxhIWpfNOv33uHDx929e/f3/Xtt99amMr3/Ho94fyKi4tdAwYMcCUnJ7tcLpertLTUNWvW\nLNezzz5rcbKKcWi9imVmZsrhcFgdw+dkZ2dr165dmjJlit5++22r4/isjz/+WC1btiyzV3nvvfdq\n165dOnXqlIXJfF/z5s01ZswYxcfHWx0FBvrkk0/UunVrXXvttZIkm82miRMnaty4cRYnqxhFXgUO\nHjyokSNHasiQIZo3b55Gjx5tdSSf8+677+rGG29Ujx49dOjQIaWnp1sdyScdOHBAV199dZlpNptN\nl19+uQ4dOmRNKIO0bdtWP/zwg9UxYKADBw7oqquuKjMtMDDQ9w+ri3PkVaJVq1aKi4uTJO3fv1+P\nPfaY3nzzTdntrN5fbN68WWPHjpW/v7/69eunLVu26N5777U6ls+x2WwqKSn5zXTX/54DRvlyc3NZ\nT+fxy87GL1q1aqVZs2ZZmMj3XOi9ZwKapopFRkaqdu3aOnHihJo1a2Z1HJ9w8uRJpaamat68ebLZ\nbCooKFBwcDBFfh6tW7fWP//5zzLTXC6XfvjhB7Vs2dKaUAbZs2fPb/aqUHZnA+fXunVrrVu3rsy0\nwsJCHTp0SFdccYVFqSqHQ+tVLDs7W06nUw0bNrQ6is/YvHmzhg8froSEBL311lt69913dfr0aR05\ncsTqaD6ne/fuOnbsmLZv/78bRaxevVpdunThE8YVOHLkiFavXq1Ro0ZZHQUG6t69u9LS0vT+++9L\nkkpLS7Vw4UJt2bLF4mQV48puv9Ovv9px9uxZPfjgg+77q0MaNGiQ5s+fX+Z/tcuWLZOfn5/+9re/\nWZjMNzmdTk2fPl0nT56Uy+VS27Zt9eSTTyooKMjqaD7l3PdeYWGhSkpK9Pjjj6t79+5WR/MpF/r6\n2cSJE9W+fXuLUvmmjIwMTZs2TRkZGQoICFC3bt308MMPy8/Pt/d5KXIAAAzm2//NAAAA5aLIAQAw\nGEUOAIDBKHIAAAxGkQMAYDCKHMAlee6557RkyRKrYwA1HkUOAIDBuEQrUIO4XC7NmjVLqampatCg\ngRo1aqSQkBDFxcXprrvuUmlpqaZOnarp06frwIEDKiwsVIcOHRQTEyPp573wDz74QI0bN9Yf/vAH\nRUZGSpJ27NihZcuWyeVyyW63KzY2Vs2aNdMzzzyjHTt2KCAgQA0bNtT8+fONuAkFYBKKHKhBkpKS\ntGvXLr3++us6e/asBg4cqP79+ysvL0833HCDunfvrqysLLVp00axsbGSpH79+mnv3r2qVauWNm3a\npHfffVd+fn4aPHiwIiMjlZ+fr+nTp2v9+vWqX7++tm3bpgULFmj27Nlat26dvvjiC/n7+2vLli3K\nzMxURESExWsBqF4ocqAG+fbbbxUVFSV/f38FBQWpR48ekn7eU+/cubMk6bLLLtOJEyc0dOhQBQQE\nyOl0KisrS9nZ2brmmmvce9RRUVGSpH379snpdGr8+PGSpJKSEtlsNtWrV089evTQiBEj1KdPH91y\nyy1q1KiRBa8aqN4ocqAGKS0tLXPd6HN/rlWrliTp7bff1u7du7Vu3TrZ7Xbdcccdkn4ue5vNVmZZ\nkhQQEKCIiIjz3l1r8eLF2r+77vAcAAABfElEQVR/v7Zv364RI0ZoyZIl3J0MqGJ82A2oQVq3bq2v\nvvpKLpdL+fn5+vjjj3/zmFOnTqlVq1ay2+3as2ePjhw5osLCQkVGRuqbb75RYWGhioqK9Nlnn0mS\nWrZsqaysLO3du1eS9Pnnn2v9+vU6evSoVq9ercjISN13333q06ePvvvuO6++XqAm4KYpQA1SXFys\nSZMm6dChQ2rcuLHq1aunxo0ba+nSpfr6669lt9t14sQJjRkzRsHBwercubMCAwP11ltv6V//+peW\nL1+uHTt2KCIiQnXr1lWzZs00fvx4ffrpp3ruuedUu3ZtSdKsWbPUtGlTxcTE6MCBA6pTp47q1aun\nuXPnqk6dOhavBaB6ociBGiQnJ0fbtm3TwIEDZbPZNGbMGA0YMEADBgywOhqAS8Q5cqAGqVOnjlJS\nUvTqq6+qdu3aatWqlfr162d1LAC/A3vkAAAYjA+7AQBgMIocAACDUeQAABiMIgcAwGAUOQAABqPI\nAQAw2P8A+tnNgQIRYB0AAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
+ },
+ "execution_count": 181,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQIAAAEaCAYAAAD6ylmmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAH6NJREFUeJzt3XlcVmX+//HXDTeLCCIotwq4Ymmi\nlkuWYeMGZjPW12+LMNXotP6cclpNJ61wQ22zKXWWNisrdX4Oj7aZIik1F0zTlMDM1GRRgptF9BaV\n7Xz/MG/FBW69N9D38x8593Xucz6Hg+/7nOs+1zkmwzAMROSS5uPtAkTE+xQEIqIgEBEFgYigIBAR\nwOzpFVqthzy9So8KCwuirKzC22XIBbqY919ERMg523RE4GJms6+3SxAnXKr7T0EgIgoCEVEQiAgK\nAhFBQSAiKAhEBAeDYOfOncTHx/Pee++d0bZ+/Xpuu+02EhMTWbhwocsLFBH3azAIKioqmDlzJgMH\nDjxr+6xZs5g/fz5Llixh3bp17Nq1y+VFioh7NRgE/v7+vP7661gsljPa8vLyCA0NpV27dvj4+DB4\n8GAyMjLcUqiIuE+DlxibzWbM5rPPZrVaCQ8Pt0+Hh4eTl5dX7/LCwoI8evXW5i+e9Ni6AHI9ujbo\nN+IFD6/Rs7T/PMPjYw0u1uu4veViH7txsfPk/nPbWAOLxUJxcbF9urCw8KynECLSuDkVBNHR0dhs\nNvLz86murmblypXExcW5qjYR8ZAGTw2ysrJ47rnn2LdvH2azmbS0NIYNG0Z0dDQJCQlMmzaNJ554\nAoDf/va3dO7c2e1Fi4hrNRgEPXv2ZPHixedsv/rqq1m2bJlLixIRz9KVhSKiIBARBYGIoCAQERQE\nIoKCQERQEIgICgIRQUEgIigIRAQFgYigIBARFAQigoJARFAQiAgKAhFBQSAiKAhEBAWBiKAgEBEU\nBCKCF5505Gn/SfuNt0twqz/18XYFcjHQEYGIKAhE5BI4NZCmTad2nqEjAhFREIiIgkBEUBCICAoC\nEUFBICIoCEQEB68jmD17Ntu2bcNkMjFlyhR69+5tb3v//ff5+OOP8fHxoWfPnkydOtVtxYqIezR4\nRLBx40ZycnJYtmwZKSkppKSk2NtsNhtvvvkm77//PkuWLGH37t1s3brVrQWLiOs1GAQZGRnEx8cD\nEBMTQ3l5OTabDQA/Pz/8/PyoqKigurqaI0eOEBoa6t6KRcTlGjw1KC4uJjY21j4dHh6O1WolODiY\ngIAAHnroIeLj4wkICOB3v/sdnTt3rnd5YWFBmM2+zlcuAEREhHi7BHFCY9l/5z3WwDAM+882m41/\n/vOffP755wQHBzNu3Dh27NhB9+7dz/n+srKKC6tUzspqPeTtEsQJntx/9YVOg6cGFouF4uJi+3RR\nUREREREA7N69m/bt2xMeHo6/vz/9+/cnKyvLBSWLiCc1GARxcXGkpaUBkJ2djcViITg4GICoqCh2\n797N0aNHAcjKyqJTp07uq1ZE3KLBU4O+ffsSGxtLUlISJpOJ5ORkUlNTCQkJISEhgXvvvZexY8fi\n6+tLnz596N+/vyfqFhEXcqiPYOLEiXWmT+0DSEpKIikpybVViYhH6cpCEVEQiIiCQERQEIgICgIR\nQUEgIigIRAQFgYigIBCpw1q6l1Wb3qp3noO2IgpLdgNQWLyLj76ac97rSc/4B6Xl+eds3749i8cf\nnwBAaWkJa9euPu91nA8FgcgpCop30rb1ZfXOk/dLFkWlPzu1nviB4wkPjT5ne48ePZk3bwEAW7Z8\ny9q1Xzu1vobokWfSpNgqSvli3QI6Rl5Jafk+rugymK0/fkZtbQ1+Zn+u6T2G8NAoALJ3fcWu3A2Y\nTD5EWXrQt8dNmEwmfsrZwI49q6mpraZ1WEeuvTIRs68fAL8U/8Q1vW4FOOt8vxTvJHvXV/j4+FJZ\nVUG0pQcAWT+l8/O+LdTW1nBN79tp27ormT+mcazyMBVHD3Lg0H4C/Joz+Oq7aRbYgg+/TOG6PncA\nQ/jss095553jRyGxsbFMnvwMWVmZPPfcLGbMmMvLLz9PTU0NR45UsG/fPu68cyxDhx6/WdC6dWt4\n/fW/8/bbHzj1e9URgTQ5xyoPE9YikuHX/j8yti3l2t63c/PQyUS3ieW7Hz4FoKj0Z3bnbuS3v3mc\n3w2eiLX0Z3ILMikq2UPmj58zfOB4Rg+fip85kMwfPwegqvoYh4+UERrS9pzzRbeJpX3bnnTrfD39\netwMQMXRclqGtOOmIZO4rONAsn5Kt9eaW5BJv9ibuXnoUwQEBLM7b2OdbSko2M/Cha+wYME/WbLk\n3xw5cpTly5fa27t1684tt4xhyJDhTJ8+h/j4EaxYkWZv//rrlQwfPsLp36mCQJqcWqOG9m174ePj\ny60J02gd1hGAiPAu2CpKANhf9AORba7AzxyIr4+Z+Ov+RPt2vcgv3E7HyKsICjx+S73LOg4k75fv\nASgs2Y0lvAtAvfOdzs8cQHTb43fxCg+NouJoub3N0qoLwUHhmEwmwkOjOHzkQJ33bty4gV69etO6\ndcSvo3tnMWbMHefc9uHDR/DNN+ux2WzU1NSwbt0ahg2LP+/f4el0aiBNjsnkg59fIAA//ryGPfmb\nqamtpqa2ChMm4PhRQ7OAFvb3mH39AaiqPkLeL1kUWH8EwMCgprYGgF+sJ/sH6pvvdH7mwJO1YcIw\nah1qAygvP0Bw8Mk7BwUEBNS77RERFq64IpbVq78iKiqadu3aERV17r4GRykIpMmylu4le/dKRg56\nhOCgcAqsO/km8/8DEODfnGOVh+3znvi5WUALukT3p2+Pm85Y3i/FP9EjZkiD87lSaGhLsrIy7dOH\nD9s4duxYve+Jj7+BlSvTiY5uz7Bhzp8WgE4NpAk7WmkjMCCY5s1aUl1TyZ78b6muqcQwDKLbxJJf\nuJ1jlRXU1taw+tu32W/9kei2seT98j1Hjx2/E3feL1lk7/qKiqPlGEYtQc1aApxzPgCTyZeqqiMu\n2YaBA+PIzNxGQcF+DMPghRfm8OmnH9WZx2w2Y7OdvLfhsGHxZGZuY+XKL11yWgA6IpAmLDKiGzv3\nruejr+YQFBhKv9j/obgshzWb3+U3/cfRI2YI/10zD18fM5ER3ekU2QeTyURs1+GkZ/wdA4NA/2AG\n9L6NX4p/os0pXxuGh0afdT6A6DY9WPfd+9gqSunWKc6pbbBY2jBp0lQefvhP+Pr6cMUVsSQm3kl2\n9sn+iAEDrmXp0ve5776xvPHGu7RoEcpVV/Xh0KGDtGnT1qn1n2AyTr0tsQd4+q67f5+7yqPr87Q/\n/WWIt0twK+2/s3vxxbl06RLDLbfc7vB7nLqLsYg0Lnl5uWzYsI4RI2502TJ1aiDShLzxxj9IS/sv\njz02yX43cVdQEIg0IffdN5777hvv8uXq1EBEFAQioiAQERQEIoI6C6UJ20RtwzOdh6sb6efiihWf\nM2tWMh99lEbLli3dso7GueUiYrdiRRpRUdGsWpXe8MwXSEcEIg6qrDrCms3vUlNTRaTlCnblbmD0\n8Kl8/NVcIi3dCQwIpkt0fzK2/Yva2mpMJhPXXjkGMLFm87vceP2jAHy25q9c328s3+/8giPzviEn\nJ4fy8gNMmfIsl1/evc46Dx4s54cfsnnqqWf54IN3GT36Nrdsm44IRBz0c/5mQoPbMCJuAv5+J4cX\n1xo1RFq60/OyeLbtTCOmwwASrnuQyzteR+bOL+pdZk1NDa+88jfuu288ixa9cUb7V1+lc911g7jm\nmoHk5eVitRa5fLtAQSDisHJbIRHhnQCIbhNbp61Vyw4AlB7Ip02rGADatO5KWfn+epfZv/8AAHr2\n7E1eXs4Z7enpacTH34Cvry9Dhw7nyy/rD5YLpVMDkfNw4sYn2P89zsfH9+TEr+P4amtrMJnqznfi\n9ZM/G7++xThjmUVFhWzfnsWCBX/FZDJx9OhRQkKCSUq6y/kNOY2OCEQcFBzUipJfb0G+37rjrPO0\natn+5K3OS3YTHhqNnzmQo8cOYRgGR44etN9ODSAz8zsAsrMz6dSpc51lpaen8b//ezvvvLOEt9/+\ngCVL/s3BgwfZt+/ct0G/UA4dEcyePZtt27ZhMpmYMmUKvXv3trcVFBTw+OOPU1VVRY8ePZgxY4bL\ni3TG8F1ve7sENxvi7QK8xtNf93VpfzWrNy1ixfq/0S7ickymM9ffu9sNbNj2L3blbsDHx8y1vccQ\n4B9E29aX8fnaVwhrEUnYr3dZBqisrGTSpEcpLCzk2Wdn1llWenoaTz893T5tMpm48cZRpKenMW7c\nvS7dtgaDYOPGjeTk5LBs2TJ2797NlClTWLZsmb197ty53HPPPSQkJDB9+nT2799PZGSkS4sUaQyq\nq4/R67IEIi3dsJbtpbBkDwCjh0+1zxMUGMqwa+4/470Dr0o66zIHDRpMXNz1Z2176633z3jtj3+8\n70JKb1CDQZCRkUF8/PHbIcXExFBeXo7NZiM4OJja2lo2b97MvHnzAEhOTnZLkSKNgb9fM3b8vJrv\nf1oBGPSPHe3tklymwSAoLi4mNvZkD2l4eDhWq5Xg4GBKS0tp3rw5c+bMITs7m/79+/PEE0/Uu7yw\nsCDMZt9653GlnR5bk3fUd9cZcS1/v2YMu+YBly1v4FVJjB79W5ctzxnn/a3BqXc2MwyDwsJCxo4d\nS1RUFA888ACrVq1iyJAh53x/WVnFBRUqZ+fpW7+Ja3ly/zl1qzKLxUJxcbF9uqioiIiICADCwsKI\njIykQ4cO+Pr6MnDgQH766ScXlCwintRgEMTFxZGWdvwRS9nZ2VgsFvstksxmM+3bt2fv3r329s6d\nO59rUSLSSDV4atC3b19iY2NJSkr69ZFMyaSmphISEkJCQgJTpkzhL3/5C4ZhcPnllzNs2DBP1C0i\nLnTR3858531/9Oj6PO3yN972dgluVd/+e+UOi0vX9cgH7rmOvz717b+Cgv2MHZtEt27dMZlMVFZW\n8uCDj3DllVdd0Lrq6yPQJcYijViHDh1ZsOA1ALZu3cI777zBvHkLXL4eBYGIgypqavjbvlwqDYPe\nzYP5uryM52O68ZfdO+kdHEKIry9xoWEsKsin2jAwmUzc3TYKE7Bwfy7JnboCMH3vLh6K7MBHxUW0\nmfdcvcOQT1VaWkrr1hFu2TYFgYiD1pcfIDIgkDvatOOrspITY4uoMQx6NQ+mV3AIbxXkc33LcAa0\nCOXbg+V8VFzE6NbnPoU5MQx57dqvWbToDebMebFOe25uDhMmPEBlZSXFxVZeemm+W7ZNg45EHFRQ\neYyuzYIAuCq4RZ22zs2aAbD36BG6BTUHoHvz5uQeq/9hqQ0NQz5xavDaa2/z8ssLSU5+iurqaqe3\n5XQKAhEHGZz8D3P64GKz6dThyccPFaoN4/iw5dNmrjmle76+Ycin69ixEwEBARQVFV5A9fVTEIg4\nyOLnz89Hj3/Cf3/47N9+dQ5sxg8VhwH4seIwnQKb0czHl4PV1RiGQXl1FdbKSvv89Q1DPt3Bg+WU\nlJQQEeHab0tAfQTShHn667640JbM35fLczl76NE8GJ+zfICPbm1h0S/7+PpAGeZfOwub+/rSo3kw\nM3J20z4gkA6BJ29zVt8wZDjZR3Bi3sceexI/Pz+Xb5uCQMRBx4xabm4VQc/gEHYdqWDnr5/8L3Tt\nZp8nzM+Px9t3OuO997aLPusy6xuG3K5dJCtWfO184Q5QEIg4KMjHl7SyEj4usWJgcIfl4rnvhoJA\nxEFBvr48cZZP+wt1b2Q0l5/jaMDT1FkoIgoCEVEQiAgKAhFBnYUijVpeXi6vvvoSBw6UUVNTS69e\nvXnooUfx9/d36Xp0RCDSSNXU1PD005O4446xvP76u7z55mIAFi163eXr0hGBiIM8PQx506Zv6NCh\nE3369AOOP+DkwQcfPuuDVZylIwIRB50YhjylYxeCfH3PGIZ8U2sLHxYXcn3LcCZ37MKwluF8VFz/\nZdD1PQ05N3cvl112eZ3XAgICXX5aAAoCEYd5fhiyidraWhdU3jAFgYiDPD0MuWPHTmzfnl3ntcrK\nSvbs2XWhm3BOCgIRB3l6GPLVV19DYWEBa9ceH3hUW1vL3/8+ny+/XOHybVNnoYiDPD0M2cfHh5de\nWsDzz6ewaNHr+Pn5cfXV13D33Wc+ZNVZCgIRB3l6GDJA69atef75l50r3AEKAhEHaRiyiGgYsohc\n3BQEIqIgEBEFgYigzkJpwr7s+keXLm/4rrddujxnnfo0ZABfX1/+8Ie77Zclu5KCQKQRO/VpyPv2\n5TN58mNMmzabrl0vc+l6FAQiDvL205CjoqIZO/YeUlP/xaRJU126beojEHGQp4chn0337lewd+/P\nrticOhwKgtmzZ5OYmEhSUhKZmZlnneell17iD3/4g0uLE2lMvPE05NNVVFTg4+OFG5Ns3LiRnJwc\nli1bRkpKCikpKWfMs2vXLjZt2uTy4kQaE28/DRlgx47tXH55twbnO18NBkFGRgbx8fEAxMTEUF5e\njs1mqzPP3Llzeeyxx1xenEhj4u2nIe/bl8/SpR8wZsydrticOhrsLCwuLiY2NtY+HR4ejtVqJTg4\nGIDU1FQGDBhAVFSUQysMCwvCbPa9wHLP306Prck7IiJCvF2CW9W3/zz9dZ87hiH7+Bg8/fRECgoK\neOGFF+rsz2PHmpOXl8Pjjz9IZWUlNTU1zJgxjV69XPuNAVzAtwaGcfK45sCBA6SmprJo0SIKCwsd\nen9ZWcX5rlLqYbWe/ZNJXM8dw5D797+uzjDkU/dnQEAoX3xx5tOQL3Sf1/eh0WAQWCwWiouL7dNF\nRUVEREQAsGHDBkpLS7nzzjuprKwkNzeX2bNnM2XKlAsqVKQxu6SHIcfFxTF//nySkpLIzs7GYrHY\nTwtGjhzJyJEjAcjPz+epp55SCMhF62IehtxgEPTt25fY2FiSkpIwmUwkJyeTmppKSEgICQkJnqhR\nRNzMoT6CiRMn1pnu3v3Mq5+io6NZvHixa6oSEY/SlYUioiAQEQ06kiYs8KEuLl3e0YV7XLo8Z50+\nDPmE2bNfoEWLUJeuS0Eg0oidOgzZnRQEIg7y9jBkd1IfgYiDGsMwZHfREYGIgwoqj9mHGF8V3ILP\nSk5ecXvqMORbI9oCx4chf1xSfxCcOgz5H/+Yf0Z7bm4OEyY8YJ/u0KGjy29KAgoCEYd5Yxiyp/oI\ndGog4iBvD0N2Jx0RSJPl6a/7PP00ZDjz1ADgwQcfpkePni7dNgWBiIM8/TTkdu0iWbHizGHI7qAg\nEHHQJT0MWUSOu5iHIauzUEQUBCKiIBARFAQigjoLpZF75Q6Lt0twq4XeLuBXOiIQEQWBiCgIRIRL\noI9A55giDdMRgYgoCEREQSAiKAhEBAWBiKAgEBEUBCKCgkBEUBCICAoCEcHBS4xnz57Ntm3bMJlM\nTJkyhd69e9vbNmzYwLx58/Dx8aFz586kpKTg46N8EWlKGvwfu3HjRnJycli2bBkpKSmkpKTUaX/2\n2Wd59dVXWbp0KYcPH2bNmjVuK1ZE3KPBIMjIyCA+Ph6AmJgYysvLsdls9vbU1FTatj3+rLfw8HDK\nysrcVKqIuEuDpwbFxcXExsbap8PDw7FarQQHBwPY/y0qKmLdunU88sgj9S4vLCwIs9nXmZrlFBER\nId4uQZzQWPbfeQ9DNgzjjNdKSkoYP348ycnJhIWF1fv+srKK812l1MNqPfsz+KRp8OT+qy90Gjw1\nsFgsFBeffPxzUVERERER9mmbzcb999/Po48+yqBBg5wsVUS8ocEgiIuLIy0tDYDs7GwsFov9dABg\n7ty5jBs3jt/85jfuq1JE3KrBU4O+ffsSGxtLUlISJpOJ5ORkUlNTCQkJYdCgQXz44Yfk5OSwfPly\nAEaNGkViYqLbCxcR13Goj2DixIl1prt3727/OSsry7UViYjH6cofEVEQiIiCQERQEIgICgIRQUEg\nIigIRAQFgYigIBARFAQigoJARFAQiAgKAhHhAu5QJOJJRzaO9HYJ7jXM2wUcpyMCEVEQiIiCQERQ\nEIgICgIRQUEgIigIRIRL4DoCfQ8t0jAdEYiIgkBEFAQigoJARFAQiAgKAhFBQSAiKAhEBAWBiKAg\nEBEUBCKCg0Ewe/ZsEhMTSUpKIjMzs07b+vXrue2220hMTGThwoVuKVJE3KvBINi4cSM5OTksW7aM\nlJQUUlJS6rTPmjWL+fPns2TJEtatW8euXbvcVqyIuEeDQZCRkUF8fDwAMTExlJeXY7PZAMjLyyM0\nNJR27drh4+PD4MGDycjIcG/FIuJyDQ5DLi4uJjY21j4dHh6O1WolODgYq9VKeHh4nba8vLx6lxcR\nEeJEuefvk5f+x6PrE9fS/vOM8+4sNAzDHXWIiBc1GAQWi4Xi4mL7dFFREREREWdtKywsxGKxuKFM\nEXGnBoMgLi6OtLQ0ALKzs7FYLAQHBwMQHR2NzWYjPz+f6upqVq5cSVxcnHsrFhGXMxkOHOu/+OKL\nfPvtt5hMJpKTk9m+fTshISEkJCSwadMmXnzxRQBGjBjBvffe6/aiRcS1HAoCEbm46cpCEVEQiIiC\nQERQEIgAUF1d7e0SvEpB4KTq6mo+/fRT3nzzTQB27txJVVWVl6sSR23YsIGbb76ZUaNGAfDyyy+z\nZs0aL1fleQoCJz3zzDP88MMPfP7558DxQVqTJ0/2clXiqPnz5/POO+/YL5IbO3YsCxYs8HJVnqcg\ncFJBQQFPPvkkgYGBANx1110UFRV5uSpxlNlsJiwsDJPJBECrVq3sP19KLvpnH7pbVVUVBw8etP/x\n7N69m8rKSi9XJY6Kjo7mlVdeoaysjP/+97+kp6fTtWtXb5flcbqgyEnffvstKSkp7N27lzZt2mAy\nmZg1axb9+vXzdmnigNraWj755BO+++47/Pz8uPLKK7nxxhvx9fX1dmkepSBwkZKSEvz8/GjRooW3\nSxEHrF69ut72wYMHe6iSxkGnBhfo1ltvrfdccvny5R6sRs7Xic7dc7nUgkBHBBdo375952yz2Wx0\n69bNg9WIq1RVVTF9+nRmzZrl7VI8SkcEFygqKgqAgwcP8sknn1BWVgYc/0P68MMPGzz0lMZh+fLl\n9s5Cf39/amtrGTJkiLfL8jh9feikRx55hJKSEj755BOCgoLYunUrzzzzjLfLEgctXbqU9PR0+vTp\nw5YtW3jppZfo06ePt8vyOAWBk2pra3n44YexWCzcc889vP7666Smpnq7LHFQQEAAAQEBVFVVUVtb\ny/Dhw0lPT/d2WR6nUwMnVVVVsWPHDgIDA1m3bh3t27cnNzfX22WJg3r16sV7773HoEGDGDduHG3b\ntuXYsWPeLsvj1FnopB07dlBaWkqrVq1ISUnhwIED3HXXXYwZM8bbpYkDMjMz+fe//01lZSX79u0j\nKyuLuLg45s+f7+3SPEpB4AI2m41Dhw5hGAaGYWAymYiMjPR2WeKAG264gfvvv5/WrVvXef1S6zDU\nqYGTJk6cyObNm2nVqhWAPQh0HUHT0KVLlwavCbkUKAiclJOTw8qVK71dhlygUaNGMXr0aLp161bn\nsuI5c+Z4sSrPUxA4aeTIkXzxxRdcccUVdf6QdGrQNPz1r3/lgQcesA9DvlQpCJyUnZ3N4sWL7acG\ngE4NmpCYmBhuv/12b5fhdQoCJ+Xk5LBq1SpvlyEXKCwsjDvvvJOePXvWOaKbNGmSF6vyPAWBk264\n4QYyMjLo1atXnT+kZs2aebEqcdSAAQMYMGCAt8vwOn196KSEhARqamrqvGYymfjyyy+9VJHI+VMQ\niIjGGjhr586d3HPPPSQmJgLw9ttvk52d7eWqRM6PgsBJM2fOZOrUqfj7+wMwaNCgS24suzR9CgIn\nmc1mYmJi7NNdu3bFx0e/Vmla9K2Bk0JCQli+fDlHjhxh27ZtrFixos41BSJNgT66LtBTTz0FQPPm\nzbFarYSFhfHaa6/RokUL5s6d6+XqRM6PvjW4QGPGjKGqqorc3Fw6depUp01XFkpToyC4QNXV1RQV\nFTF37tyzPuLsxD0NRZoCBYGIqI9ARBQEIoKCQJyUk5PDsGHDvF2GOElBICK6oOhSYhgGM2bMYNu2\nbbRu3Zq2bdsSFhbGwIEDWbhwIYZhYDabmTlzJu3bt2fYsGGMHTuWr7/+mvz8fKZPn87AgQPZsmUL\nycnJhIeHExsba19+eXk5ycnJlJaWYrPZuPvuu7npppuYP38++fn57N+/n8mTJ9OzZ08v/hbkrAy5\nZKxbt8645ZZbjOrqauPw4cNGQkKCMXv2bGPEiBFGWVmZYRiGsWLFCmPChAmGYRjG0KFDjQ8++MAw\nDMNITU01xo8fbxiGYSQmJhqrVq0yDMMw3nrrLWPo0KGGYRjGtGnTjOXLlxuGYRiHDx824uPjjZKS\nEuPVV1817rjjDqO2ttaj2yuO0xHBJeSHH36gf//++Pr6EhQUxPXXX8+ePXuwWq38+c9/BqCmpqbO\nHX1P3LQjMjKS8vJyAH788Uf69esHwLXXXsvixYsB+Oabb/j+++/58MMPgePjMPLz8wG48sorL/k7\nBTdmCoJLSG1tbZ0BUT4+Pvj7+xMZGWn/z3w6s/nkn4hxyiUnJ5Zz6k1Z/P39SU5OplevXnWWsXr1\navz8/FyyDeIe6iy8hHTp0oWtW7diGAZHjhxh7dq1tG/fnrKyMnbu3AnApk2bWLZsWb3LiYmJYevW\nrQCsX7/e/nq/fv347LPPADh69CjTpk2jurraTVsjrqQjgkvI4MGD+c9//sOtt95Ku3bt6NOnD82b\nN+eFF15g6tSpBAQEADBjxox6l/Pkk08yc+ZM2rVrR48ePeyvT5gwgaeffprf//73VFZWkpiYWOeI\nQhovXWJ8CTl06BDp6emMHj0ak8nE+PHjGTVqFKNGjfJ2aeJliutLSPPmzdmyZQvvvvsuAQEBdO7c\nmZEjR3q7LGkEdEQgIuosFBEFgYigIBARFAQigoJARID/A08VdAFtIKSSAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "fSEMQE4W87U4",
- "colab_type": "code",
- "outputId": "2d415ca5-5dd8-4c3f-d6ab-050405826c33",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 348
- }
- },
- "cell_type": "code",
- "source": [
- "data.head()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " gender | \n",
- " race/ethnicity | \n",
- " parental level of education | \n",
- " lunch | \n",
- " test preparation course | \n",
- " math score | \n",
- " reading score | \n",
- " writing score | \n",
- " pass_math | \n",
- " pass_reading | \n",
- " pass_writing | \n",
- " total_score | \n",
- " percentage | \n",
- " status | \n",
- " grades | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " female | \n",
- " group B | \n",
- " bachelor's degree | \n",
- " standard | \n",
- " none | \n",
- " 72 | \n",
- " 72 | \n",
- " 74 | \n",
- " Pass | \n",
- " Pass | \n",
- " Pass | \n",
- " 218 | \n",
- " 73.0 | \n",
- " pass | \n",
- " B | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " female | \n",
- " group C | \n",
- " some college | \n",
- " standard | \n",
- " completed | \n",
- " 69 | \n",
- " 90 | \n",
- " 88 | \n",
- " Pass | \n",
- " Pass | \n",
- " Pass | \n",
- " 247 | \n",
- " 83.0 | \n",
- " pass | \n",
- " A | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " female | \n",
- " group B | \n",
- " master's degree | \n",
- " standard | \n",
- " none | \n",
- " 90 | \n",
- " 95 | \n",
- " 93 | \n",
- " Pass | \n",
- " Pass | \n",
- " Pass | \n",
- " 278 | \n",
- " 93.0 | \n",
- " pass | \n",
- " O | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " male | \n",
- " group A | \n",
- " associate's degree | \n",
- " free/reduced | \n",
- " none | \n",
- " 47 | \n",
- " 57 | \n",
- " 44 | \n",
- " Pass | \n",
- " Pass | \n",
- " Pass | \n",
- " 148 | \n",
- " 50.0 | \n",
- " pass | \n",
- " D | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " male | \n",
- " group C | \n",
- " some college | \n",
- " standard | \n",
- " none | \n",
- " 76 | \n",
- " 78 | \n",
- " 75 | \n",
- " Pass | \n",
- " Pass | \n",
- " Pass | \n",
- " 229 | \n",
- " 77.0 | \n",
- " pass | \n",
- " B | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " gender race/ethnicity parental level of education lunch \\\n",
- "0 female group B bachelor's degree standard \n",
- "1 female group C some college standard \n",
- "2 female group B master's degree standard \n",
- "3 male group A associate's degree free/reduced \n",
- "4 male group C some college standard \n",
- "\n",
- " test preparation course math score reading score writing score pass_math \\\n",
- "0 none 72 72 74 Pass \n",
- "1 completed 69 90 88 Pass \n",
- "2 none 90 95 93 Pass \n",
- "3 none 47 57 44 Pass \n",
- "4 none 76 78 75 Pass \n",
- "\n",
- " pass_reading pass_writing total_score percentage status grades \n",
- "0 Pass Pass 218 73.0 pass B \n",
- "1 Pass Pass 247 83.0 pass A \n",
- "2 Pass Pass 278 93.0 pass O \n",
- "3 Pass Pass 148 50.0 pass D \n",
- "4 Pass Pass 229 77.0 pass B "
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 198
- }
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# gender vs race/etnicity \n",
+ "\n",
+ "x = pd.crosstab(data['gender'], data['race/ethnicity'])\n",
+ "x.div(x.sum(1).astype(float), axis = 0).plot(kind = 'bar', stacked = True, figsize = (4, 4))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 324
+ },
+ "colab_type": "code",
+ "id": "oM5B03VaXH2f",
+ "outputId": "5bdb1a15-0aaa-4874-ff09-27b2b7adc182"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "du9CiE7c8ER7",
- "colab_type": "code",
- "outputId": "d2ffd396-abd0-42fb-d0a2-548a78401a24",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 300
- }
- },
- "cell_type": "code",
- "source": [
- "data.describe()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " math score | \n",
- " reading score | \n",
- " writing score | \n",
- " total_score | \n",
- " percentage | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | count | \n",
- " 1000.00000 | \n",
- " 1000.000000 | \n",
- " 1000.000000 | \n",
- " 1000.000000 | \n",
- " 1000.000000 | \n",
- "
\n",
- " \n",
- " | mean | \n",
- " 66.08900 | \n",
- " 69.169000 | \n",
- " 68.054000 | \n",
- " 203.312000 | \n",
- " 68.105000 | \n",
- "
\n",
- " \n",
- " | std | \n",
- " 15.16308 | \n",
- " 14.600192 | \n",
- " 15.195657 | \n",
- " 42.771978 | \n",
- " 14.258095 | \n",
- "
\n",
- " \n",
- " | min | \n",
- " 0.00000 | \n",
- " 17.000000 | \n",
- " 10.000000 | \n",
- " 27.000000 | \n",
- " 9.000000 | \n",
- "
\n",
- " \n",
- " | 25% | \n",
- " 57.00000 | \n",
- " 59.000000 | \n",
- " 57.750000 | \n",
- " 175.000000 | \n",
- " 59.000000 | \n",
- "
\n",
- " \n",
- " | 50% | \n",
- " 66.00000 | \n",
- " 70.000000 | \n",
- " 69.000000 | \n",
- " 205.000000 | \n",
- " 69.000000 | \n",
- "
\n",
- " \n",
- " | 75% | \n",
- " 77.00000 | \n",
- " 79.000000 | \n",
- " 79.000000 | \n",
- " 233.000000 | \n",
- " 78.000000 | \n",
- "
\n",
- " \n",
- " | max | \n",
- " 100.00000 | \n",
- " 100.000000 | \n",
- " 100.000000 | \n",
- " 300.000000 | \n",
- " 100.000000 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " math score reading score writing score total_score percentage\n",
- "count 1000.00000 1000.000000 1000.000000 1000.000000 1000.000000\n",
- "mean 66.08900 69.169000 68.054000 203.312000 68.105000\n",
- "std 15.16308 14.600192 15.195657 42.771978 14.258095\n",
- "min 0.00000 17.000000 10.000000 27.000000 9.000000\n",
- "25% 57.00000 59.000000 57.750000 175.000000 59.000000\n",
- "50% 66.00000 70.000000 69.000000 205.000000 69.000000\n",
- "75% 77.00000 79.000000 79.000000 233.000000 78.000000\n",
- "max 100.00000 100.000000 100.000000 300.000000 100.000000"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 199
- }
+ },
+ "execution_count": 182,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEgCAYAAAAOk4xLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlAFPX7wPH37C73jYAoeOGNR2qa\nZ2leWXZYmZKVpqZdluaRiSWWilpmGh559fMqs76S3VqWaZ6oeKHiAYp4IaDc57L7+4NcJUBwRXaA\n5/XX7s7OZ559ZOZxZmc/j2I0Go0IIYQQKqSxdABCCCFEcaRICSGEUC0pUkIIIVRLipQQQgjVkiIl\nhBBCtaRICSGEUC1deW8wPj61vDdZam5u9ly/nmHpMCocyZv5JHfmkbyZR8158/R0KvJ1OZO6hU6n\ntXQIFZLkzXySO/NI3sxTEfMmRUoIIYRqSZESQgihWlKkhBBCqJYUKSGEEKolRUoIIYRqlapInTp1\nip49e7J27dpCy3bt2kX//v0ZOHAgCxcuLPMAhRBCVF0lFqmMjAymTZtGx44di1w+ffp0QkJCWLdu\nHTt37uTMmTNlHqQQQoiqqcQiZW1tzbJly/Dy8iq0LDY2FhcXF2rUqIFGo6Fr167s3r37ngQqhBA3\nfPvttyW+Jzx8PwMH9iv163fr119/YvToN+5onWPHInjmmb68++47Zm938+ZfGTVqpNnr386PP35v\nejxo0LNcu5Z4T7ZzOyXOOKHT6dDpin5bfHw87u7upufu7u7Exsbedjw3N/sy/UHZiF/Dy2yssrbs\nsTaWDqFYkjfzSN7MU5Z5y0lJ4lDIQv5wbHDb9yWduUhidi6B+07f9vWyypuTky3W1tpiZ04oyrFj\n4XTo0J5PPvmkyOWlyVtc9BWupGYW+px3KycliUNfrmBPjeYA1H1nFnOirkHUNaD8/t7KfVoktU7J\ncS+oeQooNZO8mac88xYevp/58+fQtm17du36B71eT1DQDJo3b0FWVhbBwR9y+vRJ9Ho9Xbt2h/Z9\nATi84COc6zUm4UgYjQJexcHbhzMbVpJ6/gzGPAO1ez+Nd/tuAGx/53kaD3qDC9t+ITclGd/uT+Db\n7TEOzQ8iOzmRfTPHcf+E2aRdiObMhpXk5WSjKAr1nx6CW+MWpfocBn0ukydPYc+e3ej1uTz55NMM\nHjyMRYvmk52dzTvvvAtAUlIS/fs/zsaNm4iPv8qnn84iISEBa2srAgODaNLEn9TULHJy8or8d/ju\nu2/44YcNGAwGateuw8SJH3Do0AFWrVpFXl4eQ4YMZc6czwusc/ZsNIcXfEhOShKKzorGAa/iVLs+\nRoOBqO9XkRhxAGtnV1zqNzWtc3jBR3h3eJjqbR8s9PzaiUNE/7AWoyEPO88aNB70BlYOjiRG7Ofs\nr99i1OvR2tjSKGAkjj51C+V5x4SXaB+0ABvXalzcvolH5gcW+Dxubm7MmDEVb+8aHD16mNjY89Sq\nVZtZs+Zia2tb4r/FPZkWycvLi4SEBNPzuLi4Ii8LCiEqn3PnzuLv34x160IZPHgYn346E4Dvv/8f\nGRnpfP31BlasWMtvv/1EcnSkab20C9G0nfgJLvUaEfXDWlAU2r73Ka3emUbMpv+Rfvnm1ZiMKxe4\nf/wsmr0ynnO/foPRYKDR869i4+ZBu0mfotHpOPXtcnwffpx2kz6lVo8nOf2/FaX+DLF//cTZs2dZ\nvfob1qz5lr///pOdO/+hW7ce7Nz5j+l9O3du5/7722Fvb8+kSePp0+cxvvkmlPHjJ/Hee+PQ6/XF\nbiMi4ijr1q0hJGQJX3+9gerVvVmyZAEPP9yTZ54ZQLduPQoVKIPBwKRJ4/Fq+xDtAj+jYf/hHPvy\nU4x5eVyPPMz1k0do+94cWr45heSoEyV+zrzsLCLXLqTpkNG0C/wMO4/qnPvtW4x5eZz8+gsaDRhB\nu8C5VGt+P9E/fAVQKM83pJw7TezWnwp9nhu2bt3CRx/NZP36jSQlJbF9+9ZS/3sU5a6KlK+vL2lp\naVy4cAG9Xs/WrVvp3LnzXQUkhKgY7Ozs6N69FwBdu3bn9OlTZGVl8fzzLzJr1lwURcHZ2Zl69eqT\nlXjVtJ5709YomvxDz7Vj4fg89CiKRoO1ozMeLduRcCTM9F6vtl0AcPSthyE3l5zU5EJx3D9+Fp6t\nOgDg7NekwLZKcu1YOM880x9ra2vs7Ozo06cv27b9hb9/c4xGI6dPnwJg+/atdO/ei5iYcyQlXaNv\n36cAaNmyFa6ubkREHCl2G7t376Bbt+64ueV/NfL44/0IC9tz27hubOfGWaWLX2OsHJxJPneK5KhI\n3Ju2Rmtji9ba2vTZbyf57ClsXKvhUKMWAPWeeIH6/QajaLV0mPYFznUb/rudkvN37fhBPFu2L/bz\ndOzYBWdnF3Q6HfXr1ycu7kqJ8d1OiZf7IiIimD17NhcvXkSn07F582a6d++Or68vvXr1YurUqYwb\nNw6Axx57jHr16t1VQEKIisHJyRlFUf59nH+pJi0tlfj4q4SEfMb58+fQaDRcvRpH7aYPmNbT2TuY\nHusz0zmxej6KJv97akNuDp73tb/5Xjt7AFNRw2goFMfVAzu4uH0TedlZGI0GMBpL/Rn0mel8/vlc\nlizJ//lMbm4uTZs2A6Bbt+7s3LkdX99aHDlymKCg6URFnSErK4sXXuhvGiM9PZ3k5MLF84akpOt4\neHianjs5OZOUdP22caWlpZKVlcX+WeNNr+VlZaBPTyM3Iw1rFzfT67fms9jPmZ5qyiVQ4Mzo0vZN\nxO3bjkGvx6DPLXGs3LSUAtv/7+dxcLgZj0ajJS8vr8Qxb6fEItW8eXPWrFlT7PJ27dqxfv36uwpC\nCFHx3HpgTk1NAfIPWDNmTKVx46bMnDkHrVbL668PI7uYMayd3Wg2bJzpf/h3KjvpGqfWL6P1O9Nw\n9KlLZvxl9gWPLfX61s5ujB05ks6dHyy0rFu3Hsyf/yn16vnRqlUb7O0d8PDwxMHBga+/3lDo/b/+\n+lOR23B3r1YgVykpSaazkOLc2M59kz4ttCwl5jR5mTe/289Nu/kdmKLRYDTcLOT6zHQAdA5O5Kbf\nfF9eTjb6jDSyricS+9dPtH5nOrbunlw/eYRT65fdNjYrJxdy09Pu6PPcDZlxQghhluzsLLZv/xuA\nrVv/pEkTf2xsbLh+/ToNGzZGq9Wyb98eYmNjycvOKnKMas3bcnnXFgCMeXlEfb+a1Nizt92uotHm\nnzXl5ZGbnoLWxgZ7r5oY8/K4vPsvgGK3V9T2f/55I3l5eRiNRlauXM6ePbsAaN68JdeuJfLrrz/R\nvXtPALy9a+DpWZ2tW/NjTkpKIigokMzMzGK30bFjZ7Zv30pychIAP/wQSseOXW4b143txB/aC+Sf\nvZxY/Tl52Vk4123I9ZNHyMvJJi8nm/hDNy+1WTu7kn7pPAAp506RGX8ZyL9cmJOaROr5KADO/x5K\nzOZQctOSsXJ0xsa1Gnk52flnVDnZGI3GAnm+lbt/axKOht3R57kb5X53nxCicvD2rsGRI4dYtOhz\n9Ppcpk2bBcCQIcMICfmMlSuX8eCD3Rg6dAQhSxbh6FO30Bh1H3uOM//7P9PZj1uTljjWrH3b7TrU\nrI2VvSO7g16jzdhg3Ju2Yl/wWKycXPB76kWSo09yeMFH+D31YomfoWaX3lTf+wsvvTQAo9FIkyb+\nDBgwCABFUXjooW789NNGgoJmmF778MNgPvkkmGXLFqPRaBg48AXs7OyK3Ya/f3NeeGEIb745AoPB\nQMOGjRg3btJt47qxnTemfMC5375FURR8uj2G1saWas3u59rxg+ybORZrJ1fc/Vubbp7w6dqXyDUh\nXDtxCNcG/rg1bgmA1toG/5ffIXLtQsCInYc3jQe9jtbGlks7/iBsxhhsXNyp3+8lUmLOcGLlPBo9\n/9rNPI+baYrNuU4Davd46o4+z91QjMY7uIBbBsr6Ntmy/m1AWQpu19DSIRRL8mYeyVu+8PD9zJ49\nnfXrN5bq/ZI381SlvElnXiGEEBWOFCkhhBCqJUVKCHHH2rRpW+pLfULcDSlSQgghVEuKlBBCCNWS\nIiWEEEK1pEgJIYRQLSlSQghxl/bs2cX33/+v2OVXrlzh+PGIYpeHh+9nxYold7TNxGPhnPx68R2t\nUxHJjBNCiHJz5c/bN0W9U949zJvzr6x16NDptsvDw/eRmZmBv3/zcoqo8pAiJYSotPRZGUSuWUBe\nTjaGnGzqP/MyznUaEPvnj/ktQRQNqx/pxeDBw1i7diXbtm1Fo9HQufODDB48jPDw/SxdugidToen\npxeTJk1Bo9EwfXoQcXGXsba24f33P2Tfvr1ER0cxatQYQkLmcvz4MXJycujX71m6dOnKl18uRafT\nUb26Nz4+tfjss49RFAV7e3sCA6fi798cP78GXLlyhWnTPkCj0ZCXl4ftU8Owdb85g3r6pfNEfr0I\nK3tHbKtVN71+acfvXD2wExQFjxZt8X34cbKTEjm+cj4anRYXv6YkR0dy36gphM14Byffurg2bolz\n3Yac2fB/KIqC1saOxoNeQ2fnUOR4liJFSghRaeWkJOPd4WE8WrTj+ukILvz1E/5D3+HC1p/p8OFi\n0GhwupjfC+qbb9ayceMmtFotGzfmz3I+Z85MPvtsIdWrezN37mz++GMTBoOBatWqMXXqDLZs2cyO\nHduxsbEBIDs7G2/vmrz11liys7MYMKAfTzzRj0cffRxXV1e6dOnK6NGvM2FCILVq1SY09DtCQ79l\nyJDh2Nra8s03a2nXrj0vv/wKJ09GEnIkukCRivk9lDqP9MejRVtOf7cCYx5kJl4l/vBe7nt7KgCH\nPw/Co1UHLm7/Dc9WHfDt9hjRP35lGiMrMY5mw8biUKMWRxZNp9GAV7DzrMGlHb9zacfveLbpXOR4\ntm4e5fAvVpgUKSFEpWXt5ML530O5sPUXDPpctNb5xcTjvvYcWTwDrzad6f1K/kS03br1YMyYN+jV\nqw+9e/chJSUZRVGoXt0byP8B86FD4ej1ebRt2w6Anj0fAW626bCxsSElJZnXXhuGTqcrsm/U8ePH\nmD17OnCjf5W/adkDD3QgMHACqampPPxwD1Mzwhsy4i7iXK8RAC4N/Ll+4hCp56PIjL/CkYXTANBn\nZ5F1LZ6MuEt4tuoIQLXm95tmQNda25pao6SejzK15jDo9TjV9it2PClSQghRxi5u+xUbF3eavPgm\nqeejTGcUDZ8bTkbcReIP7eGtt15l6dJVjB8/iZiYc/z11x+89darfPrpAm6dfzs3NxdF0aDVGjEY\nip6X++DBA4SH72fBgvzLe716Fe5TZWtrS0jIElPDyFv5+TVg5cp1hIXt4YsvFpDp357q7R66+Qaj\n8eZ6/zaA1Gh1uPu3ptGAVwqMFbvlh1u2cXNbik5reqyxsqblmx8UiCXhyL4ix7MUubtPCFFp5aan\nYuvhBUDC0f0Y8/ToMzOI2bwB++o+1HnkWZycXEhIiOf//m8ZderUZejQETg5uaDValAUhStX8tuf\nHzoUTpMmTWnSxJ/w8H0A7Nz5D6tXf2naXnJyEl5e1dHpdOzYsY28PAO5ubmm75gAGjRoaOpZtWXL\nZvbvDzOtv2XLZqKjz/DQQ90YMeINUmOjC3weO6+apteSTh8HwLFWPZLPHCPv3z5QZ0JXkZeTg51H\nddN7r0UeKjI/DjXrcD3yMABXw3dx/VREseNZipxJCSEqrertHiLyq0XEH9qLz4O9iQ/fRcKRMHLT\nUjj42ftorG14qlMHvL1rkJR0nREjBmNnZ0/z5i1xdnbh3Xff58MPJ6PVavHx8aVHj94YjUb27w9j\n1KiRaLU63n9/Kvv25TcnbNu2PV99tYpRo0by4INd6dSpC3PmzKRnz95Mnz4VV1c3Ro8ez8cfz+Cr\nr1ZhbW3D1KnTTfHWqlWHOXOCsbOzR6PRULPngAKfp3avpzn1zRdc3L4Ju2pe5OXpsXXzwOehRzkc\n8iGKRkO1Fm3RWlvj81Afjq+aT8LhMJzqNEDRFD4nafDMEE6tX0bsnz+gsbKmyYtvYeXgWOR4liL9\npO4h6VNjHsmbeSRv5qmseUu/HIs+MwMXv8ZcDd9J0unjNBo4osxiK69+UnImJYQQlZDW1o7T360A\nQNEoNAp4zcIRmUeKlBBCVEK2bh60+vc28opMipQQQqjUa7p1lg7hNqaUy1bk7j4hhBCqJUVKCCGE\nakmREkIIoVpSpIQQldaVsG1E/7DW7PXDw/fz/vvvluq9ly9fYvjwl0o97p225giPuMIXaw7e0TqV\ngdw4IcQdkC+y705y6rIyHc/Fqex+9yPUSYqUEKJSy7oWz9Gls8lOSsS366N4t3+YuAM7uPTPZhRF\nw+wWzZg4cTJ6vb5QCw6AjIxMPvroA86cOcXDD/dk6NARnD0bXajdxq2KavGxZctm9uzZRUJCPB9+\nGFxka44pU6bh7V3DNM75SyksXhOOo701Xh4Optd/336WXfsvoCgKbVt607dHAxKvZzL/y/3odBqa\n1K/GyahEPhjdmXc++pN6vi60aOpJw7rurPzuKIoCtjY6XnuxNQ72VkWOpxZSpIQQlVpG/GXajAsm\nLyuTA5+8R/UHumHIzqbFq++hs3Pg/MqPiYo6w/HjEYVacNSpU5dz56L5+usNGAwGBgx4kqFDRzBv\n3ieF2m307v2oaZtFtfhQFIW4uCt88cWXpgld/9uaIyEhoUCR+n7TKZ59tDFtW9ZgxfrD5AFXE9IJ\nO3SJoHe6ADD1sx20b12TTX9H06F1TR7rXp+vNx4zjXE1IZ1xI9rhW8OZGSG7GB7Qkhpejvyx/Sx/\n/HOWTvf7FDmeh7t9OfzrlEyKlBCiUnOp1xiNVofGwQmdrR369FR09o4cWzEHACXxCsnJSZw8GVmo\nBUd4+H4aN26Cra0tgGlW9Nu12yiuxUejRk1o2tS/wIzj/23N0bx5ywKxX7ySSqN67gD4N/Dg8PGr\nRMUkcSU+nemf509Sm5WlJ/5aJhfj0ujQxid/my28iYpJAvLPmHxrOAMQFXOd5evyJ5TN1RuoX8e1\n2PGkSAkhRHn4T0cMo9HAmQ1fcv+E2Vg7u6L/biEAWq2myBYcWq220GtFtdu4fPmSaYNFtfgA0Oms\nCozz39Ycffs+yaOP3uyCazTmT2mU/9j47xgaWjWrzisB9xUY68ffT6P59723dgHRam/eH2dtreX9\ntzsViHvf4ctFjqcWcnefEKJSSzl3GqPBQE5aCnk52SgaLYpWi7WzK1nXE4mMPIFer79tC47/ul27\nDWdn5yJbfBTlv605Tp48UWB5TS8Hos/nnxEdO50IQL1aLhw/lUB2jh6j0ciq/x0lJycPLw9703sP\nH79a5Pbq+LiYlu06cJGIk/HFjqcWpTqTCg4O5vDhwyiKQmBgIC1b3jwl/eqrr/jxxx/RaDQ0b96c\nyZMn37NghRDiTtl71eT4ynlkJVyh7mMDsHJwwq1RC8LnTsaxZh0GDXqJzz+fy5dfri3UgiM29nyR\nYxbVbiM9Pd20vKgWH7///luhcf7bmmPMmAkFlvfr04glaw+x6e9ovKrZk6cHD3d7Hu3mx0fzdqLR\nKLRtWQNray19uvnx+f/tZ+/BSzSo62Y6q7rV4Gebs3zdYX7ccgZrKw2jhtyPo4N1keOpRYmtOsLC\nwlixYgVLliwhKiqKwMBA1q9fD0BaWhpPPvkkv//+OzqdjmHDhvH222/TqlWrYseTVh3qIHkzz/mD\nH1k6hGLVbq3eW9Dl7808d/L3duFyCumZuTT2q8au/Rc4djqREc/fu0t4Zf33Znarjt27d9OzZ08A\n6tevT3JyMmlpaTg6OmJlZYWVlRUZGRnY29uTmZmJi4tLmQYuhKj45Pdl956tjY7l3xxBIf97rFdf\nKP5koSIpsUglJCTQrFkz03N3d3fi4+NxdHTExsaGN998k549e2JjY0Pfvn2pV6/ePQ1YCCFEYR7u\n9kz99zbyyuSO7+679epgWloaS5YsYdOmTTg6OjJkyBAiIyNp0qRJseu7udmj06nneue9VNzpqxqo\n+X+2np6fWDqEYhX9DYU6qPnvTfJmHslbKYqUl5cXCQkJpudXr17F09MTgKioKGrVqoW7e/59/G3b\ntiUiIuK2Rer69Yy7jbnCKOvv36oKyZt5JG/mkbyZp6zzVlzRK/EW9M6dO7N582YAjh07hpeXF46O\njgD4+PgQFRVFVlYWABEREdStW7eMQhZCCFHVlXgm1aZNG5o1a0ZAQACKohAUFERoaChOTk706tWL\n4cOHM3jwYLRaLa1bt6Zt27blEbcQQogqoFTfSY0fP77A81sv5wUEBBAQEFC2UQkhRBk4fjqB37ef\nZczwdgVeX70hgj5d6xWYtPVW/fs/werV67G3v7upgVasWIKrqyvPPjvQ7DFGvreJpbP63FUcFZlM\niySEKDdZC6PLdDzbN/3MWm/ws83LNA5x70iREkJUalnZehauOsD5iym0b12TZx5tzLT5O3n5uRbY\n21kx49WhWFlZcd99rTl8+CALFiwFYMOGb9mzZyd5eXnMnRuCvf3Ns66wsD0sW7YIGxtb3NzcCQqa\nTkJCPNOnB2EwGPD2rsHkyVMBiI6O4t13xxAbe57Ro8fToUMn/vzzD9av/wqtVkvjxk0ZM2Y8aWlp\nzJgxlbS0VPR6PWPGTMDOEglTGZm7TwhRqV28ksYrz9/Hh+MeZPP2swWW/bY1iu7de7JgwVJyc3MK\nLPPzq8/ChcuoXt2b/fv3FVi2YcN6Ro16hwULltKzZ2+Sk5NYunQRAQEvsGjRcjw8PIiMzJ+HLzk5\niY8/nseYMRP44YcNZGRksHTpQubNW8TixSu4dOki4eH7+e67dTRr1pyQkCWMHj2OkJC59zYxFYQU\nKSFEpVbX1wUbax22Njr+Owncxbg0WrTInzqoc+euBZa1bJk/Y4Onpxfp6WkFlj38cE8++WQmq1d/\nScOGjalWzYNTpyJNY73xxmiaNWv+n3E8SUtLIzb2PL6+tU3fd7VufT+nTkUSGXmc1q3zbzxr0sSf\nCxdiyzALFZcUKSFEpabVFp5o1cQIGk3+YVD5z9tubdHx3ylO+/TpS0jIF7i4uDJx4jvExJxDoym5\n1YfRaERRCo6n1+ei0WhQlIItPgwGQ6k+X2UnRUoIUWV5edgTGXkcwNR6ozRWrlyOVqvjqaeeoUeP\n3pw7F12g1cfy5V+wb9/eItetVasOFy6cJyMjf9b0gwfDadzYnyZN/Dl4cD8AERFHqVev/t18tEpD\nbpwQQlRZfbr58cU3oWzd+hf+/s2KbHBYlOrVvRkz5g2cnJxxcnIiIOBFmjTxJzj4I77//n9Ur16d\noUNHcOTIoULr2tnZ8eaboxk37i0URUPLlq24775WNGzYkODgD3n77dcwGAyMHTsRkr8q649c4ZTY\nqqOsSasOdZCWE+aRvJlHrXm7cDkFR98XadmyFX/8sYnw8ANMnKiennhqzRuoqFWHEEJUVrY2OhYv\nDkFRFDQaDZMmqbfQV1UVvkipeTbvytKnRojKysPdnsWLV1g6DHEbcuOEEEII1ZIiJYQQQrWkSAkh\nhFAtKVJCCCFUS4qUEEKUwpUrVzh+PKLU7x81auQdjZ+RkUH//k/caViVXoW/u08IUXH8svmhMh2v\n7yPby3S82wkP30dmZgb+/tLmozxJkRJCVFrb9pznxJlEUtNzuHA5lYGPN2HXgYtcvJLKm0Pup0Fd\nN0JC5nL8+DFycnLo1+9ZnniiX6FWHGPHTuTLL5ei0+moXt0bH59afPbZxyiKgr29PYGB+S02Pvro\nA+zs7Hn22QG8//5H6PV6PvroAxITE8jJyWH48Ffp0KGTKb709DQmT36XnJwc00S0AIcPH2TJkoXo\nMy9Qzc2WEc+3AgUWrQon4XomDeu5sffgJRZM6820+TvxrZH/Q9iAJ/1Z8tVB0jNyyTMYebl/c2r7\nuBB5JpH1P51Aq9WYxtPpKsaFNClSQohK7Up8OkFjOrN113l++OM0Myd2Y9ve8+w6cJHaPs54e9fk\nrbfGkp2dxYAB/XjiiX6mVhz33deabdv+wmDI49FHH8fV1ZUuXboyevTrTJgQSK1atQkN/Y7Q0G/p\n3ftRTp8+yYYNP+Pi4grAyZORJCcnsXDhMlJTU9m9e2eB2DZv/g0/v/q8/fY4/vzzd7Zs2QzAvHmf\nMH/+YpKi5vP1xmPsOXgJO1sduXoDH417kPCIK2z6+2YDyVo1nenZpS6hm05yX1MvHu5UhwuXU1m9\n4SiBozqxasNRJo/qhKODtWm8Lu18y+8f4S5IkRJCVGp+tV1RFAVXFxtq13RGo1FwcbLhZOY1rK20\npKQk89prw9DpdCQlXQdutuLo3bsPPXs+QrVqHgXGPH78GLNnTwcgNzeXpk39AfDx8TUVKIA6deqS\nkZHOtGkf8NBDD9OzZ+8C45w7F02rVvcD+S07AK5dS+TChVgCAyeQnRZDdk4eTo7WXE+GRn5uALTy\nr45Gc3Pa9vp18rd5Ovo6KWnZ7Nh3AYDsnDySU7K4cjWdz5bvM73m5GhdBpktH1KkhBCVmvaWg7lW\nc8slLiOcOJ1AeHgsCxbkX8rr1etBIL8VR/v2Hdm+/W8mTnyH6dM/LjCmra0tISFLUG7p73H58iV0\nOqtC71uyZCVHjx7ht99+YufOfwgMDLoZghFTsbnR5kOns8LDw5MFC5YWmLvvxz9Om96rKBTYtk6r\n+XddDUOea0Gjeu6mZWkZObi72vLB6M53kDX1qBgXJYUQ4h5ITc/By6s6Op2OHTu2kZdnIDc3t8hW\nHBqNhry8PAAaNGhoau2xZctm9u8PK3L8kycj+eOPTdx3XyvGj5/EuXMFOwPXrl3H1ME3PDy/TYez\nszMAZ8/mX87bvC2a8xeTqe7hQPT5JACORMaTl1e431T9Oq4cOHIFgAuXU/nlrygc7a1Nz28dr6KQ\nMykhRJXVvLEnm3fFMGrUSB58sCudOnVhzpyZtGrVplArDnt7e6ZPn4qrqxujR4/n449n8NVXq7C2\ntmHq1Omkp6cXGr9GjZosWbKQH34IRaPRMGjQSwWW9+nTl8DA8Ywe/TotW7YynR29994UgoM/xJB9\nGTcXW7p3qoO3lyN/7znP1M9VknTTAAAexUlEQVR24N+wGk4OhS/ZPdLVjy/WHuTDz3ZgMBoZ0r8F\nACMGtWLJVwfRaTWm8SqKCt+qoypNZV+WJG/mkbyZR/Jmnlvzlpaew/HTCTzQqibXkjKZEbKbTz/o\nbrHYpFWHEEIIE1tbHXvCL/Hzn1EYDEZeeqaZpUMqF1KkhBCiAtBpNbw9rK2lwyh3cuOEEEII1ZIi\nJYQQQrWkSAkhhFAtKVJCCCFUS4qUEEKUs1GjRhIdfYYVK5awYcN6S4ejanJ3nxB3oKxbTZSl11tb\nOgIhyp4UKSFEpZVwLYNFq8PRaBTy8oy8MaQNbi62LF93mKuJGej1Bt54ew8PPNCBAQOe4oknnubv\nv//E19eXxo2bsnXrFnx9axMUNJ2EhHhmzpyGXp+LRqNh4sQP8Pb2LrC9efPmcPx4BFqtlgkTJuHn\n14BFi+Zz9Ohh9Po8nn12AH369C0y1iVLFnLkyCEMhjyeeWYAvXr14fzFZBavPYiDnRX1aruSmprD\nay+15vftZ9m1/wKKotC2pTd9ezQoj3RaRKmKVHBwMIcPH0ZRFAIDA2nZsqVp2eXLlxk7diy5ubn4\n+/vz0Ufq/WW5EKJq2XvoMs2bePJMn8acjU0iKTmLE6cTsbLSMGV0Z64nZzFz7sd8800oBoOBxo2b\n8OKLQ3j22cfp2rUHy5at5pln+pKamsqyZYsJCHiBdu3as3v3DlatWs7Eie+btrVv316uXo1j6dKV\nHDoUzp9//kFKSgrR0VEsXvwlmZmZDBkSwEMPdSsU5+HDB4mLu8LChcvIyclh2LAXeeihbixceY16\nPk9Tq0YL/jmwGp3WjfXfN2PP4WP06BAIwOZtC0hPbYGDnVt5pRUovzP3EotUWFgYMTExrF+/nqio\nKAIDA1m//uY11FmzZjFs2DB69erFhx9+yKVLl6hZs+Y9DVoIIUqjZRNP5i7fR0ZGLg+0rkmjeu7s\nOnAR/wb5rTfcXGyxtrYiJSV/wtWmTZuhKApubu40atQ4/z1u7qSnpxERcYTz52NYtWoFBoMBV9eC\nReHUqUhatLgPgFat2tCqVRu++WYtrVq1AcDOzo66df2IjY0tFOfRo4c5duyoqeW80WggISGB5LQ4\nPN3rAuBbvRlXEk6TkBRLSnoCW3YvBiBXn01axrVyL1LlpcQitXv3bnr27AlA/fr1SU5OJi0tDUdH\nRwwGAwcOHGDu3LkABAUF3W4oIYQoV7VqOjPrva4cORHP+h9P0LVDbQBunbA0NzcXRcm/h0yr1Zpe\nv/Wx0WhEp7Ni2rTZeHgU7C11g0ajxWgsODO5oijcOjtq/qVChf+ysrLi8cef4qWXhhYeWLlxf1v+\nelpFi49XU9q37F/cx65USixSCQkJNGt2c44od3d34uPjcXR05Nq1azg4ODBz5kyOHTtG27ZtGTdu\n3D0NWJQNuQFAVAW7DlzEq5o97e6rgZOjNXsPXqJ+HVeOn06g0/0+JF7PRKPR4ORU9OSmt/L3b84/\n//zN00/358CBfSQmJtK7dx/T8qZN/Vm7diWDBg3m1KlIfvrpB3r2fIRVq1bw0ksvk5GRwcWLF/D1\nrV3k2AsXzueFF4aQm5vLokXzeeedd3G0r8a1pFhqejXhUnwkGkWDu6svByN/QZ+Xg1ZjxYFjP9Cq\naV90WqtC41YGd3zjxK2TphuNRuLi4hg8eDA+Pj6MHDmSv//+m27duhW7vpubPTqdttjld+p8mY1U\n9oqb1VfcnuTNPGrOm6X20xpeDqz45gi2Njo0GhjSvwXeng4cP53I9M93otcbmDEjBE9PJ7RaDR4e\njjg4OKDTaXB3d8DT08n0eMKEdwgMDGTbti0oisLMmTML5LxXr64cOLCb0aNfBfKvLDVu3JijR/cz\nZsxr6PV63n13ArVre2FtrcPNzQEHBxscHW3p3r0Lhw/vY9SoVzAajQwaNAhPTydaNOzJniPfEnl2\nOy6O3uTqs3Cwc6NJvQf5Y9ciFEXB17u5RQpUef29ldiqIyQkBE9PTwICAgDo0aMHP/zwA46Ojuj1\nep588kl+/fVXAJYvX47RaGTEiBHFjietOtRh8ay/LR1CsV5/r5ulQyiW5M08sp+aZ9rEVWi1Vrg5\n1yTizJ9ghOYNe1g6LKDs/96KK3ol/pi3c+fObN68GYBjx47h5eWFo6MjADqdjlq1anHu3DnT8nr1\n6pVRyEIIUbVpNDr2HP6W33ct5GpiNA3rdLR0SOWuxMt9bdq0oVmzZgQEBKAoCkFBQYSGhuLk5ESv\nXr0IDAzkvffew2g00qhRI7p3t1wTLiGEqEzcXXx49MExlg7Dokr1ndT48eMLPG/SpInpcZ06dVi3\nbl3ZRiWEEEIgc/cJIYRQMZkWqYrqcWalpUO4jW6WDqBYkjchypecSQkhhFAtOZMSQogycPnyJd5/\nfyIrVqwp8PqaNStp3boNzZu3LHK9UaNGMnbsu/j5FZ4k9k7O3HckXediThYDvWrcUdy3mnDmJNP8\nGmCrKc1vWbuZvZ07IUVKCFFuvtA/X6bjvaZT/01bL730sqVDqNCkSAkh7jnTNFxl/DvUkqb3Ss+8\nzs6DX6NRNBiMBjq1eh57Wxf2HvmOtIxr5Bn0TJ5Sdq06jEYDc+bM5PjxYzRu3JSJEyczY8ZUunXr\nwX33teb9998lOzubjh0789NPG/nuux8B+OuvLcyf/ynJycnMmjW3wLgxWZmsvXIJnaKg02h4vWYt\nAJZeiiXTYMBOo+U1H18AkvR6Fl44z6WcbPq4e/CgqxuR6WlsSIhDi4K7lRVDvX1QFIVVVy4Sn5OD\n3mikn6cXzR3UOWOJfCclhKi0zl8+Qg2PRvTs+Dptmz1FVnYq5y4dRKu1olenN3io7RDmzv0YwNSq\nY/ny1Rw9egRv75osW7aaw4cPFmjVMX/+YgYMeJ5Vq5YX2l5s7HmGDh3B8uWr2bNnJ6mpN2fY2bTp\nZ+rW9WPx4hU4OjoVmGLOzc2N+fMX06FDJ7Zv/6vAmDuSr/OwmzsT6/jxmLsHyXo9m64l0MzBiUl1\n/PB3cOB4ejoA8Tk5vO5Ti1E+tdlyPRGA1XGXeL1mLd6r44e9RsuelGT2piRhpWh4r44fb/rU5qsr\nl8s892VFzqSEEJVWDY9GbN+/ihx9JrVrtMTTrS7nLh7Eq1p9AOxtXcqsVQeAj08tqlXLnyXd3b0a\n6elppmXnzp2jdev7AejS5SG+/nq1aVnLlq0A8PT0JDk5ucCYrR2dWXPlEldycnjA2YUaNjbEZGXy\ntGd1AHq7529vR9J1/Ozs0SgKblY6Mg15pOXpUVBwt7IGoIm9Aycz002PAdysrNBpFNLy9Gbn+V6S\nIiWEqLRcnWvwWNexXI4/xaETv1K/9gP5C245iymrVh3/XefGerc8M7XpUJSC7Tr+u61b+Ts48kHd\n+hxOS2XFpQsM8PJGg1LofQDaW4Y1GkFBwXhLYxI9RpR/W34UeN1oREPhFiJqIJf7hBCV1rmLB0lK\nuUIt7+bc1+RRriVdoJprLeISowBIz0y641YdAAcO7OP33zfdUSw1a/oSGXkCgD17dpV6vT+vJ5Ke\nl0dHF1d6u3twPjuLenZ2nMjIPyP6+/o1diZfL3JdB60WBYXE3BwATmWkU8/Wjnq2dkT+u/613Bw0\nKNhry647RVmq8GdS0hdJCFEcZ0dPwo5sQKezRlE0tG3WDycHD+ISo9iyezF5hjymTgss1VjDh48k\nOPhDtmzZjKIoBAbeWZPXxx57gkmTxjJq1EjatWuPRlO6cwQvK2sWXTqPvUaLTlEYVsMXK0Vh+eUL\nzI6JxlajZWRNXw6kphS5/hDvmiy5dAEt4GltzQPOLgBEZqTz8fmz6I1GBnurt5t6ia06ylpZt+qQ\n1gnmOfXKy5YOoViNlq+0dAjFkryZR/ZTuHLlMjEx52jfviMREUdYsWIJn3228LbrVKW/t+JadVT4\nMykhhKgIHBwcWb/+K1auXIbRCGPGjC95JSFFSgghyoOTkxNz5y6wdBgVjtw4IYQQQrWkSAkhhFAt\nKVJCCCFUq8J/JyX9fYQQovKSMykhhBCqJUVKCCGEakmREkIIoVpSpIQQQqiWFCkhhBCqVeHv7hNC\nqJ/chSvMJWdSQgghVEuKlBBCCNWSIiWEEEK1pEgJIYRQLSlSQgghVEuKlBBCCNWSIiWEEEK1pEgJ\nIYRQLSlSQgghVKtURSo4OJiBAwcSEBDAkSNHinzPp59+yksvvVSmwQkhhKjaSixSYWFhxMTEsH79\nembMmMGMGTMKvefMmTPs27fvngQohBCi6ipx7r7du3fTs2dPAOrXr09ycjJpaWk4Ojqa3jNr1ize\neecdFixYcO8iFUKIKmb+IC9Lh1CsheW0nRLPpBISEnBzczM9d3d3Jz4+3vQ8NDSUBx54AB8fn3sT\noRBCiCrrjmdBNxqNpsdJSUmEhobyf//3f8TFxZVqfTc3e3Q67Z1utlinymyksufp6WTpEIoleTOP\n5M08krfKp7zyVmKR8vLyIiEhwfT86tWreHp6ArBnzx6uXbvGCy+8QE5ODufPnyc4OJjAwMBix7t+\nPaMMwq4Y4uNTLR1ChSR5M4/kzTySN/OUdd6KK3olXu7r3LkzmzdvBuDYsWN4eXmZvo/q06cPv/76\nK99++y0LFiygWbNmty1QQgghxJ0o8UyqTZs2NGvWjICAABRFISgoiNDQUJycnOjVq1d5xCiEEKKK\nKtV3UuPHjy/wvEmTJoXe4+vry5o1a8omKiGEEAKZcUIIIYSK3fHdfUJUZfK7FSHKl5xJCSGEUC0p\nUkIIIVRLipQQQgjVkiIlhBBCtaRICSGEUC0pUkIIIVRLipQQQgjVkiIlhBBCtaRICSGEUC2ZcaKK\nkpkThBAVgZxJCSGEUC0pUkIIIVRLipQQQgjVkiIlhBBCteTGCSHEPSc36ghzVfgiJX/8QghRecnl\nPiGEEKolRUoIIYRqVfjLfUIIUVllhvWxdAjF614+m5EzKSGEEKolRUoIIYRqSZESQgihWlKkhBBC\nqJYUKSGEEKolRUoIIYRqyS3oQtwBuSVYiPIlZ1JCCCFUS4qUEEII1ZIiJYQQQrWkSAkhhFCtUt04\nERwczOHDh1EUhcDAQFq2bGlatmfPHubOnYtGo6FevXrMmDEDjUZqnxBCiLtXYpEKCwsjJiaG9evX\nExUVRWBgIOvXrzctnzJlCqtXr8bb25u3336bf/75h65du97ToMXdk7vUhBAVQYmnPLt376Znz54A\n1K9fn+TkZNLS0kzLQ0ND8fb2BsDd3Z3r16/fo1CFEEJUNSUWqYSEBNzc3EzP3d3diY+PNz13dHQE\n4OrVq+zcuVPOooQQQpSZO/4xr9FoLPRaYmIir732GkFBQQUKWlHc3OzR6bR3utkKydPTydIhVEiS\nN/NI3swjeTNPeeWtxCLl5eVFQkKC6fnVq1fx9PQ0PU9LS2PEiBGMGTOGLl26lLjB69czzAy14omP\nT7V0CBWS5M08kjfzSN7MU9Z5K67olVikOnfuTEhICAEBARw7dgwvLy/TJT6AWbNmMWTIEB566KGy\ni1YIUanIjTrCXCUWqTZt2tCsWTMCAgJQFIWgoCBCQ0NxcnKiS5cubNy4kZiYGP73v/8B8PjjjzNw\n4MB7HrgQQojKr1TfSY0fP77A8yZNmpgeR0RElG1EQgghxL/kV7dCCCFUS4qUEEII1ZIiJYQQQrWk\nSAkhhFCtCt+ZV25tFUKIykvOpIQQQqiWFCkhhBCqJUVKCCGEakmREkIIoVpSpIQQQqiWFCkhhBCq\nJUVKCCGEakmREkIIoVpSpIQQQqiWFCkhhBCqJUVKCCGEakmREkIIoVpSpIQQQqiWFCkhhBCqJUVK\nCCGEakmREkIIoVpSpIQQQqiWFCkhhBCqJUVKCCGEakmREkIIoVpSpIQQQqiWFCkhhBCqJUVKCCGE\nakmREkIIoVpSpIQQQqiWFCkhhBCqJUVKCCGEakmREkIIoVqlKlLBwcEMHDiQgIAAjhw5UmDZrl27\n6N+/PwMHDmThwoX3JEghhBBVU4lFKiwsjJiYGNavX8+MGTOYMWNGgeXTp08nJCSEdevWsXPnTs6c\nOXPPghVCCFG1lFikdu/eTc+ePQGoX78+ycnJpKWlARAbG4uLiws1atRAo9HQtWtXdu/efW8jFkII\nUWWUWKQSEhJwc3MzPXd3dyc+Ph6A+Ph43N3di1wmhBBC3C3dna5gNBrvaoOenk53tf5//fTpU2U6\nXlUheTOP5M08kjfzSN5KcSbl5eVFQkKC6fnVq1fx9PQscllcXBxeXl73IEwhhBBVUYlFqnPnzmze\nvBmAY8eO4eXlhaOjIwC+vr6kpaVx4cIF9Ho9W7dupXPnzvc2YiGEEFWGYizF9bs5c+awf/9+FEUh\nKCiI48eP4+TkRK9evdi3bx9z5swBoHfv3gwfPvyeBy2EEKJqKFWREkIIISxBZpwQQgihWlKkhBBC\nqJYUqVvExsayZMkSS4dRYRgMBi5evIher7d0KEKIW6SkpBS77OjRo+UYyd2r8kXq6tWrrFy5kgED\nBvDKK69gMBgsHZJqhYeHM3z4cCZPnkxUVBRPPfUUY8aMoVevXmzdutXS4alWTk4O8+bNIzc31/Ta\n6dOn+fzzzy0YVcVx6tQppkyZwosvvsjgwYOZNWsWV65csXRYqjZq1KgCz4OCgkyPP/nkk/IO567c\n8Y95K4OkpCQ2b97Mzz//TExMDL179yYlJcV0q70o2scff8z48eOJj4/nlVdeYcWKFfj5+ZGUlMRr\nr73Gww8/bOkQVenjjz8GCv4Qvk6dOqSlpbFgwYJCBxRx0+7du5k+fTqvv/46Q4cOJT09nYiICF5+\n+WWCgoLo2LGjpUNUpf/eDxcdHV3sMrWrkkWqS5cu1K5dm4kTJ/Lggw+i0Wjo16+fpcNSPWtra9q2\nbQvAypUr8fPzA8DV1RUrKytLhqZqBw8eZMOGDQVes7a25r333uOFF16QInUbS5cu5YsvvqBWrVqm\n15o3b06nTp0YP368FKliKIpi1jI1qpKX+2bNmkXt2rWZPHkyQUFBMimuGWxsbAo8r2h/+OVJq9UW\n+bpGoylwCVAUptfrCxSoG2rXro1GUyUPX2apyPtnlTyTevzxx3n88cdJTk5m06ZNLFq0iOjoaGbP\nns2zzz5LgwYNLB2iKkVERNC/f3+MRiNnz56lf//+QP7lg3Pnzlk2OBVzc3Nj//79prPQG/7++288\nPDwsFFXFcLuDq7W1dTlGUrHc2FeBAvtrRdxX5ce8/4qLi+Pnn3/ml19+ITQ01NLhqNLFixdvu9zH\nx6ecIqlYYmJieOutt6hfvz5NmzYlLy+Pw4cPc/nyZVasWCGF6jbatGljuqx8qxsH2wMHDlggKvWr\nTPuqFCkhyoHBYGDnzp1ER0ejKAp+fn507ty5Ql+GKQ+V6WArzCNFSgghhGrJN49CCCFUq0reOHFD\nZGQkCxYs4Ny5cyiKQv369XnzzTdp2LChpUNTNcmbEBVDZdhXq/Tlvqeffpq3336bVq1aYTQaOXjw\nICEhIWzcuNHSoama5M08leGAYSmSO/NUhn21Sp9Jubq6FpgloUePHnz33XcWjKhikLyZZ9KkSYUO\nGBMmTKhQBwxLkdyZpzLsq1W6SPn5+TF16lQ6deqEwWBg//79eHl5sW3bNgC6du1q4QjVSfJmnspw\nwLAUyZ15KsO+WqWLVEZGBkChyVE3bdoEVIx/QEuQvJmnMhwwLEVyZ57KsK9W6e+kLl26VOTrNWvW\nLOdIKhbJm3kmTZp02+UzZ84sp0gqHsmdeSrDvlqli9Szzz5r+jFlbm4usbGxNGvWjDVr1lg4MnWT\nvJmnMhwwLEVyZ57KsK9W6ct9/52ZOj4+nvnz51somopD8maet956q8IfMCxFcmeeyrCvVuki9V+e\nnp5ERkZaOowKR/JWOpXhgGEpkruyURH31SpdpG49FTYajSQmJtKpUycLR6V+kreyUREPGGohuSud\nyrCvVunvpG6dvFJRFBwdHXF2drZgRBWD5M08xR0wgoODLRyZ+knuzFMZ9tUqX6RCQkI4ceIEGo2G\n5s2b89Zbb+Hl5WXp0FRN8maeynDAsBTJnXkqw75apYvUyy+/zPPPP0/79u3Jzc0lLCyMjRs3smzZ\nMkuHpmqSN/NUhgOGpUjuzFMZ9tUqPQt6Xl4ejzzyCK6urnh6etK3b19ycnIsHZbqSd7MM3nyZB5+\n+GFWrVrF0qVL6dChA5MnT7Z0WBWC5M48lWFfrdJFytramt9++41r166RmJjIL7/8Ii2pS0HyZp7K\ncMCwFMmdeSrDvlql7+4LDg5m/vz5LF68GI1GQ4sWLZgxY4alw1I9yZt5bhww2rdvj9FoZM+ePRXu\ngGEpkjvzVIZ9tUp/J7VkyRJeffVVS4dR4UjezBMXF8f8+fOJiIgwHTDke5XSkdyZpzLsq1X6TCox\nMZGdO3fSokULrKysTK/b2dlZMCr1k7yZZ+PGjXLLtJkkd+apDPtqlS5S27ZtY8uWLQVeUxSFP//8\n00IRVQySN/NUhgOGpUjuzFMZ9tUqfblPiPL0yCOPkJubW+C1inbAsBTJXdVVpYtUjx49Cr2m1Wqp\nVasWY8eOpVmzZhaISv0kb0JUDJVhX63Sl/sGDBiAk5OT6R9y+/btXLt2jfbt2zN9+nTWrVtn4QjV\nSfJmnspwwLAUyZ15KsO+WqWL1Pbt2/nqq69Mz5977jkGDx5c4e+Gudckb+apDAcMS5Hcmacy7KtV\nukjZ2NgQHBxMmzZt0Gg0REREkJuby86dO7G3t7d0eKoleTNPZThgWIrkzjyVYV+t0t9JpaWlsXHj\nRqKiojAajdSuXZunn36azMxMnJyccHJysnSIqiR5M8+wYcNo0KBBgQPGvn37GDVqFF9++SUrVqyw\ndIiqJbkzT2XYV6t0kRKiPFWGA4alSO6qLilSQgghVKtKTzArhBBC3aRICSGEUC0pUkLcA6tWrWLN\nmjXFLo+Li2P37t0AhISE8Nlnn5V67BMnTjBt2rRSLT9z5gzHjh0r9dhCqI0UKSHugR07dtC5c+di\nl+/du5c9e/aYNXbTpk354IMPSrX8jz/+4Pjx42ZtRwg1qNK/kxJi7969LFq0CBsbG9q2bcuePXvQ\n6/WkpaUxePBg+vXrh8FgYPr06URERAAwdOhQHn30USIjI5k9ezZ6vZ7c3FymTJmCv78/OTk5XLx4\nET8/Py5dusSHH35IZmYmGRkZjB07llq1ajFv3jyMRiOurq5A/pnV22+/TXR0NA888ABTpkwhNDSU\nXbt2YTAYOHv2LD4+PoSEhBAWFsa8efNYt24d586d44MPPsBgMGBjY8PMmTM5d+4c8+bN491332Xt\n2rU4OjoSFxfHxo0b+eOPP1AUhatXr/Lcc8/x119/odVqLflPIMRtSZESVV5ERAR//vknly5don79\n+vTo0YOrV6/yxBNP0K9fP3788UcSEhL49ttvSUlJYfz48fTu3ZsJEyawcOFCateuTWRkJIGBgYSG\nhnLgwAHatGkDwNSpUxk2bBgdOnQgPj6egQMH8vvvv/P000+j1+sZOnQoISEhxMTEsGbNGvLy8ujQ\noQNvvfUWAAcPHuSXX37BxsaGXr16ceLEiQKxBwUFMXz4cLp168Yvv/zCb7/9RtOmTQFo3bo1Dz74\nIPfffz/PPfccYWFhhIWF0b59ezZv3sxTTz0lBUqonhQpUeXVq1cPV1dX9Ho9y5cvZ/ny5Wi1WpKS\nkgA4cuQI7du3B8DZ2ZmlS5eSmJjI2bNnmTx5smmctLQ0DAZDgUt9e/fuJT09nYULFwKg0+lITEws\nFMP999+PTqdDp9Ph5uZGamoqAC1btsTW1haAGjVqkJycjEZz8yr9kSNHeOCBBwDo27evaZtFCQgI\n4PvvvzcVqYrWoVVUTVKkRJV3oz/RvHnzqFOnDnPnziU9Pd10NqQoCgaDocA61tbWWFlZFXlzxO7d\nuxk5cqTpfSEhIbi7u982hv+e0dz4+WJxr9/qv7EVp2fPnsydO5dz586h1WqpU6dOqdYTwpLkxgkh\n/pWQkEDDhg0B+Pnnn9FoNOTk5NC6dWv++ecfIP9s6bnnnsPGxgZfX1+2bdsGwNmzZ1mwYAEJCQlY\nWVnh4uIC5J8h/fbbbwBcu3bNdPaiKAp6vf6uY27Tpo0ptl9//ZW5c+cWWK4oiqkPk7W1NY888giT\nJk3imWeeuettC1EepEgJ8a8XX3yR+fPnM3ToUBwcHOjYsSPjxo3j0UcfxdfXl4CAAIYOHcrQoUOx\ntrZm9uzZLFmyhBdeeIH33nuPzp07s2PHDjp27Ggac/LkyWzZsoVBgwYxcuRIOnToAEDbtm0JDQ1l\n3rx5dxXzBx98wNdff81LL73Ed999x/PPP19geYcOHVi4cKFpctann36aM2fO0KdPn7varhDlRaZF\nEqIKWb58OSkpKYwdO9bSoQhRKvKdlBBVgMFgYNCgQTg7OzN//nxLhyNEqcmZlBBCCNWS76SEEEKo\nlhQpIYQQqiVFSgghhGpJkRJCCKFaUqSEEEKolhQpIYQQqvX/Nrsw2kVHoXcAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "TGVw87JkX0rJ",
- "colab_type": "code",
- "outputId": "4947d499-85d4-4297-edda-959560307770",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 73
- }
- },
- "cell_type": "code",
- "source": [
- "from sklearn.preprocessing import LabelEncoder\n",
- "\n",
- "# creating an encoder\n",
- "le = LabelEncoder()\n",
- "\n",
- "# label encoding for test preparation course\n",
- "data['test preparation course'] = le.fit_transform(data['test preparation course'])\n",
- "data['test preparation course'].value_counts()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "1 642\n",
- "0 358\n",
- "Name: test preparation course, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 200
- }
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# comparison of race/ethnicity and parental level of education\n",
+ "\n",
+ "x = pd.crosstab(data['race/ethnicity'], data['parental level of education'])\n",
+ "x.div(x.sum(1).astype(float), axis = 0).plot(kind = 'bar', stacked = 'True', figsize = (7, 4) )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 418
+ },
+ "colab_type": "code",
+ "id": "hw0nW8fYZbkB",
+ "outputId": "62244083-effc-4763-cfb8-c042f64a7b7c"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/seaborn/categorical.py:1468: FutureWarning: remove_na is deprecated and is a private function. Do not use.\n",
+ " stat_data = remove_na(group_data[hue_mask])\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFYCAYAAAClCA4fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlcVOX+B/DPwDAiiGwCigtZpqSg\niaRXzQzB5ZaWdc0FwUzNHe2mgrK44UaaC2q5L4GWXpc00zBNsxRxQcElN9wQlEXZkW14fn/w4vxA\nQIeEGTh93n/BmXOe5zvPnDMfzpnhPAohhAARERHVanq6LoCIiIheHgOdiIhIBhjoREREMsBAJyIi\nkgEGOhERkQww0ImIiGRAqesC/o6kpAxdl0BERKQ1VlYmL1yHZ+hEREQywEAnIiKSAQY6ERGRDDDQ\niYiIZICBTkREJAMMdCIiIhlgoBMREckAA52IiEgGGOhERCQ7W7ZswK1bN3VdhlYx0ImI/uFSUp4g\nKGh+pbbZtm0roqIuVlNFf09BQQH8/KYBAIYPH4UWLV7XcUXaVStv/UpERFVn48a1iI6+gBMnjqNe\nvXrYsWMbzMzMYWpqhvHjJ+HcuTPYs+d/MDY2hhACo0aNw4ED+3D5cjSaNm0KCwtLqZ3Y2Pto2LAR\nbt+OwdixE5CamorvvtsEE5P6mDZtBrZt+w5JSYnIz8/HRx8NgJOTM4YOHQBX117IyspESkoK/P3n\n4Nq1q9i8eT3q1Su65WlAwFxs3rwesbH3YWZmjhEjPseCBXNgYlIfSUmJCAiYi0OHDuDq1Ss4cOBH\nREVdRN++/WFtbY0VK5bAzMwc6enp8Pb2w6lTf+DUqT/RvPmruHr1Cjw8PkX79h2k8YiPj8Py5Yth\nYGAAY+N68PHxx+HDh3DixHHUqVMHdnav4LPPPsfEiaMxc2YgrK1tMH/+bPTt2x/nzkVINfbr1x8b\nNnyL+vVNkZWVCV/f2Xj4MB7r1q2GhUUDKBTAl1/6QKmsmihmoBMR/cP16NETBQUFeOeddzFixFCs\nWLEGJiYmWLBgDq5evYzw8D/h6toTrq69cPfuHVhaWsLBoS369u0vhXmxxo2b4PPPx+HixUjs3Pk9\nevX6NwoKChAYuAjXrl1FfHwcAgMXIScnB15eY7B+/Vbk5uaid+/30LhxEyxYMAeXLkUjLy8HX3wx\nDY0bN4G39xd48OA+AKBp02YYOXIM7t+/i4ED3eHk5Izt20Pwxx+/w9W1F86ePYO+fftLVw+2bduK\njz8eiI4d/4WffvoR+/fvQYMGVqhfvz5GjhyD8PA/cfz40VKBHhKyGYMHe8DJyRlHjoQhPT0doaFb\nEBKyE3p6epgw4XO8//4HFY5ncY3/+98PcHRshyFDPBEfHwdAYO3aVRg3bhKaN38Vmzevx++/H4Or\na88qeR0Z6EREJElMTEBw8NcAii7FP3nyBJ6eIxASsgl79+6Cg0NbjB49vsLtGzWyBQBYWjbA48fJ\nAIpCHgDi4h4gNvY+5s+fDQDQ19dHYWEhFAoFGjZsVGo7CwsLbN26EcbG9RAX9wC5ubml2qpTxxC/\n/voLTpw4jrt3b6NLl7fLrSc+Pl7aplEjW1y7dhUNGljB2tpGaqe47WIJCY+ketzceuPx42SYmZlD\nT6/oU+qGDRsiMTGxwjEo7q9fv/4IDd2CSZPGws7uFXh5/Rfx8XHYvv07AEBmZgbMzS0qbKeyGOj/\nYC27Buik3xsnA3XSLxGVT6FQoLCwEABga9sEX37pg7p16yIu7gGsrKzx119XMXasFwwMDDBnjj9u\n3rwBhUIBIQrLtBUX9wAA8OhRPKysrKX2gaKga9myFXx9Z0EIgbt370BPTw9CCMTHx6Fp02Z49Ogh\nunbthq+/XoQlS4JhadkA48aNRGGhKNXWjh3b4OzcEa6uvbBu3TfSHwbP1mRr2xhxcQ/QuHETxMU9\ngK1t4xeOh61tY8TG3oetbWMcOLAPzs4dkZaWCrVaDX19fTx8+BANGzaCSqVCfn4+gKI/hEqOJwDc\nu3cXgwYNxahRY7F27WqcPn0KtraNMXLkGDRs2AgJCY9gYvLiWdQ0xUAnIvqHa9y4CaKjo/Dzz/sx\nduxEzJ0bACOjuigoUGPGjJlISHiE7du3wtTUDAqFAq+80hwtW7bCmjWr4O8/B02aNJXaevAgFsuX\nL0ZMzC18+aUPUlKeSI/Z27eGmZkZ5s2bhczMDHTq1AXNm78KfX19hIUdRGJiAgoLC9GmjSP+9a+u\nWLx4AaytbdC6tQNCQ7fglVeaS221b98B338fiosXL8DGxgaHDx/Cu++64smTxwgJ2SKt5+ExHMHB\nX+PYsaPIzMyAj48/Tpw49tzx8PAYjqVLg7B//x7UrWuEf/+7L4YNG4FZs3yhVCrx9tvd0aBBA/Ts\n2QerVi1HixavS38QlZSZmYE5c/xgYWGJ7OwsDBo0FI0bN8WKFV/D2NgYWVmZ8Pb2g5GR8Uu8ev9P\nIYQQVdKSFnE+9KrBM3QiqkobN65FkyZN0bv3e5XabtCg/tix48dqqkoeOB86ERHRPwQvuRMRUZUY\nOXLM39qOZ+dVg2foREREMsBAJyIikgEGOhERkQww0ImIiGSAgU5ERCQD/JY7ERFprKrvX8H7UlQd\nBjoREdVoBw/+hOjoi0hNTcH9+/fg7u4JW9smWLfuGyiVSlhZWWPGjJk4ciSszHpFE7VcwNq1q6FU\nKmFtbQMfH38YGBjo+mlVOQY6ERHVeDExt7BmzSY8eBCLWbN8kZeXi2XLVsPGpiGWLg3Cr7/+AoVC\nUWa9vn37Y/nyxVixomga02++WYFjx46gV69/6/opVTkGOhER1XgODm2hr68PKytrZGVlQqVSwcam\nIQDAyckZFy9GomVL+zLrPXnyGA8exMLXdxoAICcnB6amZrp8KtWmWgP9xo0bGD9+PIYPHw4PDw9p\n+R9//IFRo0bh+vXrAID9+/dj69at0NPTw8CBA/HJJ59UZ1lERFTL6OvrSz+np6fB0rKB9Ht+fj4U\nCr0y6wkhoFQaoEEDK6xatU57xepItX3LPTs7G4GBgejcuXOp5bm5uVi3bh2srKyk9VavXo0tW7Yg\nJCQEW7duRWpqanWVRUREtZyJSX0oFAo8evQIAHDxYiTs7d8od9369esDAO7cuQ0A2LXrB9y6dVM7\nhWpZtQW6SqXC+vXrYW1tXWr5mjVr4O7uDpVKBQCIioqCo6MjTExMYGhoCCcnJ0RGRlZXWUREJAPe\n3v6YM8cPEyeORkFBAVxde1W47vTpM7FgwRyMHz8K0dFRaNbMTouVak+1XXJXKpVQKks3f+fOHVy7\ndg2TJ0/G4sWLAQDJycmwsLCQ1rGwsEBSUtJz2zY3N4JSqf/cdajm0mQaQKqdzFt+ofU+U24s13qf\nL0sX4wRUzVjpYrw//dS9xG8m+P334wAAN7duGq/37LpypNUvxS1cuBD+/v7PXUeT6dlTUrKrqiTS\nAc5nT1WJ+5PmOFa1V42aDz0hIQG3b9/G1KlTMXDgQCQmJsLDwwPW1tZITk6W1ktMTCxzmZ6IiIie\nT2tn6DY2Njhy5Ij0e48ePRAaGoqcnBz4+/sjPT0d+vr6iIyMhK+vr7bKIiIikoVqC/TLly8jKCgI\ncXFxUCqVCAsLw8qVK2FmVvr//wwNDTFlyhSMHDkSCoUCEyZMgIkJP2MlIiKqjGoLdAcHB4SEhFT4\n+G+//Sb93KdPH/Tp06e6SiEiIpI9zrZGREQkAwx0IiL6x3r4MB4jR3o+d51jx4489/GSdu/egY0b\n175sWX8L7+VOREQaa+nftkrbuzEvukrbq2r5+fnYsWM7XFzcdF3KCzHQiYioRisoKMC8ebOQkPAQ\nKlUdzJgxE5s2rUN8fBzy8vIwatRYdOz4Lwwc+CH69fsIx48fRZMmTdCq1Rs4duwImjRphlmz5mH+\n/NmoW7cu7t27h7S0VPj6zoSJSX2pn/KmWQ0OXoqYmFtYsmQR/vvfafjqq/mIj49DQUEBRo0aiw4d\n3sK5c2cQHPw1LCwsYWnZALa2jXUyTrzkTkRENdqhQwdgaWmJb7/dhH79+uPgwZ+gUqmwatU6LFiw\nGEuXfgUAKCwsRKtW9tiw4TtcuhSNhg1tsX79d4iKuoCMjKKb6qjVaqxY8Q1GjRqLzZs3lOpn+fLF\nWLToawQHr4GFhQWOHTsCd3dPNGtmh6lTp+PXX3+BpWUDrFy5FgsXfo3g4K8BAGvXrkJAQCCWL/8G\naWm6m4uEZ+hERFSjXb9+Dc7ObwEA3Nx6Y/nyxWjfvgMAoEEDK6hUBkhPTwMAvPFGGygUCpibW6Bl\ny1YAAHNzC2RlZQIAnJ07AiiajnXNmpVSH5pMs3r5cjSioi4gOvoigKLJxvLz8/Hw4UO8/npLAMCb\nbzohNze3WsbhRRjoRERUo+nr66GwsORtwRWlbhNe0fSpz06lCkBqp+h3hfR4RdOsPnwYX2qdYcNG\noGfP0v9mraf3/xe7Nbl9eXXhJXciIqrR7O1bIzLyLADg5Mk/YGpqisjIcwCAhIRH0NPT0/iGZNHR\nFwAAV65E45VXmkvLK5pmVaHQg1qtBgC0bu2AP//8HQCQkvIEa9euBlB0leD+/bsQQuDChfMv+3T/\nNp6hExFRjebm1hvnzp3BxImjoa+vxIwZAdiyZQO8vMagoCAf06ZpfrvwvLw8eHt/gYSEBMycGVjq\nseJpVg0Mis7WP/jgY+jp6aGgIB/+/j6YPXs+IiPPYuzYEVCr1RgxYjQAYPTo8fD390HDho1gbW1T\npc+9MhRCl9cH/ibOGFQ1WnYN0Em/N04GvnglqpV0sU/Vxv2Jx55uzJ8/G+++64quXWvfVKo1arY1\nIiIiqj685E5ERP8Ifn6zdV1CteIZOhERkQww0ImIiGSAgU5ERCQDDHQiIiIZYKATERHJAAOdiIhI\nBhjoREREMsBAJyIikgEGOhERkQww0ImIiGSAgU5ERCQDDHQiIiIZYKATERHJAAOdiIhIBhjoRERE\nMsBAJyIikgEGOhERkQxUa6DfuHEDbm5uCA0NBQA8fPgQw4cPh4eHB4YPH46kpCQAwP79+/Gf//wH\nn3zyCf73v/9VZ0lERESyVG2Bnp2djcDAQHTu3Flatnz5cgwcOBChoaHo2bMnNm/ejOzsbKxevRpb\ntmxBSEgItm7ditTU1Ooqi4iISJaqLdBVKhXWr18Pa2tradmsWbPQu3dvAIC5uTlSU1MRFRUFR0dH\nmJiYwNDQEE5OToiMjKyusoiIiGRJWW0NK5VQKks3b2RkBABQq9XYvn07JkyYgOTkZFhYWEjrWFhY\nSJfiK2JubgSlUr/qiyatsLIy0XUJJCPcnzTHsZK3agv0iqjVanh7e+Nf//oXOnfujJ9++qnU40KI\nF7aRkpJdXeWRFiQlZei6BJIR7k+a41jVXpr8Mab1b7nPmDEDdnZ2mDhxIgDA2toaycnJ0uOJiYml\nLtMTERHRi2k10Pfv3w8DAwNMmjRJWtauXTtcunQJ6enpyMrKQmRkJJydnbVZFhERUa1XbZfcL1++\njKCgIMTFxUGpVCIsLAyPHz9GnTp14OnpCQB47bXXMHv2bEyZMgUjR46EQqHAhAkTYGLCz3mIiIgq\no9oC3cHBASEhIRqt26dPH/Tp06e6SiEiIpI93imOiIhIBhjoREREMsBAJyIikgEGOhERkQww0ImI\niGSAgU5ERCQDDHQiIiIZYKATERHJAAOdiIhIBhjoREREMsBAJyIikgEGOhERkQww0ImIiGSAgU5E\nRCQDDHQiIiIZYKATERHJAAOdiIhIBhjoREREMsBAJyIikgEGOhERkQww0ImIiGSAgU5ERCQDDHQi\nIiIZYKATERHJAAOdiIhIBhjoREREMsBAJyIikgEGOhERkQww0ImIiGRAWZ2N37hxA+PHj8fw4cPh\n4eGBhw8fwtvbG2q1GlZWVli8eDFUKhX279+PrVu3Qk9PDwMHDsQnn3xSnWUREVEt0bJrgNb7vHEy\nUOt9VoVqO0PPzs5GYGAgOnfuLC0LDg6Gu7s7tm/fDjs7O+zatQvZ2dlYvXo1tmzZgpCQEGzduhWp\nqanVVRYREZEsVVugq1QqrF+/HtbW1tKyiIgIuLq6AgBcXFwQHh6OqKgoODo6wsTEBIaGhnByckJk\nZGR1lUVERCRL1XbJXalUQqks3fzTp0+hUqkAAJaWlkhKSkJycjIsLCykdSwsLJCUlFRdZREREclS\ntX6G/jxCiEotL8nc3AhKpX5Vl0RaYmVlousSSEa4P2mOY6WZ2jpOWg10IyMj5OTkwNDQEAkJCbC2\ntoa1tTWSk5OldRITE/Hmm28+t52UlOzqLpWqUVJShq5LIBnh/qQ5jpVmauI4afJHhlb/ba1Lly4I\nCwsDABw+fBjdunVDu3btcOnSJaSnpyMrKwuRkZFwdnbWZllERES1XrWdoV++fBlBQUGIi4uDUqlE\nWFgYlixZgunTp2PHjh2wtbVF//79YWBggClTpmDkyJFQKBSYMGECTExq5+UOIiIiXam2QHdwcEBI\nSEiZ5Zs3by6zrE+fPujTp091lUJERCR7vFMcERGRDDDQiYiIZICBTkREJAMMdCIiIhlgoBMREckA\nA52IiEgGGOhEREQywEAnIiKSAQY6ERGRDDDQiYiIZICBTkREJAMMdCIiIhlgoBMREckAA52IiEgG\nGOhEREQywEAnIiKSAQY6ERGRDDDQiYiIZICBTkREJAMMdCIiIhlgoBMREckAA52IiEgGGOhEREQy\nwEAnIiKSAQY6ERGRDGgU6NOnTy+zbOTIkVVeDBEREf09yuc9uH//fvzwww+4efMmhg4dKi3Pz89H\ncnJytRdHREREmnluoH/wwQfo1KkTpk6dCi8vL2m5np4eWrRoUe3FERERkWaeG+gAYGNjg5CQEGRk\nZCA1NVVanpGRATMzs2otjoiIiDTzwkAHgHnz5mH37t2wsLCAEAIAoFAocPTo0Up1lpWVBR8fH6Sl\npSE/Px8TJkyAlZUVZs+eDQBo1aoV5syZU7lnQET/aC392+qk3xvzonXSL1FFNAr0iIgInD59GnXq\n1Hmpzvbu3YvmzZtjypQpSEhIwKeffgorKyv4+vqibdu2mDJlCn7//Xd07979pfohIiL6p9HoW+52\ndnYvHeYAYG5uLl22T09Ph5mZGeLi4tC2bdFf2C4uLggPD3/pfoiIiP5pNDpDb9iwIYYOHYoOHTpA\nX19fWj558uRKdfb+++9jz5496NmzJ9LT0/Htt99i7ty50uOWlpZISkqqVJtERESkYaCbmZmhc+fO\nL93Zvn37YGtri40bN+LatWuYMGECTExMpMeLP59/EXNzIyiV+i9ekWokKyuTF69EVMPVxv24Ntas\nC7V1nDQK9PHjx1dJZ5GRkXj77bcBAPb29sjNzUVBQYH0eEJCAqytrV/YTkpKdpXUQ7qRlJSh6xKI\nXlpt3I9rY826UBPHSZM/MjQK9NatW0OhUEi/KxQKmJiYICIiolIF2dnZISoqCr1790ZcXByMjY3R\nuHFjnDt3Ds7Ozjh8+DA8PT0r1SYRERFpGOjXrl2Tfs7Ly0N4eDiuX79e6c4GDRoEX19feHh4oKCg\nALNnz4aVlRVmzpyJwsJCtGvXDl26dKl0u0RERP90GgV6SSqVCt27d8emTZswevToSm1rbGyMFStW\nlFm+ffv2ypZBREREJWgU6Lt27Sr1+6NHj5CQkFAtBREREVHlaRTo58+fL/V7vXr1sHz58mopiORP\nF3f24l29iEhTtfXugxoF+sKFCwEAqampUCgUMDU1falOiYiIqGppFOiRkZHw9vZGVlYWhBAwMzPD\n4sWL4ejoWN31ERERkQY0CvSvv/4a33zzDVq2bAkAuHr1KubPn49t27ZVa3FERESkGY3u5a6npyeF\nOVD0f+klbwFLREREuqVxoIeFhSEzMxOZmZk4ePAgA52IiKgG0eiS+5w5cxAYGAh/f3/o6enB3t4e\n8+bNq+7aiIiISEManaGfPHkSKpUKZ8+eRUREBIQQ+P3336u7NiIiItKQRoG+f/9+rFq1Svp906ZN\nOHDgQLUVRURERJWj0SV3tVpd6jNzhUKh8VSnutCya4DW+7xxMlDrfRIRERXTKNB79OiBwYMHo0OH\nDigsLMTp06fRq1ev6q6NiIiINKTxfOgdO3ZEdHQ0FAoFZs2ahTfffLO6ayMiIiINaTzbmrOzM5yd\nnauzFiIiIvqbNPpSHBEREdVsDHQiIiIZYKATERHJAAOdiIhIBhjoREREMsBAJyIikgEGOhERkQww\n0ImIiGSAgU5ERCQDDHQiIiIZYKATERHJAAOdiIhIBhjoREREMsBAJyIikgEGOhERkQww0ImIiGRA\nqe0O9+/fjw0bNkCpVGLSpElo1aoVvL29oVarYWVlhcWLF0OlUmm7LCIiolpNq2foKSkpWL16NbZv\n3441a9bg6NGjCA4Ohru7O7Zv3w47Ozvs2rVLmyURERHJglYDPTw8HJ07d0a9evVgbW2NwMBARERE\nwNXVFQDg4uKC8PBwbZZEREQkC1q95P7gwQPk5ORg7NixSE9Ph5eXF54+fSpdYre0tERSUtIL2zE3\nN4JSqV/d5VaKlZWJrkug5+DrQ1WtNu5TtbHmf5KXfX20/hl6amoqVq1ahfj4eAwbNgxCCOmxkj8/\nT0pKdnWV97clJWXougR6Dr4+VNVq4z5VG2v+J3ne66NJ2Gv1krulpSXat28PpVKJZs2awdjYGMbG\nxsjJyQEAJCQkwNraWpslERERyYJWA/3tt9/G6dOnUVhYiJSUFGRnZ6NLly4ICwsDABw+fBjdunXT\nZklERESyoNVL7jY2NujduzcGDhwIAPD394ejoyN8fHywY8cO2Nraon///tosiYiISBa0/hn64MGD\nMXjw4FLLNm/erO0yiIiIZIV3iiMiIpIBBjoREZEMaP2SOxER6UZL/7Y66ffGvGid9PtPwzN0IiIi\nGWCgExERyQADnYiISAYY6ERERDLAQCciIpIBBjoREZEMMNCJiIhkgIFOREQkAwx0IiIiGWCgExER\nyQADnYiISAYY6ERERDLAQCciIpIBBjoREZEMMNCJiIhkgIFOREQkAwx0IiIiGWCgExERyYBS1wXI\nRUv/tjrp98a8aJ30S0RENQvP0ImIiGSAgU5ERCQDDHQiIiIZYKATERHJAAOdiIhIBhjoREREMsBA\nJyIikgGdBHpOTg7c3NywZ88ePHz4EJ6ennB3d8fkyZORl5eni5KIiIhqNZ0E+rfffgtTU1MAQHBw\nMNzd3bF9+3bY2dlh165duiiJiIioVtN6oMfExODWrVt49913AQARERFwdXUFALi4uCA8PFzbJRER\nEdV6Wr/1a1BQEAICAvDjjz8CAJ4+fQqVSgUAsLS0RFJS0gvbMDc3glKpX6111hZWVia6LqFW4DhR\nVeM+pTmOlWZedpy0Gug//vgj3nzzTTRt2rTcx4UQGrWTkpJdlWXVaklJGbouoVbgOFFV4z6lOY6V\nZp43TpqEvVYD/fjx44iNjcXx48fx6NEjqFQqGBkZIScnB4aGhkhISIC1tbU2SyJ6oZZdA3TS742T\ngTrpl4hqJ60G+vLly6WfV65cicaNG+PChQsICwvDhx9+iMOHD6Nbt27aLImIiEgWdP5/6F5eXvjx\nxx/h7u6O1NRU9O/fX9clERER1To6mw/dy8tL+nnz5s26KoOIiEgWdH6GTkRERC+PgU5ERCQDDHQi\nIiIZYKATERHJAAOdiIhIBhjoREREMsBAJyIikgEGOhERkQww0ImIiGSAgU5ERCQDDHQiIiIZYKAT\nERHJAAOdiIhIBhjoREREMsBAJyIikgEGOhERkQww0ImIiGSAgU5ERCQDDHQiIiIZYKATERHJAAOd\niIhIBhjoREREMsBAJyIikgEGOhERkQww0ImIiGSAgU5ERCQDDHQiIiIZYKATERHJAAOdiIhIBpTa\n7vCrr77C+fPnUVBQgDFjxsDR0RHe3t5Qq9WwsrLC4sWLoVKptF0WERFRrabVQD99+jRu3ryJHTt2\nICUlBR999BE6d+4Md3d3/Pvf/8bSpUuxa9cuuLu7a7MsIiKiWk+rl9zfeustrFixAgBQv359PH36\nFBEREXB1dQUAuLi4IDw8XJslERERyYJWA11fXx9GRkYAgF27duGdd97B06dPpUvslpaWSEpK0mZJ\nREREsqD1z9AB4MiRI9i1axc2bdqEXr16ScuFEBptb25uBKVSv7rKq1WsrEx0XUKtUBvHqaV/W530\nm7L2jk76rW1q4z6lKxwrzbzsOGk90P/44w+sWbMGGzZsgImJCYyMjJCTkwNDQ0MkJCTA2tr6hW2k\npGRrodLaISkpQ9cl1AocJ81xrDTDcdIcx0ozzxsnTcJeq5fcMzIy8NVXX2Ht2rUwMzMDAHTp0gVh\nYWEAgMOHD6Nbt27aLImIiEgWtHqGfvDgQaSkpOCLL76Qli1atAj+/v7YsWMHbG1t0b9/f22WRERE\nJAtaDfRBgwZh0KBBZZZv3rxZm2UQERHJDu8UR0REJAMMdCIiIhlgoBMREckAA52IiEgGGOhEREQy\nwEAnIiKSAQY6ERGRDDDQiYiIZICBTkREJAMMdCIiIhlgoBMREckAA52IiEgGGOhEREQywEAnIiKS\nAQY6ERGRDDDQiYiIZICBTkREJAMMdCIiIhlgoBMREckAA52IiEgGGOhEREQywEAnIiKSAQY6ERGR\nDDDQiYiIZICBTkREJAMMdCIiIhlgoBMREckAA52IiEgGGOhEREQyoNR1AcUWLFiAqKgoKBQK+Pr6\nom3btrouiYiIqNaoEYF+5swZ3Lt3Dzt27EBMTAx8fX2xY8cOXZdFRERUa9SIS+7h4eFwc3MDALz2\n2mtIS0tDZmamjqsiIiKqPWpEoCcnJ8Pc3Fz63cLCAklJSTqsiIiIqHZRCCGErosICAhA9+7dpbP0\nIUOGYMGCBWjevLmOKyMiIqodasQZurW1NZKTk6XfExMTYWVlpcOKiIiIapcaEehdu3ZFWFgYAODK\nlSuwtrZGvXr1dFwVERFR7VEjvuXu5OSENm3aYPDgwVAoFJg1a5auSyIiIqpVasRn6ERERPRyasQl\ndyIiIno5DHQiIiIZqFWBvmdt0g6yAAAZWElEQVTPHgQFBf3t7SMiIjBp0iSN1n3w4AE+/vhjjdtd\nuXJlpWo5duwYpk+fXqlt/ik8PT1x48YNrFy5EqGhobou52+Lj49HdHS0xut7enpWqv2srCz06NGj\nsmXVSCdOnMD27dsrfPxFYymHY7Ci96f58+cjNja2wu169OiBrKysl+6/Ko63Tp06vXQd1aGi9/N1\n69bhwoULFW5X/F70sl42uwDNXuca8aU4Ijk6ffo0srOzOS+BBt55553nPv5PHks/Pz9dlyBbo0eP\n1nUJVarWBfqDBw/w+eef49GjR/j0008xYMAA7N+/H6GhodDT08Prr7+OwMBA5OfnY/r06YiLi0Od\nOnXw1VdfASg6q5k6dSquX7+O3r17Y+LEibh16xbmzp0LhUIBY2NjLFq0qFSfERERWLZsGZRKJWxs\nbLBw4UIcOHAAJ06cQGJiIpYtW4bXX38d8fHxmDZtGvT09KBWq7F48WI0btxYauf69evw8fGBqakp\nmjVrJi3ftm0bfvrpJ+jp6cHNzQ0jRozAo0ePMHnyZBgYGMDZ2Rnnz59HSEgIevXqhdatW6Nr165o\n3759mbrr169fbnvlKa9ea2trzJw5E7GxscjLy8OkSZPw9ttvw83NDQMHDsQvv/wCOzs7tGnTRvr5\n66+/RkJCAvz8/JCfnw99fX3MmzcPtra2pfqbN28eoqOjoa+vjzlz5qBly5b46quvEBkZCbVajaFD\nh6J///7l1rps2TKcO3cOarUaHh4e6Nu3L65du4bp06fDxMQEDg4OSElJwaJFizR+/uXZs2cPzp49\ni5SUFNy8eRP//e9/ceDAAcTExGDJkiVo164dFi5ciOjoaOTm5mLIkCH45JNP8Oeff2L58uUwNDSE\npaUlZs2ahVWrVkGpVKJRo0aws7Mr81qlp6dj2rRpMDIygoeHB4KCgpCfn49p06YhKSkJeXl58PLy\nKhV2mZmZ8PLyQm5uLjp06CAtP3fuHJYuXSr1FxgYCIVCgWnTpiE+Ph7t27fHoUOHcOLECXh6euL1\n118HAHz55Zfw9fVFWloa1Go1/P39YW9vL7UHFB1zzZo1Q25uLgICAtC2bVusW7cOv/76K/T09ODi\n4oKxY8eWu6y8Y0ehUJQ5Nk+ePImbN2/Cx8enzPi6urq+cCzbtm1bK4/BZ5X3/uTp6YmAgADUr1+/\n3HqK6//999+hVquxYcOGUv/2++y+uWTJEiQmJmL69OlQq9WwtbWVzh5v3LiBMWPG4O7du/Dz88M7\n77yDgwcPYsuWLdDX10ebNm3g7++PjIwMTJ8+Henp6SgoKIC/vz/atGmj8XEGaP/9RwiBWbNm4dKl\nS2jTpg0CAwMxffp09O7dG87Ozpg0aRJycnLQvXt37Ny5E7/99hsA4NChQ5g/fz5SU1Px7bfflmr3\n6tWrmDNnDlQqFVQqFZYtWwYAmDp1KjIzM2FiYiIdR4mJifDy8sKtW7cwcuRIDBgwoMLjo7wx0Iio\nRXbv3i369u0r8vLyxJMnT0S3bt1EYWGh+OGHH0RaWpoQQgh3d3dx7do1sXPnTrFgwQIhhBAHDhwQ\n27ZtE6dPnxbdu3cX2dnZIjMzU3Tq1EkIIcSwYcPEnTt3hBBChIaGim+++UbExsaKjz76SAghRO/e\nvUV8fLwQQog5c+aIXbt2id27d4uBAweKwsJCqb5NmzaJVatWCSGEuHz5srhw4UKp+idNmiR+/fVX\nIYQQM2fOFD4+PuL+/fvCw8NDFBYWisLCQjFo0CARFxcnFi5cKDZv3iyEECIoKEh4eHgIIYSwt7cX\nN27cqLDuitorT3n17t27V8ycOVMIIcSjR49Er169hBBCuLi4iD/++EMUFhaKd955Rxw8eFAIIUT3\n7t1FWlqamDFjhjh58qQQQojjx48LPz+/Un2dPHlSTJgwQQghxJkzZ8SyZcvEmTNnxKhRo4QQQmRl\nZQlXV1eRkZEhPDw8xPXr10VwcLAICQkRZ8+eFVOmTBFCCJGbmyvee+898fTpUzFx4kRx+PBhaWyf\nN56a2r17txg8eLAoLCwUO3bsEH379hUFBQVi586dYt68eSInJ0ds3bpVCCHE06dPRdeuXYUQQowZ\nM0acPXtWCCFEWFiYSExMlOqv6LWKjY0V7dq1E0+ePJH6v3z5shg2bJgQQoi0tDSxf//+UvWFhoaK\n+fPnCyGE+Pnnn4WLi4sQQogPP/xQpKSkCCGK9pd9+/aJo0ePirFjxwohhPjtt99Eq1athBBCeHh4\niO3btwshhFi1apXYuXOnEEKImzdviuHDh5dq7/bt22LcuHFi37594tSpU2LixIlCCCE6deok8vPz\nRWFhodi2bVuFy8o7dso7Nnfv3i0WLVpU4fi+aCyL1bZjsKSK3p+Kj4eK6nFxcRG//fabEEKI//73\nv9LzK1bevjllyhRx5MgRqa2LFy+K4OBg4eXlJYQQ4sSJE2LcuHEiMzNTuLm5iczMTKmt8PBwsXLl\nSrF27VohhBDR0dFi6NChQgghOnbs+MLnWUyb7z+xsbHizTffFImJiUKtVotu3bqJtLQ04ePjI377\n7Tfx3XfficDAQCFE0etYfFx5eHhI+92SJUuk8S8WGBgo9u7dK4QQ4tSpU+LWrVti6dKl0j68efNm\n8euvv4rdu3eLTz75RBQUFIiYmBjxwQcfCCHKPz6eNwbFr0NFat0ZupOTEwwMDGBubo569eohJSUF\npqamGD9+PAAgJiYGqampuHLlCjp37gwAeP/99wEUnWm3bt0adevWBVD0FxsAREdHIyAgAACQl5cH\nR0dHqb/U1FQoFAo0atQIQNFnRGfPnkXr1q3h6OgIhUIhrdu1a1dMnDgRGRkZ6N27N9q3b1+q9piY\nGDg5OUntnDhxApcuXcK9e/cwbNgwAEV/ocfFxSEmJgbvvfcegKLPTi5dugQAqFu3rnR2VV7dFbX3\n7F+rFdV74MAB6XMwGxsbqFQqpKamAgDatm0LhUIBS0tLtG7dGkDRffczMjJw4cIF3LlzB99++y3U\najUsLCxK9XXlyhXpub/11lt46623sHnzZrz11lsAACMjI7Ro0QL37t0rU2dkZCSioqKkz5gLCwuR\nlJRUajx79OiB8PDwSj3/ijg4OEChUMDKygqtWrWCvr4+GjRogMjISNSpUwdpaWkYPHgwDAwMkJKS\nAgDo06cPZs2ahX79+uH9998vc6fDivaxpk2blprH4NVXX0VWVhamTZuGnj17SvtusZiYGGnMOnbs\nCKBoLoR79+7By8sLAJCdnQ1zc3MkJCRI49O9e3colf9/uBdfur5w4QKePHmC/fv3AwCePn1aqr2C\nggLExMTg2rVrMDc3h5GREQCgd+/e+Oyzz9C3b1988MEH5S6r6NgpKCgoc2zu2bMHACocX03GEqh9\nx+Czynt/Kll7efUAkK7W2NjYICMjo9R25e2bV69elS7le3t7Ayj6HkPx2BS3c/fuXdjZ2cHY2BhA\n0T73119/4fLlyxg3bhwAwNHRsdzj9kW0+f4DAM2aNZOOywYNGpQap5iYGOl4cnV1xcaNG8sd2+Ja\nirm6umL27Nm4e/cu3nvvPbz22mu4evUqJk+eDAAYPnw4gKL9u127dtDX15fGtqLjo/jn8sbgRWpd\noJcMUKDozX3u3LnYt28frKysMGbMGACAvr4+CgsLy2xf8k2tWN26dfHdd9+VavvBgwdSfyUPrPz8\nfGk9AwODUu20bNkS+/btw8mTJ7F06VL85z//KXUJWQghbVtcm4GBAd59913MnTu3VFtr166V1i1Z\nV8k+y6v7119/Lbe98pRXb3GdxfLy8qCnV/TdSX19fWl5yZ+FEDAwMMCKFStgbW1dbl/lvR7Pvpb5\n+flSXyWpVCoMGDBAem1L9vvsGFU0npVRch8p+bMQAmfOnMHp06cREhICAwMDKTD69++Pbt264ciR\nIxg3bhxWrFhRqs2K9rFn96G6deti586diIyMxN69e3Hs2DEsXLiwVA3FY1RyH7K2tpYuvxZbt26d\n9Do9O9bF/RoYGCAgIKBU8KWlpUntrVq1Ch06dMDUqVNx6dIl6aOrOXPmICYmBocOHYKnpyf+97//\nlVm2cePGco+dio5NABWO74vGslhtOwafVd77U3m1P/vcnz0eSypv39TX1y+zXnn9l/f+V6dOnTLL\nK3o9n0eb7z/PbvNsPyWPq8qMbefOnbFr1y7pC5be3t4aZ09F2SKEqHAMXqRWfcsdAC5evAi1Wo0n\nT57g6dOn0NfXh76+PqysrPDw4UNcvnwZ+fn5cHR0xOnTpwEUfZt1zZo1FbZpb2+PEydOAAB+/vln\nhIeHS4+ZmppCoVAgPj4eQNEbjoODQ7nt/Pzzz7h58ybc3NwwefJkXL58udTjzZs3l5ZFREQAANq0\naYOIiAg8ffoUQgjMmzcPOTk5aNasmbRucW2a1F1Re5rW6+joKNX28OFD6OnpoX79+hWOXbF27drh\nyJEjAIqmw/3pp59KPV6y3eLPnRwcHKRlWVlZuH//Puzs7Mq03bZtWxw7dgyFhYXIzc1FYGAgAJQ7\nRpV5/n9HSkoKGjZsCAMDAxw9ehRqtRp5eXlYvXo1lEolBg0ahPfeew8xMTFQKBQoKCgA8Px9rKQr\nV67gp59+grOzM2bPno2YmJhSj5e3D5mamgIAbt26BQAICQnBtWvXSo3Pn3/+CbVaXaa/kq/brVu3\nsHnz5lLtpaSkIC4uDteuXcORI0eQn5+PjIwMrFq1Cq+99homTpwIU1NTJCQklFmmp6dX7rHzvGOz\novHVdCxr2zFYGZrUU57y9k0HBwfpNVixYgVOnTpV7ravvPIK7t27J01nXfI1LB6/ixcvSlcsKkOb\n7z8v8nfHNjQ0FKmpqfjggw/w6aef4q+//io1tj/88AP27t1b7rYVZcvfHQOgFp6hv/rqq5g8eTLu\n3buHL774Aubm5ujatSv+85//wN7eHqNGjcLChQuxd+9enDp1Ch4eHlAqlQgKCsLdu3fLbdPPzw8B\nAQFYv3496tSpg6+//rrUfOyBgYGYMmUKlEolmjZtivfff1+6RFnSK6+8glmzZsHIyAj6+vrw9/cv\n9fi4ceMwY8YMfPfdd2jatCny8/Nha2uLYcOGYejQodDX14ebmxsMDQ0xbNgwfPHFFwgLC0O7du3K\n/QutvLrNzMzKba885dVrZ2eHM2fOwNPTE/n5+RqfZUycOBG+vr74+eefoVAoSp1VAkWX2Y8ePQp3\nd3cAwKxZs9CqVSs4ODhg6NChKCgowJQpU6RLuiU5OTmhU6dOGDRoEIQQUhvjxo2Dv78/tm7dihYt\nWiAjI6PC8awqXbp0wfr16+Hh4QE3Nze8++67mD17Nt566y189tlnqF+/PurXr4/PPvsMxsbG8PHx\ngYWFxQv3sWJNmjTB0qVLsWPHDujr62PkyJGlHu/fvz8mTJiATz/9tNSX4ubPn48ZM2ZIZ+uDBg1C\n8+bNsXv3bgwZMgQdO3aEmZlZmf48PDwwY8YMuLu7o7CwULoMW9xeXl4eYmNjkZKSAk9PTxw4cACH\nDx9GSkoKBgwYACMjI7Rv3x6NGzcus8zMzKzcY6ewsLDMsXny5Mnnju/777//3LEsVtuOwcrQpJ7y\n2Nraltk3HR0dMWPGDGzfvh2NGjXCxIkTcf78+TLbGhkZwdvbG6NGjYKenh46dOgAZ2dn2Nvbw9fX\nF8OGDYMQAjNnzqz089Hm+8+LfPTRRxg/fjw8PT3RpUsXjce2WbNmmDx5MkxMTKBSqbBw4ULUqVMH\n3t7e8PT0hLGxMZYsWYLDhw+Xu315xweAvzUGAG/9WmPdvHkT6enp6NChAw4cOICIiAjpzJSKXLx4\nEYaGhrC3t8fatWshhMDYsWN1XVaNkZqaioiICPTu3RsJCQn49NNP8csvv+i6rFqjph2DNa0eOYmL\ni8Pt27fRrVs3XLhwAStXrsSmTZt0XVal1boz9H8KY2NjzJw5EwqFAnp6epX+i/OfQKVSwc/PD4aG\nhjA0NCx1pkZF+9ChQ4ewceNGFBYWYsaMGbouqVapacdgTatHTkxMTLBlyxasXr0aQO3933+eoRMR\nEclArftSHBEREZXFQCciIpIBBjoREZEMMNCJarjff//9hXeK8vT0LPO/xBERERgyZEiV1tKqVSvp\n/8FfRK1WY8iQIRg0aBDy8/Mr3deyZcsqPYPai+zbtw8AkJSUpPHMi0S1BQOdqIbbsmUL0tLSdF1G\npSUmJuLevXvYsWNHmTvi6YJarcY333wDALCyskJwcLCOKyKqWvy3NaJKiIiIwPLly2Fra4u4uDiY\nmJhg2bJlqFevHlasWCHdtaxhw4ZYvHgxDAwM4OTkhAEDBqCwsBD+/v4ICQnBoUOHoFar8eqrr2LW\nrFlITk7GuHHj8PbbbyM6OhpZWVlYu3Ytjh49inPnzmHq1KlYuHAh7ty5gw0bNkClUkGtVuOrr75C\nkyZNXlh3fHw85syZg6dPnyI7OxtffvklrKysMHHiRISFhQEouivVwIEDcfz4cYSFhSE0NBRCCFhY\nWGDevHml7jlfUnZ2NgICAvDo0SMUFBTgww8/hLu7O2bMmIH09HTpNrAqlUraprwxMDQ0xLJly3Ds\n2DE0atQIdevWxWuvvQag6MrAlStXoFQqsWfPHpw6dQpLlixBVFQUFixYAAMDA5iamiIoKAh6enrw\n8fFBamoqsrKy0KdPH4wePRq+vr6Ii4vDiBEjMHfuXLi7u+PEiRNITk6Gn58fsrOzkZeXh1GjRqFn\nz55YuXIlUlNT8ejRI9y7dw+dOnWS7ttOVCM9d+oWIirl9OnTwtHRUTx69EgIIcTUqVPF1q1bRX5+\nvli7dq1Qq9VCCCFGjBghzYDVqlUr8eeffwohhIiKihKenp7SLH3z588X3333nYiNjRVvvPGGNIvX\n9OnTpZmdXFxcxN27d4UQQuzatUuauWvNmjVi0aJFQoiiWaGKZ5sqWevgwYOFEEJ8/vnnIjw8XAgh\nRGJionBxcRH5+fnigw8+EH/99ZcQQoiNGzeKRYsWifj4eNGvXz+Rm5srhBBiy5YtYuHChUIIIVq2\nbCny8/NL9bNmzRoxe/ZsIUTRDGkuLi7i/v37IjY2VnTr1q3MGFY0Brdv3xYuLi4iNzdX5Ofni/79\n+4vg4OAy/e7evVuafa9nz57i+vXrQoiima0OHDgg7t+/L82AlZubK5ycnERGRkapekr+HBAQINav\nXy+EECI5OVl06dJFZGRkiODgYDF48GBRUFAgnj59Kt58802Rmppa5vkQ1RQ8QyeqpBYtWsDGxgZA\n0W1p//rrLyiVSujp6cHd3R1KpRK3b9+WZgoTQkizWEVEROD+/fvSTFzZ2dnSpA3m5ubSPbFtbW3L\n/dy8QYMG8PHxgRACSUlJ5U5eUp6IiAhkZWVJN85QKpV4/Pgx+vXrh7CwMNjb2+PgwYMIDAzEhQsX\nkJSUJN12Ni8v77lXAaKiovDxxx8DAAwNDeHg4IArV65UOOdBRWNw48YNtGnTRjqTd3Z2fu5zevLk\nCdLT09GyZUsA/z+zVXZ2Ns6fP48ffvgBBgYGyM3Nfe53EKKioqTvGlhaWsLGxgZ37twBUDTTVvF8\nEebm5khLS5PudU9U0zDQiSpJPDNLk0KhwPnz57F7927s3r0bRkZGZb5wVfwZskqlQo8ePcrc+/rB\ngwfPnQ0KKJqN6YsvvsDevXvxyiuvIDQ0tMzkIxVRqVRYuXJlmWkl+/bti1GjRuHjjz9Gbm4u3njj\nDcTFxaFt27ZYu3atRm0/OzuVKDErWEW1lDcGv/zyS6ntKprBq/gLds/OVlVs69atyMvLw/fffw+F\nQiFNRalp/SWXveg1IapJ+KU4okq6ffs2EhMTAQDnz59Hq1at8PjxYzRu3BhGRkaIi4vDxYsXkZeX\nV2ZbJycnnDhxAllZWQCAbdu24cKFC8/tr3imsaysLOjp6aFx48bIzc3F0aNHy+2jPB06dMChQ4cA\nFJ3Zzp8/H0DRZ/3m5ubYuHGjNK+5o6MjoqOjkZSUBAA4dOiQNJNVedq1a4c//vgDQNHZ8ZUrV9Cm\nTZsK169oDIrnks7Ly0N+fj7OnDkjbVOvXj08fPgQwP/PkmZubg4zMzNER0cDADZt2oRt27bh8ePH\neO2116BQKHD06FHk5ORIU1CW9w39kvUnJCQgMTERzZs3f9GQEtU4PEMnqqQWLVpg6dKluHfvHkxN\nTdG/f38IIbBp0yYMGTIEr7/+Ory8vLB69eoyZ4eOjo4YOnQoPD09UadOHVhbW+Pjjz/G48ePK+zv\n7bffxtixYxEUFIS+fftiwIABsLW1xciRI+Ht7S0F9fP4+flh5syZ+Pnnn5GXl4dx48ZJj/Xr1w9z\n586VQtvGxgZ+fn4YM2YM6tatC0NDQwQFBVXYtqenJwICAjB06FDk5eVh/PjxaNKkCR48eFDu+hWN\nQd26deHm5oaBAwfC1tYWb7zxhrTN6NGjMXLkSNjZ2cHe3l4K98WLF2PBggVQKpUwMTHB4sWLERsb\niy+//BJ//vknXF1d0a9fP0ydOhU7d+5EgwYN8PHHH5d6PpMmTYKfnx88PT2l6XmNjY1fOKZENQ3v\n5U5UCcXfcv/+++91XQoRUSm85E5ERCQDPEMnIiKSAZ6hExERyQADnYiISAYY6ERERDLAQCciIpIB\nBjoREZEMMNCJiIhk4P8A8uyvYM1bcn0AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "23lY5N_PY-U-",
- "colab_type": "code",
- "outputId": "67fbccbd-c127-4047-ffd0-3d9dcfb023bd",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 73
- }
- },
- "cell_type": "code",
- "source": [
- "# label encoding for lunch\n",
- "\n",
- "data['lunch'] = le.fit_transform(data['lunch'])\n",
- "data['lunch'].value_counts()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "1 645\n",
- "0 355\n",
- "Name: lunch, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 201
- }
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# comparison of parental degree and test course\n",
+ "\n",
+ "sns.countplot(x = 'parental level of education', data = data, hue = 'test preparation course', palette = 'dark')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 418
+ },
+ "colab_type": "code",
+ "id": "SG8Eojinal_D",
+ "outputId": "c886e57c-ba8a-46ba-ae31-21a465328cb0"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/seaborn/categorical.py:1468: FutureWarning: remove_na is deprecated and is a private function. Do not use.\n",
+ " stat_data = remove_na(group_data[hue_mask])\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAFYCAYAAACoFn5YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl4jXf+//HXSU4iQsgiQWxVQ9HQ\nIk0tX53a6VQHraW2H02Lqq1U7NvYqzWxdexLgzZtxnQylkZVF22JVlqkrVFFkRAJQUjJdn5/uJwR\nKglylvt4Pq7LdTn3fZ/Ped+fnOR17s99n/tjslgsFgEAAENyc3QBAADg3hHkAAAYGEEOAICBEeQA\nABgYQQ4AgIER5AAAGJjZ0QXci9TUDEeXAACA3QQG+txxHUfkAAAYGEEOAICBEeQAABgYQQ4AgIER\n5AAAGBhBDgCAgRHkAAAYGEEOAICBEeQAAJezdu1KHTnyi6PLsAuCHAAecOnp5zV37sy7es6GDeu0\nf/8PNqro3uTk5GjChNGSpH79Xtaf/lTTwRXZhyFv0QoAKD6rVi3TgQPf68svP1fp0qUVHb1Bvr5+\nKlvWV4MHD9N33+3Vpk0fqlSpUrJYLHr55Ve1efO/lZh4QFWqVJG/f4C1nZMnT6hChYo6evRXDRr0\nmi5cuKB3310tH58yGj16nDZseFepqWeVnZ2tzp1fUMOGoerV6wW1atVWV65cVnp6uiZOnKZDh37S\nmjUrVLr09VuTTpr0N61Zs0InT56Qr6+fXnrpFc2aNU0+PmWUmnpWkyb9Tdu2bdZPP/2ozZs/0v79\nP+jZZzspKChICxa8JV9fP126dEkRERP0zTe79M03X6l69Yf1008/qnfv/6cGDRpZ+yM5OUmRkfPk\n4eGhUqVKa8yYidq+fZu+/PJzlShRQtWqPaT+/V/RkCEDNHnydAUFldfMmVP17LOd9N138dYaO3bs\npJUr/6EyZcrqypXLGj9+qk6fTtby5Uvk719OJpM0cuQYmc33F8UEOQA84Fq2bKOcnBw99dTTeuml\nXlqwYKl8fHw0a9Y0/fRTonbv/kqtWrVRq1Ztdfz4MQUEBCgkpL6efbaTNcRvqFSpsl555VX98EOC\nPvjgPbVt20E5OTmaPn2ODh36ScnJSZo+fY6uXr2qoUMHasWKdbp27ZratXtGlSpV1qxZ03Tw4AFl\nZV3ViBGjValSZUVEjNCpUyckSVWqVFV4+ECdOHFc3br1VMOGodq4MUq7dn2hVq3a6ttv9+rZZztZ\nRws2bFinLl26KSyssf7zn48UG7tJ5coFqkyZMgoPH6jdu7/S559/mi/Io6LWqEeP3mrYMFQ7dsTp\n0qVLWr9+raKiPpCbm5tee+0V/eUvz92xP2/U+OGH76tevcf04ot9lJycJMmiZcsW69VXh6l69Ye1\nZs0KffHFZ2rVqs19/fxsGuRvvvmm9u3bp5ycHA0cOFD16tVTRESEcnNzFRgYqHnz5snT01OxsbFa\nt26d3Nzc1K1bN3Xt2tWWZQEA7uDs2RQtXPi2pOtD7ufPn1efPi8pKmq1/vWvGIWE1NeAAYPv+PyK\nFYMlSQEB5XTuXJqk6+EuSUlJp3Ty5AnNnDlVkuTu7q68vDyZTCZVqFAx3/P8/f21bt0qlSpVWklJ\np3Tt2rV8bZUo4aVPPvlYX375uY4fP6qmTf/vD+tJTk62PqdixWAdOvSTypULVFBQeWs7N9q+ISXl\njLWe1q3b6dy5NPn6+snN7frZ6AoVKujs2bN37IMbr9exYyetX79Ww4YNUrVqD2no0NeVnJykjRvf\nlSRdvpwhPz//O7ZTVDYL8j179uiXX35RdHS00tPT1blzZzVp0kQ9e/ZUhw4dNH/+fMXExKhTp05a\nsmSJYmJi5OHhoRdeeEFt2rSRr6+vrUpDMQl75ZyjS8hn74qAwjcCcBuTyaS8vDxJUnBwZY0cOUYl\nS5ZUUtIpBQYG6eeff9KgQUPl4eGhadMm6pdfDstkMsliybutraSkU5KkM2eSFRgYZG1fuh5wtWo9\novHjp8hisej48WNyc3OTxWJRcnKSqlSpqjNnTqtZs+Z6++05euuthQoIKKdXXw1XXp4lX1vR0RsU\nGhqmVq3aavnyd6wfCG6tKTi4kpKSTqlSpcpKSjql4OBKhfZHcHAlnTx5QsHBlbR5878VGhqmixcv\nKDc3V+7u7jp9+rQqVKgoT09PZWdnS7r+Aejm/pSk3347ru7de+nllwdp2bIl2rPnGwUHV1J4+EBV\nqFBRKSln5ONz51nNispmQf7EE0+ofv36kqQyZcro999/V3x8vKZNmyZJatGihVavXq3q1aurXr16\n1p1p2LChEhIS1LJlS1uVBgC4SaVKlXXgwH5t2RKrQYOG6G9/myRv75LKycnVuHGTlZJyRhs3rlPZ\nsr4ymUx66KHqqlXrES1dulgTJ05T5cpVrG2dOnVSkZHz9OuvRzRy5Bilp5+3rqtdu658fX01Y8YU\nXb6coSefbKrq1R+Wu7u74uK26uzZFOXl5enRR+upceNmmjdvloKCyqtu3RCtX79WDz1U3dpWgwaN\n9N576/XDD9+rfPny2r59m55+upXOnz+nqKi11u169+6nhQvf1meffarLlzM0ZsxEffnlZwX2R+/e\n/TR//lzFxm5SyZLe6tDhWfXt+5KmTBkvs9ms//u/P6tcuXJq06a9Fi+O1J/+VNP6Qehmly9naNq0\nCfL3D1Bm5hV1795LlSpV0YIFb6tUqVK6cuWyIiImyNu71H389CSTxWKx3FcLRRAdHa3vvvtOX331\nlXbv3i1JOnHihCIiItSrVy8dPHhQ48ePlyRFRkaqYsWK6t69+x3bYz5y58AROYCbrVq1TJUrV1G7\nds/c1fO6d++k6OiPbFSVayhoPnKbX+y2Y8cOxcTEaPXq1Wrbtq11+Z0+PxTlc4Wfn7fMZvdiqxH3\nyrmCvKA3OgDbK1WqhHx8vO76d9Hd3Y3f3/tg0yDftWuXli5dqpUrV8rHx0fe3t66evWqvLy8lJKS\noqCgIAUFBSktLc36nLNnz+rxxx8vsN309Exblg2DYqQGcKwePfpJuvvfxY0bN/H7W4iCPujY7IYw\nGRkZevPNN7Vs2TLrhWtNmzZVXFycJGn79u1q3ry5HnvsMR08eFCXLl3SlStXlJCQoNDQUFuVBQCA\nS7HZEfnWrVuVnp6uESNGWJfNmTNHEydOVHR0tIKDg9WpUyd5eHho1KhRCg8Pl8lk0muvvVYsV/EB\nAPAgsMvFbsWNIRjnwMVuAGAfDhlaBwAAtkeQAwBgYNxrHQBQZMV9So1TYvePIAcAOLWtW/+jAwd+\n0IUL6Tpx4jf17NlHwcGVtXz5OzKbzQoMDNK4cZO1Y0fcbdtdn0Dley1btkRms1lBQeU1ZsxEeXh4\nOHq3ig1BDgBwer/+ekRLl67WqVMnNWXKeGVlXdPf/75E5ctX0Pz5c/XJJx/LZDLdtt2zz3ZSZOQ8\nLVhwfTrRd95ZoM8+26G2bTs4epeKDUEOAHB6ISH15e7ursDAIF25clmenp4qX76CJKlhw1D98EOC\natWqfdt258+f06lTJzV+/GhJ0tWrV1W2rGtNykWQAwCcnrv7/27LfenSRQUElLM+zs7Olsnkdtt2\nFotFZrOHypUL1OLFy+1XrJ1x1ToAwFB8fMrIZDLpzJkzkqQffkhQ7dp1/nDbMmXKSJKOHTsqSYqJ\neV9Hjvxin0LthCNyAIDhRERM1LRpE+Tu7q5KlSqrVau22r592x9uO3bsZM2aNU0eHtePzp97roud\nq7Ut7uyGe8ad3QDAPrizGwAALoogBwDAwAhyAAAMjCAHAMDACHIAAAyMIAcAwMAIcgDAA+v06WSF\nh/cpcJvPPttR5Pb++c9orVq17H7LuivcEAYAUGRhyT2Ktb29we8Xa3vFLTs7W9HRG9WiRWtHl3JH\nBDkAwKnl5ORoxowpSkk5LU/PEho3brJWr16u5OQkZWVl6eWXByksrLG6dfurOnbsrM8//1SVK1fW\nI4/U0Wef7VDlylU1ZcoMzZw5VSVLltRvv/2mixcvaPz4yfLxKWN9nT+a7nThwvn69dcjeuutOXr9\n9dF6882ZSk5OUk5Ojl5+eZAaNXpC3323VwsXvi1//wAFBJRTcHAlu/YPQ+sAAKe2bdtmBQQE6B//\nWK2OHTtp69b/yNPTU4sXL9esWfM0f/6bkqS8vDw98khtrVz5rg4ePKAKFYK1YsW72r//e2VkXL8j\naG5urhYseEcvvzxIa9aszPc6kZHzNGfO21q4cKn8/f312Wc71LNnH1WtWk1vvDFWn3zysQICymnR\nomWaPfttLVz4tiRp2bLFmjRpuiIj39HFixfs2zniiBwA4OT++99DCg19QpLUunU7RUbOU4MGjSRJ\n5coFytPTQ5cuXZQk1anzqEwmk/z8/FWr1iOSJD8/f125clmSFBoaJun6tKhLly6yvkZRpjtNTDyg\n/fu/14EDP0iSrl27puzsbJ0+fVo1a9aSJD3+eENdu3bNJv1wJwQ5AMCpubu7KS/v5mlBTLp5mpA7\nTWN665SmkqztXH9ssq6/03Snp08n59umb9+X1KZN+3zbuLn9b3DbEdOXMLQOAHBqtWvXVULCt5Kk\nr7/epbJlyyoh4TtJUkrKGbm5ucnH586TitzswIHvJUk//nhADz1U3br8TtOdmkxuys3NlSTVrRui\nr776QpKUnn5ey5YtkXR9VODEieOyWCz6/vt997u7d40jcgAPPGbyc26tW7fTd9/t1ZAhA+Tubta4\ncZO0du1KDR06UDk52Ro9enyR28rKylJExAilpKRo8uTp+db90XSnbm5uysnJ1sSJYzR16kwlJHyr\nQYNeUm5url56aYAkacCAwZo4cYwqVKiooKDyxbrvRcE0prhn/PGDq+C9/GCYOXOqnn66lZo1a+7o\nUu4a05gCAOCibDq0fvjwYQ0ePFj9+vVT7969NWzYMKWnp0uSLly4oMcff1wDBw5Ux44dFRISIkny\n8/PTwoULbVkWAOABNGHCVEeXYBM2C/LMzExNnz5dTZo0sS67OaDHjRunrl27SpKqV6+uqKgoW5UC\nAIDLstnQuqenp1asWKGgoKDb1h09elQZGRmqX7++rV4eAIAHgs2C3Gw2y8vL6w/Xvfvuu+rdu7f1\ncVpamoYNG6YePXooNjbWViUBAOBy7P71s6ysLO3bt09Tp06VJPn6+mr48OF67rnnlJGRoa5du6px\n48Z/eCR/g5+ft8xm9zuuh70415W+BV3VCRSM9zKMy+5B/u233+YbUi9durSef/55SZK/v79CQkJ0\n9OjRAoM8PT3T5nXCePhaIlwF72Xcyqm+fnbw4EHVrl3b+njPnj2aPXu2pOsXyB06dEjVq1e/09MB\nAMBNbHZEnpiYqLlz5yopKUlms1lxcXFatGiRUlNTVbVqVet2oaGh+uijj9S9e3fl5uZqwIABKl/e\n/nfGAQDAiLizG+4Zd8OCq+C9DGfnVEPrAACg+BDkAAAYGEEOAICBEeQAABgYQQ4AgIER5AAAGBhB\nDgCAgRHkAAAYGEEOAICBEeQAABgYQQ4AgIER5AAAGBhBDgCAgRHkAAAYGEEOAICBEeQAABgYQQ4A\ngIER5AAAGBhBDgCAgRHkAAAYGEEOAICBEeQAABgYQQ4AgIER5AAAGBhBDgCAgRHkAAAYGEEOAICB\n2TTIDx8+rNatW2v9+vWSpLFjx6pjx47q06eP+vTpo88//1ySFBsbq+eff15du3bVhx9+aMuSAABw\nKWZbNZyZmanp06erSZMm+ZaPHDlSLVq0yLfdkiVLFBMTIw8PD73wwgtq06aNfH19bVUaAAAuw2ZH\n5J6enlqxYoWCgoIK3G7//v2qV6+efHx85OXlpYYNGyohIcFWZQEA4FJsdkRuNptlNt/e/Pr167Vm\nzRoFBARo0qRJSktLk7+/v3W9v7+/UlNTC2zbz89bZrN7sdeMu3XO0QXkExjo4+gSYFi8l2FcNgvy\nP/LXv/5Vvr6+qlOnjpYvX67FixerQYMG+baxWCyFtpOenmmrEmFgqakZji4BKBa8l3Grgj7c2fWq\n9SZNmqhOnTqSpJYtW+rw4cMKCgpSWlqadZuzZ88WOhwPAACus2uQDx06VCdPnpQkxcfHq2bNmnrs\nscd08OBBXbp0SVeuXFFCQoJCQ0PtWRYAAIZls6H1xMREzZ07V0lJSTKbzYqLi1Pv3r01YsQIlSxZ\nUt7e3po9e7a8vLw0atQohYeHy2Qy6bXXXpOPD+eHAAAoCpOlKCelnQznj5xD2CvOdYHQ3hUBji4B\nBsV7Gc7Oac6RAwCA4kWQAwBgYAQ5AAAGRpADAGBgBDkAAAZGkAMAYGAEOQAABkaQAwBgYAQ5AAAG\nRpADAGBgBDkAAAZGkAMAYGAEOQAABkaQAwBgYAQ5AAAGRpADAGBgBDkAAAZGkAMAYGAEOQAABkaQ\nAwBgYAQ5AAAGRpADAGBgBDkAAAZGkAMAYGAEOQAABkaQAwBgYGZbNn748GENHjxY/fr1U+/evXX6\n9GmNGzdOOTk5MpvNmjdvngIDA/Xoo4+qYcOG1uetXbtW7u7utiwNAACXYLMgz8zM1PTp09WkSRPr\nssjISHXr1k3PPPOMNmzYoDVr1igiIkKlS5dWVFSUrUoBAMBl2Wxo3dPTUytWrFBQUJB12ZQpU9Su\nXTtJkp+fny5cuGCrlwcA4IFgsyA3m83y8vLKt8zb21vu7u7Kzc3Vxo0b1bFjR0lSVlaWRo0apR49\nemjNmjW2KgkAAJdj03PkfyQ3N1cRERFq3Lixddg9IiJCzz33nEwmk3r37q3Q0FDVq1fvjm34+XnL\nbOYcuuOdc3QB+QQG+ji6BBgW72UYl92DfNy4capWrZqGDBliXfbiiy9a/9+4cWMdPny4wCBPT8+0\naY0wptTUDEeXABQL3su4VUEf7uz69bPY2Fh5eHho2LBh1mVHjx7VqFGjZLFYlJOTo4SEBNWsWdOe\nZQEAYFg2OyJPTEzU3LlzlZSUJLPZrLi4OJ07d04lSpRQnz59JEk1atTQ1KlTVaFCBb3wwgtyc3NT\ny5YtVb9+fVuVBQCAS7FZkIeEhBT5K2WjR48u9tcPe8W5znntXRHg6BIAAC6IO7sBAGBgBDkAAAZG\nkAMAYGAEOQAABkaQAwBgYAQ5AAAGZvc7uwG2Epbcw9El5LM3+H1HlwDgAcAROQAABkaQAwBgYAQ5\nAAAGVqQgHzt27G3LwsPDi70YAABwdwq82C02Nlbvv/++fvnlF/Xq1cu6PDs7W2lpaTYvDgAAFKzA\nIH/uuef05JNP6o033tDQoUOty93c3PSnP/3J5sUBAICCFfr1s/LlyysqKkoZGRm6cOGCdXlGRoZ8\nfX1tWhwAAChYkb5HPmPGDP3zn/+Uv7+/LBaLJMlkMunTTz+1aXEAAKBgRQry+Ph47dmzRyVKlLB1\nPQAA4C4U6ar1atWqEeIAADihIh2RV6hQQb169VKjRo3k7u5uXT58+HCbFQYAAApXpCD39fVVkyZN\nbF0LAAC4S0UK8sGDB9u6DgAAcA+KFOR169aVyWSyPjaZTPLx8VF8fLzNCgMAAIUrUpAfOnTI+v+s\nrCzt3r1b//3vf21WFAAAKJq7njTF09NTf/7zn/X111/boh4AAHAXinREHhMTk+/xmTNnlJKSYpOC\nAABA0RUpyPft25fvcenSpRUZGWmTggAAQNEVKchnz54tSbpw4YJMJpPKli1r06IAAEDRFOkceUJC\nglq3bq0OHTqoXbt2at++vQ4ePFjo8w4fPqzWrVtr/fr1kqTTp0+rT58+6tmzp4YPH66srCxJ16dL\nff7559W1a1d9+OGH97E7AAA8WIoU5G+//bbeeecd7d69W3v27NH8+fM1Z86cAp+TmZmp6dOn57uR\nzMKFC9WzZ09t3LhR1apVU0xMjDIzM7VkyRKtXbtWUVFRWrduXb5Z1gAAwJ0VKcjd3NxUq1Yt6+O6\ndevmu1XrH/H09NSKFSsUFBRkXRYfH69WrVpJklq0aKHdu3dr//79qlevnnx8fOTl5aWGDRsqISHh\nXvYFAIAHTpGDPC4uTpcvX9bly5e1devWQoPcbDbLy8sr37Lff/9dnp6ekqSAgAClpqYqLS1N/v7+\n1m38/f2Vmpp6t/sBAMADqUgXu02bNk3Tp0/XxIkT5ebmptq1a2vGjBn39cI35jUv6vKb+fl5y2wu\n+IOEdO4eqrKdwEAfR5dgA87Vx87GNX/mrsq53su8d3A3ihTkX3/9tTw9PfXtt99Kkvr27asvvvhC\nvXv3vqsX8/b21tWrV+Xl5aWUlBQFBQUpKChIaWlp1m3Onj2rxx9/vMB20tMz7+p1nUFqaoajS4Cd\n8TPHveK9g1sV9OGuSEPrsbGxWrx4sfXx6tWrtXnz5rsupGnTpoqLi5Mkbd++Xc2bN9djjz2mgwcP\n6tKlS7py5YoSEhIUGhp6120DAPAgKtIReW5ubr5z4iaTqdAh8MTERM2dO1dJSUkym82Ki4vTW2+9\npbFjxyo6OlrBwcHq1KmTPDw8NGrUKIWHh8tkMum1116Tjw/DSgAAFEWRgrxly5bq0aOHGjVqpLy8\nPO3Zs0dt27Yt8DkhISGKioq6bfmaNWtuW9a+fXu1b9++iCUDAIAbijwfeVhYmA4cOCCTyaQpU6YU\neh4bAADYXpGCXJJCQ0M5dw0AgJO562lMAQCA8yDIAQAwMIIcAAADI8gBADAwghwAAAMjyAEAMDCC\nHAAAAyPIAQAwMIIcAAADI8gBADAwghwAAAMjyAEAMDCCHAAAAyPIAQAwMIIcAAADI8gBADAwghwA\nAAMjyAEAMDCzowsAAOQXltzD0SVY7Q1+39EloBAckQMAYGAEOQAABsbQOgDA5sJeOefoEvLZuyLA\n0SUUG47IAQAwMIIcAAADs+vQ+ocffqjY2Fjr48TERIWEhCgzM1Pe3t6SpDFjxigkJMSeZQEAYFh2\nDfKuXbuqa9eukqS9e/dq27ZtOnLkiGbPnq1atWrZsxQAAFyCw4bWlyxZosGDBzvq5QEAcAkOuWr9\nwIEDqlixogIDAyVJCxcuVHp6umrUqKHx48fLy8vLEWUBAGA4DgnymJgYde7cWZLUt29fPfLII6pa\ntaqmTJmiDRs2KDw8vMDn+/l5y2x2L+RVnOurDoGBPo4uwQacq4+djWv+zF0V7+U7Kb73sXP1sSv9\nfjokyOPj4zVx4kRJUps2bazLW7Zsqa1btxb6/PT0TJvVZiupqRmOLgF2xs8crsBV38dG26+CPnjY\n/Rx5SkqKSpUqJU9PT1ksFvXr10+XLl2SdD3ga9asae+SAAAwLLsfkaempsrf31+SZDKZ1K1bN/Xr\n108lS5ZU+fLlNXToUHuXBACAYdk9yENCQrRy5Urr42eeeUbPPPOMvcsAAMAlcGc3AAAMjCAHAMDA\nCHIAAAyMIAcAwMAIcgAADMwhN4R5EIUl93B0CVZ7g993dAkAgGLCETkAAAZGkAMAYGAEOQAABkaQ\nAwBgYAQ5AAAGRpADAGBgBDkAAAZGkAMAYGAEOQAABkaQAwBgYNyiFQDwwHGm22ZL93frbI7IAQAw\nMIIcAAADY2gdcHJhr5xzdAlWe1cEOLoEALfgiBwAAAMjyAEAMDCCHAAAAyPIAQAwMIIcAAADI8gB\nADAwghwAAAOz6/fI4+PjNXz4cNWsWVOSVKtWLb388suKiIhQbm6uAgMDNW/ePHl6etqzLAAADMvu\nN4QJCwvTwoULrY/HjRunnj17qkOHDpo/f75iYmLUs2dPe5cFAIAhOXxoPT4+Xq1atZIktWjRQrt3\n73ZwRQAAGIfdj8iPHDmiQYMG6eLFixoyZIh+//1361B6QECAUlNTC23Dz89bZrN7IVs5z20tnU1g\noE8xtUQfF8QV+7n49snZOE8fOxtXfB87o/vpZ7sG+UMPPaQhQ4aoQ4cOOnnypPr27avc3FzreovF\nUqR20tMzbVXiAyE1NcPRJTwQXLGfXXGfUDB+5vZRWD8XFPR2HVovX768nnnmGZlMJlWtWlXlypXT\nxYsXdfXqVUlSSkqKgoKC7FkSAACGZtcgj42N1apVqyRJqampOnfunLp06aK4uDhJ0vbt29W8eXN7\nlgQAgKHZdWi9ZcuWeuONN/Tpp58qOztbU6dOVZ06dTRmzBhFR0crODhYnTp1smdJAAAYml2DvHTp\n0lq6dOlty9esWWPPMgAAcBkO//oZAAC4dwQ5AAAGRpADAGBgBDkAAAZGkAMAYGAEOQAABkaQAwBg\nYAQ5AAAGRpADAGBgBDkAAAZGkAMAYGAEOQAABkaQAwBgYAQ5AAAGRpADAGBgBDkAAAZGkAMAYGAE\nOQAABkaQAwBgYAQ5AAAGRpADAGBgZkcXAMA4wpJ7OLqEfPYGv+/oEgCH44gcAAADI8gBADAwghwA\nAAMjyAEAMDC7X+z25ptvat++fcrJydHAgQO1c+dO/fjjj/L19ZUkhYeH6+mnn7Z3WQAAGJJdg3zP\nnj365ZdfFB0drfT0dHXu3FmNGzfWyJEj1aJFC3uWAgCAS7BrkD/xxBOqX7++JKlMmTL6/ffflZub\na88SAABwKXY9R+7u7i5vb29JUkxMjJ566im5u7tr/fr16tu3r15//XWdP3/eniUBAGBoDrkhzI4d\nOxQTE6PVq1crMTFRvr6+qlOnjpYvX67Fixdr8uTJBT7fz89bZrN7Ia9yrvgKdjGBgT7F1BJ9XBD6\n2fboY9ujj+3jfvrZ7kG+a9cuLV26VCtXrpSPj4+aNGliXdeyZUtNnTq10DbS0zNtWKHrS03NcHQJ\nDwT62fboY9ujj+2jsH4uKOjtOrSekZGhN998U8uWLbNepT506FCdPHlSkhQfH6+aNWvasyQAAAzN\nrkfkW7duVXp6ukaMGGFd1qVLF40YMUIlS5aUt7e3Zs+ebc+SAAAwNLsGeffu3dW9e/fblnfu3Nme\nZQAA4DK4sxsAAAZGkAMAYGAEOQAABkaQAwBgYAQ5AAAGRpADAGBgBDkAAAZGkAMAYGAEOQAABkaQ\nAwBgYAQ5AAAGRpADAGBgBDkAAAZGkAMAYGAEOQAABkaQAwBgYAQ5AAAGRpADAGBgBDkAAAZGkAMA\nYGAEOQAABkaQAwBgYAQ5AACabHGCAAAK4klEQVQGRpADAGBgBDkAAAZGkAMAYGBmRxdww6xZs7R/\n/36ZTCaNHz9e9evXd3RJAAA4PacI8r179+q3335TdHS0fv31V40fP17R0dGOLgsAAKfnFEPru3fv\nVuvWrSVJNWrU0MWLF3X58mUHVwUAgPNziiBPS0uTn5+f9bG/v79SU1MdWBEAAMbgFEPrt7JYLAWu\nDwz0KbSNYx8Vvo19bXF0AcWOPrYP5+pn+tg+XK+f6WPbcYoj8qCgIKWlpVkfnz17VoGBgQ6sCAAA\nY3CKIG/WrJni4uIkST/++KOCgoJUunRpB1cFAIDzc4qh9YYNG+rRRx9Vjx49ZDKZNGXKFEeXBACA\nIZgshZ2QBgAATssphtYBAMC9IcgBADAwpzhHjv85deqUOnbsqJCQEElSVlaWRo8erdDQUAdX5lqO\nHz+uWbNm6fz588rLy1ODBg00ZswYeXp6Oro0l7N582aNGTNGu3btkr+/v6PLcSk3/72wWCxyd3fX\noEGD1KRJE0eX5jJu/Zt8w6JFi+Tr6+ugqvIjyJ1Q9erVFRUVJUn69ttv9Y9//EOrVq1ycFWuIzc3\nV0OHDtWkSZMUFhYmi8WiGTNmaMmSJXr99dcdXZ7L2bx5s6pUqaK4uDi9+OKLji7H5dz89+LEiRMa\nNGiQ5s+fr9q1azu4Mtdxcx87I4K8EBkZGRo2bJiuXr2qP//5z/rggw+0c+dOtW3bVk899ZQCAgLU\nuXNnjR8/XtnZ2TKZTJo5c6ZMJpOGDRumTZs2SZK6dOmihQsXavHixfL29tbRo0eVnp6u2bNnq27d\nund8/bS0NAUFBdlrdx3C3n389ddf6+GHH1ZYWJgkyWQyafTo0XJzc+0zTY54L1+4cEEHDhzQrFmz\ntHLlSpcPckf/vahataoGDRqkjRs36m9/+5u9dtuuHN3Hzsi1/3IVg48++kg1atTQe++9Jx+f/92Z\nKCcnR0899ZReffVVLViwQC+88IKioqLUs2dPLV68uMA2c3JytHbtWg0fPlxLliy5bf2xY8fUp08f\ndevWTXPmzFF4eHix75czsXcfHz16VHXq1Mm3zMvLy+WH1R3xXv7444/19NNPq3nz5jp+/LhSUlKK\nfb+ciSP6+FYhISE6cuTIfe+Ls3KGPnY2BHkhfv31VzVs2FCS1KpVq3zrbky1mpiYaD26e/LJJ/XT\nTz8V2GbTpk0lSY8//riOHTt22/obwzgffPCBVq9erddff105OTn3vS/Oyt59bDKZlJubWyy1G4kj\n3subN2/Ws88+K3d3d7Vv315bt2697/1wZo7o41tduXJF7u7ud127UTiij28cXN34N3ny5Pvej+LE\n0HohLBaLdcjVZDLlW+fh4WFdfuPr+NnZ2XJzc7tt25uDOC8vz/r/W7e7VY0aNVSiRAmdPn1aVapU\nufcdcWL27uOHH35YGzZsyLcsKytLx48fV61ate5zb5yXvfv5zJkz2r9/v+bMmSOTyaSrV6/Kx8dH\n/fv3L76dcjKO/nshXQ+xW0ecXIkj+tjZz5FzRF6IqlWrKjExUZL05Zdf/uE29erVU3x8vKTrF6eF\nhISodOnSOnfunCwWi1JTU3Xy5Enr9vv27ZMkff/996pRo0aBr3/hwgWlpqaqfPnyxbE7Tsnefdys\nWTMlJSVp586dkq7/Es+bN8/ljxbt3c+bN29Wr169FBsbq3//+9/6+OOPdfHiRZ04ccIWu+cUHP33\n4sSJE1q7dq369etXDHvjnBzdx86II/JCdO7cWYMHD1afPn3UtGnTP7wgatiwYZowYYI++OADeXh4\naNasWSpbtqyaNm2q559/XrVr1873CfnatWsaOHCgTp8+rXnz5t3W3o1hnBvbTpo0yaXP39q7j93c\n3LRq1SpNnjxZixcvlqenp5o2baohQ4bYfF8dyd79vGXLFs2dO9f62GQyqVOnTtqyZYteffVV2+2o\nAzny70VWVpZyc3M1efJkBQcH23Q/HcnRf5NvGD16tHUo3+EsKNCpU6csX375pcVisVgSEhIs/fv3\nv6/2xowZY9m5c2dxlOYy6GP7oJ9tjz62Pfr4dhyRF8LHx0dr1661Xsk4YcIEB1fkeuhj+6CfbY8+\ntj36+HZMmgIAgIFxsRsAAAZGkAMAYGAEOQAABkaQA9C6desKvOFFSkqKdu/eLen6rE9///vfi9z2\nzz//rOnTpxdp/ZEjR/Tjjz8WuW0ABDkASV999ZWaNWt2x/Xx8fHas2fPPbVdp04dTZo0qUjrP/nk\nk0JvpwkgP75+BhhIfHy83nnnHZUoUUKhoaHas2ePcnJydPnyZfXt21edOnVSXl6eZsyYYb37Vf/+\n/dWhQwcdOnRIc+fOVU5OjrKzszV58mTVrVtXWVlZSkpK0sMPP6zk5GRNmzZNv//+uzIzMzVy5EhV\nqVJFkZGRslgs1vmXU1JSNGzYMB09elRhYWGaPHmyNm3apG+++UZ5eXk6duyYKlWqpEWLFmnv3r2K\njIzUe++9p+PHj2vSpEnKy8tTiRIlNHv2bB0/flyRkZGKiIjQ+vXrVbp0aaWkpOijjz7SJ598IpPJ\npLNnz6pr167auXOnS99HHLgXBDlgMImJifr000+VnJysGjVqqFWrVjp79qw6duyoTp06KTY2Vmlp\nafrggw906dIlvfHGG2rbtq1Gjx6tJUuWqGrVqjp06JDGjx+vTZs2ad++fdZJKKZOnaqXXnpJjRs3\nVmpqqrp3767t27erc+fOysnJUf/+/bVo0SL99ttvioqKUm5urho3bqyhQ4dKun6Lyy1btqhEiRJq\n06aNfv7553y1T5kyReHh4Xr66ae1ZcsWbdu2zXqHrQYNGqh58+Zq1KiRunbtqr1792rv3r168skn\nFRcXp7/+9a+EOPAHCHLAYKpXry5fX1/l5ORo5cqVWrlypdzd3XXhwgVJ0oEDB/Tkk09KksqUKaPl\ny5fr3LlzOnbsWL6bZ1y+fFl5eXn5htXj4+N15coV6802zGazzp07d1sNjRo1ktlsltlslp+fnzIy\nMiRdn33Ky8tLklSxYkVdvHgx3y00Dxw4YJ2V6i9/+Yv1Nf9Ijx499K9//csa5DNnzrz3TgNcGEEO\nGMyNGZ4iIyNVrVo1zZ8/X1euXLEeVZtMpnyzOUmSp6enPDw8/vCCtt27d2vAgAHW7RYtWiR/f/8C\na7j1yPjGfaXutPxmt9Z2J61bt9b8+fN1/Phxubu7q1q1akV6HvCg4WI3wKDS0tJUs2ZNSddnGnNz\nc1NWVpYaNGigXbt2Sbp+1N21a1eVKFFClStX1hdffCHp+iQQixcvVlpamjw8PFS2bFlJ14+0t23b\nJkk6f/689SjYZDLlm/bxXjVs2NBa29atWzV//vx8600mk7KzsyVd/1DRrl07jRs3Tl26dLnv1wZc\nFUEOGFTv3r21YMEC9e/fX6VKlVKTJk00atQodejQQZUrV1aPHj3Uv39/9e/fX56enpo7d66WLVum\nXr16aezYsWrWrJm++uorNWnSxNrmhAkTtGPHDvXs2VMDBgxQ48aNJUmhoaHatGmTIiMj76vmSZMm\naePGjerTp48+/PBDvfjii/nWN27cWEuWLLHOF9+5c2cdOXJE7du3v6/XBVwZ91oH4LRWrlypS5cu\naeTIkY4uBXBanCMH4HTy8vLUs2dPlSlTRgsWLHB0OYBT44gcAAAD4xw5AAAGRpADAGBgBDkAAAZG\nkAMAYGAEOQAABkaQAwBgYP8fUyF79ksBpHIAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "f_L3U8clZMuO",
- "colab_type": "code",
- "outputId": "b72d7ce0-52f7-43cd-fd00-812ed7ced612",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 129
- }
- },
- "cell_type": "code",
- "source": [
- "# label encoding for race/ethnicity\n",
- "# we have to map values to each of the categories\n",
- "\n",
- "data['race/ethnicity'] = data['race/ethnicity'].replace('group A', 1)\n",
- "data['race/ethnicity'] = data['race/ethnicity'].replace('group B', 2)\n",
- "data['race/ethnicity'] = data['race/ethnicity'].replace('group C', 3)\n",
- "data['race/ethnicity'] = data['race/ethnicity'].replace('group D', 4)\n",
- "data['race/ethnicity'] = data['race/ethnicity'].replace('group E', 5)\n",
- "\n",
- "data['race/ethnicity'].value_counts()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "3 319\n",
- "4 262\n",
- "2 190\n",
- "5 140\n",
- "1 89\n",
- "Name: race/ethnicity, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 202
- }
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# comparison of race/ethnicity and test preparation course\n",
+ "\n",
+ "sns.countplot(x = 'race/ethnicity', data = data, hue = 'test preparation course', palette = 'bright')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 252
+ },
+ "colab_type": "code",
+ "id": "5vtrMoiVb2KB",
+ "outputId": "fd215592-6b92-4974-dbc2-a83aa0c9c6a9"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADrCAYAAAA/ks7bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XtcVGX+B/DPXEVkQAYZyEuu0qpp\niCm+/ImSIV5XS0xFlzBN27JczBUDJVCMVMLSTMl8Ke2yWKuFSLi5aq6XTQXMcNU0N1Mr0BUY5Cq3\nYXh+f/hyVuI2HGVmwM/7L+bMuXwP5/DheZ5zzoxMCCFAREQtJrd2AUREbRUDlIhIIgYoEZFEDFAi\nIokYoEREEjFAiYgkeqgCVAiBP//5z5g8eTLGjx+PMWPGIDo6GqWlpdYurY4dO3bg/ffft9r2S0tL\nMWXKFIwbNw6FhYVmLXP16lV88803Ld7W3LlzkZKS0uLl7ne7tqR///7Iycl5YOs7dOgQRo4ciZUr\nVzY5X1hYGA4fPoycnBz079+/xdsZO3YsMjMz602fM2cOLly40OL13a/PPvvM9PPo0aNx+vTpVt+m\nstW3YEPeffddnDp1CgkJCXBzc0N5eTlWr16NV155BZ988glkMpm1SwQABAcHW3X7//nPf1BUVIRj\nx46ZvcyhQ4dQU1ODoUOHtmJltrNdW3b48GFMnz4dixcvbnK+uLg4AHig4Q0AiYmJD3R95sjPz8f2\n7dsRGBho0e0+NAFaVFSEpKQk7NmzB25ubgAAe3t7rFixAidOnIAQAtXV1Vi9ejUyMzMhl8sxatQo\nvPHGG1AoFBg9ejRefPFFpKSkIDc3F9HR0UhPT8fXX38NrVaLbdu2wcnJCX379sWbb76J3bt3Iy8v\nD4sWLcLvf/97AEB8fDzS0tJgNBrh4eGBdevWwdHREZs2bUJubi4uXbqEyZMno7S0FDdv3sTq1avx\nj3/8A/Hx8TAajVAqlYiMjMSwYcNw48YNREVFIScnByqVCi+99BICAgKQk5ODWbNm4eWXX8bnn3+O\noqIiLF++HL/73e/q/U4yMzMRGxuLiooKaDQarFixAi4uLli6dCkKCgowYcIEfPrpp9BqtaZlTp06\nhbVr16KqqgpCCCxatAgdOnTA1q1boVKpUFJSgj59+iAtLQ1/+ctfAAApKSmm19nZ2ViyZAkKCwvh\n5eUFo9FoWve3336LNWvWoKSkBM7OznjvvffQo0cPpKSk4OjRo3BwcMC3334LhUKBjRs3Ijs7u852\nQ0JCEBYWhqtXr6K6uhrDhw/HypUroVKp6uy3lGP0ww8/ICoqCmVlZTAYDHjhhRcQHBzc6PTq6mrE\nxcXh66+/hsFgQGBgIBYsWAAAOHbsGN5++20olUpMmzat0XP20qVLiI6ORlFRETp06IClS5fC19cX\nmZmZ2LBhA9zc3KBUKvHee++ZlklMTMSBAwegUqmg1+vx1ltvISYmBidPnoTBYMCQIUOwZs0aqFQq\nzJ49G9OnT8eQIUNMywshEB8fj71796K6uhr+/v5Yvnw5FAoFvvvuO4SHh6OmpgajRo1qtO7Ro0cj\nLi4O7u7uZp+Lffv2RUxMDJKSklBSUoLY2Fh8/vnnOHPmDDw8PPDRRx9BqVTin//8J95//31UV1ej\nU6dOWL16NR5//HHMmjULubm5mDBhAtLS0gAA3333HeLi4nDjxg1MmjQJy5cvR01NDVauXInTp0+j\ntrYWffv2RWxsLBwcHBrdnyaJh8TRo0fF2LFjm5xn69at4g9/+IMwGAyioqJCTJs2TaSmpgohhPDz\n8xNRUVFCCCGSkpKEl5eXyMjIELW1tWLatGnis88+E0II0adPH/HWW28JIYS4cuWKeOKJJ8StW7fE\n+fPnxfDhw0VpaakwGo1i7ty5Ij4+XgghxAcffCBGjhwpCgoKTK8jIiKEEEIMGzZM5OTkCCGE+Oab\nb8SaNWuEEELMmzdPfPTRR0IIIXJycsSQIUNEdna2yM7OFv379xdJSUlCCCH27dvX4H6XlZWJYcOG\nidOnTwshhNi/f78YN26cMBqNIiMjQ4wZM6bB39Fzzz0nMjMzhRBCXLt2TSxZskQIIUR4eLhpf3bv\n3i3mzJljWube14sWLRLvvfeeEEKIs2fPiv79+4vdu3eL0tJSMXToUHH8+HEhhBB79+4VU6dONS3v\n5eUlzp8/L4QQIjo6Wrz55pv1trtjxw6xbNkyIYQQBoNBrFixQly8eLHePkg5RiEhISIlJUUIIURB\nQYF49dVXRVVVVaPTN2/eLObMmSOqqqrE7du3RUBAgDh8+LCoqakRI0aMEF9//bUQQoiEhATRp08f\nkZ2dXadGo9EoJk6cKPbu3SuEEOLcuXNi6NChorS0VGRkZAhPT09x8uTJBo/Rvb+T/fv3i8mTJ4vq\n6mpRWVkpJk6caDqng4ODRWpqqsjOzhaPP/64EEKIPXv2iEmTJomSkhJhMBjEyy+/bDqXpk2bJnbu\n3CmEuHNe9evXT2RkZNTbvp+fn/jmm2/MPhfvHpO753NsbKzw9vYWV69eFVVVVcLX11ecPHlSGAwG\n4e3tLc6cOSOEEGLTpk2m8+rX56yfn58IDQ0VNTU14ubNm2LAgAHixo0b4siRI+KFF14QtbW1ora2\nVmzYsEH861//arAmczw0Y6BFRUVwcXFpcp6jR48iMDAQSqUSdnZ2eOaZZ3DixAnT+/7+/gCAPn36\noEOHDhg2bBhkMhl++9vfIi8vzzTf3VZF79690atXL5w7dw5PPPGEqRUll8vx5JNPIjs727SMl5dX\nnZbeXS4uLti5cyeuX78Ob29vLF++HAaDASdPnkRQUBAAoFu3bhg2bBgyMjIAADU1NXjuuecAAAMG\nDMCNGzfqrffcuXNwd3c3tT7Gjx+PwsJCXL9+vcnfkYuLC1JTU3HlyhX85je/qdP6Mcfp06dNLZCB\nAweid+/eAO60Pt3c3DBixAgAwOTJk/HLL7+Yavfw8MATTzwB4M6Y4X//+99669ZqtThz5gyOHz+O\n2tparFq1Co8//niDdbT0GLm4uODAgQO4cOECnJ2d8eGHH0KtVjc6/ciRIwgKCoJarYa9vT2mTJmC\ngwcP4qeffkJ1dTVGjhwJAJg6dWqD9eXk5ECv12PSpEkAAE9PT3Tt2hXnz58HANjZ2WH48OHN/r7H\njx+P3bt3Q6VSoUOHDvD09Kxz3v3akSNHMG3aNGg0GiiVSsyYMQMHDx5EVVUVzp8/bzp2EyZMQMeO\nHZvdvjnn4l1jxowBcOfvq0ePHujVqxfUajV69uyJ3NxcKJVKnDx5EoMGDQIAeHt7N7kvzzzzDBQK\nBdzc3ODi4oKbN29Cq9XiypUr+Oqrr1BRUYHFixfD19e32f1ozEPThXd2dkZubm6T89y6dQtOTk6m\n105OTigoKDC97tSpEwBALpebfr77ura2ts5y9/5cUlKCiooKrF271jToXlxcjKeffrrBZe61ZcsW\nbNmyBc899xweeeQRREREoFevXhBCQKPRmOZzdHTErVu3AAAKhQL29vYN1nbvvjo6OtaZptFo6uxv\nQ9asWYMtW7bgxRdfhJ2dHZYsWYIJEyY0ucy9iouL63SX7tZQUlKC7OzsOutSq9Wmfbp3XxUKRZ2u\n/10TJ05EcXExNm7ciKtXr+LZZ5/F8uXLoVar683b0mO0dOlSbN26FYsXL0ZVVRVeeeUVPP/8841O\nLy0txdq1a7F+/XoAQHV1NQYOHFhv/xs77rdu3YJGo6kzLn/3GHfp0qXR5RpaT0xMDC5evAiZTAa9\nXo85c+Y0On9paSkSEhKwa9cuAIDRaIRWq0VRUREAmGqXyWT1zp+GmHMu3tXY35dCoTAtd3cYrrq6\nGtXV1U1et/j1OoxGI5588klERkYiKSkJ4eHhGD16NFauXGnWvjTkoQnQQYMGoaCgABcuXMCAAQNM\n0w0GAzZv3owFCxagS5cuphMFuNNq7dKlS4u3VVhYiG7dupnW4eTkhMTERPz0009ISUlBp06dsGHD\nhmYDHQAeffRRrF27FrW1tUhNTUVoaCiOHDkCuVyO4uJi0x+SOS3se7m4uNTZVyEEiouL4eLi0mQr\noUuXLoiKikJUVBSOHz+OkJCQev/B5XJ5nYArKSkx/ezo6IiysjLT67sBqdPp0Lt37wavyP/www9m\n79esWbNM42EhISFITU1t8MJCS49Rp06dsGTJEixZsgTnzp3DH/7wB/j4+KBXr14NTtfpdJg3bx78\n/PzqbPfKlSsN7v+vubi4oLi4GEIIU0i09BgDwIYNG6BUKrF3716o1WqEhoY2Ob9Op8Po0aPrXcis\nrKwEAJSVlUGj0aC2thbFxcUtquV+ZWVlYdu2bfj888/RvXt3nDhxAlFRUS1ez4QJEzBhwgQUFRUh\nIiICCQkJ+NOf/iSppoemC+/o6IiXXnoJ4eHh+PnnnwEAFRUVWLFiBS5evIiOHTvi6aefRnJyMoxG\nI8rLy/HFF180OVjemC+//BLAnT+Wn3/+GV5eXigoKEDv3r3RqVMnXL9+HceOHUN5eXmT67l16xZe\nfPFFlJWVQS6Xw8vLCzKZDEqlEiNHjjS1En755RecPn0aPj4+Ztc4cOBA6PV6nDlzxlSzu7s7unfv\n3ugyBoMBs2fPNg1XDBgwAEqlEnK5HEql0nQ7mE6nw7Vr11BVVYWKigrs37/ftI5Bgwbhq6++AnDn\nD+KXX34BcGcIIz8/H2fPngUAZGdn44033oBo5sPC7t1ufHw8kpOTAQBubm7o3r17oy2Ulh6jBQsW\n4PLlywDudDEdHBwgk8kane7v74/PP/8cRqMRQgh8+OGH+Ne//oVHH30UCoXC1MpNSUlpsMbu3bvD\n3d0d+/btM/2u9Ho9Bg4c2OTv49cKCgrQp08fqNVqXLp0CWfOnGnyvPP398cXX3yBiooKAMDOnTux\nZ88e2NnZoV+/fqZj9+WXX6KqqqpFtdyvW7duwcXFBV27dkVFRQX27NmD8vJyCCGgVCpRXl6Ompqa\nJtexe/duxMfHAwA6d+5sGkKS6qFpgQJASEgInJyc8Oqrr8JoNEIul8Pf3x/R0dEAgNmzZyM7OxuT\nJk2CTCbDhAkTMHHixBZvR6vVYsqUKcjNzUVkZCScnJwwa9YsLFq0COPHj0ffvn2xbNkyhISEmK5U\nN7YeX19fTJs2DQqFAiqVCqtXrwYArFq1CpGRkUhJSYFKpcLbb7+NRx55xOxbUuzt7fH+++8jJiYG\n5eXl0Gq1WL9+fZNdIpVKhenTp2Pu3LkA7rQ0IyMj0bFjR/j5+WHp0qW4fv06NmzYAC8vL4wfPx7d\nu3eHv7+/aSz5jTfeQGhoKL744gt4eXmZQt/Ozg4ffPABYmJicPv2bahUKrz++uvN3lp273bDwsKw\nfPlybNu2DTKZDF5eXpgyZUqjv9uWHKPg4GCEhobCYDAAAIKCgvCb3/ym0elBQUHIycnBpEmTIITA\nE088gTlz5kClUiEmJgYRERFQq9V47rnnTF3ce8lkMqxfvx4rV67E5s2b0bFjR2zcuLHBeZsyb948\nhIeHIyUlBd7e3ggPD8ebb77ZaBCPGTMGly9fNo3NPvroo6ZzLjo6GhEREdi6dSueeuopeHh4tKiW\n++Xr64tPP/0UY8aMgZubGyIiInD27FksWrQIa9euhZOTE0aMGIE9e/Y0ug5/f39ERERg3LhxUCgU\n6NmzJ2JjYyXXJBPN/YunFunbty+OHTsGd3d3a5dCjeAxogfloenCExE9aAxQIiKJWrUL/8MPP+C1\n117D3LlzERwcjP/+978ICwuD0WiEq6sr1q1bB7VajbS0NCQmJkIulyMwMBAzZsyAwWDAsmXLcOPG\nDSgUCqxduxY9evRorVKJiFqs1Vqg5eXliImJqXOz7wcffICgoCB8+umn6NmzJ5KTk1FeXo74+Hj8\n5S9/QVJSEhITE1FUVIS///3vcHR0xN/+9jcsWLCgxTdsExG1tla7Cq9Wq7Ft2zZs27bNNC0zMxOr\nVq0CcOfq6ccff4xevXrB09PTdKP04MGDkZWVhfT0dAQEBAAAfHx8EBER0ew28/Nt61OVbIGzsz0K\nC5u+XYroLp4vDXN11TQ4vdVaoHcfh7xXRUWF6akQFxcX5OfnQ6/X13mEUavV1psul8shk8lQXV3d\nWuW2W0qlwtolUBvC86VlrHYfaGNDry2dfi9nZ3ueAA1o7L8nUUN4vpjPogFqb2+PyspK2NnZITc3\nFzqdDjqdDnq93jRPXl4eBg0aBJ1Oh/z8fPTr1w8GgwFCiAafab4Xux71ubpqOLRBZuP50jCLd+Eb\n4uPjgwMHDgAADh48CF9fX3h5eeH8+fMoKSnB7du3kZWVBW9vb4wYMcL0COCRI0cwbNgwS5ZKRNSs\nVruN6bvvvsM777yD69evQ6lUws3NDe+++y6WLVuGqqoqdO3aFWvXroVKpcL+/fuRkJAAmUyG4OBg\nPPvsszAajYiMjMRPP/0EtVqN2NhYPPLII01uk/8562OLglqC50vDGmuBtqtHOXng6+MfBLUEz5eG\n2UQXnoioPXmoPo3JknQ6aR/Q2p7l5ZU0PxNRG8IWKBGRRAxQIiKJGKBERBIxQImIJGKAEhFJxAAl\nIpKIAUpEJBEDlIhIIgYoEZFEDFAiIokYoEREEjFAiYgkYoASEUnEACUikogBSkQkEQOUiEgiBigR\nkUQMUCIiiRigREQSMUCJiCRigBIRScQAJSKSyKJfa3z79m2Eh4ejuLgYBoMBCxcuhKurK6KjowEA\nffv2xapVqwAA27dvx/79+yGTyfDHP/4Ro0aNsmSpRETNsmiA7tmzB7169UJoaChyc3MxZ84cuLq6\nIiIiAgMHDkRoaCiOHTuG3r17Y9++fdi5cyfKysoQFBSEkSNHQqFQWLJcIqImWbQL7+zsjKKiIgBA\nSUkJOnfujOvXr2PgwIEAAD8/P6SnpyMzMxO+vr5Qq9XQarXo1q0bfvzxR0uWSkTULIu2QCdNmoSU\nlBSMHTsWJSUl2LJlC9566y3T+y4uLsjPz0fnzp2h1WpN07VaLfLz89G3b98m1+/sbA+lkq1UW+Xq\nqrF2CWQGHifzWTRAv/jiC3Tt2hUJCQm4dOkSFi5cCI3mfwdLCNHgco1N/7XCwvIHUie1jvz8UmuX\nQM1wddXwODWgsX8qFu3CZ2VlYeTIkQCAfv36oaqqCoWFhab3c3NzodPpoNPpoNfr600nIrIlFg3Q\nnj174uzZswCA69evo1OnTvDw8MDp06cBAAcPHoSvry/+7//+D0ePHkV1dTVyc3ORl5eHxx57zJKl\nEhE1y6Jd+JkzZyIiIgLBwcGoqalBdHQ0XF1dsWLFCtTW1sLLyws+Pj4AgMDAQAQHB0MmkyE6Ohpy\nOW9ZJSLbIhPmDjC2AbY0dqPTOVq7BJuTl1di7RKoGRwDbZhNjIESEbUnDFAiIokYoEREEjFAiYgk\nYoASEUnEACUikogBSkQkEQOUiEgiBigRkUQMUCIiiRigREQSMUCJiCRigBIRScQAJSKSiAFKRCQR\nA5SISCIGKBGRRAxQIiKJGKBERBIxQImIJGKAEhFJxAAlIpKIAUpEJJHS0htMS0vD9u3boVQqsWjR\nIvTt2xdhYWEwGo1wdXXFunXroFarkZaWhsTERMjlcgQGBmLGjBmWLpWIqEkyIYSw1MYKCwsxa9Ys\n7N69G+Xl5di0aRNqamrw1FNPYeLEiVi/fj3c3d0REBCAqVOnIjk5GSqVCtOnT8eOHTvQuXPnJtef\nn19qoT1pnk7naO0SbE5eXom1S6BmuLpqbOrvyFa4umoanG7RLnx6ejqGDx8OBwcH6HQ6xMTEIDMz\nE/7+/gAAPz8/pKen4+zZs/D09IRGo4GdnR0GDx6MrKwsS5ZKRNQsi3bhc3JyUFlZiQULFqCkpAQh\nISGoqKiAWq0GALi4uCA/Px96vR5arda0nFarRX5+frPrd3a2h1KpaLX66f409l+cbAuPk/ksPgZa\nVFSEzZs348aNG3jhhRdw7whCY6MJ5o4yFBaWP5AaqXWwa2j72IVvmE104V1cXPDkk09CqVTi0Ucf\nRadOndCpUydUVlYCAHJzc6HT6aDT6aDX603L5eXlQafTWbJUIqJmWTRAR44ciYyMDNTW1qKwsBDl\n5eXw8fHBgQMHAAAHDx6Er68vvLy8cP78eZSUlOD27dvIysqCt7e3JUslImqWRbvwbm5uGD9+PAID\nAwEAkZGR8PT0RHh4OHbt2oWuXbsiICAAKpUKoaGhmD9/PmQyGRYuXAiNhuMyRGRbzLqNadmyZYiN\nja0zbf78+UhISGi1wqSwpbEb3sZUH29jsn0cA21YY2OgTbZA09LSsHPnTly+fBnPP/+8abrBYKgz\nRklE9DBqMkCfffZZDBs2DEuXLkVISIhpulwux2OPPdbqxRER2TKzn0QqLS1FUVFRnWk9evRolaKk\nsqWuB7vw9bELb/vYhW+YpC78XW+//TZ2794NrVZruidTJpPhn//854OrkIiojTErQDMzM5GRkYEO\nHTq0dj1ERG2GWfeB9uzZk+FJRPQrZrVA3d3d8fzzz2PIkCFQKP73rPnrr7/eaoUREdk6swK0c+fO\nGD58eGvXQkTUppgVoK+99lpr10FE1OaYFaD9+/eHTCYzvZbJZNBoNMjMzGy1woiIbJ1ZAXrp0iXT\nz9XV1UhPT8d//vOfViuKiKgtaPGnManVaowaNQonTpxojXqIiNoMs1qgycnJdV7fvHkTubm5rVIQ\nEVFbYVaAfvvtt3VeOzg44P3332+VgoiI2ooWfStnUVERZDIZnJycWrMmyWzpGV4+C18fn4W3fXwW\nvmH39Sx8VlYWwsLCcPv2bQgh0LlzZ6xbtw6enp4PtEgiorbErAB977338OGHH6JPnz4AgIsXL2L1\n6tX45JNPWrU4IiJbZtZVeLlcbgpP4M59ofc+0klE9DAyO0APHDiAsrIylJWVYd++fQxQInromXUR\n6aeffkJMTAzOnTsHuVyOfv364e233+YHKjeBF5Hq40Uk28eLSA27r++FP3HiBNRqNb755htkZmZC\nCIFjx4490AKJiNoaswI0LS0NmzdvNr3++OOP8fe//73ViiIiagvMClCj0VhnzFMmk6EFt48SEbVL\nZt3GNHr0aMyaNQtDhgxBbW0tMjIyMG7cuNaujYjIppn9JNLp06dx7tw5yGQyPPnkkxg0aJDkjVZW\nVmLy5Ml47bXXMHz4cISFhcFoNMLV1RXr1q2DWq1GWloaEhMTIZfLERgYiBkzZjS7Xlsa/OZFpPp4\nEcn28SJSw+7rSSQA8Pb2hre39wMpZsuWLabHQT/44AMEBQVh4sSJWL9+PZKTkxEQEID4+HgkJydD\npVJh+vTpGDt2LDp37vxAtk9E9CC0+OPs7teVK1fw448/4umnnwZw5xs//f39AQB+fn5IT0/H2bNn\n4enpCY1GAzs7OwwePBhZWVmWLpWIqElmt0AflHfeeQdRUVFITU0FAFRUVECtVgMAXFxckJ+fD71e\nD61Wa1pGq9UiPz+/2XU7O9tDqeQN/raqsW4Q2RYeJ/NZNEBTU1MxaNCgRm/Ab2w41twr/oWF5ZJr\no9bHsTXbxzHQht33GOiDcPToUWRnZ+Po0aO4efMm1Go17O3tUVlZCTs7O+Tm5kKn00Gn00Gv15uW\ny8vLu6+LVkRErcGiAXrvhzBv2rQJ3bp1w5kzZ3DgwAFMmTIFBw8ehK+vL7y8vBAZGYmSkhIoFApk\nZWUhIiLCkqUSETXL4mOgvxYSEoLw8HDs2rULXbt2RUBAAFQqFUJDQzF//nzIZDIsXLgQGg3HZYjI\ntrToE+ltnS2N3fA+0Pp4H6jt4xhow+7rw0SIiKg+BigRkUQMUCIiiRigREQSMUCJiCRigBIRScQA\nJSKSiAFKRCQRA5SISCIGKBGRRAxQIiKJGKBERBIxQImIJGKAEhFJxAAlIpKIAUpEJBEDlIhIIgYo\nEZFEDFAiIokYoEREEjFAiYgkYoASEUnEACUikkhp6Q3GxcXh22+/RU1NDV555RV4enoiLCwMRqMR\nrq6uWLduHdRqNdLS0pCYmAi5XI7AwEDMmDHD0qUSETXJogGakZGBy5cvY9euXSgsLMTUqVMxfPhw\nBAUFYeLEiVi/fj2Sk5MREBCA+Ph4JCcnQ6VSYfr06Rg7diw6d+5syXKJiJpk0S780KFDsXHjRgCA\no6MjKioqkJmZCX9/fwCAn58f0tPTcfbsWXh6ekKj0cDOzg6DBw9GVlaWJUslImqWRVugCoUC9vb2\nAIDk5GQ89dRTOH78ONRqNQDAxcUF+fn50Ov10Gq1puW0Wi3y8/ObXb+zsz2USkXrFE/3zdVVY+0S\nyAw8Tuaz+BgoABw6dAjJycn4+OOPMW7cONN0IUSD8zc2/dcKC8sfSH3UOvLzS61dAjXD1VXD49SA\nxv6pWPwq/Ndff42PPvoI27Ztg0ajgb29PSorKwEAubm50Ol00Ol00Ov1pmXy8vKg0+ksXSoRUZMs\nGqClpaWIi4vD1q1bTReEfHx8cODAAQDAwYMH4evrCy8vL5w/fx4lJSW4ffs2srKy4O3tbclSiYia\nZdEu/L59+1BYWIjFixebpsXGxiIyMhK7du1C165dERAQAJVKhdDQUMyfPx8ymQwLFy6ERsNxGSKy\nLTJh7gBjG2BLYzc6naO1S7A5eXkl1i6BmsEx0IbZzBgoEVF7wQAlIpKIAUpEJBEDlIhIIgYoEZFE\nDFAiIokYoEREEjFAiYgkYoASEUnEACUikogBSkQkEQOUiEgiBigRkUQMUCIiiRigREQSMUCJiCRi\ngBIRScQAJSKSiAFKRCQRA5SISCKLfisnEdXHLyBsWFv4EkK2QImIJGKAEhFJZNNd+DVr1uDs2bOQ\nyWSIiIjAwIEDrV0SEZGJzQboqVOn8PPPP2PXrl24cuUKIiIisGvXLmuXRURkYrNd+PT0dIwZMwYA\n4OHhgeLiYpSVlVm5KiKi/7HZANXr9XB2dja91mq1yM/Pt2JFRER12WwX/teEEM3O4+qqsUAl5jGn\nXiKA50pbZrMtUJ1OB71eb3qdl5cHV1dXK1ZERFSXzQboiBEjcODAAQDAhQsXoNPp4ODgYOWqiIj+\nx2a78IMHD8aAAQMwa9YsyGTbbSOTAAAFnUlEQVQyrFy50tolERHVIRMcgCEiksRmu/BERLaOAUpE\nJBEDlIhIIgYoEZFENnsVnoha1yeffNLk+88//7yFKmm7GKDt0PHjx1FcXIxJkyYhIiICV69exfz5\n8zF27Fhrl0Y2pLCw0NoltHkM0HZo06ZNSEhIwFdffQWFQoEdO3Zg3rx5DFCqY+rUqejWrRt+/PFH\na5fSZjFA2yG1Wg0HBwccOnQIM2fOhFKphNFotHZZZGP++te/Yvny5Vi1alW992QyGf76179aoaq2\nhQHaDnXp0gVz585FeXk5Bg8ejLS0NHTs2NHaZZGNWb58OQAgKSmp3nvx8fGWLqdN4pNI7VBNTQ1+\n+OEH9O7dG3Z2dvj+++/RrVs3ODryy8uovmPHjmHjxo0oLi4GABgMBri7u+Ozzz6zcmW2j7cxtUMZ\nGRm4du0a7OzsEBERgVWrVuHUqVPWLots1KZNm7Bx40a4u7sjOTkZCxcuxAsvvGDtstoEBmg7tGnT\nJowaNarORSSOZ1FjOnbsiB49eqC2thbOzs6YOXMmdu/ebe2y2gSOgbZDvIhELeHm5obU1FT0798f\nS5cuRffu3VFQUGDtstoEtkDbobsXka5du8aLSNSotWvXAgDeeecdPPXUU3B2dsbIkSPh5OSELVu2\nWLm6toEt0HZo3bp1potIAPDYY49hwYIFVq6KbM33338PAFAoFNBqtTh16hT++Mc/WrmqtoUB2g6V\nl5fjzJkzOHz4MIA7V1VTU1Nx7NgxK1dGtuTXN+DwhpyWYxe+HXr99ddRUFCAvXv3wt7eHv/+978R\nFRVl7bLIxshksiZfU/N4H2g7NGfOHCQmJmL27NlISkpCdXU1Fi9ejA8//NDapZENGTx4sGmYRwiB\na9euoXfv3hBCQCaTITk52coV2j524dshg8GAS5cuwc7ODidOnECPHj3wyy+/WLsssjF79+61dglt\nHlug7Ux1dTWuXr2KwsJCaLVarF69GkVFRQgODkZgYKC1yyNqVxig7cihQ4ewZs0auLq6oqioCHFx\ncfDy8rJ2WUTtFrvw7cj27duxZ88eODk5IScnB9HR0di+fbu1yyJqt3gVvh1RqVRwcnICAHTv3h1V\nVVVWroiofWOAtiO8LYXIsjgG2o7wthQiy2KAtiPXr19v8v1u3bpZqBKihwMDlIhIIo6BEhFJxAAl\nIpKIAUrtzo8//ogLFy40OU9FRQUOHjxooYqovWKAUrvz1Vdf4eLFi03Oc/HiRQYo3Tc+iURtWm5u\nLpYuXQoAqKysxOjRo7Fjxw44ODjAzs4O/fv3x8qVK6FQKFBWVobFixdj6NChePPNN1FSUoK4uDg8\n9thjOHnyJN59910AwOzZs/Hqq6/Cw8OjzrpnzpyJ6dOnW21fyfawBUpt2j/+8Q/07t0bSUlJ2LFj\nBzQaDXx9ffHSSy/hmWeegV6vx+uvv47ExERERkZiw4YNsLOzw8svvwwfHx+EhYWZve7KykoL7hm1\nBQxQatN8fX2Rnp6OZcuW4fDhw5g5c2ad911dXZGQkICgoCCsWbMGRUVFD2zdRAxQatM8PDzw5Zdf\n4tlnn0V6ejpmz55d5/2YmBiMGTMGn376KVavXt3gOn79yKvBYDBr3UQcA6U2be/evejWrRt8fHww\nbNgwjB49Gr169TKFoF6vx29/+1sAwL59+1BdXQ0AkMvlqKmpAQA4ODjg5s2bAICCggJcvny50XXX\n1NRAqeSfDd3BJ5GoTfv++++xcuVKqNVqCCEwceJEaDQaxMXF4bXXXoO9vT0++ugjdO/eHXPnzkVs\nbCx8fX0xY8YMzJkzB76+voiKisK8efNQW1sLDw8P5OfnY968eXB2dq637uDgYGvvMtkQBigRkUQc\nAyUikogBSkQkEQOUiEgiBigRkUQMUCIiiRigREQSMUCJiCT6fwsvxLjkAelAAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "PpowtC99ZdPM",
- "colab_type": "code",
- "outputId": "eda1d827-15ab-4dd8-c3ed-85f56d55d2ff",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 148
- }
- },
- "cell_type": "code",
- "source": [
- "# label encoding for parental level of education\n",
- "\n",
- "data['parental level of education'] = le.fit_transform(data['parental level of education'])\n",
- "data['parental level of education'].value_counts()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "4 226\n",
- "0 222\n",
- "2 196\n",
- "5 179\n",
- "1 118\n",
- "3 59\n",
- "Name: parental level of education, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 203
- }
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# feature engineering on the data to visualize and solve the dataset more accurately\n",
+ "\n",
+ "# setting a passing mark for the students to pass on the three subjects individually\n",
+ "passmarks = 40\n",
+ "\n",
+ "# creating a new column pass_math, this column will tell us whether the students are pass or fail\n",
+ "data['pass_math'] = np.where(data['math score']< passmarks, 'Fail', 'Pass')\n",
+ "data['pass_math'].value_counts(dropna = False).plot.bar(color = 'black', figsize = (5, 3))\n",
+ "\n",
+ "plt.title('Comparison of students passed or failed in maths')\n",
+ "plt.xlabel('status')\n",
+ "plt.ylabel('count')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 73
+ },
+ "colab_type": "code",
+ "id": "qsOJMDZkg3K5",
+ "outputId": "0069d22e-e62a-4b34-ff0f-3f4a5d6cca1e"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Pass 960\n",
+ "Fail 40\n",
+ "Name: pass_math, dtype: int64"
]
- },
- {
- "metadata": {
- "id": "geX7js-LbEgB",
- "colab_type": "code",
- "outputId": "be192129-00b1-49b5-e66e-e4e2de1b446b",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 73
- }
- },
- "cell_type": "code",
- "source": [
- "# label encoding for gender\n",
- "\n",
- "data['gender'] = le.fit_transform(data['gender'])\n",
- "data['gender'].value_counts()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "0 518\n",
- "1 482\n",
- "Name: gender, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 204
- }
+ },
+ "execution_count": 186,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data['pass_math'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 252
+ },
+ "colab_type": "code",
+ "id": "YlFzqNvVeaeS",
+ "outputId": "b4740ae9-6131-422f-addf-2029630cac13"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADrCAYAAAA/ks7bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XtcVGX+B/DPXEVkRAZnMC+ZUloa\nYoproqSIeFktLRVdwjRty3JRf2KihIKRl7A0L2i+0jbCWk1Ew81EzcuWAma4aJqbqRXoijPIVS4D\nw/P7w5ezolyGU8wM9Hn/xTlzLt8z5/DheZ5zZpAJIQSIiKjB5PYugIioqWKAEhFJxAAlIpKIAUpE\nJBEDlIhIIgYoEZFEf6gAFULg73//O8aMGYMRI0Zg2LBhiI6ORlFRkb1Lq2bbtm1477337Lb/oqIi\njB07FsOHD0deXp5V61y+fBnffvttg/c1bdo0JCUlNXi937pfR9KjRw9kZ2f/bts7dOgQBg0ahKio\nqDqXW7BgAQ4fPozs7Gz06NGjwfsJDAxEenr6ffOnTp2Kc+fONXh7v9Vnn31m+Xno0KE4depUo+9T\n2eh7cCDvvPMOTp48ia1bt8LDwwMlJSVYtmwZXnnlFXzyySeQyWT2LhEAEBISYtf9/+c//0F+fj6O\nHTtm9TqHDh1CZWUl+vXr14iVOc5+Hdnhw4cxYcIEzJ07t87lYmNjAeB3DW8AiI+P/123Zw2DwYAt\nW7YgKCjIpvv9wwRofn4+EhISsHv3bnh4eAAAnJ2dsWTJEhw/fhxCCJhMJixbtgzp6emQy+UYPHgw\nXn/9dSgUCgwdOhQvvvgikpKSkJOTg+joaKSmpuLrr7+GVqvFBx98AFdXV3Tv3h1vvPEGdu3ahRs3\nbmD27Nn4y1/+AgCIi4tDcnIyzGYzPD09sWrVKrRu3Rrr169HTk4OLly4gDFjxqCoqAjXr1/HsmXL\n8OWXXyIuLg5msxlKpRKRkZHo378/rl27hsWLFyM7OxsqlQovvfQSxo0bh+zsbEyePBkvv/wydu7c\nifz8fCxatAh//vOf73tP0tPTsXLlSpSWlkKj0WDJkiVwd3fH/PnzkZubi5EjR+LTTz+FVqu1rHPy\n5EmsWLEC5eXlEEJg9uzZaNGiBTZv3gyVSoXCwkJ069YNycnJ+OijjwAASUlJlumsrCzMmzcPeXl5\n8Pb2htlstmz7u+++w/Lly1FYWAg3Nze8++676NSpE5KSknD06FG4uLjgu+++g0KhwNq1a5GVlVVt\nv6GhoViwYAEuX74Mk8mEAQMGICoqCiqVqtpxSzlHP/74IxYvXozi4mJUVFTghRdeQEhISK3zTSYT\nYmNj8fXXX6OiogJBQUGYOXMmAODYsWN46623oFQqMX78+Fqv2QsXLiA6Ohr5+flo0aIF5s+fDz8/\nP6Snp2PNmjXw8PCAUqnEu+++a1knPj4eKSkpUKlUMBqNePPNNxETE4MTJ06goqICffv2xfLly6FS\nqTBlyhRMmDABffv2tawvhEBcXBz27t0Lk8mEgIAALFq0CAqFAt9//z3Cw8NRWVmJwYMH11r30KFD\nERsbi3bt2ll9LXbv3h0xMTFISEhAYWEhVq5ciZ07d+L06dPw9PTE+++/D6VSia+++grvvfceTCYT\nWrVqhWXLluGxxx7D5MmTkZOTg5EjRyI5ORkA8P333yM2NhbXrl3D6NGjsWjRIlRWViIqKgqnTp1C\nVVUVunfvjpUrV8LFxaXW46mT+IM4evSoCAwMrHOZzZs3i7/+9a+ioqJClJaWivHjx4s9e/YIIYTw\n9/cXixcvFkIIkZCQILy9vUVaWpqoqqoS48ePF5999pkQQohu3bqJN998UwghxKVLl8Tjjz8ubt68\nKc6ePSsGDBggioqKhNlsFtOmTRNxcXFCCCHWrVsnBg0aJHJzcy3TERERQggh+vfvL7Kzs4UQQnz7\n7bdi+fLlQgghpk+fLt5//30hhBDZ2dmib9++IisrS2RlZYkePXqIhIQEIYQQ+/btq/G4i4uLRf/+\n/cWpU6eEEELs379fDB8+XJjNZpGWliaGDRtW43v03HPPifT0dCGEEFeuXBHz5s0TQggRHh5uOZ5d\nu3aJqVOnWta5e3r27Nni3XffFUIIkZmZKXr06CF27dolioqKRL9+/cQ333wjhBBi79694tlnn7Ws\n7+3tLc6ePSuEECI6Olq88cYb9+1327ZtYuHChUIIISoqKsSSJUvE+fPn7zsGKecoNDRUJCUlCSGE\nyM3NFa+++qooLy+vdf6GDRvE1KlTRXl5ubh165YYN26cOHz4sKisrBQDBw4UX3/9tRBCiK1bt4pu\n3bqJrKysajWazWYxatQosXfvXiGEEGfOnBH9+vUTRUVFIi0tTXh5eYkTJ07UeI7ufk/2798vxowZ\nI0wmkygrKxOjRo2yXNMhISFiz549IisrSzz22GNCCCF2794tRo8eLQoLC0VFRYV4+eWXLdfS+PHj\nxfbt24UQt6+rRx99VKSlpd23f39/f/Htt99afS3eOSd3rueVK1cKHx8fcfnyZVFeXi78/PzEiRMn\nREVFhfDx8RGnT58WQgixfv16y3V17zXr7+8vwsLCRGVlpbh+/bro2bOnuHbtmjhy5Ih44YUXRFVV\nlaiqqhJr1qwR//rXv2qsyRp/mDHQ/Px8uLu717nM0aNHERQUBKVSCScnJzz99NM4fvy45fWAgAAA\nQLdu3dCiRQv0798fMpkMjzzyCG7cuGFZ7k6romvXrujSpQvOnDmDxx9/3NKKksvleOKJJ5CVlWVZ\nx9vbu1pL7w53d3ds374dV69ehY+PDxYtWoSKigqcOHECwcHBAIAOHTqgf//+SEtLAwBUVlbiueee\nAwD07NkT165du2+7Z86cQbt27SytjxEjRiAvLw9Xr16t8z1yd3fHnj17cOnSJTz00EPVWj/WOHXq\nlKUF0qtXL3Tt2hXA7danh4cHBg4cCAAYM2YMfv31V0vtnp6eePzxxwHcHjP873//e9+2tVotTp8+\njW+++QZVVVVYunQpHnvssRrraOg5cnd3R0pKCs6dOwc3Nzds3LgRarW61vlHjhxBcHAw1Go1nJ2d\nMXbsWBw4cAA///wzTCYTBg0aBAB49tlna6wvOzsbRqMRo0ePBgB4eXmhffv2OHv2LADAyckJAwYM\nqPf9HjFiBHbt2gWVSoUWLVrAy8ur2nV3ryNHjmD8+PHQaDRQKpWYOHEiDhw4gPLycpw9e9Zy7kaO\nHImWLVvWu39rrsU7hg0bBuD271enTp3QpUsXqNVqdO7cGTk5OVAqlThx4gR69+4NAPDx8anzWJ5+\n+mkoFAp4eHjA3d0d169fh1arxaVLl3Dw4EGUlpZi7ty58PPzq/c4avOH6cK7ubkhJyenzmVu3rwJ\nV1dXy7Srqytyc3Mt061atQIAyOVyy893pquqqqqtd/fPhYWFKC0txYoVKyyD7gUFBRgyZEiN69xt\n06ZN2LRpE5577jk88MADiIiIQJcuXSCEgEajsSzXunVr3Lx5EwCgUCjg7OxcY213H2vr1q2rzdNo\nNNWOtybLly/Hpk2b8OKLL8LJyQnz5s3DyJEj61znbgUFBdW6S3dqKCwsRFZWVrVtqdVqyzHdfawK\nhaJa1/+OUaNGoaCgAGvXrsXly5fxzDPPYNGiRVCr1fct29BzNH/+fGzevBlz585FeXk5XnnlFTz/\n/PO1zi8qKsKKFSuwevVqAIDJZEKvXr3uO/7azvvNmzeh0WiqjcvfOcdt27atdb2athMTE4Pz589D\nJpPBaDRi6tSptS5fVFSErVu3YseOHQAAs9kMrVaL/Px8ALDULpPJ7rt+amLNtXhHbb9fCoXCst6d\nYTiTyQSTyVTnfYt7t2E2m/HEE08gMjISCQkJCA8Px9ChQxEVFWXVsdTkDxOgvXv3Rm5uLs6dO4ee\nPXta5ldUVGDDhg2YOXMm2rZta7lQgNut1rZt2zZ4X3l5eejQoYNlG66uroiPj8fPP/+MpKQktGrV\nCmvWrKk30AHgwQcfxIoVK1BVVYU9e/YgLCwMR44cgVwuR0FBgeUXyZoW9t3c3d2rHasQAgUFBXB3\nd6+zldC2bVssXrwYixcvxjfffIPQ0ND7/oLL5fJqAVdYWGj5uXXr1iguLrZM3wlIvV6Prl271nhH\n/scff7T6uCZPnmwZDwsNDcWePXtqvLHQ0HPUqlUrzJs3D/PmzcOZM2fw17/+Fb6+vujSpUuN8/V6\nPaZPnw5/f/9q+7106VKNx38vd3d3FBQUQAhhCYmGnmMAWLNmDZRKJfbu3Qu1Wo2wsLA6l9fr9Rg6\ndOh9NzLLysoAAMXFxdBoNKiqqkJBQUGDavmtMjIy8MEHH2Dnzp3o2LEjjh8/jsWLFzd4OyNHjsTI\nkSORn5+PiIgIbN26Ff/3f/8nqaY/TBe+devWeOmllxAeHo5ffvkFAFBaWoolS5bg/PnzaNmyJYYM\nGYLExESYzWaUlJTg888/r3OwvDZffPEFgNu/LL/88gu8vb2Rm5uLrl27olWrVrh69SqOHTuGkpKS\nOrdz8+ZNvPjiiyguLoZcLoe3tzdkMhmUSiUGDRpkaSX8+uuvOHXqFHx9fa2usVevXjAajTh9+rSl\n5nbt2qFjx461rlNRUYEpU6ZYhit69uwJpVIJuVwOpVJpeRxMr9fjypUrKC8vR2lpKfbv32/ZRu/e\nvXHw4EEAt38hfv31VwC3hzAMBgMyMzMBAFlZWXj99dch6vmysLv3GxcXh8TERACAh4cHOnbsWGsL\npaHnaObMmbh48SKA211MFxcXyGSyWucHBARg586dMJvNEEJg48aN+Ne//oUHH3wQCoXC0spNSkqq\nscaOHTuiXbt22Ldvn+W9MhqN6NWrV53vx71yc3PRrVs3qNVqXLhwAadPn67zugsICMDnn3+O0tJS\nAMD27duxe/duODk54dFHH7Wcuy+++ALl5eUNquW3unnzJtzd3dG+fXuUlpZi9+7dKCkpgRACSqUS\nJSUlqKysrHMbu3btQlxcHACgTZs2liEkqf4wLVAACA0NhaurK1599VWYzWbI5XIEBAQgOjoaADBl\nyhRkZWVh9OjRkMlkGDlyJEaNGtXg/Wi1WowdOxY5OTmIjIyEq6srJk+ejNmzZ2PEiBHo3r07Fi5c\niNDQUMud6tq24+fnh/Hjx0OhUEClUmHZsmUAgKVLlyIyMhJJSUlQqVR466238MADD1j9SIqzszPe\ne+89xMTEoKSkBFqtFqtXr66zS6RSqTBhwgRMmzYNwO2WZmRkJFq2bAl/f3/Mnz8fV69exZo1a+Dt\n7Y0RI0agY8eOCAgIsIwlv/766wgLC8Pnn38Ob29vS+g7OTlh3bp1iImJwa1bt6BSqTBnzpx6Hy27\ne78LFizAokWL8MEHH0Amk8Hb2xtjx46t9b1tyDkKCQlBWFgYKioqAADBwcF46KGHap0fHByM7Oxs\njB49GkIIPP7445g6dSpUKhViYmIQEREBtVqN5557ztLFvZtMJsPq1asRFRWFDRs2oGXLlli7dm2N\ny9Zl+vTpCA8PR1JSEnx8fBAeHo433nij1iAeNmwYLl68aBmbffDBBy3XXHR0NCIiIrB582Y89dRT\n8PT0bFAtv5Wfnx8+/fRTDBs2DB4eHoiIiEBmZiZmz56NFStWwNXVFQMHDsTu3btr3UZAQAAiIiIw\nfPhwKBQKdO7cGStXrpRck0zU9yeeGqR79+44duwY2rVrZ+9SqBY8R/R7+cN04YmIfm8MUCIiidiF\nJyKSiC1QIiKJmtVdeIPBsb5VyRG4uTkjL6/ux6WI7uD1UjOdTlPj/EZtgf74448YNmwYtm3bBgD4\n73//iylTpiA4OBhz5syByWQCACQnJ2P8+PGYOHEidu7cCeD2M4dhYWH4y1/+gpCQkDo/skW1UyoV\n9i6BmhBeLw3TaAFaUlKCmJiYap/XXbduHYKDg/Hpp5+ic+fOSExMRElJCeLi4vDRRx8hISEB8fHx\nyM/Pxz//+U+0bt0a//jHPzBz5swGf+aaiKixNVqAqtVqfPDBB9Dr9ZZ56enpli/k8Pf3R2pqKjIz\nM+Hl5QWNRgMnJyf06dMHGRkZSE1NRWBgIADA19cXGRkZjVUqEZEkjTYGqlQqoVRW33xpaanlix3c\n3d1hMBhgNBqrfQuRVqu9b75cLodMJoPJZKrxiyHucHNzZhekBrWN3xDVhNeL9ex2E6m2p6caOv9u\nHPy+n06n4c01shqvl5rZ5SbSvZydnS3f6pKTkwO9Xg+9Xg+j0WhZ5saNG5b5BoMBwO0bSkKIOluf\nRES2ZtMA9fX1RUpKCgDgwIED8PPzg7e3N86ePYvCwkLcunULGRkZ8PHxwcCBAy3f4nPkyBH079/f\nlqUSEdWr0T6J9P333+Ptt9/G1atXoVQq4eHhgXfeeQcLFy5EeXk52rdvjxUrVkClUmH//v3YunUr\nZDIZQkJC8Mwzz8BsNiMyMhI///wz1Go1Vq5ciQceeKDOfTpS1+PgkCftXYLDCTyaZu8SqB7swtes\nti58s/oopyOdeAbo/Rigjo8BWjOHGAMlImpOGKBERBIxQImIJGKAEhFJxAAlIpKIAUpEJBEDlIhI\nIgYoEZFEDFAiIokYoEREEjFAiYgkYoASEUnEACUikogBSkQkEQOUiEgiBigRkUQMUCIiiRigREQS\nMUCJiCRigBIRScQAJSKSiAFKRCQRA5SISCKlLXd269YthIeHo6CgABUVFZg1axZ0Oh2io6MBAN27\nd8fSpUsBAFu2bMH+/fshk8nwt7/9DYMHD7ZlqURE9bJpgO7evRtdunRBWFgYcnJyMHXqVOh0OkRE\nRKBXr14ICwvDsWPH0LVrV+zbtw/bt29HcXExgoODMWjQICgUCluWS0RUJ5t24d3c3JCfnw8AKCws\nRJs2bXD16lX06tULAODv74/U1FSkp6fDz88ParUaWq0WHTp0wE8//WTLUomI6mXTFujo0aORlJSE\nwMBAFBYWYtOmTXjzzTctr7u7u8NgMKBNmzbQarWW+VqtFgaDAd27d69z+25uzlAq2Up1VDqdxt4l\nkBV4nqxn0wD9/PPP0b59e2zduhUXLlzArFmzoNH872QJIWpcr7b598rLK/ld6qTGYTAU2bsEqodO\np+F5qkFtf1Rs2oXPyMjAoEGDAACPPvooysvLkZeXZ3k9JycHer0eer0eRqPxvvlERI7EpgHauXNn\nZGZmAgCuXr2KVq1awdPTE6dOnQIAHDhwAH5+fnjyySdx9OhRmEwm5OTk4MaNG3j44YdtWSoRUb1s\n2oWfNGkSIiIiEBISgsrKSkRHR0On02HJkiWoqqqCt7c3fH19AQBBQUEICQmBTCZDdHQ05HI+skpE\njkUmrB1gbAIcaezm4JAn7V2Cwwk8mmbvEqgeHAOtmUOMgRIRNScMUCIiiRigREQSMUCJiCRigBIR\nScQAJSKSiAFKRCQRA5SISCIGKBGRRAxQIiKJGKBERBIxQImIJGKAEhFJxAAlIpKIAUpEJBEDlIhI\nIgYoEZFEDFAiIokYoEREEjFAiYgkYoASEUnEACUikogBSkQkkdLWO0xOTsaWLVugVCoxe/ZsdO/e\nHQsWLIDZbIZOp8OqVaugVquRnJyM+Ph4yOVyBAUFYeLEibYulYioTjYN0Ly8PMTFxWHXrl0oKSnB\n+vXrkZKSguDgYIwaNQqrV69GYmIixo0bh7i4OCQmJkKlUmHChAkIDAxEmzZtbFkuEVGdbNqFT01N\nxYABA+Di4gK9Xo+YmBikp6cjICAAAODv74/U1FRkZmbCy8sLGo0GTk5O6NOnDzIyMmxZKhFRvWza\nAs3OzkZZWRlmzpyJwsJChIaGorS0FGq1GgDg7u4Og8EAo9EIrVZrWU+r1cJgMNS7fTc3ZyiVikar\nn34bnU5j7xLICjxP1rP5GGh+fj42bNiAa9eu4YUXXoAQwvLa3T/frbb598rLK/ldaqTGYTAU2bsE\nqodOp+F5qkFtf1Rs2oV3d3fHE088AaVSiQcffBCtWrVCq1atUFZWBgDIycmBXq+HXq+H0Wi0rHfj\nxg3o9XpblkpEVC+rAnThwoX3zZsxY0aDdzZo0CCkpaWhqqoKeXl5KCkpga+vL1JSUgAABw4cgJ+f\nH7y9vXH27FkUFhbi1q1byMjIgI+PT4P3R0TUmOrswicnJ2P79u24ePEinn/+ecv8ioqKai1Ea3l4\neGDEiBEICgoCAERGRsLLywvh4eHYsWMH2rdvj3HjxkGlUiEsLAwzZsyATCbDrFmzoNFwXIaIHItM\n1DPAmJOTg/nz5yM0NNQyTy6X4+GHH3a4x4ocaezm4JAn7V2Cwwk8mmbvEqgeHAOtWW1joPXeRPLw\n8EBCQgKKioqQn59vmV9UVORwAUpEZEtW3YV/6623sGvXLmi1WssdcZlMhq+++qpRiyMicmRWBWh6\nejrS0tLQokWLxq6HiKjJsOoufOfOnRmeRET3sKoF2q5dOzz//PPo27cvFIr/fdJnzpw5jVYYEZGj\nsypA27RpgwEDBjR2LURETYpVAfraa681dh1ERE2OVQHao0cPyGQyy7RMJoNGo0F6enqjFUZE5Ois\nCtALFy5YfjaZTEhNTcV//vOfRiuKiKgpaPCXiajVagwePBjHjx9vjHqIiJoMq1qgiYmJ1aavX7+O\nnJycRimIiKipsCpAv/vuu2rTLi4ueO+99xqlICKipsKqAF2xYgWA21+GLJPJ4Orq2qhFERE1BVYF\naEZGBhYsWIBbt25BCIE2bdpg1apV8PLyauz6iIgcllUB+u6772Ljxo3o1q0bAOD8+fNYtmwZPvnk\nk0YtjojIkVl1F14ul1vCE7j9XOjdH+kkIvojsjpAU1JSUFxcjOLiYuzbt48BSkR/eFZ14ZcuXYqY\nmBhERkZCLpfj0UcfxVtvvdXYtREROTSrWqDHjx+HWq3Gt99+i/T0dAghcOzYscaujYjIoVkVoMnJ\nydiwYYNl+sMPP8Q///nPRiuKiKgpsCpAzWZztTFPmUyGev4XHRFRs2fVGOjQoUMxefJk9O3bF1VV\nVUhLS8Pw4cMbuzYiIodm9feB/ulPf8KZM2cgk8kQFRWF3r17S95pWVkZxowZg9deew0DBgzAggUL\nYDabodPpsGrVKqjVaiQnJyM+Ph5yuRxBQUGYOHGi5P0RETUGqwIUAHx8fODj4/O77HTTpk2Wj4Ou\nW7cOwcHBGDVqFFavXo3ExESMGzcOcXFxSExMhEqlwoQJExAYGMh/o0xEDqXBX2f3W126dAk//fQT\nhgwZAuD2f/wMCAgAAPj7+yM1NRWZmZnw8vKCRqOBk5MT+vTpg4yMDFuXSkRUJ5sH6Ntvv42FCxda\npktLS6FWqwEA7u7uMBgMMBqN0Gq1lmW0Wi0MBoOtSyUiqpPVXfjfw549e9C7d2906tSpxtdru7Nv\n7R1/NzdnKJX8hJSj0uk09i6BrMDzZD2bBujRo0eRlZWFo0eP4vr161Cr1XB2dkZZWRmcnJyQk5MD\nvV4PvV4Po9FoWe/GjRtW3bTKyytpzPLpNzIYiuxdAtVDp9PwPNWgtj8qNg3Qu7+Eef369ejQoQNO\nnz6NlJQUjB07FgcOHICfnx+8vb0RGRmJwsJCKBQKZGRkICIiwpalEhHVy6YBWpPQ0FCEh4djx44d\naN++PcaNGweVSoWwsDDMmDEDMpkMs2bNgkbDbgURORaZaEYfKXKkrsfBIU/auwSHE3g0zd4lUD3Y\nha9ZbV14m9+FJyJqLhigREQSMUCJiCRigBIRScQAJSKSiAFKRCQRA5SISCIGKBGRRAxQIiKJGKBE\nRBIxQImIJGKAEhFJxAAlIpKIAUpEJBEDlIhIIgYoEZFEDFAiIokYoEREEjFAiYgkYoASEUnEACUi\nkogBSkQkEQOUiEgipa13GBsbi++++w6VlZV45ZVX4OXlhQULFsBsNkOn02HVqlVQq9VITk5GfHw8\n5HI5goKCMHHiRFuXSkRUJ5sGaFpaGi5evIgdO3YgLy8Pzz77LAYMGIDg4GCMGjUKq1evRmJiIsaN\nG4e4uDgkJiZCpVJhwoQJCAwMRJs2bWxZLhFRnWzahe/Xrx/Wrl0LAGjdujVKS0uRnp6OgIAAAIC/\nvz9SU1ORmZkJLy8vaDQaODk5oU+fPsjIyLBlqURE9bJpgCoUCjg7OwMAEhMT8dRTT6G0tBRqtRoA\n4O7uDoPBAKPRCK1Wa1lPq9XCYDDYslQionrZfAwUAA4dOoTExER8+OGHGD58uGW+EKLG5Wubfy83\nN2colYrfpUb6/el0GnuXQFbgebKezQP066+/xvvvv48tW7ZAo9HA2dkZZWVlcHJyQk5ODvR6PfR6\nPYxGo2WdGzduoHfv3vVuOy+vpDFLp9/IYCiydwlUD51Ow/NUg9r+qNi0C19UVITY2Fhs3rzZckPI\n19cXKSkpAIADBw7Az88P3t7eOHv2LAoLC3Hr1i1kZGTAx8fHlqUSEdXLpi3Qffv2IS8vD3PnzrXM\nW7lyJSIjI7Fjxw60b98e48aNg0qlQlhYGGbMmAGZTIZZs2ZBo2G3gogci0xYO8DYBDhS1+PgkCft\nXYLDCTyaZu8SqB7swtfMIbrwRETNCQOUiEgiBigRkUQMUCIiiRigREQSMUCJiCRigBIRScQAJSKS\niAFKRCQRA5SISCIGKBGRRAxQIiKJGKBERBIxQImIJGKAEhFJxAAlIpKIAUpEJBEDlIhIIgYoEZFE\nDFAiIokYoEREEjFAiYgksun/hSei+/FfYNesKfwbbIcO0OXLlyMzMxMymQwRERHo1auXvUsiIrJw\n2AA9efIkfvnlF+zYsQOXLl1CREQEduzYYe+yiIgsHHYMNDU1FcOGDQMAeHp6oqCgAMXFxXauiojo\nfxw2QI1GI9zc3CzTWq0WBoPBjhUREVXnsF34ewkh6l1Gp9PYoBLrBJ87Z+8SqIngtdJ0OWwLVK/X\nw2g0WqZv3LgBnU5nx4qIiKpz2AAdOHAgUlJSAADnzp2DXq+Hi4uLnasiIvofh+3C9+nTBz179sTk\nyZMhk8kQFRVl75KIiKqRCWsGF4mI6D4O24UnInJ0DFAiIokYoEREEjFAiYgkcti78ETUuD755JM6\nX3/++edtVEnTxQBthr755hsVi8ffAAAFWklEQVQUFBRg9OjRiIiIwOXLlzFjxgwEBgbauzRyIHl5\nefYuocljgDZD69evx9atW3Hw4EEoFAps27YN06dPZ4BSNc8++yw6dOiAn376yd6lNFkM0GZIrVbD\nxcUFhw4dwqRJk6BUKmE2m+1dFjmYjz/+GIsWLcLSpUvve00mk+Hjjz+2Q1VNCwO0GWrbti2mTZuG\nkpIS9OnTB8nJyWjZsqW9yyIHs2jRIgBAQkLCfa/FxcXZupwmiZ9EaoYqKyvx448/omvXrnBycsIP\nP/yADh06oHXr1vYujRzQsWPHsHbtWhQUFAAAKioq0K5dO3z22Wd2rszx8TGmZigtLQ1XrlyBk5MT\nIiIisHTpUpw8edLeZZGDWr9+PdauXYt27dohMTERs2bNwgsvvGDvspoEBmgztH79egwePLjaTSSO\nZ1FtWrZsiU6dOqGqqgpubm6YNGkSdu3aZe+ymgSOgTZDvIlEDeHh4YE9e/agR48emD9/Pjp27Ijc\n3Fx7l9UksAXaDN25iXTlyhXeRKJarVixAgDw9ttv46mnnoKbmxsGDRoEV1dXbNq0yc7VNQ1sgTZD\nq1atstxEAoCHH34YM2fOtHNV5Gh++OEHAIBCoYBWq8XJkyfxt7/9zc5VNS0M0GaopKQEp0+fxuHD\nhwHcvqu6Z88eHDt2zM6VkSO59wEcPpDTcOzCN0Nz5sxBbm4u9u7dC2dnZ/z73//G4sWL7V0WORiZ\nTFbnNNWPz4E2Q1OnTkV8fDymTJmChIQEmEwmzJ07Fxs3brR3aeRA+vTpYxnmEULgypUr6Nq1K4QQ\nkMlkSExMtHOFjo9d+GaooqICFy5cgJOTE44fP45OnTrh119/tXdZ5GD27t1r7xKaPLZAmxmTyYTL\nly8jLy8PWq0Wy5YtQ35+PkJCQhAUFGTv8oiaFQZoM3Lo0CEsX74cOp0O+fn5iI2Nhbe3t73LImq2\n2IVvRrZs2YLdu3fD1dUV2dnZiI6OxpYtW+xdFlGzxbvwzYhKpYKrqysAoGPHjigvL7dzRUTNGwO0\nGeFjKUS2xTHQZoSPpRDZFgO0Gbl69Wqdr3fo0MFGlRD9MTBAiYgk4hgoEZFEDFAiIokYoNTs/PTT\nTzh37lydy5SWluLAgQM2qoiaKwYoNTsHDx7E+fPn61zm/PnzDFD6zfhJJGrScnJyMH/+fABAWVkZ\nhg4dim3btsHFxQVOTk7o0aMHoqKioFAoUFxcjLlz56Jfv3544403UFhYiNjYWDz88MM4ceIE3nnn\nHQDAlClT8Oqrr8LT07PatidNmoQJEybY7VjJ8bAFSk3al19+ia5duyIhIQHbtm2DRqOBn58fXnrp\nJTz99NMwGo2YM2cO4uPjERkZiTVr1sDJyQkvv/wyfH19sWDBAqu3XVZWZsMjo6aAAUpNmp+fH1JT\nU7Fw4UIcPnwYkyZNqva6TqfD1q1bERwcjOXLlyM/P/932zYRA5SaNE9PT3zxxRd45plnkJqaiilT\nplR7PSYmBsOGDcOnn36KZcuW1biNez/yWlFRYdW2iTgGSk3a3r170aFDB/j6+qJ///4YOnQounTp\nYglBo9GIRx55BACwb98+mEwmAIBcLkdlZSUAwMXFBdevXwcA5Obm4uLFi7Vuu7KyEkolf23oNn4S\niZq0H374AVFRUVCr1RBCYNSoUdBoNIiNjcVrr70GZ2dnvP/+++jYsSOmTZuGlStXws/PDxMnTsTU\nqVPh5+eHxYsXY/r06aiqqoKnpycMBgOmT58ONze3+7YdEhJi70MmB8IAJSKSiGOgREQSMUCJiCRi\ngBIRScQAJSKSiAFKRCQRA5SISCIGKBGRRP8PLfOBnKhXtawAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "q_-OubIg-dOv",
- "colab_type": "code",
- "outputId": "8b9b2f10-decc-4900-9544-be7b790fdbd9",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 73
- }
- },
- "cell_type": "code",
- "source": [
- "# label encoding for pass_math\n",
- "\n",
- "data['pass_math'] = le.fit_transform(data['pass_math'])\n",
- "data['pass_math'].value_counts()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "1 960\n",
- "0 40\n",
- "Name: pass_math, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 205
- }
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# creating a new column pass_math, this column will tell us whether the students are pass or fail\n",
+ "data['pass_reading'] = np.where(data['reading score']< passmarks, 'Fail', 'Pass')\n",
+ "data['pass_reading'].value_counts(dropna = False).plot.bar(color = 'brown', figsize = (5, 3))\n",
+ "\n",
+ "plt.title('Comparison of students passed or failed in reading')\n",
+ "plt.xlabel('status')\n",
+ "plt.ylabel('count')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 73
+ },
+ "colab_type": "code",
+ "id": "HyHpREyVhBdM",
+ "outputId": "99f80a0c-b1c9-4d6c-8baa-5b6cbe7aee52"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Pass 974\n",
+ "Fail 26\n",
+ "Name: pass_reading, dtype: int64"
]
- },
- {
- "metadata": {
- "id": "SEdTTzYK-y51",
- "colab_type": "code",
- "outputId": "0b1a7ae1-3d30-4434-ac6e-28674d542197",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 73
- }
- },
- "cell_type": "code",
- "source": [
- "# label encoding for pass_reading\n",
- "\n",
- "data['pass_reading'] = le.fit_transform(data['pass_reading'])\n",
- "data['pass_reading'].value_counts()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "1 974\n",
- "0 26\n",
- "Name: pass_reading, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 206
- }
+ },
+ "execution_count": 188,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data['pass_reading'].value_counts(dropna = False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 252
+ },
+ "colab_type": "code",
+ "id": "e_GAFUo0gZLF",
+ "outputId": "910f6067-933c-40a1-cd22-356a8c951005"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAADrCAYAAAA/ks7bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlcVOX+B/DPrCIyIoMM5JIppqUh\npvjyJ0qGuF4tNRW9hGnaYhnmFUMlUIxcwtJM0Xyp3QjraiESlqmZS6mAGV40zTK1Ak2YQVbZhuH5\n/eHLuSLbcJRhwM/7L+bMWb5nzuHD8zznnEEmhBAgIqJ6kzd2AURETRUDlIhIIgYoEZFEDFAiIokY\noEREEjFAiYgkuq8CVAiBf//73xgzZgxGjBiBoUOHIiIiAgUFBY1dWiXbtm3D+++/32jbLygowNix\nYzF8+HDk5ORYtMylS5fw448/1ntb06dPR3x8fL2Xu9vt2pIePXogIyPjnq3vwIEDGDRoEJYsWVLr\nfCEhITh48CAyMjLQo0ePem9n2LBhSElJqTJ92rRpOHv2bL3Xd7c+//xz889DhgzByZMnG3ybygbf\ngg159913ceLECWzduhWurq4oKirCsmXL8PLLL+PTTz+FTCZr7BIBAIGBgY26/V9//RW5ubk4cuSI\nxcscOHAA5eXl6NevXwNWZjvbtWUHDx7ExIkTMXfu3Frni4qKAoB7Gt4AEBMTc0/XZwm9Xo8tW7bA\n39/fqtu9bwI0NzcXsbGx2LVrF1xdXQEA9vb2WLx4MY4dOwYhBMrKyrBs2TKkpKRALpdj8ODBeOON\nN6BQKDBkyBA8//zziI+PR2ZmJiIiIpCUlIQffvgBWq0WmzdvhqOjI7p3744333wTO3fuRFZWFubM\nmYN//vOfAIDo6GgkJibCZDLB3d0dq1atQuvWrbFu3TpkZmbi/PnzGDNmDAoKCnDt2jUsW7YM33zz\nDaKjo2EymaBUKhEWFob+/fvj6tWrCA8PR0ZGBlQqFV544QWMGzcOGRkZmDJlCl566SV88cUXyM3N\nxaJFi/CPf/yjymeSkpKClStXori4GBqNBosXL4azszPmz5+P7OxsjBw5Ep999hm0Wq15mRMnTmDF\nihUoLS2FEAJz5sxBixYtsGnTJqhUKuTn56Nbt25ITEzExx9/DACIj483v05PT8e8efOQk5MDT09P\nmEwm87p/+uknLF++HPn5+XBycsJ7772Hjh07Ij4+HocPH4aDgwN++uknKBQKrF27Funp6ZW2GxQU\nhJCQEFy6dAllZWUYMGAAlixZApVKVWm/pRyj3377DeHh4SgsLITRaMRzzz2HwMDAGqeXlZUhKioK\nP/zwA4xGI/z9/TFr1iwAwJEjR/D2229DqVRiwoQJNZ6z58+fR0REBHJzc9GiRQvMnz8fPj4+SElJ\nwZo1a+Dq6gqlUon33nvPvExMTAz27dsHlUoFg8GAt956C5GRkTh+/DiMRiP69u2L5cuXQ6VSYerU\nqZg4cSL69u1rXl4IgejoaOzevRtlZWXw8/PDokWLoFAo8PPPP2PBggUoLy/H4MGDa6x7yJAhiIqK\ngpubm8XnYvfu3REZGYnY2Fjk5+dj5cqV+OKLL3Dq1Cm4u7vjww8/hFKpxHfffYf3338fZWVlaNWq\nFZYtW4ZHH30UU6ZMQWZmJkaOHInExEQAwM8//4yoqChcvXoVo0ePxqJFi1BeXo4lS5bg5MmTqKio\nQPfu3bFy5Uo4ODjUuD+1EveJw4cPi2HDhtU6z6ZNm8SLL74ojEajKC4uFhMmTBAJCQlCCCF8fX1F\neHi4EEKI2NhY4enpKZKTk0VFRYWYMGGC+Pzzz4UQQnTr1k289dZbQgghLl68KB577DFx/fp1cebM\nGTFgwABRUFAgTCaTmD59uoiOjhZCCPHBBx+IQYMGiezsbPPr0NBQIYQQ/fv3FxkZGUIIIX788Uex\nfPlyIYQQM2bMEB9++KEQQoiMjAzRt29fkZ6eLtLT00WPHj1EbGysEEKIPXv2VLvfhYWFon///uLk\nyZNCCCH27t0rhg8fLkwmk0hOThZDhw6t9jN65plnREpKihBCiMuXL4t58+YJIYRYsGCBeX927twp\npk2bZl7m9tdz5swR7733nhBCiLS0NNGjRw+xc+dOUVBQIPr16yeOHj0qhBBi9+7dYvz48eblPT09\nxZkzZ4QQQkRERIg333yzyna3bdsmFi5cKIQQwmg0isWLF4tz585V2QcpxygoKEjEx8cLIYTIzs4W\nr7zyiigtLa1x+vr168W0adNEaWmpuHHjhhg3bpw4ePCgKC8vFwMHDhQ//PCDEEKIrVu3im7duon0\n9PRKNZpMJjFq1Cixe/duIYQQp0+fFv369RMFBQUiOTlZeHh4iOPHj1d7jG7/TPbu3SvGjBkjysrK\nRElJiRg1apT5nA4MDBQJCQkiPT1dPProo0IIIXbt2iVGjx4t8vPzhdFoFC+99JL5XJowYYLYvn27\nEOLmefXII4+I5OTkKtv39fUVP/74o8Xn4q1jcut8XrlypfDy8hKXLl0SpaWlwsfHRxw/flwYjUbh\n5eUlTp06JYQQYt26debz6s5z1tfXVwQHB4vy8nJx7do10bNnT3H16lVx6NAh8dxzz4mKigpRUVEh\n1qxZI77//vtqa7LEfTMGmpubC2dn51rnOXz4MPz9/aFUKmFnZ4ennnoKx44dM7/v5+cHAOjWrRta\ntGiB/v37QyaT4eGHH0ZWVpZ5vlutii5duqBz5844ffo0HnvsMXMrSi6X4/HHH0d6erp5GU9Pz0ot\nvVucnZ2xfft2XLlyBV5eXli0aBGMRiOOHz+OgIAAAED79u3Rv39/JCcnAwDKy8vxzDPPAAB69uyJ\nq1evVlnv6dOn4ebmZm59jBgxAjk5Obhy5Uqtn5GzszMSEhJw8eJFPPTQQ5VaP5Y4efKkuQXSq1cv\ndOnSBcDN1qerqysGDhwIABgzZgz++usvc+3u7u547LHHANwcM/z777+rrFur1eLUqVM4evQoKioq\nsHTpUjz66KPV1lHfY+Ts7Ix9+/bh7NmzcHJywoYNG6BWq2ucfujQIQQEBECtVsPe3h5jx47F/v37\n8ccff6CsrAyDBg0CAIwfP77a+jIyMmAwGDB69GgAgIeHB9q1a4czZ84AAOzs7DBgwIA6P+8RI0Zg\n586dUKlUaNGiBTw8PCqdd3c6dOgQJkyYAI1GA6VSiUmTJmH//v0oLS3FmTNnzMdu5MiRaNmyZZ3b\nt+RcvGXo0KEAbv5+dezYEZ07d4ZarUanTp2QmZkJpVKJ48ePo3fv3gAALy+vWvflqaeegkKhgKur\nK5ydnXHt2jVotVpcvHgR3377LYqLizF37lz4+PjUuR81uW+68E5OTsjMzKx1nuvXr8PR0dH82tHR\nEdnZ2ebXrVq1AgDI5XLzz7deV1RUVFru9p/z8/NRXFyMFStWmAfd8/Ly8OSTT1a7zO02btyIjRs3\n4plnnsEDDzyA0NBQdO7cGUIIaDQa83ytW7fG9evXAQAKhQL29vbV1nb7vrZu3brSNI1GU2l/q7N8\n+XJs3LgRzz//POzs7DBv3jyMHDmy1mVul5eXV6m7dKuG/Px8pKenV1qXWq0279Pt+6pQKCp1/W8Z\nNWoU8vLysHbtWly6dAlPP/00Fi1aBLVaXWXe+h6j+fPnY9OmTZg7dy5KS0vx8ssv49lnn61xekFB\nAVasWIHVq1cDAMrKytCrV68q+1/Tcb9+/To0Gk2lcflbx7ht27Y1LlfdeiIjI3Hu3DnIZDIYDAZM\nmzatxvkLCgqwdetW7NixAwBgMpmg1WqRm5sLAObaZTJZlfOnOpaci7fU9PulUCjMy90ahisrK0NZ\nWVmt1y3uXIfJZMLjjz+OsLAwxMbGYsGCBRgyZAiWLFli0b5U574J0N69eyM7Oxtnz55Fz549zdON\nRiPWr1+PWbNmoW3btuYTBbjZam3btm29t5WTk4P27dub1+Ho6IiYmBj88ccfiI+PR6tWrbBmzZo6\nAx0AHnzwQaxYsQIVFRVISEhAcHAwDh06BLlcjry8PPMvkiUt7Ns5OztX2lchBPLy8uDs7FxrK6Ft\n27YIDw9HeHg4jh49iqCgoCp/weVyeaWAy8/PN//cunVrFBYWml/fCkidTocuXbpUe0X+t99+s3i/\npkyZYh4PCwoKQkJCQrUXFup7jFq1aoV58+Zh3rx5OH36NF588UV4e3ujc+fO1U7X6XSYMWMGfH19\nK2334sWL1e7/nZydnZGXlwchhDkk6nuMAWDNmjVQKpXYvXs31Go1goODa51fp9NhyJAhVS5klpSU\nAAAKCwuh0WhQUVGBvLy8etVyt1JTU7F582Z88cUX6NChA44dO4bw8PB6r2fkyJEYOXIkcnNzERoa\niq1bt+Jf//qXpJrumy5869at8cILL2DBggX4888/AQDFxcVYvHgxzp07h5YtW+LJJ59EXFwcTCYT\nioqK8OWXX9Y6WF6Tr7/+GsDNX5Y///wTnp6eyM7ORpcuXdCqVStcuXIFR44cQVFRUa3ruX79Op5/\n/nkUFhZCLpfD09MTMpkMSqUSgwYNMrcS/vrrL5w8eRLe3t4W19irVy8YDAacOnXKXLObmxs6dOhQ\n4zJGoxFTp041D1f07NkTSqUScrkcSqXSfDuYTqfD5cuXUVpaiuLiYuzdu9e8jt69e+Pbb78FcPMX\n4q+//gJwcwhDr9cjLS0NAJCeno433ngDoo4vC7t9u9HR0YiLiwMAuLq6okOHDjW2UOp7jGbNmoUL\nFy4AuNnFdHBwgEwmq3G6n58fvvjiC5hMJgghsGHDBnz//fd48MEHoVAozK3c+Pj4amvs0KED3Nzc\nsGfPHvNnZTAY0KtXr1o/jztlZ2ejW7duUKvVOH/+PE6dOlXreefn54cvv/wSxcXFAIDt27dj165d\nsLOzwyOPPGI+dl9//TVKS0vrVcvdun79OpydndGuXTsUFxdj165dKCoqghACSqUSRUVFKC8vr3Ud\nO3fuRHR0NACgTZs25iEkqe6bFigABAUFwdHREa+88gpMJhPkcjn8/PwQEREBAJg6dSrS09MxevRo\nyGQyjBw5EqNGjar3drRaLcaOHYvMzEyEhYXB0dERU6ZMwZw5czBixAh0794dCxcuRFBQkPlKdU3r\n8fHxwYQJE6BQKKBSqbBs2TIAwNKlSxEWFob4+HioVCq8/fbbeOCBByy+JcXe3h7vv/8+IiMjUVRU\nBK1Wi9WrV9faJVKpVJg4cSKmT58O4GZLMywsDC1btoSvry/mz5+PK1euYM2aNfD09MSIESPQoUMH\n+Pn5mceS33jjDQQHB+PLL7+Ep6enOfTt7OzwwQcfIDIyEjdu3IBKpcLrr79e561lt283JCQEixYt\nwubNmyGTyeDp6YmxY8fW+NnW5xgFBgYiODgYRqMRABAQEICHHnqoxukBAQHIyMjA6NGjIYTAY489\nhmnTpkGlUiEyMhKhoaFQq9V45plnzF3c28lkMqxevRpLlizB+vXr0bJlS6xdu7baeWszY8YMLFiw\nAPHx8fDy8sKCBQvw5ptv1hjEQ4cOxYULF8xjsw8++KD5nIuIiEBoaCg2bdqEJ554Au7u7vWq5W75\n+Pjgs88+w9ChQ+Hq6orQ0FCkpaVhzpw5WLFiBRwdHTFw4EDs2rWrxnX4+fkhNDQUw4cPh0KhQKdO\nnbBy5UrJNclEXX/iqV66d++OI0eOwM3NrbFLoRrwGNG9ct904YmI7jUGKBGRROzCExFJxBYoEZFE\nDXoV/rfffsOrr76K6dOnIzAwEH///TdCQkJgMpng4uKCVatWQa1WIzExETExMZDL5fD398ekSZNg\nNBqxcOFCXL16FQqFAitWrEDHjh1r3Z5eb1vfqmQLnJzskZNT++1SRLfwfKmei4um2ukN1gItKipC\nZGRkpcfNPvjgAwQEBOCzzz5Dp06dEBcXh6KiIkRHR+Pjjz9GbGwsYmJikJubi6+++gqtW7fGf/7z\nH8yaNavejwzSTUqlorFLoCaE50v9NFiAqtVqbN68GTqdzjwtJSXF/Dy5r68vkpKSkJaWBg8PD2g0\nGtjZ2aFPnz5ITU1FUlIShg0bBgDw9vZGampqQ5VKRCRJg3XhlUollMrKqy8uLjY/l+zs7Ay9Xg+D\nwVDpSzS0Wm2V6XK5HDKZDGVlZdU+13yLk5M9/4JWo6buB1F1eL5YrtGeRKrp4n99p9+OYzdVubho\nODZMFuP5Uj2rj4FWx97e3vylBJmZmdDpdNDpdDAYDOZ5srKyzNP1ej2Am89gCyFqbX0SEVmbVQPU\n29sb+/btAwDs378fPj4+8PT0xJkzZ5Cfn48bN24gNTUVXl5eGDhwoPlLKA4dOoT+/ftbs1Qiojo1\n2I30P//8M9555x1cuXIFSqUSrq6uePfdd7Fw4UKUlpaiXbt2WLFiBVQqFfbu3YutW7dCJpMhMDAQ\nTz/9NEwmE8LCwvDHH39ArVZj5cqVeOCBB2rdJrseVbFLRvXB86V6NXXhm9WTSLZ04HU6DsTfKSvL\ndo4PVY8BWj2bGAMlImpOGKBERBIxQImIJGKAEhFJxAAlIpKIAUpEJBEDlIhIIgYoEZFEDFAiIokY\noEREEjFAiYgkYoASEUnEACUikogBSkQkEQOUiEgiBigRkUQMUCIiiRigREQSMUCJiCRigBIRScQA\nJSKSiAFKRCQRA5SISCKlNTd248YNLFiwAHl5eTAajZg9ezZcXFwQEREBAOjevTuWLl0KANiyZQv2\n7t0LmUyG1157DYMHD7ZmqUREdbJqgO7atQudO3dGcHAwMjMzMW3aNLi4uCA0NBS9evVCcHAwjhw5\ngi5dumDPnj3Yvn07CgsLERAQgEGDBkGhUFizXCKiWlm1C+/k5ITc3FwAQH5+Ptq0aYMrV66gV69e\nAABfX18kJSUhJSUFPj4+UKvV0Gq1aN++PX7//XdrlkpEVCertkBHjx6N+Ph4DBs2DPn5+di4cSPe\neust8/vOzs7Q6/Vo06YNtFqtebpWq4Ver0f37t1rXb+Tkz2USrZSbZWLi6axSyAL8DhZzqoB+uWX\nX6Jdu3bYunUrzp8/j9mzZ0Oj+d/BEkJUu1xN0++Uk1N0T+q8N3gS3kmvL2jsEqgOLi4aHqdq1PRH\nxapd+NTUVAwaNAgA8Mgjj6C0tBQ5OTnm9zMzM6HT6aDT6WAwGKpMJyKyJVYN0E6dOiEtLQ0AcOXK\nFbRq1Qru7u44efIkAGD//v3w8fHB//3f/+Hw4cMoKytDZmYmsrKy0LVrV2uWSkRUJ6t24SdPnozQ\n0FAEBgaivLwcERERcHFxweLFi1FRUQFPT094e3sDAPz9/REYGAiZTIaIiAjI5bxllYhsi0xYOsDY\nBNjS2I1OxzHQO2Vl2c7xoepxDLR6NjEGSkTUnDBAiYgkYoASEUnEACUikogBSkQkEQOUiEgiBigR\nkUQMUCIiiRigREQSMUCJiCRigBIRScQAJSKSiAFKRCQRA5SISCIGKBGRRAxQIiKJGKBERBIxQImI\nJGKAEhFJxAAlIpKIAUpEJBEDlIhIIgYoEZFESmtvMDExEVu2bIFSqcScOXPQvXt3hISEwGQywcXF\nBatWrYJarUZiYiJiYmIgl8vh7++PSZMmWbtUIqJayYQQwloby8nJwZQpU7Bz504UFRVh3bp1KC8v\nxxNPPIFRo0Zh9erVcHNzw7hx4zB+/HjExcVBpVJh4sSJ2LZtG9q0aVPr+vX6AivtSd10Ok1jl2Bz\nsrJs5/hQ9VxcNDb1e2QrXFyq/322ahc+KSkJAwYMgIODA3Q6HSIjI5GSkgI/Pz8AgK+vL5KSkpCW\nlgYPDw9oNBrY2dmhT58+SE1NtWapRER1smoXPiMjAyUlJZg1axby8/MRFBSE4uJiqNVqAICzszP0\nej0MBgO0Wq15Oa1WC71eX+f6nZzsoVQqGqx+ujs1/RUn28LjZDmrj4Hm5uZi/fr1uHr1Kp577jnc\nPoJQ02iCpaMMOTlF96TGe4Mn4Z3YNbR97MJXzya68M7Oznj88cehVCrx4IMPolWrVmjVqhVKSkoA\nAJmZmdDpdNDpdDAYDOblsrKyoNPprFkqEVGdrBqggwYNQnJyMioqKpCTk4OioiJ4e3tj3759AID9\n+/fDx8cHnp6eOHPmDPLz83Hjxg2kpqbCy8vLmqUSEdXJogBduHBhlWkzZ86s98ZcXV0xYsQI+Pv7\n48UXX0RYWBiCgoKQkJCAgIAA5ObmYty4cbCzs0NwcDBmzpyJ559/HrNnz4ZGwy4xEdmWWm9jSkxM\nxPbt23HhwgV069bNPN1oNMJgMODgwYNWKdJStjR2w9uYquJtTLaPY6DVq2kMtNaLSE8//TT69++P\n+fPnIygoyDxdLpeja9eu97ZCIqImxuIb6QsKCpCbm1tpWseOHRukKKls6S8nW6BVsQVq+9gCrZ6k\nFugtb7/9Nnbu3AmtVmu+pUgmk+G77767dxUSETUxFgVoSkoKkpOT0aJFi4auh4ioybDoKnynTp0Y\nnkREd7CoBerm5oZnn30Wffv2hULxv0clX3/99QYrjIjI1lkUoG3atMGAAQMauhYioibFogB99dVX\nG7oOIqImx6IA7dGjB2Qymfm1TCaDRqNBSkpKgxVGRGTrLArQ8+fPm38uKytDUlISfv311wYrioio\nKaj3l4mo1WoMHjwYx44da4h6iIiaDItaoHFxcZVeX7t2DZmZmQ1SEBFRU2FRgP7000+VXjs4OOD9\n999vkIKIiJqKev1TudzcXMhkMjg6OjZkTZLZ0jO8fBa+Kj4Lb/v4LHz17upZ+NTUVISEhODGjRsQ\nQqBNmzZYtWoVPDw87mmRRERNiUUB+t5772HDhg3m7wQ9d+4cli1bhk8//bRBiyMismUWXYWXy+WV\nvlC5R48elR7pJCK6H1kcoPv27UNhYSEKCwuxZ88eBigR3fcsuoj0xx9/IDIyEqdPn4ZcLscjjzyC\nt99+m1+oXAteRKqKF5FsHy8iVe+u/q3xsWPHoFar8eOPPyIlJQVCCBw5cuSeFkhE1NRYFKCJiYlY\nv369+fVHH32Er776qsGKIiJqCiwKUJPJVGnMUyaToR63jxIRNUsW3cY0ZMgQTJkyBX379kVFRQWS\nk5MxfPjwhq6NiMimWfwk0smTJ3H69GnIZDI8/vjj6N27t+SNlpSUYMyYMXj11VcxYMAAhISEwGQy\nwcXFBatWrYJarUZiYiJiYmIgl8vh7++PSZMm1bleWxr85kWkqngRyfbxIlL17upJJADw8vKCl5fX\nPSlm48aN5sdBP/jgAwQEBGDUqFFYvXo14uLiMG7cOERHRyMuLg4qlQoTJ07EsGHD0KZNm3uyfSKi\ne6HeX2d3ty5evIjff/8dTz75JICb//HTz88PAODr64ukpCSkpaXBw8MDGo0GdnZ26NOnD1JTU61d\nKhFRrSxugd4r77zzDsLDw5GQkAAAKC4uhlqtBgA4OztDr9fDYDBAq9Wal9FqtdDr9XWu28nJHkol\nb/C3VTV1g8i28DhZzqoBmpCQgN69e9d4A35Nw7GWXvHPySmSXNu9x5PwThxbs30cA63eXY+B3guH\nDx9Geno6Dh8+jGvXrkGtVsPe3h4lJSWws7NDZmYmdDoddDodDAaDebmsrKy7umhFRNQQrBqgt38J\n87p169C+fXucOnUK+/btw9ixY7F//374+PjA09MTYWFhyM/Ph0KhQGpqKkJDQ61ZKhFRnaw+Bnqn\noKAgLFiwADt27EC7du0wbtw4qFQqBAcHY+bMmZDJZJg9ezY0GnaJici21Osb6W2dLY3d8D7Qqngf\nqO3jGGj17urLRIiIqCoGKBGRRAxQIiKJGKBERBIxQImIJGKAEhFJxAAlIpKIAUpEJBEDlIhIIgYo\nEZFEDFAiIokYoEREEjFAiYgkYoASEUnEACUikogBSkQkEQOUiEgiBigRkUQMUCIiiRigREQSMUCJ\niCRigBIRScQAJSKSSGntDUZFReGnn35CeXk5Xn75ZXh4eCAkJAQmkwkuLi5YtWoV1Go1EhMTERMT\nA7lcDn9/f0yaNMnapRIR1cqqAZqcnIwLFy5gx44dyMnJwfjx4zFgwAAEBARg1KhRWL16NeLi4jBu\n3DhER0cjLi4OKpUKEydOxLBhw9CmTRtrlktEVCurduH79euHtWvXAgBat26N4uJipKSkwM/PDwDg\n6+uLpKQkpKWlwcPDAxqNBnZ2dujTpw9SU1OtWSoRUZ2s2gJVKBSwt7cHAMTFxeGJJ57A0aNHoVar\nAQDOzs7Q6/UwGAzQarXm5bRaLfR6fZ3rd3Kyh1KpaJji6a65uGgauwSyAI+T5aw+BgoABw4cQFxc\nHD766CMMHz7cPF0IUe38NU2/U05O0T2p797gSXgnvb6gsUugOri4aHicqlHTHxWrX4X/4Ycf8OGH\nH2Lz5s3QaDSwt7dHSUkJACAzMxM6nQ46nQ4Gg8G8TFZWFnQ6nbVLJSKqlVUDtKCgAFFRUdi0aZP5\ngpC3tzf27dsHANi/fz98fHzg6emJM2fOID8/Hzdu3EBqaiq8vLysWSoRUZ2s2oXfs2cPcnJyMHfu\nXPO0lStXIiwsDDt27EC7du0wbtw4qFQqBAcHY+bMmZDJZJg9ezY0GnaJici2yISlA4xNgC2N3eh0\nDPw7ZWXZzvGh6nEMtHo2MwZKRNRcMECJiCRigBIRScQAJSKSiAFKRCQRA5SISCIGKBGRRAxQIiKJ\nGKBERBIxQImIJGKAEhFJxAAlIpKIAUpEJBEDlIhIIgYoEZFEDFAiIokYoEREEjFAiYgkYoASEUnE\nACUikogBSkQkkVX/rTERVWV7/8HVNuppCv/FlS1QIiKJbLoFunz5cqSlpUEmkyE0NBS9evVq7JKI\niMxsNkBPnDiBP//8Ezt27MDFixcRGhqKHTt2NHZZRERmNtuFT0pKwtChQwEA7u7uyMvLQ2FhYSNX\nRUT0PzYboAaDAU5OTubXWq0Wer2+ESsiIqrMZrvwdxJC1DmPi4ttXD0EAAvKvQ/ZzvGxJTxXamL7\n54vNtkB1Oh0MBoP5dVZWFlxcXBqxIiKiymw2QAcOHIh9+/YBAM6ePQudTgcHB4dGroqI6H9stgvf\np08f9OzZE1OmTIFMJsOSJUsd2OpyAAAFnUlEQVQauyQiokpkwpLBRSIiqsJmu/BERLaOAUpEJBED\nlIhIIgYoEZFENnsVnoga1qefflrr+88++6yVKmm6GKDN0NGjR5GXl4fRo0cjNDQUly5dwsyZMzFs\n2LDGLo1sSE5OTmOX0OQxQJuhdevWYevWrfj222+hUCiwbds2zJgxgwFKlYwfPx7t27fH77//3til\nNFkM0GZIrVbDwcEBBw4cwOTJk6FUKmEymRq7LLIxn3zyCRYtWoSlS5dWeU8mk+GTTz5phKqaFgZo\nM9S2bVtMnz4dRUVF6NOnDxITE9GyZcvGLotszKJFiwAAsbGxVd6Ljo62djlNEp9EaobKy8vx22+/\noUuXLrCzs8Mvv/yC9u3bo3Xr1o1dGtmgI0eOYO3atcjLywMAGI1GuLm54fPPP2/kymwfb2NqhpKT\nk3H58mXY2dkhNDQUS5cuxYkTJxq7LLJR69atw9q1a+Hm5oa4uDjMnj0bzz33XGOX1SQwQJuhdevW\nYfDgwZUuInE8i2rSsmVLdOzYERUVFXBycsLkyZOxc+fOxi6rSeAYaDPEi0hUH66urkhISECPHj0w\nf/58dOjQAdnZ2Y1dVpPAFmgzdOsi0uXLl3kRiWq0YsUKAMA777yDJ554Ak5OThg0aBAcHR2xcePG\nRq6uaWALtBlatWqV+SISAHTt2hWzZs1q5KrI1vzyyy8AAIVCAa1WixMnTuC1115r5KqaFgZoM1RU\nVIRTp07h4MGDAG5eVU1ISMCRI0cauTKyJXfegMMbcuqPXfhm6PXXX0d2djZ2794Ne3t7/Pe//0V4\neHhjl0U2RiaT1fqa6sb7QJuhadOmISYmBlOnTkVsbCzKysowd+5cbNiwobFLIxvSp08f8zCPEAKX\nL19Gly5dIISATCZDXFxcI1do+9iFb4aMRiPOnz8POzs7HDt2DB07dsRff/3V2GWRjdm9e3djl9Dk\nsQXazJSVleHSpUvIycmBVqvFsmXLkJubi8DAQPj7+zd2eUTNCgO0GTlw4ACWL18OFxcX5ObmIioq\nCp6eno1dFlGzxS58M7Jlyxbs2rULjo6OyMjIQEREBLZs2dLYZRE1W7wK34yoVCo4OjoCADp06IDS\n0tJGroioeWOANiO8LYXIujgG2ozwthQi62KANiNXrlyp9f327dtbqRKi+wMDlIhIIo6BEhFJxAAl\nIpKIAUrNzu+//46zZ8/WOk9xcTH2799vpYqouWKAUrPz7bff4ty5c7XOc+7cOQYo3TU+iURNWmZm\nJubPnw8AKCkpwZAhQ7Bt2zY4ODjAzs4OPXr0wJIlS6BQKFBYWIi5c+eiX79+ePPNN5Gfn4+oqCh0\n7doVx48fx7vvvgsAmDp1Kl555RW4u7tXWvfkyZMxceLERttXsj1sgVKT9s0336BLly6IjY3Ftm3b\noNFo4OPjgxdeeAFPPfUUDAYDXn/9dcTExCAsLAxr1qyBnZ0dXnrpJXh7eyMkJMTidZeUlFhxz6gp\nYIBSk+bj44OkpCQsXLgQBw8exOTJkyu97+Ligq1btyIgIADLly9Hbm7uPVs3EQOUmjR3d3d8/fXX\nePrpp5GUlISpU6dWej8yMhJDhw7FZ599hmXLllW7jjsfeTUajRatm4hjoNSk7d69G+3bt4e3tzf6\n9++PIUOGoHPnzuYQNBgMePjhhwEAe/bsQVlZGQBALpejvLwcAODg4IBr164BALKzs3HhwoUa111e\nXg6lkr82dBOfRKIm7ZdffsGSJUugVqshhMCoUaOg0WgQFRWFV199Ffb29vjwww/RoUMHTJ8+HStX\nroSPjw8mTZqEadOmwcfHB+Hh4ZgxYwYqKirg7u4OvV6PGTNmwMnJqcq6AwMDG3uXyYYwQImIJOIY\nKBGRRAxQIiKJGKBERBIxQImIJGKAEhFJxAAlIpKIAUpEJNH/AwJ5w/AqUuhpAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "c_DXag2R_OIp",
- "colab_type": "code",
- "outputId": "43f88b31-2adc-4d2a-8f18-62068cdb4cca",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 73
- }
- },
- "cell_type": "code",
- "source": [
- "# label encoding for pass_writing\n",
- "\n",
- "data['pass_writing'] = le.fit_transform(data['pass_writing'])\n",
- "data['pass_writing'].value_counts()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "1 968\n",
- "0 32\n",
- "Name: pass_writing, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 207
- }
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# creating a new column pass_math, this column will tell us whether the students are pass or fail\n",
+ "data['pass_writing'] = np.where(data['writing score']< passmarks, 'Fail', 'Pass')\n",
+ "data['pass_writing'].value_counts(dropna = False).plot.bar(color = 'blue', figsize = (5, 3))\n",
+ "\n",
+ "plt.title('Comparison of students passed or failed in writing')\n",
+ "plt.xlabel('status')\n",
+ "plt.ylabel('count')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 539
+ },
+ "colab_type": "code",
+ "id": "W5qlGHHJhUDP",
+ "outputId": "5b0b792e-c0c5-48df-c4c7-adb00bf14b80"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAACOYAAAH2CAYAAADeCBHRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XuYl2WdP/D3MONgHIQRB1zWn3Rw\nNY/ppWl4SOUgbLbparksotJ2Ra5ZebqUWAQMPOVKKh5S1uwS1mw9JZgyiqipKVdEV62aaWvuigcY\nBAQEBYb5/WFOTgwwY97DYK/XXzzP3M/7/ny/D/4j73meisbGxsYAAAAAAAAAAAAfqE5begAAAAAA\nAAAAAPgwUswBAAAAAAAAAIACFHMAAAAAAAAAAKAAxRwAAAAAAAAAAChAMQcAAAAAAAAAAApQzAEA\nAAAAAAAAgAIUcwAAAICt2sKFC/P5z39+i84wefLkHHroobnjjjs2+Nl//dd/tSqjNevmzp2bwYMH\nt3m+LW327Nk59NBDM378+FZfc+edd2bkyJFJkpNOOil33333BmteeOGF/OIXv0hS9rtZvHhxHnzw\nwTZf92//9m+ZMmVKu+8LAAAAdByKOQAAAMBWrU+fPrnnnnu26Az33ntvLrvsshx//PHNztfX1+c/\n/uM/Nnt9a9dtrebMmZMvfvGLueCCCz7Q3NmzZzcVc0qaO3du5syZU3yfjrIvAAAA8MGp2tIDAAAA\nAB3fT37yk1x33XVJkn322ScXXnhhqqurc9999+Waa67JunXr0rt370yaNCk777xzpkyZksWLF+e1\n117L008/nf79++dzn/tcpkyZkkWLFmXixIk58sgjM3r06Gy33Xb57W9/mxdffDF77rlnvve97+Uj\nH/lIfvWrX2XixIlZtWpVOnXqlLFjx+bggw/OggULMmzYsHzuc5/LM888k0suuSRHHXVUnnnmmSxc\nuDDnnntu6uvrs2bNmhx99NE588wzs379+lx55ZWpq6tLkuy7774ZN25cunTpkpNOOikDBgzI/fff\nnwULFuTTn/50Lr/88lRUVDT7DpYtW5bx48fn2WefTWVlZY499tiMGjUqZ599dl599dWMGTMm//qv\n/5oTTjih6Zphw4Zl4cKFGTp0aGbMmJEXXnghEyZMyLJly9K5c+ecc845OeywwzZY9/TTT7f42Tdm\n3bp1GT9+fObNm5f169dnt912yyWXXJJu3bq9r3u3cOHCPPvss/n85z+fU045Jddcc01mzpyZNWvW\nZODAgfn2t7+dysrKZjNs7Du+7bbbUldXl2222SaLFy/OpEmTml334IMP5oorrsiaNWvStWvXXHjh\nhdl99903+3dyzpw5uf7667PNNttk+fLlOfLII5Mk1113XWbMmJG1a9dm0qRJ+cxnPpM1a9bku9/9\nbh599NGsXbs2J5xwQk499dQNMp977rmcf/75WblyZdauXZuTTz45++23X77zne+koaEhq1atyrBh\nwzJ27Ng88MADSd4pz7x7vHTp0px99tl58cUXs8suu2TbbbfNjjvumCT5/e9/nwkTJqS+vj7V1dW5\n6KKLsvfee2fu3LmZPHlyDjzwwMyePTtvv/12LrnkknTt2rXZvpdddtlG7zEAAADQcXliDgAAALBJ\nCxYsyKWXXpqbb745s2bNyurVq3PzzTfnlVdeyfnnn59rrrkms2bNyhFHHJFx48Y1Xffwww/noosu\nysyZMzNr1qz87Gc/y5133plTTz01U6dObVo3e/bsXHXVVXnkkUeycuXKplc6jRs3Ll/5ylcya9as\njBo1qtlrkJYtW5bdd98906dPbzbrD3/4w3z605/Ovffem5kzZ+all17KokWLct999zXt/9Of/jTL\nly/PD3/4w6br5syZk5tuuil1dXV58sknM3/+/A2+h8mTJ6dHjx6pq6vLLbfckh/96EeZN29eLr/8\n8vTp0yeXXXZZs1JOklx00UX5m7/5m8yaNStVVVU566yzMmLEiMyaNSuTJk3K2WefnZUrVzZbV11d\nvcnP3pLHHnssCxYsyKxZs3L//fdnl112ya9+9av3fe8eeeSR3HDDDRk5cmTuvvvuzJo1K7fffnse\neOCBvPTSS/nRj360wQwb+45POeWUDB48OCeffPIGpZx169Zl9OjRmThxYurq6jJgwIBceumlm/ys\n7xowYEBT7ujRo5Mkr732Wnbdddfcd999+ed//uemQtLUqVPz+9//PjNnzsw999yTurq6PPTQQxtk\nXn311Rk2bFh++tOf5tZbb83Pf/7z/N3f/V1GjBiRIUOG5Hvf+94mZ5o6dWpqamoyZ86cjBs3Lo89\n9liSd0pLX//613PMMcekrq4uEyZMyGmnnZZ169YlSZ555pl86lOfyn333Zfhw4fnuuuuy5577tls\n343dYwAAAKBjU8wBAAAANunxxx/Pfvvtlz59+qSioiKXX355Ro4cmccffzwHHXRQ+vXrlyT50pe+\nlLlz5zaVDfbbb7/06tUrNTU1qa2tzWc/+9kkya677ppFixY15Q8YMCA1NTXp1KlTBg0a1FQ2+MlP\nfpK///u/T5Lsv//+eemll5quWbt2bQYPHrzBrL169cpjjz2WefPmpbq6OpMnT07v3r3z8MMP59hj\nj02XLl1SWVmZ4447Lo8//njTdUOHDs22226bLl265KMf/WheffXVDbIfeeSRDB8+PEnSs2fPDB48\nuFnG5ixYsCCLFy/O0UcfnSTZe++907dv3/z3f//3Bms39dlbsv322+d//ud/8sADD2T16tU544wz\ncthhh73ve/epT30q22+/fZLkoYceyvHHH5/u3bunqqoqX/rSl3L//fdvMMPmvuOWVFVV5ec//3n2\n3XffJMkBBxyw2c+6Kd26dcvAgQOTJHvssUdee+21ps8wfPjwVFdXp0uXLjnmmGNa/Ay9evVKXV1d\nnn766dTU1OTaa69NdXV1q/efN29e033baaedcuCBByZJXnjhhbz++uv54he/mOSde7r99ts3/V3v\n2rVrBg0alCTZc88988orr2yQvbF7DAAAAHRsXmUFAAAAbNLSpUuz3XbbNR137ty5xfPdu3dPY2Nj\nli5dmuSdssG7Kisr06VLlyRJp06dsn79+qaf9ezZs+nP2223XZYvX54kmTlzZm6++ea8+eabWb9+\nfRobG5vltfQKn5EjR2b9+vW54IILsmjRopx44on5xje+kSVLlqRHjx5N63r06JHXX3+96fi9WZWV\nlWloaNgge8mSJc0+73bbbdesYLQ5S5YsSffu3Zu9Imu77bbLkiVLssMOOzRbu6nP3pJ99tknY8eO\nzbRp03LeeedlwIABGT9+/Pu+d+/9rlasWJEbb7wxP/7xj5MkDQ0NTaWdP/98m/qON2batGm56667\nsmbNmqxZs2aDV4i1xXvv43v/nq1YsSIXX3xxJk+enCRZs2ZN9tlnnw2uP+ecc3L99dfnjDPOyNtv\nv52vfe1rOfHEE1u9/xtvvJHu3bs3Hb/7HS9fvjxvvfVWU2knSVauXJlly5Zlu+22a3bNn//38a6N\n3eP33kcAAACg41HMAQAAADappqam2StzVq5cmbfeeiu9evVqdv6NN95Ip06dUlNT06b8d8sg72b0\n6NEjCxcuzNixY3Pbbbdl9913z4svvpghQ4ZsNquqqiqjRo3KqFGj8oc//CFf/epXs//++2eHHXbI\nsmXLmtYtW7ZsgzLM5ryb0bdv3/eV0atXr7zxxhtpbGxsKp8sW7YsvXr1arbu/X72oUOHZujQoVm2\nbFnGjBmTG2+8MX379v2L713v3r0zYMCAjBgxYpP7v5/veP78+Zk6dWpuu+227LTTTnn88cdz/vnn\nb/aztlXv3r3zL//yLznyyCM3ua5r164566yzctZZZ+U3v/lNvvrVr+bggw9utubPi1vvFsmSd4o4\nK1asaDpesmRJ/t//+3/p3bt3unbtmlmzZm2w59y5c1v9OVq6x2eeeWarrwcAAADan1dZAQAAAJt0\n+OGHZ/78+VmwYEEaGxszfvz43H777TnkkEMyb968plcP3XrrrTnkkENSVdW23wN69NFHs3z58jQ0\nNGT27Nk54IADsmTJknTp0iUf//jHs27duqantbz55pubzBo3blzT65N23nnn7LDDDqmoqMgRRxyR\nGTNmZPXq1Vm3bl1uv/32HH744W2a84gjjmiaY8mSJXnggQdyxBFHbPKaqqqqrFq1KuvWrctOO+2U\nHXfcMffee2+Sd0opixcvzj777NNs3fv57HfccUeuueaaJO88gejjH/94kg/m3g0cODB33313Vq9e\n3bT2rrvuavH7aet3vGTJkvTq1St9+/bN6tWrc9ddd2XVqlWbfULQu6qqqpoVYTZm4MCBue2229LQ\n0JDGxsZce+21+dnPfrbBulNPPTXPP/98kndeudatW7dUVFQ026e2tjb19fV5/fXX09DQkJkzZzZd\nv++++2b27NlJkv/7v//LL3/5yyTJ3/7t32bHHXdsKuYsWbIkZ511VlatWtXqz7exewwAAAB0bJ6Y\nAwAAAGzSjjvumO985zs55ZRTUllZmb333jtf/vKX07lz50yaNCmnnXZa1q5dm5122ikTJ05sc/5n\nPvOZnH766XnhhRey99575/jjj0/nzp3z2c9+NkOGDEmvXr0yevTozJ8/PyeddFKuuuqqjWYNGzYs\n48aNy8SJE9PY2JgBAwakf//+SZLf/e53Oe6449LY2JiDDjooJ598cpvmPOOMMzJhwoQMHTo0nTp1\nyqhRo1p8HdJ77bbbbunRo0cOOeSQ3HXXXZk8eXLGjx+fq6++Oh/5yEdy5ZVXpkuXLs3W3XnnnRv9\n7Oedd16L+wwcODBjxozJUUcdlcrKyvTr1y+XXHJJevbs+Rffu0GDBuX555/PP/7jPyZ5p/B04YUX\nbrBu6NChbf6ODzvssNxyyy0ZNGhQ+vTpkzFjxuTXv/51vvnNb2726TZJcuSRR+acc87Jyy+/vMlX\nTg0fPjwLFizI0UcfncbGxuy111455ZRTNlg3YsSInH322Vm7dm3TdR/96EdzyCGH5Kabbsrxxx+f\nO+64I8cff3yOPfbY9O3bN8ccc0x++9vfJkm+9rWv5cwzz8yAAQPyiU98IkcddVSSpKKiIpMnT86E\nCRNyxRVXpFOnTvnyl7/c9Hq3jXnvvjfeeGOL9xgAAADo2CoaW/srSAAAAAAfsNGjR2fnnXfOaaed\ntqVHAQAAAIAPnFdZAQAAAAAAAABAAYo5AAAAAAAAAABQgFdZAQAAAAAAAABAAZ6YAwAAAAAAAAAA\nBSjmAAAAAAAAAABAAVVbeoBNqa9f0eL5mpouWbp0Vatz2rJetmzZsmXLli1b9l93dkeaRbZs2bJl\ny5YtW7Zs2bJly5Yt+8OQ3ZFmkS1btmzZsktk19Z23+j6rfKJOVVVlcXWy5YtW7Zs2bJly/7rzu5I\ns8iWLVu2bNmyZcuWLVu2bNmyZX8YsjvSLLJly5YtW3Z7ZidbaTEHAAAAAAAAAAA6OsUcAAAAAAAA\nAAAoQDEHAAAAAAAAAAAKUMwBAAAAAAAAAIACFHMAAAAAAAAAAKAAxRwAAAAAAAAAAChAMQcAAAAA\nAAAAAApQzAEAAAAAAAAAgAIUcwAAAAAAAAAAoADFHAAAAAAAAAAAKEAxBwAAAAAAAAAAClDMAQAA\nAAAAAACAAhRzAAAAAAAAAACgAMUcAAAAAAAAAAAoQDEHAAAAAAAAAAAKUMwBAAAAAAAAAIACFHMA\nAAAAAAAAAKAAxRwAAAAAAAAAAChAMQcAAAAAAAAAAAqo2tIDtFbv2u7NT/zxeFH9ii0wDQAAAAAA\nAAAAbJon5gAAAAAAAAAAQAGKOQAAAAAAAAAAUIBiDgAAAAAAAAAAFKCYAwAAAAAAAAAABSjmAAAA\nAAAAAABAAYo5AAAAAAAAAABQgGIOAAAAAAAAAAAUoJgDAAAAAAAAAAAFKOYAAAAAAAAAAEABijkA\nAAAAAAAAAFCAYg4AAAAAAAAAABSgmAMAAAAAAAAAAAUo5gAAAAAAAAAAQAGKOQAAAAAAAAAAUIBi\nDgAAAAAAAAAAFKCYAwAAAAAAAAAABSjmAAAAAAAAAABAAYo5AAAAAAAAAABQgGIOAAAAAAAAAAAU\noJgDAAAAAAAAAAAFKOYAAAAAAAAAAEABijkAAAAAAAAAAFCAYg4AAAAAAAAAABRQtJjz3HPPZdCg\nQZk+fXqz848++mh22223klsDAAAAAAAAAMAWVayYs2rVqkycODH9+/dvdv7tt9/ODTfckNra2lJb\nAwAAAAAAAADAFlesmFNdXZ2pU6emd+/ezc5///vfz/Dhw1NdXV1qawAAAAAAAAAA2OIqGhsbG0tu\nMGXKlNTU1GTEiBH5wx/+kO9+97u57rrrMmDAgMyZM2eT165b15Cqqsp3Bt3Imo0N35b1bc0GAAAA\nAAAAAIDNqWrPzS6++OKMHTu21euXLl31p4Pa7i2uqa9f0fLFbVnf1uz3XlrbvVXr2rpWtmzZsmXL\nli1b9pbJ7kizyJYtW7Zs2bJly5YtW7Zs2bJlfxiyO9IssmXLli1bdons2tqWeydJwVdZ/bmFCxfm\nhRdeyDnnnJMTTjghixYtyogRI9prewAAAAAAAAAAaFft9sScPn36ZPbs2U3HAwYMyPTp09trewAA\nAAAAAAAAaFfFijlPPfVULr300rz88supqqpKXV1dpkyZkp49e5baEgAAAAAAAAAAOoxixZy99tor\n06ZN2+jP58yZU2prAAAAAAAAAADY4jpt6QEAAAAAAAAAAODDSDEHAAAAAAAAAAAKUMwBAAAAAAAA\nAIACFHMAAAAAAAAAAKAAxRwAAAAAAAAAAChAMQcAAAAAAAAAAApQzAEAAAAAAAAAgAIUcwAAAAAA\nAAAAoADFHAAAAAAAAAAAKEAxBwAAAAAAAAAAClDMAQAAAAAAAACAAhRzAAAAAAAAAACgAMUcAAAA\nAAAAAAAoQDEHAAAAAAAAAAAKUMwBAAAAAAAAAIACFHMAAAAAAAAAAKAAxRwAAAAAAAAAAChAMQcA\nAAAAAAAAAApQzAEAAAAAAAAAgAIUcwAAAAAAAAAAoADFHAAAAAAAAAAAKEAxBwAAAAAAAAAACqja\n0gNsjXrXdm9+4o/Hi+pXbIFpAAAAAAAAAADoiDwxBwAAAAAAAAAAClDMAQAAAAAAAACAAhRzAAAA\nAAAAAACgAMUcAAAAAAAAAAAoQDEHAAAAAAAAAAAKUMwBAAAAAAAAAIACFHMAAAAAAAAAAKAAxRwA\nAAAAAAAAAChAMQcAAAAAAAAAAApQzAEAAAAAAAAAgAIUcwAAAAAAAAAAoADFHAAAAAAAAAAAKEAx\nBwAAAAAAAAAAClDMAQAAAAAAAACAAhRzAAAAAAAAAACgAMUcAAAAAAAAAAAoQDEHAAAAAAAAAAAK\nUMwBAAAAAAAAAIACFHMAAAAAAAAAAKAAxRwAAAAAAAAAAChAMQcAAAAAAAAAAApQzAEAAAAAAAAA\ngAIUcwAAAAAAAAAAoICixZznnnsugwYNyvTp05Mkr776akaOHJkRI0Zk5MiRqa+vL7k9AAAAAAAA\nAABsMcWKOatWrcrEiRPTv3//pnNXXHFFTjjhhEyfPj2DBw/OTTfdVGp7AAAAAAAAAADYoooVc6qr\nqzN16tT07t276dz48eMzZMiQJElNTU2WLVtWansAAAAAAAAAANiiihVzqqqqsu222zY716VLl1RW\nVqahoSG33HJL/uEf/qHU9gAAAAAAAAAAsEVVNDY2NpbcYMqUKampqcmIESOSJA0NDTn33HPzsY99\nLKeffvomr123riFVVZXvDLqRNRsbvi3rZbdvNgAAAAAAAADAX4Oq9t7w29/+dvr167fZUk6SLF26\n6k8Htd1bXFNfv6Lli9uyXnb7Zr/3strum13zftfLli1btmzZsmVv7bPIli1btmzZsmXLli1btmzZ\nsmV/GLI70iyyZcuWLVt2ieza2pY7E0nBV1m1ZMaMGdlmm23yzW9+sz23BQAAAAAAAACAdlfsiTlP\nPfVULr300rz88supqqpKXV1dXn/99XTu3DknnXRSkuQTn/hEJkyYUGoEAAAAAAAAAADYYooVc/ba\na69MmzatVDwAAAAAAAAAAHRo7foqKwAAAAAAAAAA+GuhmAMAAAAAAAAAAAUo5gAAAAAAAAAAQAGK\nOQAAAAAAAAAAUIBiDgAAAAAAAAAAFKCYAwAAAAAAAAAABSjmAAAAAAAAAABAAYo5AAAAAAAAAABQ\ngGIOAAAAAAAAAAAUoJgDAAAAAAAAAAAFKOYAAAAAAAAAAEABijkAAAAAAAAAAFCAYg4AAAAAAAAA\nABSgmAMAAAAAAAAAAAUo5gAAAAAAAAAAQAGKOQAAAAAAAAAAUIBiDgAAAAAAAAAAFKCYAwAAAAAA\nAAAABSjmAAAAAAAAAABAAYo5AAAAAAAAAABQgGIOAAAAAAAAAAAUoJgDAAAAAAAAAAAFVG3pAfjr\n07u2e/MTfzxeVL/iL17fkbIBAAAAAAAAgL9unpgDAAAAAAAAAAAFKOYAAAAAAAAAAEABijkAAAAA\nAAAAAFCAYg4AAAAAAAAAABSgmAMAAAAAAAAAAAUo5gAAAAAAAAAAQAGKOQAAAAAAAAAAUIBiDgAA\nAAAAAAAAFKCYAwAAAAAAAAAABSjmAAAAAAAAAABAAYo5AAAAAAAAAABQgGIOAAAAAAAAAAAUoJgD\nAAAAAAAAAAAFKOYAAAAAAAAAAEABijkAAAAAAAAAAFCAYg4AAAAAAAAAABSgmAMAAAAAAAAAAAUo\n5gAAAAAAAAAAQAGKOQAAAAAAAAAAUIBiDgAAAAAAAAAAFKCYAwAAAAAAAAAABSjmAAAAAAAAAABA\nAYo5AAAAAAAAAABQQNFiznPPPZdBgwZl+vTpSZJXX301J510UoYPH55vfetbWbNmTcntAQAAAAAA\nAABgiylWzFm1alUmTpyY/v37N5276qqrMnz48Nxyyy3p169fbr/99lLbAwAAAAAAAADAFlWsmFNd\nXZ2pU6emd+/eTefmzp2bgQMHJkmOPPLIPPHEE6W2BwAAAAAAAACALaqqWHBVVaqqmsevXr061dXV\nSZJevXqlvr6+1PYAAAAAAAAAALBFVTQ2NjaW3GDKlCmpqanJiBEj0r9//6an5Pzv//5vzjvvvNx6\n660bvXbduoZUVVW+M+hG1mxs+Lasly1bdsfLBgAAAAAAAICtXbEn5rSkS5cueeutt7Lttttm4cKF\nzV5z1ZKlS1f96aC2e4tr6utXtHxxW9bLli2742W/97La7ptd837Xy5YtW7Zs2R15FtmyZcuWLVu2\nbNmyZcuWLVu27A9DdkeaRbZs2bJlyy6RXVvb8r+FJ0mnVid/AA4++ODU1dUlSe6///4cdthh7bk9\nAAAAAAAAAAC0m2JPzHnqqady6aWX5uWXX05VVVXq6ury7//+7xk9enR+/OMfp2/fvjn22GNLbQ8A\nAAAAAAAAAFtUsWLOXnvtlWnTpm1w/qabbiq1JQAAAAAAAAAAdBjt+iorAAAAAAAAAAD4a6GYAwAA\nAAAAAAAABSjmAAAAAAAAAABAAYo5AAAAAAAAAABQgGIOAAAAAAAAAAAUoJgDAAAAAAAAAAAFKOYA\nAAAAAAAAAEABijkAAAAAAAAAAFCAYg4AAAAAAAAAABSgmAMAAAAAAAAAAAUo5gAAAAAAAAAAQAGK\nOQAAAAAAAAAAUIBiDgAAAAAAAAAAFKCYAwAAAAAAAAAABSjmAAAAAAAAAABAAYo5AAAAAAAAAABQ\ngGIOAAAAAAAAAAAUoJgDAAAAAAAAAAAFKOYAAAAAAAAAAEABijkAAAAAAAAAAFCAYg4AAAAAAAAA\nABSgmAMAAAAAAAAAAAVUbekBAFrSu7Z78xN/PF5Uv+IvXi/7w5O9wfotmA0AAAAAAADw5zwxBwAA\nAAAAAAAAClDMAQAAAAAAAACAAhRzAAAAAAAAAACgAMUcAAAAAAAAAAAoQDEHAAAAAAAAAAAKUMwB\nAAAAAAAAAIACFHMAAAAAAAAAAKAAxRwAAAAAAAAAAChAMQcAAAAAAAAAAApQzAEAAAAAAAAAgAIU\ncwAAAAAAAAAAoADFHAAAAAAAAAAAKEAxBwAAAAAAAAAAClDMAQAAAAAAAACAAhRzAAAAAAAAAACg\nAMUcAAAAAAAAAAAoQDEHAAAAAAAAAAAKUMwBAAAAAAAAAIACFHMAAAAAAAAAAKCAVhVzRo8evcG5\nr3zlKx/4MAAAAAAAAAAA8GFRtakfzpgxI7feemuef/75nHjiiU3n165dm8WLFxcfDgAAAAAAAAAA\ntlabLOZ84QtfyEEHHZRzzjkn3/jGN5rOd+rUKbvsskvx4QAAAAAAAAAAYGu1yWJOkvTp0yfTpk3L\nihUrsmzZsqbzK1asSM+ePYsOBwAAAAAAAAAAW6vNFnOSZNKkSbnjjjuy/fbbp7GxMUlSUVGRBx98\nsE2bvfnmmznvvPPyxhtvZO3atfn617+eww47rO1TAwAAAAAAAABAB9eqYs7cuXPz5JNPpnPnzn/R\nZnfddVc+9rGP5eyzz87ChQtzyimnZNasWX9RJgAAAAAAAAAAdESdWrOoX79+f3EpJ0lqamqaXoe1\nfPny1NTU/MWZAAAAAAAAAADQEbXqiTk77rhjTjzxxOy///6prKxsOv+tb32rTZsdffTRufPOOzN4\n8OAsX748119/fdumBQAAAAAAAACArURFY2Nj4+YWXX311S2eP/3009u02d1335158+Zl4sSJefbZ\nZzNmzJjceeedG12/bl1DqqreKQJVbGTNxoZvy3rZsmXLlr11Zm9svWzZsj/YbAAAAAAAAN6fVj0x\n57TTTvtANps/f34OPfTQJMknP/nJLFq0KA0NDc2ewvNeS5eu+tNBbfcW19TXr2h5s7asly1btmzZ\nW2f2RtbLli37A85+72W13Vu1rq1rO1J2R5pFtmzZsmXLli1btmzZsmXLli37w5DdkWaRLVu2bNmy\nS2TX1rb87zRJK4s5e+yxRyoq/vR71RUVFenevXvmzp3b6sGSpF+/fvn1r3+dIUOG5OWXX07Xrl03\nWsoBAAAAAAAAAICtWauKOc8mTlKrAAAgAElEQVQ++2zTn9esWZMnnngiv/vd79q82T/90z9lzJgx\nGTFiRNatW5cJEya0OQMAAAAAAAAAALYGrSrmvFd1dXUOP/zw/OAHP8ioUaPadG3Xrl1z5ZVXtnVL\nAAAAAAAAAADY6rSqmHP77bc3O37ttdeycOHCIgMBAAAAAAAAAMCHQauKOb/85S+bHXfr1i1XXHFF\nkYEAAAAAAAAAAODDoFXFnIsvvjhJsmzZslRUVKRHjx5FhwIAAAAAAAAAgK1dq4o58+fPz7nnnps3\n33wzjY2N6dmzZy677LLsvffepecDAAAAAAAAAICtUquKOZdffnmuvfba7LrrrkmSZ555JhdeeGH+\n8z//s+hwAAAAAAAAAACwterUqkWdOjWVcpJkjz32SGVlZbGhAAAAAAAAAABga9fqYk5dXV1WrlyZ\nlStX5t5771XMAQAAAAAAAACATWjVq6wuuOCCTJw4MWPHjk2nTp3yyU9+MpMmTSo9GwAAAAAAAAAA\nbLVa9cScxx9/PNXV1fnFL36RuXPnprGxMY888kjp2QAAAAAAAAAAYKvVqmLOjBkzcvXVVzcd/+AH\nP8g999xTbCgAAAAAAAAAANjataqY09DQkMrKyqbjioqKNDY2FhsKAAAAAAAAAAC2dlWtWTRgwIAM\nGzYs+++/f9avX58nn3wyRx11VOnZAAAAAAAAAABgq9WqYs5pp52WAw88ML/5zW9SUVGR8ePHZ999\n9y09GwAAAAAAAAAAbLVaVcxJkgMOOCAHHHBAyVkAAAAAAAAAAOBDo9OWHgAAAAAAAAAAAD6MFHMA\nAAAAAAAAAKAAxRwAAAAAAAAAAChAMQcAAAAAAAAAAApQzAEAAAAAAAAAgAIUcwAAAAAAAAAAoADF\nHAAAAAAAAAAAKEAxBwAAAAAAAAAAClDMAQAAAAAAAACAAqq29AAAAHRsvWu7Nz/xx+NF9Ss2v74t\naztS9h/Xf9iyAQAAAACA9uWJOQAAAAAAAAAAUIBiDgAAAAAAAAAAFKCYAwAAAAAAAAAABSjmAAAA\nAAAAAABAAYo5AAAAAAAAAABQgGIOAAAAAAAAAAAUoJgDAAAAAAAAAAAFKOYAAAAAAAAAAEABijkA\nAAAAAAAAAFCAYg4AAAAAAAAAABSgmAMAAAAAAAAAAAUo5gAAAAAAAAAAQAGKOQAAAAAAAAAAUIBi\nDgAAAAAAAAAAFKCYAwAAAAAAAAAABSjmAAAAAAAAAABAAYo5AAAAAAAAAABQgGIOAAAAAAAAAAAU\noJgDAAAAAAAAAAAFKOYAAAAAAAAAAEABijkAAAAAAAAAAFCAYg4AAAAAAAAAABTQ7sWcGTNm5Atf\n+EKOO+64PPzww+29PQAAAAAAAAAAtIt2LeYsXbo011xzTW655ZZ8//vfz4MPPtie2wMAAAAAAAAA\nQLupas/NnnjiifTv3z/dunVLt27dMnHixPbcHgAAAAAAAAAA2k27PjFnwYIFeeutt3Lqqadm+PDh\neeKJJ9pzewAAAAAAAAAAaDcVjY2Nje212Q033JD58+fn6quvziuvvJKTTz45Dz30UCoqKlpcv25d\nQ6qqKt8ZdCOZGxu+Letly5YtW/bWmb2x9bJly5YtW7Zs2R9kNgAAAADA+9Wur7Lq1atX9ttvv1RV\nVWXnnXdO165ds2TJkvTq1avF9UuXrvrTQW33FtfU169oebO2rJctW7Zs2Vtn9kbWy5YtW7Zs2bJl\nf6DZ772stnur1r2f9bJly5YtW7Zs2bJly5b9Yc3uSLPIli1btmzZJbJrN/L/J5N2fpXVoYcemief\nfDLr16/P0qVLs2rVqtTU1LTnCAAAAAAAAAAA0C7a9Yk5ffr0yZAhQ3LCCSckScaOHZtOndq1GwQA\nAAAAAAAAAO2iXYs5STJs2LAMGzasvbcFAAAAAAAAAIB25XE1AAAAAAAAAABQgGIOAAAAAAAAAAAU\noJgDAAAAAAAAAAAFKOYAAAAAAAAAAEABijkAAAAAAAAAAFCAYg4AAAAAAAAAABSgmAMAAAAAAAAA\nAAUo5gAAAAAAAAAAQAGKOQAAAAAAAAAAUIBiDgAAAAAAAAAAFKCYAwAAAAAAAAAABSjmAAAAAAAA\nAABAAYo5AAAAAAAAAABQgGIOAAAAAAAAAAAUoJgDAAAAAAAAAAAFKOYAAAAAAAAAAEABijkAAAAA\nAAAAAFCAYg4AAAAAAAAAABSgmAMAAAAAAAAAAAUo5gAAAAAAAAAAQAGKOQAAAAAAAAAA/5+9Ow+P\nujr7P/5JCCABZBECCiqiCIogRRQDooiUVoo8j0hBKmCLlbqhdceF1ZVFrUWsIi5FBVGKgBURqxJU\nMCqLAhori5RFthAgQBCSnN8f/maeTGYmmXuSEyb2/bour8tMTu7c37N/v3OYAB5wMAcAAAAAAAAA\nAAAAAADwgIM5AAAAAAAAAAAAAAAAgAcpRzsBAAAAAAASWVrD2qEv/P+vd+zMLXN5YhOb2PGXBwAA\nAAAAqAz4xBwAAAAAAAAAAAAAAADAAw7mAAAAAAAAAAAAAAAAAB5wMAcAAAAAAAAAAAAAAADwgIM5\nAAAAAAAAAAAAAAAAgAcczAEAAAAAAAAAAAAAAAA84GAOAAAAAAAAAAAAAAAA4AEHcwAAAAAAAAAA\nAAAAAAAPOJgDAAAAAAAAAAAAAAAAeMDBHAAAAAAAAAAAAAAAAMADDuYAAAAAAAAAAAAAAAAAHnAw\nBwAAAAAAAAAAAAAAAPCAgzkAAAAAAAAAAAAAAACABxzMAQAAAAAAAAAAAAAAADzgYA4AAAAAAAAA\nAAAAAADgAQdzAAAAAAAAAAAAAAAAAA84mAMAAAAAAAAAAAAAAAB4wMEcAAAAAAAAAAAAAAAAwAMO\n5gAAAAAAAAAAAAAAAAAecDAHAAAAAAAAAAAAAAAA8ICDOQAAAAAAAAAAAAAAAIAHHMwBAAAAAAAA\nAAAAAAAAPOBgDgAAAAAAAAAAAAAAAOABB3MAAAAAAAAAAAAAAAAAD47KwZxDhw6pe/fumj179tH4\n9QAAAAAAAAAAAAAAAIB3R+Vgzt/+9jfVqVPnaPxqAAAAAAAAAAAAAAAAoEJU+MGcdevWae3atera\ntWtF/2oAAAAAAAAAAAAAAACgwiQ551xF/sKhQ4dqxIgRmjNnjpo0aaI+ffpELZufX6CUlCqSpKQo\nZaIlbylPbGITm9jErpyxo5UnNrGJTWxiE5vYxE602NHKE5vYxCY2sYn9c4kNAAAAAIgspSJ/2Zw5\nc9SuXTudeOKJMZXPyTn4f180rB2xzM6duZF/2FKe2MQmNrGJXTljRylPbGITm9jEJjaxiZ1osaOW\nJzaxiU1sYhP75xK76I81rF1qmXjLE5vYxCY2sStn7ETKhdjEJjaxiU1sH7EbRrl/kir4YM6iRYu0\nadMmLVq0SNu2bVO1atXUuHFjderUqSLTAAAAAAAAAAAAAAAAALyr0IM5f/nLX4L/P2nSJDVp0oRD\nOQAAAAAAAAAAAAAAAPhZSj7aCQAAAAAAAAAAAAAAAAA/RxX6iTlFDRs27Gj9agAAAAAAAAAAAAAA\nAMA7PjEHAAAAAAAAAAAAAAAA8ICDOQAAAAAAAAAAAAAAAIAHHMwBAAAAAAAAAAAAAAAAPOBgDgAA\nAAAAAAAAAAAAAOABB3MAAAAAAAAAAAAAAAAADziYAwAAAAAAAAAAAAAAAHjAwRwAAAAAAAAAAAAA\nAADAAw7mAAAAAAAAAAAAAAAAAB5wMAcAAAAAAAAAAAAAAADwgIM5AAAAAAAAAAAAAAAAgAcczAEA\nAAAAAAAAAAAAAAA84GAOAAAAAAAAAAAAAAAA4AEHcwAAAAAAAAAAAAAAAAAPOJgDAAAAAAAAAAAA\nAAAAeMDBHAAAAAAAAAAAAAAAAMADDuYAAAAAAAAAAAAAAAAAHnAwBwAAAAAAAAAAAAAAAPCAgzkA\nAAAAAAAAAAAAAACABxzMAQAAAAAAAAAAAAAAADzgYA4AAAAAAAAAAAAAAADgAQdzAAAAAAAAAAAA\nAAAAAA84mAMAAAAAAAAAAAAAAAB4kHK0EwAAAAAAAAAAVG5pDWuHvvD/v96xM7fM5YldsbHDypdS\nFgAAAEDJ+MQcAAAAAAAAAAAAAAAAwAMO5gAAAAAAAAAAAAAAAAAecDAHAAAAAAAAAAAAAAAA8ICD\nOQAAAAAAAAAAAAAAAIAHHMwBAAAAAAAAAAAAAAAAPOBgDgAAAAAAAAAAAAAAAOABB3MAAAAAAAAA\nAAAAAAAADziYAwAAAAAAAAAAAAAAAHjAwRwAAAAAAAAAAAAAAADAAw7mAAAAAAAAAAAAAAAAAB5w\nMAcAAAAAAAAAAAAAAADwgIM5AAAAAAAAAAAAAAAAgAcczAEAAAAAAAAAAAAAAAA84GAOAAAAAAAA\nAAAAAAAA4AEHcwAAAAAAAAAAAAAAAAAPOJgDAAAAAAAAAAAAAAAAeMDBHAAAAAAAAAAAAAAAAMAD\nDuYAAAAAAAAAAAAAAAAAHnAwBwAAAAAAAAAAAAAAAPCAgzkAAAAAAAAAAAAAAACABxzMAQAAAAAA\nAAAAAAAAADzgYA4AAAAAAAAAAAAAAADgAQdzAAAAAAAAAAAAAAAAAA9SKvoXjh8/XsuWLVN+fr7+\n9Kc/qUePHhWdAgAAAAAAAAAAAAAAAOBdhR7M+fTTT/Xdd99p5syZysnJ0eWXX87BHAAAAAAAAAAA\nAAAAAPwsVejBnHPPPVdt27aVJB177LHKy8tTQUGBqlSpUpFpAAAAAAAAAAAAAAAAAN4lV+Qvq1Kl\nilJTUyVJs2bN0oUXXsihHAAAAAAAAAAAAAAAAPwsJTnnXEX/0n/961969tln9cILL6h27dpRy+Xn\nFygl5aeDO0lRykRL3lKe2MQmNrGJXTljRytPbGITm9jEJjaxiZ1osaOVJzaxiU1sYhOb2MROtNjR\nyhOb2MQmNrETPzYAIDFV6J+ykqSPPvpIzzzzjKZOnVrioRxJysk5+H9fNIxcdufO3Mg/bClPbGIT\nm9jErpyxo5QnNrGJTWxiE5vYxE602FHLE5vYxCY2sYlNbGInWuwo5YlNbGITm9iVIHbRH21YO6Zy\n1rLEJjaxiU3syOUbRpmzpQo+mJObm6vx48frpZdeUt26dSvyVwMAAAAAAAAAAAAAAAAVqkIP5syf\nP185OTn685//HHxt3LhxOuGEEyoyDQAAAAAAAAAAAAAAAMC7Cj2Y079/f/Xv378ifyUAAAAAAAAA\nAAAAAABwVCQf7QQAAAAAAAAAAAAAAACAnyMO5gAAAAAAAAAAAAAAAAAecDAHAAAAAAAAAAAAAAAA\n8ICDOQAAAAAAAAAAAAAAAIAHHMwBAAAAAAAAAAAAAAAAPOBgDgAAAAAAAAAAAAAAAOABB3MAAAAA\nAAAAAAAAAAAADziYAwAAAAAAAAAAAAAAAHjAwRwAAAAAAAAAAAAAAADAAw7mAAAAAAAAAAAAAAAA\nAB5wMAcAAAAAAAAAAAAAAADwgIM5AAAAAAAAAAAAAAAAgAcczAEAAAAAAAAAAAAAAAA84GAOAAAA\nAAAAAAAAAAAA4AEHcwAAAAAAAAAAAAAAAAAPOJgDAAAAAAAAAAAAAAAAeMDBHAAAAAAAAAAAAAAA\nAMADDuYAAAAAAAAAAAAAAAAAHnAwBwAAAAAAAAAAAAAAAPCAgzkAAAAAAAAAAAAAAACABxzMAQAA\nAAAAAAAAAAAAADzgYA4AAAAAAAAAAAAAAADgQcrRTgAAAAAAAAAAAAAAUDZpDWuHvtCwtnbszI25\nrCRTeWIT+2jHjlae2MQ+2rGL4xNzAAAAAAAAAAAAAAAAAA84mAMAAAAAAAAAAAAAAAB4wMEcAAAA\nAAAAAAAAAAAAwAMO5gAAAAAAAAAAAAAAAAAecDAHAAAAAAAAAAAAAAAA8ICDOQAAAAAAAAAAAAAA\nAIAHHMwBAAAAAAAAAAAAAAAAPOBgDgAAAAAAAAAAAAAAAOABB3MAAAAAAAAAAAAAAAAADziYAwAA\nAAAAAAAAAAAAAHjAwRwAAAAAAAAAAAAAAADAAw7mAAAAAAAAAAAAAAAAAB5wMAcAAAAAAAAAAAAA\nAADwgIM5AAAAAAAAAAAAAAAAgAcczAEAAAAAAAAAAAAAAAA84GAOAAAAAAAAAAAAAAAA4AEHcwAA\nAAAAAAAAAAAAAAAPOJgDAAAAAAAAAAAAAAAAeMDBHAAAAAAAAAAAAAAAAMADDuYAAAAAAAAAAAAA\nAAAAHnAwBwAAAAAAAAAAAAAAAPCAgzkAAAAAAAAAAAAAAACABxzMAQAAAAAAAAAAAAAAADxIqehf\n+PDDD+vLL79UUlKS7r33XrVt27aiUwAAAAAAAAAAAAAAAAC8q9CDOZ999pk2btyomTNnat26dbr3\n3ns1c+bMikwBAAAAAAAAAAAAAAAAqBAV+qesli5dqu7du0uSTj31VO3du1f79++vyBQAAAAAAAAA\nAAAAAACAClGhB3N27dqlevXqBb+uX7++du7cWZEpAAAAAAAAAAAAAAAAABUiyTnnKuqXjRgxQhdd\ndFHwU3MGDBighx9+WKecckpFpQAAAAAAAAAAAAAAAABUiAr9xJy0tDTt2rUr+PWOHTvUsGHDikwB\nAAAAAAAAAAAAAAAAqBAVejCnc+fOevfddyVJa9asUVpammrVqlWRKQAAAAAAAAAAAAAAAAAVIqUi\nf1n79u3VunVrXXnllUpKStKoUaMq8tcDAAAAAAAAAAAAAAAAFSbJOeeOdhIAAAAAAAAAAAAAAADA\nz02F/ikrAAAAAAAAAAAAAAAA4L8FB3MAAAAAAAAAAAAAAAAADziYAwAAAAAAAAAAAAAAAHjAwRwA\nAAAAAAAAAAAAAADAgyqjR48efbSTsHr++efVvn37iN/Lzs6Wc07VqlXT7t279dVXXyk5OVm1a9eO\nWH7dunXasGGDGjVqpOTk/zun9OGHH+qUU04Jfu2cU1JSUvDrNWvW6JNPPlF+fr4aNWoUMfa+ffu0\ndOlSff755/r666+1a9cuNWjQQNWqVQsru3PnTiUnJ6tq1arasmWLlixZovz8fDVo0CBi7MOHD2v5\n8uX66quv9N133ykvL08NGzYMyTHgxx9/VEpKSvB6P/vsMxUUFESMvXLlSjVu3Dji74xFSW1jqcN4\n8rDWoSV3S1ta+qC1X1lix1OH1vFTVEn1J9nax9Jnfda3ZZxZ846nfFHz5s1Ty5YtI35v586dqlmz\nZqkxSpOZmammTZuGvGatw1jn2HhyKWrXrl1avXq1qlatGvO1l9ZnA/bu3avvvvtO1apVU40aNcK+\nb+0n1nG2f/9+5eTkqFatWiGvr1q1Kur6I0kHDx5UVlZW1LyjiVbXzjmtXbtW3377rTZt2qQff/xR\n9evXjzluwLp160J+rqz9taR2jGcejHW+j2dfEE1p/TvestHKW8dlvOM4nnFZUt7WseNr3QnYunWr\nNmzYoO3btyslJUWpqalhZeLpg7GO+bLu2Uqa23z2b5/jsjjrPFhany3rmhbrupOfn6+tW7fqmGOO\nUZUqVcK+b61DX+tUPG1pqUNr3pby1ra0zCfWexJL/45nLMQyV0n2edBS39a2tFynz/23Ne/y2PdW\n9P7bOo4t/dvns4WSFN9rSrY+Za1v67gsy57aWifl9YwjnvKRRNvHluW+uLQ1M957Kan8nm/Fc42W\nfa91j2xtS0t8n/Om9TotuZRH/44090jx9+/S+rZUtuegJT1TCoh1D1GSst7rWtdWS31X9POtkurc\n5z7M2k8s12kZOz73BT73M5J9bzVr1iy98847WrRokb777jvVqVMn4vxgeR4Wzz26z3uYssw/pe1n\nfN5nxLoPK+szkZKet+Tn52vBggXatWuXTjzxRH344Yf65z//qe3bt+u0004L6WPWvCMZNGiQ+vTp\nE/F7hYWFmj9/vl588UW9/vrrmjdvnpYvX66kpCQ1a9YsrPxHH32k1157TXPmzNHChQu1cuVKJScn\n68QTTwwrm5GREYyxZ88eTZgwQVOnTtWaNWvUpk2bkHoZOXKkGjRoYHreFGsfzMnJ0csvv6zNmzer\nVatWevbZZ/Xcc89pzZo1OvPMM0PysLZNdna2Jk+erHfeeUepqakha9jYsWN10UUXhZQ/cuSI3njj\nDU2ZMkXTpk3TP/7xD3300Uc6cOCAWrZsGRbf11xlaZt4cykq3vu6SPuCsuztS3pGGO/7E2XdK0Xb\nPxZV2p7Quo+Ndc8Rz7od65wcT+yy3DOW1gdjvc+IZ66KJMk558oUwbN77rkn7LWMjIzgpPbII48E\nX586dapmz56tKlWq6Morr9SMGTPUsmVL/fvf/1a/fv00aNCgkDhPPPGEli5dqrp162rr1q167LHH\nghvkwYMHa9q0acGyRb9+6aWXNG/ePKWnp2v58uW6+OKLNXTo0JDYs2bN0t///ne1b99e9evXl3NO\n27dv14oVKzRs2DD95je/CZb929/+pjlz5ig5OVk33HCDpk6dqvbt22vNmjXq2rWrbrjhhpDYCxcu\n1AsvvKAzzjhDK1asUIsWLVRYWKisrCyNHDlSHTt2DJZ9+umntW7dOj322GP6+9//rtmzZ+ucc87R\nN998o86dO+umm24Kid2pUyedeuqpuvrqq9W9e/dyaxtrHVryiKcOLblb2tLaBy11Yo1trUNLfGvb\nW9rH0md91rdlnFnztpZ/6qmnwup71qxZ6tu3rySFxT7nnHOUnp6um266Sa1atQr72VgVnweLv1Za\nHVrmWGsuf/7zn/WXv/xFkvTWW2/pySef1FlnnaWsrCxdd911+t///d+Qn7eO+SVLlujxxx/X22+/\nrccee0wtWrTQxo0bdc011+i3v/1tsKy1n1j77PTp0zV16lTVqFFD9evX18SJE4MLf/E6mTVrlh5/\n/HHVrVtXI0eO1JgxY3TiiSfq+++/19ChQ4P9xVrXgbp69NFH1aRJk5B5cMeOHRozZkzYdVriW/qr\nde6xzoOW+d66LyiJZTyUdexYx6WlvHVcWvK2jh1f644kLVu2TBMnTlTt2rX1zTff6IwzztC+ffvk\nnNPYsWNDHrZa+6BlzMfTv2Od23z2b5/j0joPWvqsdexY5qu5c+dq4sSJqlWrlm6//XZNnDhRdevW\n1Y4dO3TnnXfq0ksvDYljqUOf65S1LS11aM3bUt7alpb5xHpPYu3fsZaVbHOVdR601Le1LS3X6XP/\nbc27vPa9Fb3/toxja//2+WyhJJH2yJaxY6lva2zLntpaJ76eccRTPppIfdA6ji1rpmVf5fP5lvUa\nLWuxdY9sbUtLfJ/zpvU6LbkkSv+27gctc7L1mZJlDxFPvcRa1rqmWceaz/XVUuc+92HWtdtyndax\n43Nf4HM/Y6mTJ554QtnZ2ercubOWLFmiOnXq6MQTT9TcuXPVo0cP/f73vw+JbXkeZr1H93kPYylv\nbUuf9xmWfVg87wXG+rzljjvuUGpqqvbt26fCwkIlJycrPT1dq1atUkFBQVidWPJu1aqV0tLSVLVq\nVQXe9t25c2fwjfH3338/JPbIkSN1/PHHq3Pnzvr444/lnNPZZ5+t2bNnq1GjRrr77ruDZceMGaN9\n+/apW7duwYME27dv18KFC3XyySeHlC1eh7fffrtatmypSy65RJmZmVq8eLGeeeaZYNnevXvrrLPO\n0v79+zVw4ECdd955KomlD1577bU6++yztWPHDmVnZ+uUU05Rjx499NVXX2nRokWaOnVq3G0zZMgQ\nXXLJJapfv76mT5+u888/XzfeeGPY9QfceuutOumkk3TxxRfruOOOC7blu+++q3379mn8+PFxXaMU\n/3vdpbWNNRef93WWvb1ke0ZofT+tvPZKkfK27Amta7Flz2F95meZk62xLXlb+6DlPsM6V0XlEtyt\nt97qfvvb37oPPvjAZWZmuk8//dT17NnTZWZmuszMzJCy/fv3d4WFhe7gwYMuPT3d5ebmOuecO3z4\nsLvyyivDYvfv3z/4/1lZWa5Xr17um2++cc45N3DgwJCyRb8eMGCAO3jwoHPOuSNHjrh+/fqFxe7X\nr587dOhQ2Ov79+8P+b2BPAoKClx2drbr3Lmz27dvn3POufz8fPfb3/42LMaAAQPcjz/+GIw3bNgw\n55xzO3bscJdffnlI2SuuuCLk5/Ly8pxzzhUUFITlEbjOffv2uSeeeML17dvXTZo0yS1btswdOHAg\nrKylbQKxi+ZSUh1a8nDOXoeW3K1taemDljqJJ7a1DmONb217S/tY+qzP+raMM2ve1vJXXnml69u3\nr3vjjTfc7Nmz3ezZs1337t2D/x/pOjdu3OjuuOMO94c//MG9+eabbtu2bWHlnHPu5ptvjvjfsGHD\nXHp6esTYRfMurc8GlDbHWnMp+vNXXnml2717t3POuQMHDpR5zPfp0yc45gcMGOBycnKcc879+OOP\nYbGt/cTaZ/v27esOHz7snHPuo48+cr1793Zbt26NWIf9+vVzBw4ccP/5z3/cBRdc4LZs2eKcc+7g\nwYOuT58+IWWt7d6vXz+XnZ0d9vq2bdsi9u9x48ZF/O/RRx91Xbt2DSlr6a/xrDuWedAy31v3BZY6\nt7aPpbx1XMa7V4plXFrztu7xfKw7gTJ79+51zjm3c+dOd+eddzrnnPv3v/8dFtvaBy1j3hrbMrf5\n7N8+x6VlHix+naX1WevYsd7DHDp0yGVnZ7vzzjsvOAfm5uaWeb/uc52KZ68Zax1a87aUj2cejHU+\nsd6TWPt3rGWds81V8cyDsda3tS0t1+lz/x3P2AkorV8l0v7bMo6t/dvnswXLXtM6diz1bY1t2VNb\n68TXMw5reWv/to5jy5pp2Vf5fL4VzzXGuhZb98jWtrfE9zlvWq/TkoulTixzj3P251uW/aBlTrY+\nU7LsIZzzd69rXdPieQZetHx5rq+WOve5D7Ou3ZbrjGd99fmeg6/9TLzPRJxzbsiQIcHYkeZBy/Mw\n6z26z3sYS3lrW/q+z4Gj7OMAACAASURBVIh1H2at73ift3Tv3j3q9+LJe/HixW7gwIFuwYIFIT8f\nTfHfd/XVVwf/v2/fviHfGzBgQNQ4kb43aNCg4P8PHjy4xN8b+Hr9+vVu9OjRrnfv3u7+++93r7zy\nips/f35YbEsfDORRWFjoevToEVMezsXWNkVfKygocLfddpubNGlS1PJXXXVV2GvRvudzrrK0jTUX\n65i37Asse3vnbM8ILfOxc7a9knX/aNkTWtdiy57D+szPMidbY1vyjue9a8tzUOdin6uiSYnvOE/F\nefzxx/XJJ5/omWee0YABA9SzZ0/Vrl074kmkpKQkJSUlqUqVKkpOTg5+VFPRE6JFFRQUKC8vTzVq\n1FDLli01adIkDRs2TKNGjQr7aKWiX59wwgnB/09JSVFBQUHE2Pn5+apevXrI6845FRYWhpVPTk5W\n/fr1demllwY/Hqmkj2kPfO/IkSPasWOHJKlOnTph1+mcU1ZWllq1aqWTTz5Zhw8f1jHHHKP9+/dH\nzCMpKUm1a9fWn//8Z11//fX617/+penTp2vVqlXav3+/Pvnkk2BZS9sUv57S6tCSRzx1aMnd0pbW\nPmitE2tsSx1a4lvbXoq9fSx91md9W8aZNW9r+RkzZgQ/TvK2225Tu3btNHPmTF1++eVhcQPXedJJ\nJ2nChAnasWOH5syZo1tvvVWbNm3Sscceq7fffjtY9sCBA+rQoUPYR7k557Rp06Yy1aFljrXmUvTn\n09LSdOyxx0qSUlNTI37kp3XM7927V2lpaUpLSwv5CMLibWPtJ9Y+Kyn4EX0XXHCBatWqpaFDh2rS\npElhdVilShWlpqYqNTVV7du3D7ZPjRo1VLVq1ZCy1nYvLCxUnTp1wl4PnO4vLjMzU506dVLz5s3D\nvpeRkRHytaW/xrPuWOZB63wfEMu+wFLn1vaxlLeOy3j3SrGMS+uYt44dH+uO9NNHiAaurXbt2vrP\nf/4jSWrRooXy8/PD8rbuZ2Id8/H071jnNp/92+e4tMyDxa+ztD5rHTuW+SolJUXVq1dXtWrVVLNm\nTaWlpUmSatWqFXHsWOrQ5zoVT1vGWofWvC3lrW0p2e4zLGUt/dt6f2mZq6zzoKW+rW1puU6f++94\n8o61XyXS/ts6ji392+ezBcte0zp2rPVtiW3ZU1vrxNczDmt5a/+2jmPrmhnrvsrn8614nstZ1mLr\nc1DreIg1vs9503qd1n1BrHVimXsCMWJte2vflmKfk63PlCx7CMnfva51TYtnrAWU9/pqqXOf+zDJ\nvjeN9TrjmU98vufgaz9jvYdZv369mjdvri+++CLYj9auXRs171ifh1nv0a3XaSlrKW9tS5/3GZZ9\nWDzvBcb6vOXIkSM6cOCA9u7dq3379mnz5s1q2rSpcnJydPjw4TLl3aVLF3Xs2FHPPPOM5s2bp+HD\nh5fYjs45ffzxx2rTpo0+/PBDHXPMMZIir2mFhYVas2aNWrduHfJ64E9fFZeTk6OMjIzgn4cJzHOb\nNm1SXl5eSNnAz59yyikaNWqUjhw5os8//1yrVq3Shg0bwj41Toq9D+bn52vLli1q0qSJ7r///uDr\nWVlZOnLkSEhZa9ukpKRowYIF+tWvfqXk5GRNmDBB99xzj0aMGKEDBw6ElU9KStLChQt18cUXB59R\nHT58WAsWLIj4Z4d8zVWBtpFUattYc7GOeeu9Q6x7e8n2jNAyH0u2vZJ1/2jZE1rXYut7r5a11TIn\nW2Nb8o5nD2G595Jsc1UkCX8wR5I6d+6sc889V1OmTNF1110XdXI477zzdOWVV+rw4cMaPHiwrrrq\nKp199tlavXq1LrjggrDyf/jDH9SrVy+99dZbSk1NVbNmzfTcc8/pvvvu06pVq0LKLlu2TOnp6XLO\n6ccff9S5556r/v376/bbb1d6enpY7MGDB+uKK65Q27Ztgx/ttnPnTq1evVq33357SNkLLrgg+FH6\n9913nyRp9erVGj16tHr06BEWu2/fvurVq5eaN2+uf//737rrrrskKexj8STpoYce0siRI5WXl6dj\njz1WvXv31mmnnaYDBw6ELEQBRTta9erV9Zvf/KbEj22NtW2kkuvw/PPPL1Me1jq05G5py+J9cODA\ngWrbtq1Wr16tzp07l6lOrP3bWofW+Ja2t7SPpc/6rG/LOLPmHU/5fv366Ze//KUmTJig2bNnR9wM\nBhRt+7S0NA0dOjT4EZt79uwJKfv4449r1KhRGjx4cNjfwCz+tzol21xomWOtuaxevVp9+/aVc067\ndu3SvHnzdPnll+vRRx+N+re9Y+2zd999twYNGqRmzZopJSVFV155pdq0aaNvv/02+HGUAdZ+Yh1n\nvXr1Up8+fTR9+nTVqFFD7dq104QJE3Tbbbdpy5YtIWVbtmyphx9+WPfee6+efPJJST/9vc0nnnhC\nZ511VkhZa7v/6le/Ur9+/XThhReGzIMZGRnq169fWPmnnnpK9913n66//vqw+LNnzw752tJfJdvc\nY50HLfO9ZT6RbHVubZ/HHntMo0ePjqm8dVxaylvHpeU6rWPH17oTiD1gwAC1bt1an3/+eXAMDB06\nVF26dAkpa+2DljFvjW2Z26z7Xktb+hyXlnlQsvVZ69iRYp+vmjVrpttvv125ubm64IILdN111yk9\nPV1fffWVTjvttLDyljos6zpVdG9VfKxZ29JSh9a8LeWtbWmZT6z3JJb+bSkbyCXWuco6D1rq29qW\nluv0uf+25m3pV+W5/y6+57D2b8s4tvZvn88WLHtN69ixrIHW2NY9taVOLOWteVvKW/alkn0cR1sz\nv/zyy7A107KvstSfZBuX1mu07Hute2Rr21v2BT7nTet1WnKx1Ill7pFsbW/dD1rnZMszJcseQvJ3\nr2td06xjzef6KsVe5z73YdZ+YrlO63zic1/gcz9jqZPhw4frtttu086dO9W0aVM99NBDcs5p2rRp\nGjFiRIl5l/Y8zPoMyuc9jLW8pS193mdY9mHW+rY8bxkyZIguvfRS1a1bV5MmTQr+GaB9+/Zp5MiR\nZcpb+umgxbBhw7Rq1SqNGDFCu3btilzZksaOHauJEydq48aNatmypcaMGaPdu3fryy+/1IQJE0LK\njh49Wg8//LC2bNkSfKN9z549at68ucaOHRsW+6yzztKCBQtUWFiopKQkrV27Vq1atdKECRN05513\nhpStV6+epJ/GRE5Ojpxz6tSpkzp16hQxb0sfvPPOOzVhwgQ98cQTat26tbKzs7V8+XJNnjxZDz30\nUEjZIUOGqGfPnsG2ufHGG+Wci9o2jzzyiJ588kl17dpVBw8elHNO48aN01tvvaXvvvsurPyECRP0\n5JNPavz48dqyZYtSUlLUuHFjpaena9y4cXFfo2SbqwJtI0kNGjRQdna2tmzZovHjxwfHUVlysYx5\ny77Aure3PCO0vj9h2StZ94+W+x3rWmzZc1jXbcucbI1t3StZ+qDlPeaic1VSUpKqVq0anKu2bdsW\n9XcUl+Si/TPjBLVx40ZlZGRo8ODBEb//3XffqXbt2mrcuLE2bdqkVatW6eSTTw47yRlw6NCh4EnQ\nor7//ns1a9as1Hw2bNgQ9U3gvLw8ffnll8HFLy0tTWeffXbY6TVJwVObAdu2bdPu3bt15plnRoy9\ne/dubd68WSeffHLwxGxBQYGqVKkSsXxgcnXOqUGDBiG/q6hIp15jtXHjRi1atEhXX3216eci1WE8\neVjrsKjS+pWlLa19MJJo/coSO546jDf30upPCm+f7du3Kzs7O2r7FO2zxx13nJo2bVquORcVrb6t\n46x43iWNNet1FvXFF1/o/fffD/vbrQFF/2ZiWQT+lmosotVhWefYaLkU32zVrVtXNWvWVGZmpjp0\n6FBiG0ml99mCggKtWbNGmzdvlvTTv0L4xS9+EfH0urWfWPvspk2b1LRp05CT34WFhVq6dGnI5sA5\np+XLl+ucc84JvrZ+/XqtX78+pr/VWTR2pHbfvHmzMjMzg/Ngo0aN1LFjRx1//PExx5Z+GvuBv/8q\nla2/lrbuxDMPBub77OxsST/N923bto0430dS0r4gGstYs5SNVt46LmMtX3xc1qtXT6mpqTGPy9Ly\nLj52Vq9erZNOOilqG/tadyTpm2++0ffff6/TTz9dp556qqSf5oLATVBAPH1w06ZNOvHEE0NeizTm\n44ldfG5r0KCB2rVrF3Fui6Q8+ndZxmXR+SfSuIw0D27YsEHr1q2LOA9a15KyrGklrTuFhYVavHix\n6tWrp7PPPltffPGFVqxYoZNPPlm//OUvw/7lj7UOfa1T8bSlpQ6teVvKW9vSMp9Y556i/TspKanE\ndSfWsRAQ61wVYNnHWurb2pbW6yzL/ruk8oG8mzVrFvzXcCXlXR773oref1vHsaV/l+XZwvfff6/F\nixeXeH8ZTfG9pmTvU5FEq29r7OJ76rS0NJ1//vml7qmtdWJ9xlFa3uVRhyX171j3YZHWzJUrV+rk\nk09W9+7dw9bMWPdVxcXyjCOSkvZKlrnKsu+13l9a29IS3zrfW+Yr63VacinrPaAUee4JiKV/W/eD\nkn3PEVDaMyXJvoeIpqz3uvGsrdZ9QXE+nm/FUueW+1FL/7Y+L7dcp+V5eVnfcyhpTva5n5Fir5OP\nP/5YDz30kOrVq6e7775bY8eO1Y4dO1SzZk2NGTNGHTt2DPn58nh+W9K64/MeJt75J5b11ed9Rrz7\nsICS6jvWZ8m/+MUv1KdPH91www3BT73ZvXu36tWrF3W+jPWZ7IYNGzRu3Dht2bJFmzdvVvPmzbVn\nzx61adNG99xzT9g6lZGRoffff19jx47V0qVLde+996pmzZo6ePCgRo4cqa5duwbLtm/fXpdffrmu\nvfbaYJ7169cPfoJJcevXrw8eQNm8ebNOPfVU7d27V61btw7LJVLZffv26cwzz4yYtxR7H7TkERjD\n9evX1913361Ro0Zp/fr1aty4scaOHRs2hovXd2l5R2qfffv2Rcwl0jWW1/z94IMPBg8zLFmyRPfd\nd1/wgM7o0aN14YUXxl3fxcX7nrEUeV8Q6/skku29knjm4/LYK0XaP1rvdyzPlAJi2XPEs27HOifH\nuyeI573UWPpgrPcZ7733nh5++GHl5eXpoosu0ogRI4IHyAYPHqxp06bFdB1VRo8ePTqmkkfJkSNH\n9MYbb2jKlCmaNm2a/vWvf2nfvn06cOCAWrZsGTIwCwsLlZmZqTfeeEOvv/66MjIylJubq0aNGkXc\nIOfk5GjGjBnavHmzWrVqpWeffVbPPfec1qxZo06dOqlGjRpR8/jHP/6hjz76SFWrVg3LI6Bq1apq\n2rSpTj/9dJ1++ulq0qSJUlJSNHHixJDTntnZ2Zo2bZreeecdpaamqmnTpqpVq5YaNmyosWPHRpwQ\natSooUaNGoVMtMnJyWGxA3m/8sorevfdd/Xxxx9r5cqVEetP+ulNtEjXGa18UXXr1lW7du0kKSyP\nwHU+/fTTmj9/vmrWrBkcNPXq1Qu7zsDHcxU1aNAg9enTJ+rvDzwsDQjUYaRcCgsL9fbbb+vFF1/U\n66+/rsWLF6ugoEBJSUlhfSU7O1tTpkzRV199pXbt2qlbt27BtozUPscdd1xwMNapU0ctWrRQWlpa\nxDwyMjKCv2/Pnj2aOHGinnvuOW3ZskVt2rQJ64Pvv/++pk+frmnTpum9997Ttm3blJqaGrFtqlSp\nosmTJ4f0q4BIeefm5iorK0tt2rTRvn379Pe//11LlizRzp07deaZZ4bkkpOTo5dffjk4dmbOnKnM\nzEytWbMmrGygvj/++ONgfc+bN0/ffvut0tLSot68pqamqlGjRmrcuHGwbSONnRkzZuijjz5SzZo1\ndeaZZwbrO9I1BvLesmWLWrZsGRzzW7ZsiZh38XE2aNAgXXHFFRHzDcTevXu3LrroIs2dO1evvfZa\niXUyf/58vfbaa8rIyNBnn32mtWvXKjk5WSeffHJY20ybNk0bNmxQq1at9MEHH2jjxo1au3atzjjj\njLAN/gsvvKAGDRpEfShUVLS57cCBA2rVqlVYvwrkXbQtly9frvr164e1ZWFhoRYuXBhWNikpKThX\nxBI7KSkp7KZn4sSJat68uU477TQde+yxwTpo2rRpxHkqNzdXS5Ys0SmnnBLs3ytXrozYPiNHjlSj\nRo3Upk0btWjRQi1atFDTpk0j3tTl5ORo1qxZOnLkiM4+++xgn/r6668jtntOTo7efvtt7dmzR61a\ntdJrr72mDz/8MOI4C+Ry6qmnhrVl4OMVixo1apTatm0bUrZevXoRPyaxJI899ljYXJWbm6s5c+bo\nmGOO0cCBA5WVlaXly5dr27ZtEftg8T77yiuvaMaMGfruu+/UoUOHkPLHHXdc1LLFY2dnZwfntZo1\na6p169bBvhRpzDdo0CBqn4o09xw5ckRvvvmm5s+fr6VLl+qrr77S+vXrdejQoVLXwIB69epFnO8j\nCaxrkT5StOgcW3R/0rp167B+UnwtmTBhgqZOnao1a9aobdu2IeUzMjKCp+uLl+3SpUtYbElhN9mB\nvOvWrRvyelJSkt58803t2rVL5513nl5//XVNnz5deXl5OvPMMyP2k6Lj8sknn9S0adMiXmdGRoba\nt2+vWrVqac+ePZoyZYoWLVqkHTt2hK2X0k9tuWDBgpC5bfny5RHXzMD+ZNGiRTrllFPUoUOH4LoT\nbb2cP3++qlSpok6dOunVV1/V9OnTtXnz5rA+W7Vq1ahtGWnMB8Za8fGwdu1a9ejRIyR2jRo1otZf\ntNgvv/yyDh48qMsuu0yZmZlavHix1q9fH3EcFzdo0CANGTIk4vcsbWnd4wX6bNOmTdWwYUPNmzdP\n8+fPD+5Zisbev3+/3nvvvZD6e+edd1RQUBDxGi1rSWB+iLReduzYMax88XH53HPP6fPPP9eaNWvC\n8h41apQ6dOigtm3bSvrpo7LPOeccnXrqqRHfhIlUh0Wvqej8k5ubqxUrVuj888/X4cOH9de//lXT\npk2Luk5J4XvZsWPH6k9/+lNYuW+++Sbq3BNpXObm5uqzzz6L2E+K33tlZGTojDPOUKNGjXTo0KFg\n7K+//jpi7OzsbL344otatmxZyM15cnJy2DgO7O3nz58ftkf+61//GnH/OGfOnJBxPH36dO3YsSOs\nDnNzc7Vq1aqQa5w9e3bEstJPe5/33ntP7733nlauXKmsrCxt27ZNVatWDVunAveuktS7d299+OGH\nevvtt5WVlRV1D3HGGWeoc+fOIQ+GIrV5YAwH4sycOVNz5syJOp9Y9j+FhYX68MMPNX/+fM2dOze4\nFlepUiXiWmwZ84FxlpqaqurVq+vll1/WzJkzS+yDsV7nkSNH9M9//lNz587VzJkzg2P+4MGDEfcE\nlv5d9L64eB984IEHIq47RefYwDiOdg8T7eH41KlTw/YnlrUkIyNDbdq0kfR/Y37GjBlR12LrHFFU\n3bp1NXHixKhrw8iRI9WwYcOI82Hxf1lpHTuRlLQGFn/uM3z48Ij/SjuQd/PmzdW1a1d16NBBHTp0\n0BlnnBH8OPiSlFYn1nt0S96B/t2lSxc1atRICxYs0Pvvvx+xDi370qKK3v/feOONUa9z//79ysjI\nUF5eXvDeOCsrS4WFhWFrvWVfZVm3I5Uv6VmOda6y7Hstz3GsbRkQ675Asj1DsdyXWO+jI+UiRX9u\nGus9oGXuKSqW/m3dD1qes40cOTLkGdEJJ5wQ8ZOGAiz3O5Lt/tXy3Mf6TMn6XM7yjNDyHoK1zi3P\nByX7vtfynoNln2x9Xm55PmN5P0iy3R9J4e8hXH/99VHnNSn2ZyJ33323pkyZovT0dA0ZMkSTJk3S\nXXfdpYsvvlgPPPBA2HxoeR5m3Q9artO6x7Pc81iexwZyifU+0HqvW5Z9WEC0Z36WZ8mffPKJrrrq\nKj344IPKzMxUnTp11KxZs6iHiSzPZG+55RaNHj1a1113nXr06KHt27frhRdeUGpqqh599NGw9ef2\n22/Xgw8+qNTUVN1zzz2aPHmyrr/+evXu3VujRo0K2Rt+/PHHuuqqq/TII49o9erVOuGEE3T88cdH\nfVZaPJdt27bp+eefj5iLpaxke+ZniR0Yw+eff76GDBmiyZMn6/7771e3bt0ijmFr3pHap6Tylvc7\npdjvA6dOnRr804rDhw/X5MmT9cc//lE9e/bUmDFjwu4JLM9EiivtPeNIoj0vt7xPItneK7G8nxbI\nxfK8Jdb3SSTb/Y7lmVJRsbz3an2mbXn2Y33v2vLs3vr+kRT7e/rDhw/Xq6++qhtuuEE5OTkaN26c\nfv3rX6t69eqaPXt2iecXior9n1wfJXfddZd++OEHDRkyROPHj9e4ceOCC9A999wTUnb06NH6z3/+\nowEDBqhdu3Zq166dunfvrrlz54Z9FFgg9uHDh7Vs2TLdeOONys3N1Y033qimTZuGfWSXJQ/pp1Nq\n0f5buXJlSNk777xTJ5xwgjp37qzJkydr8uTJwe9F+hukltjWvC3lLXkErvP4449X586d9dRTT5V4\nna1atdKFF16oSy65RN26dVO3bt20cuVKdevWTZdcckmZ6kT6qa9s2rQppr5SNO/Jkyfr6aefjpq3\nNY/nn38++P8PPPCA0tLSNHr0aJ166qm69957Q8pa29Lar26++ebgqesxY8aoVq1aGjZsmJo1axb2\nLzoijZ2bbrop4tgJ1HesYzPesVNanyqa9xdffFHqmLf2Qct8UlKdzJkzJ2IfLCws1Pr16/W73/1O\nP/zwgy677DJJCusnkrRy5UrNmDFDN998sz777LOw7xfP29KvLG1pnZMt5S3XKIX379q1a0ft3ytX\nrtT06dNjrj9Lu1vHjuU6LWXjmb8tfTBS+V69ekUsby1bdMyXNB9L8e0LAuNhwoQJGj9+fLmtgZY5\nxdqviq8ljRo1irqWWMpa8y7ellu3bo3allLkcXnTTTdFHJfWvC1zm2Wdt16ntS0t48FSf9bY1jXQ\nkos1dtG2f/DBB9W4ceOobW+5RsnvemnpsytXrtRrr70W85pmmX8i7e9K6ieW9rGOS59j3nKfUXzM\nx7p/jGUcW8elZZ0qnsf+/ftLnE8s/duat6VOrGuxZcxH6yfNmzcvcx+0jnlL7JL6YKSPPLeMY+v+\nxOe4tJS3rg1l2a+XNnYsuRQtGyhfWt6xjsvyuB+Ndp9hzbtoPxk7dmy59hPrdd55551yzsV0X2LZ\nF5S1f5f0LMc6V1lysTzHKV6+tLaU4h8P1j1eaddpvY+O97lpafeAlrnHWifW/aDP5yfW+zpf+wKf\nz/mLlo/lGaE1tqXOLc8HJfu+1/Js2LJPtt5HW/e9vt6Hsc5VlvJVq1ZVw4YN1aJFCx177LFq1aqV\nJKlJkyYRD12U5f6/stzXWZ7HWnOx1onP56aW9SEpKUnnnnuuXnrpJf3ud7/TW2+9pV69eumKK64I\n/umcoizPZA8fPhz8pMBmzZrp22+/lSRdeOGFOnToUFjs/Px81axZU5JUu3bt4JvjdevWVfE/tGLN\n25KLNW/LHGGJXXwMt2zZUlL0MWzN21Le2get5QPq1KkTzKlhw4YRD/dY1kCfz8ut+xlf76tYy1uf\nVVrud6x7JeseuTze74z2nntZ9icl7Tms7x9Z6qRKlSqqW7eukpOT1b9/f1177bW65pprtHv37ogH\n6aNyCe6qq66K+XsDBw4M+frqq68O/n/fvn3Dfn7QoEHOOecKCwtdjx49SoxlycM551q3bu0uvvji\nkP+6devmLr74Yte2bduov6ugoMDddtttbtKkSRHzsMa25m0pb8nDep2LFy92AwcOdAsWLAi+1q9f\nv6i5lSUX50ruK5a8rXkE+qBzzg0ePLjEHK1tae1XRa+7+PcHDBgQMe9Yxk6k10qqb59jx5K3tQ/6\nrJOi/eTXv/511O8Vj71+/Xo3evRo17t3b3f//fe7V155xc2fPz+kbFn6VWl5W+fkeGLHco3Ff760\n/m2JbW33ePtJLLlYypZlroqlD1rKW8pax7y1D/pcAy1zSrz9yrnS1xJL2Xjzdi62fhLPuhNr3vHu\nHy1riXOx9+942rK02Jb6s8a2roGWXOJdX52z9e+jvV5a8rauaZb5x9pPLO1TNF4s49LnmLeMY5/7\nR2t9x7Mf9LGHiHc+iSWXeO/RnSv/Nc1yndYxH89e07nyv0+z7k8qalyWVt66Nvjcr1ty8Zm3z/tR\nn+u8z71m8fjleZ9hzdvnXGUpb52/fe4LKmKPF+s49vXc1Lpni2dfFWtsn89P4r3/L+99gc/n/Nby\nFfEsJ8Dy7Ky8970VFbu06/T5Pox1rrKUv+mmm9zjjz/uRowY4a655ho3YsQIt3DhQjd+/Hh3yy23\nhJX3ef8f77Oc8t5Tl+W5RXmvgT6fm5ZlzAds377drV69Oux1Sz8ZMWKEu/XWW92LL77ohgwZ4v7y\nl78455y755573PDhw8Niz5071/Xo0cONGTPGDR8+3F133XXu2WefdUOGDHEzZ84sU96WXKx5W+YI\nS2zrGLbmbSlv7YOW8ueff767+eab3bBhw1zPnj2DffT55593f/rTn8JiW9ZAn8/L490rlff7Ktby\nPt9Xse4hLO3j8/3ORNqfWOpk3LhxbujQoS4vLy/42uLFi91ll13munTpEhY7moT/xJykpCS9++67\nOnLkSPC1w4cP66233gr7iCfnnD7++GPt3btXc+fODX5caUZGRsTY+fn52rJli5KSkoJ/U0+SsrKy\nQn6fNQ/pp9Nkl112mT744IPgf++//74++OCD4MeSBqSkpGjBggVyzik5OVkTJkzQpk2bNGLECB04\ncKBMsa15W8pb8rBeZ5cuXfT888/r22+/1Y033qhNmzaVeOLMmoulr1jytuaRk5OjjIwMZWRkqFq1\nasrKypL0099KzMvLCylrbUtrvzrppJP08MMPa9WqVerYsaPeeecd7dq1S7Nnz1bDhg1DylrGjrW+\nfY4dS97WPuizvxVnpgAAFW9JREFUTvLz87Vx40atWLFCe/fuDZ7UXLduXcTYgTxPOeUUjRo1SrNm\nzdKll16q/fv3a9myZWFlLf3Kkrd1TraUt1yjZOvfltjWdreWt7ZlrGWtc5W1D1rKW8pax7y1D/pc\nAy1zirWfWNaSQNlFixapatWqJZaNJ29LP7GMS8s1Sra2jGctsfRv6xwRa2xL/VljW9dASy7W2Ja2\nT6T10rrHizUPyTb/WPuJpX327Nljmk/iGfOxxraMY5/7R2t9W/eDvvYQ8cwnseZiXYstbW9dG6z7\nQcuYt8T2eZ9m3Z/4XIsDc0Qs5a1rg8/9uiUXn3n7vB/1uc773GsGrtPHfYY173jmKh+xrfO3z32B\n7z2eZRyXx3PTefPmhc331j2bpU6ssYuur4E/cSKVz/OTeO7/49kXlJa3paw1D2t5n/sw63WmpKTo\n3XffjXnfG2tZ37GtfXbhwoVe3oexzlWW8uPGjVNaWprOP/98TZ06VR06dNAnn3yiBg0a6OGHHw4r\n7/P+35K3dZ2y5GLN27I2WGP7fG5qif0///M/YT8v/fQn2Vq3bh32uqWfjBkzRj179lR+fr6uvvpq\n3XLLLZKkwYMHR+yDvXv31syZM9WhQwc1b95cv/jFL4L9tV+/fmXK25KLNW/LHGGJbR3D1rwt5a19\n0FL+ySef1FVXXaWBAwdq1KhRat++vaSfPjHnscceC4ttWQN9Pi+37md8va9iLe/zfRXrHsLSPmV5\nv7O0XBJpf2Kpk7vuuktDhgxR9erVg6916dJF06dP10033RSpyiOL+QjPUfLDDz+44cOHu0suucR1\n6tTJpaenu+7du7sRI0a4rVu3hpRdt26du/76613Pnj3drbfe6n744QfnnHN//etf3ZdffhkWe8WK\nFWEnHd977z3Xu3dv9/nnn8edR8CcOXPc/v37w15/6qmnIsY+dOhQyOtz58513bt3L5fYseZtLR9r\nHvFeZ2FhoduwYYMbOnSo++UvfxmME4klF0tfseZtyWP48OEh/y1dutQ559ywYcPcwoULI+ZhbctY\n8z5y5Ih79dVX3R//+Ed36aWXul//+tdu4MCBbsqUKW7Hjh0hZS1jxzn72PQ1dqx5Oxd7H/RZJ599\n9pnr06eP++Mf/+jWrl3rfv/737v09HTXu3dvt2LFirDYN998c8Rrcc65vXv3hnxt7VeWvK3tbilv\nuUbnbP3bEtva7tbyllysdWKZq6x90FLeUtY65q190OcaGBDLnGLtJ5a1JFDmrrvuCiv75ptvlilv\naz+xjEvLNQZyi7Utrf3Kcp3WtrTEttSfNXZR69evD2n3kubYa6+91vXs2TMkl2j7tlhjW9o+3vWy\nsLAw7HvF87bOD5a8rfO3c7HPP9Z+EhDLmLfOJ/GM+VhjW8axz/2jtb4t65TPPYQ17+XLl0fN5auv\nvor7Gp2ztb11bbDMVdYxH09s631arHOsZX9iiW2tb2t552K/97L0b0t/jSeXgFjWtHjm+1hjx3Od\nsV5jPP3EuteM9Tota/3nn3/urrjiCjdkyJCwssXnTWve8cxVPmJb54d49wXOxdY+lrKWOSKe/v3m\nm2+6AwcOhL3+zDPPhHxd0ny/c+fOkLKWvWNRsYw1a+yS1tfi/dsa2zJ2nCu/fUHx2Jay1jys5a2x\nLfO99Tq3bt3q7r777pB/re3cT/uI3/zmN3GX9R3bcp2BcdmtWzeXnp4eMi63b98eFtu52Md8UZZ5\nLZ7ypbGMtUS8r4tl7bGuU5a1wRrbOhda+lS860MsrHPyf4N45ojKyDqvxTMPxsK6BsabR2lzrHWc\nWcr7jG0dw5by1j2Ec7G3j7XdLbkk0v7EOX9jJ5qEP5izcOFC17VrV3feeee5u+66y+Xm5ga/F+lj\nnqKJVDYQu2PHjqXGtubx3nvvmWNHKhvpo5XiiR1r3pbyljys1xmp7LZt26LGtuZSkrK0T0XkYW3L\nWPtVPLn4uE6fYyeeMR9rH/RZJ+VVNlL58ppjreV/LrGt7Z4o/cTnXFWe5cs65q15VPQaGG1O8dlP\nymMtKWkujDWP8ixf1rasrOtleZWNtXws+7B415J4+pS1fEXfC/jMu7zm8PKaq3zUic99r8/9o+Ua\nreV/TvNJSWV93v9b5qp47/99rDuW2Nb5oazzdzxlI5Uvr/2GtbyPvY/PvMsrdrzPW3yMnUjK+zp9\n5J0osctrDFvKJ8p4iKdspPIffvih69Gjh7v66qtdVlaW69Wrl+vZs6fr2rWrW7RoUUjZ8rj/L697\nwPK63/G5FpeUS0XNJxVRnudysZX1uccra3nrXBXv3FZcRb/vVV73dfHsTX30b2tsn/d15XmvFi12\nedThf4P/hjrxvQb6il3WOdbn+zAVETsR7jNK8nNe5ysitkVK7J+tc3RMmTJFb775po499ljNmjVL\n11xzjaZOnaratWvLORdS9tVXX40aZ/v27SXGfuONN0qMbclDkp599tm4YhcvG+lju+KNHUvelvKW\nPKzXGa2spDLXt2TrK5a8KyoPa1vG0q/Kq07Kep0+x068Yz6WPuizTqxzm89+lSh5J0psa7snSj/x\nOVf5zNvnvFY8fkWtgVL4nOKzn5RXn42Ud6L0k+J5l9aWlXW9TKT6Ljoeynu/XlH9pLz31BVV36Xl\nXV51IlXOucpyn1Ee+8eK2rP9nOcTn/VtmavKcv9f3uuOJbZ1f5Io87f13uto9MFIuSTS2PFZ3+XV\nvyv6PqM87v/L477OZ2xL21jrz1q+ssb+29/+phdffFFbt27V9ddfr6efflqtWrXSrl27dN111+mi\niy4KlvV5L1WW2OU9Litqj1fea3Fl7YOJdJ+RKPfoiZS3tbyFz32vz/kn3r1pefdva+yjUd/RcrHw\nGbuy8jkuE0UizVWJMsdW1v16RcU+2nsI1vnYJfzBnCpVqqhu3bqSpH79+ql+/fq65ppr9Mwzz4Q9\ntHrppZeUnp6utLS0sDj5+fklxu7fv7+OO+64qLEteZQldvGypdWJz7xLK2/Jw3qd5Rk7UnlLX/GZ\nd7x5lLUPRlJedeKzvo/W2DnafdA6t/nsV4mSd6LErqz9xGceRyvvSMqyL6jINbCssROlzyZKPyme\nd1naMpJEGWuVtb4TNe/y3lMnSt4VVSeJPFeVpaw1l4ras/23zCc++7dlbajI++hIKmp/cjTn70Tq\n34ky5hOpvn32wUS5zkTa2yfK/sRavrLGrlatmk444QSdcMIJSktLU6tWrSRJDRo0UPXq1UPKJmo/\nOZr3rpK/Z1D/Lf07ke4zuGcsW2yrynpflyjj2Of7dT7r28pn7MrK57hMFIk0VyXKHJuo+7BEiX20\n9xCs8wbGT9ipcOPGjXNDhw4N+Xtgixcvdpdddpnr0qVLSNlvv/3WDRo0yP34449hcSJ9JLQltqUs\nsRM7tnO2vuIzb195JFouiVLfiRLbWifWuS1R2tJn3okSu7L2E595VOa8E2WOSJQ51lo+UfqJNe9E\nqu/KOA86Rz+p6LasrPdHiTJXVdZ5MJH6IP07cfsg/Tux+2CijMtE6oOJcp2JVCeVtb4ra+xbbrnF\nTZ06NeS1H374wT300EPutttuC3k9kdoyUWI7lzjjsrL2wURaA1lfyxbbin1v4t4z+qxvK5+xKyuf\n4zJRJNJclShzbCLNVZU1Nut8xY6daBL+YI5zzn366aeusLAw5LXc3Fw3c+bMsLIHDx50BQUFYa+v\nXr26zLEtZYmd2LGds/UVn3n7yiPRckmU+k6U2M7Z6sQ6tyVKW/rMO1FiV9Z+4jOPypx3oswRiTLH\nWssnSj+x5p1I9V0Z50Hn6CeJnHdlrZNEmmMTpX8nUh+kf/93xv5v6d+JUieJVN+JsjZYyyfK2Emk\n2JW1z/qKnZeX595+++2wMi+++KI7dOhQ2M8nUlsmSmznEmdcVsY+6FxirYGsr2WLbcW+N1yi7Gd8\n1reVz9iVlc9xmSgSaa5KlDk2keaqyhqbdb5ssctDknP/pX+IEAAAAAAAAAAAAAAAAPAo+WgnAAAA\nAAAAAAAAAAAAAPwccTAHAAAAAAAAAAAAAAAA8ICDOQAAAAAAoNKYO3duqWUyMjK0Z8+eEssMGjRI\nS5YsKa+0Kq077rhDs2fPDnlt8+bNuvDCC+OKl5eXp4ULF0qSZs+erTvuuKPMORa1fft2LV261PQz\nAwYMUGZmZly/L5a+BAAAAAAAUBIO5gAAAAAAgEqhoKBATz/9dKnlXnrpJe3du7cCMkJxX3/9dfBg\njg+ZmZn69NNPvcUvjr4EAAAAAADKKuVoJwAAAAAAABCLe++9V1u2bNGQIUP0wgsvaNasWXrttddU\no0YNHXfccXrwwQc1b948ffHFF7rjjjv0yCOPaMOGDZo6daqqVaumgoICjR8/Xk2bNo0Yf/v27cFP\neDl06JD69++vvn376vvvv9eIESNUWFio6tWr65FHHlGjRo309NNPa9GiRUpJSVGLFi10//33a/v2\n7br++ut1+umnq0WLFrruuuv0+OOPa/ny5Tp06JDOPfdc3XXXXUpKSjoqv9c5p/vuu0/ffvutmjRp\n8v/au/uYqss+juNvAU9gOnpQlAdHIbWZUgLhmoNRbrSW9MRDMdQ2YzVbOaMc2ZrxR8slcz2g/9R6\noB3OSVem0sNxOSyr2dMWKuAqopo5zaVpCC7x1Ln/cJxbDLrdvblud79f/57f9f1c5/pdf519z3Vx\n/PjxUdf7qaeeoquri1gsxvPPP084HCYpKYklS5YA8OKLL3L06FEaGhric3/88cfp6+ujqamJ3Nxc\n+vv7WbZsGb29vWRkZLB27VrGjBlDMBgkEonwxx9/kJOTQ2NjI8nJyfHsgYEBHnnkEfr6+ohGo9xw\nww2Ul5fz3HPPEYvFuOiii+jv7ycajVJfXw/A3LlzefXVV0lLS6O+vp4jR46QnZ3NiRMn4nVHyj10\n6BD3338/xcXF7N69m4GBAV544QXa29uH7aVNmzbx2WefEQgEmDx5MqtWrSIQCPw3W1mSJEmSJP0f\n8cQcSZIkSZJ0XliyZAmXXHIJr7zyCvv372fNmjW0tLQQDAZJT0+npaWF2tpaJk2axOrVq8nNzaWv\nr49nn32WYDBIaWkpoVBo1PqRSIScnByCwSCtra38/vvvADQ2NlJXV0coFKKyspJIJEJHRwfvv/8+\noVCIcDjMkSNHeOeddwDo7e3lgQceYPHixUQiEQ4ePEhraytvvvkme/fu5YMPPvjHcnfs2MH333/P\nhg0baGpq4ptvvhlxLQ4ePMgtt9zC66+/znXXXUdLSwvV1dW0tbURi8UA2LJlC1VVVfExycnJ3Hff\nfcyZMyferPPdd9/x5JNP8tZbb9HT00N3dze7d+9m69athEIh1q9fz4QJE3jjjTeG5e/YsYNoNEo4\nHGbdunWMGzeOzMxM7rjjDm699VYWLVo06ntsa2sjOTmZ9evXs2zZMnp6egD+Nre3t5eKigpCoRDT\np08nEokM20uTJk2KjwuHw5SVlXHo0KFR5yBJkiRJkjTEE3MkSZIkSdJ5Z8+ePcyYMYPx48cDMHv2\nbNatW/eX5yZOnMijjz5KLBbjl19+IT8/f9SaJSUlhMNhli9fTmlpKXfddRdwqqFj9uzZAMybNw84\ndcVRUVERY8eOjed3dnZSVFREamoqOTk5wKmrl3bu3MnChQsBOHbsGPv27fvHcqPRKPn5+YwZM4aU\nlBSuvvrqEddiwoQJ8c/y8/MJBoNkZWWRnZ3NF198QXp6OikpKfG80eTl5ZGSkgLA5MmTOXbsGF1d\nXezdu5e7774bgOPHj5OUNPwnqoKCApqbm1m6dCmlpaVUV1eTkHB2/y/79ttvKSwsBCAtLW3YmoyW\ne/HFF3PFFVcAkJGRwdGjR4fVTE1NpaSkhAULFlBWVsbNN9/MlClTzmo+kiRJkiTp/5uNOZIkSZIk\n6bwXi8WGXQ8FcPLkSR566CE2btzIZZddRmtrK11dXaPWmDZtGu+++y5ffvklW7Zs4bXXXos3+/z5\n55/Dnj0z6/T8oaYZgEAgwJ133kldXd3/RO7LL788rMaZ9Yec2QQzNKampobNmzeTnZ097LSc0SQm\nJv5lvoFAgLlz5/LEE0+MOu7SSy9l8+bNdHR00N7eTmVlJRs3bhxxTkMGBwfjGafPf+g7jpa7b9++\nEed5pubmZnp7e9m+fTsLFixgzZo1TJ8+fdTvIEmSJEmSBF5lJUmSJEmSzhMJCQlEo1EAZs6cSXd3\nN/39/cCpq4+uueYa4FTDRjQaZWBggISEBDIzMzlx4gTt7e3x5o2RvP3223R2djJnzhwaGxs5cOAA\n0WiUgoICPv74YwDee+89nnnmGWbNmsXnn3/OyZMnAfj000/j+acrLCxk69at8XmvXbuWH3/88R/L\nzc3NZdeuXcRiMfr7+9m1a9eIa/Hbb7/R3d0NwFdffcWVV14JwPXXX09nZyfbtm3jpptu+su409/R\naAoKCvjoo48YGBgAIBQK0dHRMeyZTz75hA8//JDCwkIaGhoYN24chw8fjr9bgPHjx/Pzzz8D0NPT\nw6+//gqcanQaqnfgwAF++OGHs84901DeTz/9REtLC9OmTeOee+6hrKyMr7/++m/HSpIkSZIkgSfm\nSJIkSZKk80RaWhoTJ06koqKC1tZWli5dyqJFiwgEAkyZMoWHH34YgOLiYhYvXsyqVasoLy+nqqqK\njIwM6urqaGhoIBKJjFg/NzeXxsZGAoEAsViMe++9l6SkJFasWMGKFSsIh8MkJSWxcuVK0tPTmTdv\nHvPnzychIYEZM2ZQXl7O/v37h9W88cYb2blzJzU1NSQmJnLVVVcxderUfyx36tSptLW1UV1dTUZG\nBrNmzRpxLbKysti0aRNNTU0MDg7S3NwMQFJSEiUlJfT398evqDpdXl4eq1ev5rHHHqOoqGjE2nl5\necyfP5+FCxdywQUXkJaWRkVFxbBnLr/8cpYvX85LL71EYmIixcXFZGZmcu2111JfX8/YsWOpqalh\nw4YN1NbWMnPmTHJzcwG47bbb2LZtG7W1tWRlZZGXl/e3uYcPHx5xnvDvvbRy5Ur27NlDVVUVF154\nIampqTz44IOjjpMkSZIkSRoyJjbS2bySJEmSJEnSGQYHB6mtreXpp5+ON8JIkiRJkiRpdF5lJUmS\nJEmSpP9o+/btVFZWcvvtt9uUI0mSJEmSdJY8MUeSJEmSJEmSJEmSJEk6BzwxR5IkSZIkSZIkSZIk\nSToHbMyRJEmSJEmSJEmSJEmSzgEbcyRJkiRJkiRJkiRJkqRzwMYcSZIkSZIkSZIkSZIk6RywMUeS\nJEmSJEmSJEmSJEk6B2zMkSRJkiRJkiRJkiRJks6BfwHTEVEtDMo45gAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "ItRtcvtDACEh",
- "colab_type": "code",
- "outputId": "0b6dd4e9-dfe5-4994-866a-742516b3c178",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 73
- }
- },
- "cell_type": "code",
- "source": [
- "# label encoding for status\n",
- "\n",
- "data['status'] = le.fit_transform(data['status'])\n",
- "data['status'].value_counts()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "1 949\n",
- "0 51\n",
- "Name: status, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 208
- }
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# computing the total score for each student\n",
+ "\n",
+ "data['total_score'] = data['math score'] + data['reading score'] + data['writing score']\n",
+ "\n",
+ "data['total_score'].value_counts(normalize = True)\n",
+ "data['total_score'].value_counts(dropna = True).plot.bar(color = 'cyan', figsize = (40, 8))\n",
+ "\n",
+ "plt.title('comparison of total score of all the students')\n",
+ "plt.xlabel('total score scored by the students')\n",
+ "plt.ylabel('count')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 621
+ },
+ "colab_type": "code",
+ "id": "0Jpy1FwCjJbG",
+ "outputId": "abaad66f-b7d7-4ae2-b6dc-cc0ef454e03e"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:6: SettingWithCopyWarning: \n",
+ "A value is trying to be set on a copy of a slice from a DataFrame\n",
+ "\n",
+ "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
+ " \n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6sAAAH+CAYAAAB6PpjoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmAlXW9P/DPwIiAsjtDmmVlIihu\n1y1UQhZZXFLUEnEpNX+aS6KVKCnikmuW4pLimnjvhS6YeosELfeE61YqdstrqWACA47MIAjD8Pz+\nUM5lLgPMjHMevoOv1z+H58z3ez6f7/Occ2bePGcpybIsCwAAAEhIq43dAAAAAPxfwioAAADJEVYB\nAABIjrAKAABAcoRVAAAAkiOsAgAAkBxhFaDIsiyLe+65Jw499NAYMmRIDBo0KMaNGxfV1dUbu7U6\n7r///rjhhhs2Wv3q6uo4/PDDY/DgwVFZWbnR+miop59+Ov75z39u7DZyc9BBB8WsWbPWun7AgAHx\nwgsvNHu9uXPnxk477RQRETfddFP8+Mc/XmvMihUr4sEHHyxs77jjjjFv3rxm7yUi4le/+lWj5zz0\n0ENxwgkn5F4XYFMhrAIU2U9/+tOYNm1a3HXXXTF9+vR4+OGHo6amJk477bRI6auujz/++Bg1atRG\nq//Xv/41Pvjgg5gxY0Z06dJlo/XRUPfee+9nKqym6PXXX68TVouloqIi7rzzzqLXSaUuQCqEVYAi\n+uCDD2LixIlx9dVXR/fu3SMion379jF27Nj47ne/G1mWxfLly2Ps2LExZMiQGDZsWFx99dVRW1sb\nER+ftZo4cWIMHz489ttvv5gxY0ZceumlMWjQoPjWt74VixcvjoiPzyjdd999cfjhh0efPn3i3//9\n3ws93HLLLYUzuqeddlpUVVVFxMdnqy666KI4+uij4957761z9up3v/tdHHrooTFs2LA47LDDCmfU\n/vnPf8Ypp5wSQ4YMiUMPPbQQFObOnRsHHHBA3HfffXHYYYdF3759Y9q0afXuk1mzZsXw4cNj6NCh\n8c1vfjNeffXV+Oc//xk//OEPY9GiRTF06NB4//3368w54YQT4qabbopvfetbsd9++8VFF11U2Ecv\nvvhiHHXUUXHQQQfFt771rZgzZ05ERDzwwANx1llnxbe//e249tprIyJiwoQJMXDgwBgyZEhcddVV\nhf8smDx5cgwdOjQGDBgQ5513Xnz00UcREXHBBRfE+PHj46STTor+/fvHSSedFMuWLYsbbrghZs6c\nGT/60Y9i2rRpsWzZshg1alQMGTIkBgwYENdcc02h99mzZ8fgwYNj8ODBcfPNN9fZn4899lgcdthh\nMXDgwDj55JPXWndExMqVK+PHP/5xDBkyJA466KA466yzYsmSJRER8eCDD8aQIUNiyJAh8aMf/ShW\nrFhR5/gNHTo0TjzxxHjnnXfqPeZZlsXNN98cQ4YMif79+8cVV1xR2K+vvfZaHHLIITFkyJC48sor\n6z2Wq82cOTOOOOKI6NevX/z85z+PiIijjjoqHnnkkcKYxx9/PA4//PC15v7973+PY489NoYNGxYH\nHXRQ/OY3v1lvrdUWLlwYZ511VvzpT3+KkSNHFq5/8skn48gjj4wDDjgg7r777sL16zrGa/rwww/j\nzDPPjGHDhsXAgQPjoosuipqamhgxYkT885//jKFDh8aKFSvWOoO7envVqlVx2WWXxYEHHhhHH310\n/Pd//3dhTFVVVfzoRz+KIUOGxMCBA2Pq1Kl15j/44INxxBFHxAEHHBD33ntvRMRade+///4YNmxY\nDB06NI4++uh44403GrSvAFqsDICieeKJJ7KDDjpovWNuv/327NRTT81qamqyZcuWZUcddVT24IMP\nZlmWZf37988uvvjiLMuybOLEidluu+2WzZw5M1u1alV21FFHZb/61a+yLMuyHj16ZJdddlmWZVn2\n5ptvZr17987ef//97NVXX8369OmTVVdXZ7W1tdl3vvOd7JZbbsmyLMvGjx+fHXDAAdmiRYsK22PG\njMmyLMv23XffbO7cuVmWZdnzzz+fXXnllVmWZdnJJ5+c3XbbbVmWZdncuXOzPffcM5szZ042Z86c\nbKeddsomTpyYZVmWTZs2rd51L1myJNt3332zF154IcuyLHvkkUeywYMHZ7W1tdnMmTOzQYMG1buP\njj/++Ozoo4/Oli5dmi1dujQbPHhw9uijj2bV1dXZ3nvvnT3zzDNZlmXZf/7nf2bDhw/PsizLpk6d\nmu2+++7ZP/7xj8I6DjrooKy6ujpbvnx5dtRRR2XTpk3Lnn/++axPnz7ZvHnzsizLsosvvji7+uqr\nsyzLstGjR2fDhg3LKisrs5qamuwb3/hG9tBDDxWOzfPPP59lWZbddddd2Xe/+91s1apV2QcffJDt\ns88+hZ8NHz48+9d//dcsy7LsnnvuyXr37p3NnDkze+edd7I99tgj++tf/5plWZbddttt2dlnn73W\n2h9//PHsxBNPzFatWpWtWrUq+/nPf5499dRT2Zw5c7Kvfe1r2bx587JVq1ZlZ555ZnbHHXdk7777\nbrbnnntmb731VqG3b3/72/Ue81//+tfZIYccklVVVWU1NTXZ//t//69wDI866qhs0qRJhePZs2fP\nbObMmWv1179//+z000/PVq5cmS1cuDDbe++9s7/85S/Z3XffnZ155pmFcRdeeGF2++23rzX/tNNO\nK1z/X//1X9muu+6arVixIpszZ07Wq1evQt+r75trmjp1amFtWfbx4+D666/PsizLXnnllWyXXXbJ\nVqxYsd5jvKb7778/u+CCC7Isy7Kampps7Nix2euvv77WfbNHjx7Ze++9t9b2E088kQ0ePDhbsmRJ\ntmzZsuzoo4/Ojj/++ML6zz///Ky2tjZbtGhR1q9fv8Kx79GjR3bddddlWZZlf/7zn7NddtklW7ly\nZZ261dXV2V577ZVVV1cXjsmECRPWWgPApsSZVYAi+uCDD6Jbt27rHfPEE0/Et771rSgtLY22bdvG\nYYcdFs8++2zh5wMHDoyIiB49esTmm28e++67b5SUlMQOO+wQCxYsKIw76qijIiLiK1/5Snz5y1+O\nV155JXr37h1PPPFEbLnlltGqVavYY489CmceIyJ222236Nq161o9devWLSZNmhTvvvtu7LXXXnHh\nhRdGTU1N/PGPfyycxfr85z8f++67b8ycOTMiPj4DeOSRR0ZExM4771zvS2RfeeWV+NznPhd77rln\nREQMGTIkKisr4913393gvjzkkEOiXbt20a5du+jbt2+8/PLL8eKLL0b37t1j//33j4iIQw89NN55\n551C7S996UvxpS99KSIinnrqqejXr19sueWW0aZNm5g4cWIMHjw4/vCHP8TBBx9cOPN97LHHxowZ\nMwp1+/XrF507d47S0tLo0aNHvPfee2v1dvLJJ8ett94aJSUl0alTp9hhhx1i7ty58dFHH8Xs2bPj\n0EMPjYiI4447rnA296mnnop99tknevToEREfn0X7wx/+UDizuVrXrl3jzTffjEcffbRwBrdv377x\n7LPPxh577BHdu3ePkpKSuP766+M73/lOPPvss7HvvvvGdtttFxER3/zmN2PWrFmxcuXKiKh7zB9/\n/PE46qijokOHDlFaWhrf/OY3Y8aMGbF8+fJ49dVX4+CDD46IiKFDh0a7du3WeWwOO+ywaN26dXTr\n1i323nvvePnll+Pggw+Op59+Oqqrq6O2tjYef/zxGDZs2Fpzb7311jjllFMiImLPPfeM5cuXR0VF\nxTprbcg3vvGNiIjYaaedYvny5VFZWbnBY7xa165d4+WXX45nnnkmVq1aFZdeemn06tWrwbWff/75\n6NevX2yxxRbRtm3bOut9/PHH48QTT4xWrVpF165d46CDDqrTw+qzzjvvvHMsX748Fi1aVOe2N998\n8ygpKYkpU6bEwoULY9iwYXHqqac2fMcAtEClG7sBgE1Zly5dYv78+esd8/7770enTp0K2506darz\nh+oWW2wRERGtWrUq/Hv19qpVq+rMW/PfVVVVsWzZsrjqqqsKLztdvHhxHHjggfXOWdMvfvGL+MUv\nfhFHHnlkbL311jFmzJj48pe/HFmWRYcOHQrjOnbsWHjpauvWraN9+/b19rbmWjt27Fjnug4dOqz1\nh3l9/u/6FixYEFVVVTFnzpwYOnRo4Wdt2rQp9LTmnMrKyigvLy9srw5f1dXV8eijj8YzzzwTER9/\nIFZNTU2d/lZr3br1WmEyIuKtt96Kq6++Ov7+979Hq1atYt68eXHkkUfG4sWLo6SkpLDmzTbbrPCf\nF9XV1fHCCy/U6X3LLbdc6z84dt1117joooti4sSJMXr06BgwYEBccsklUVlZWWdfbr755oV1rnl9\nhw4dIsuywodWrblPqqur46677orJkydHRERtbW107do1Pvjgg0I/EVFnDfVZ8z88OnToEFVVVdG9\ne/fYddddY8aMGfHFL34xPv/5z8cXvvCFteY+/fTT8Ytf/CIqKyujpKQksiyr977TUKt7bt26dURE\nrFq1aoPHeLVhw4bF4sWL48Ybb4y///3v8Y1vfCMuvPDCBtdevHhxnfvYmvusuro6Ro0aVehr+fLl\ndY796vvZmn2vabPNNot77703brvttrjppptixx13jEsuuSR23HHHBvcH0NIIqwBFtPvuu8eiRYti\n9uzZsfPOOxeur6mpiZtvvjlOP/302GqrrQrhIOLjs7FbbbVVo2tVVlbG5z//+cJtdOrUKX75y1/G\nW2+9FQ888EBsscUW8fOf/3yD4Tki4otf/GJcddVVsWrVqnjwwQfjBz/4QTz++OPRqlWrWLx4cSHw\nNOTM8Zq6detWZ61ZlsXixYujW7duG/ywojU/IXh1D+Xl5fGVr3wlHnjggbXG/+1vf6uz3aVLlzq3\nsfrf5eXlMXz48Bg9enSD1/F/XXbZZbHzzjvHLbfcEq1bt44RI0ZExMfBKcuyWLZsWbRr1y5WrlxZ\nCNLl5eWx3377xfjx4zd4+0OHDo2hQ4fGBx98EGPGjIm77rorttlmm3j55ZcLY5YsWRIfffRRdOvW\nrc71ixcvjlatWtX7oVXl5eUxYMCAOP744+tcv/r9nEuWLIkOHTrEqlWrCu+Prs+aP1vz/nHIIYfE\nI488Etttt13hLO2aampqYtSoUXHDDTdEv379YsWKFbHrrrtucH80VmOO8YgRI2LEiBExf/78OPvs\ns+PBBx8snKVerVWrVoX/tFhz7R07dqzzKd9rvge5vLw8brnllsKZ9KbYaaedYvz48bFixYq48847\n45JLLolJkyY1+fYAUudlwABF1LFjx/jud78bo0ePjrfffjsiIpYtWxZjx46N119/Pdq1axcHHnhg\nTJkyJWpra2Pp0qXx0EMPRb9+/Rpd67e//W1ERLz55pvx9ttvx2677RaLFi2Kr3zlK7HFFlvEu+++\nG08++WQsXbp0vbfz/vvvx0knnRRLliyJVq1axW677RYlJSVRWloaBxxwQOEs3DvvvBMvvPBC7Lff\nfg3ucdddd42FCxcWwtRvf/vb+NznPhfbbrvtBuc++uijsWLFili6dGk89dRTsddee8Vuu+0WFRUV\n8ec//zkiIubMmRM/+tGP6v2U5QEDBsQf/vCHWLx4caxcuTLOPPPMeOaZZ2LAgAExY8aMQrB47LHH\nYsKECRvsp7S0tBBMFi1aFL169YrWrVvHs88+G2+//XYsXbo0tthii9h+++3jd7/7XUR8/CE/JSUl\nERFxwAEHxAsvvFB4WfYrr7wSV1xxxVp1pk6dGrfccktERHTu3Dm+8pWvRMTHL09+6aWXYu7cuZFl\nWVxyySUxZcqU2H///evc7qRJk2L//feP0tK1/3964MCB8dBDD8WyZcsKY3/9619H27Zto2fPnvHo\no49GxMfHafny5evcF7/97W9j1apVsWjRonjxxRdjr732ioiPQ/aLL74YjzzySL0vAV62bFksXbo0\nevfuHRERv/zlL2OzzTbb4H10tdLS0liyZMkGP1W7ocf4lltuiSlTpkRERPfu3WPbbbct3PeXLl1a\neCl1WVlZ4cOTpk6dGq1affzn1B577BHPPPNMLFu2LJYtW1bnA6YGDBhQCJYrV66MK6+8MmbPnr3B\n9a2u+9e//jW+//3vx4oVK6JNmzbRu3fvwn0JYFPlzCpAkZ199tnRqVOn+N73vhe1tbXRqlWrGDhw\nYIwbNy4iPv6k2zlz5sQhhxwSJSUlMXTo0Hr/sN+Qrl27xuGHHx7z58+Piy66KDp16hQjRoyI73//\n+zFkyJDYcccd44ILLoizzz678Gmj67qdvn37xlFHHRWtW7eOzTbbLH7yk59ERMSll14aF110UTzw\nwAOx2WabxRVXXBFbb711zJ07t0E9tm/fPm644Ya4/PLLY+nSpdG1a9f42c9+1qA/uvfYY4848cQT\n46233oqDDjoovv71r0erVq1i/Pjxcfnll8eHH34Ym222WZxzzjn13t7uu+8ep5xyShxxxBHRpk2b\n6Nu3bxx66KFRUlISp59+epxwwgmxatWq6NatW1x66aUb7GfIkCFx3nnnxfe///343ve+F1dddVXc\neuutMXDgwDjrrLNi/Pjx0atXr7jkkkvi4osvjrvuuiuOOOKIwntMy8vL4/LLL48zzzwzampqYost\ntogxY8asVWfgwIExZsyYGDx4cLRu3Tq22267uPrqq6Nz585x2WWXxbe//e1o3bp17LLLLnHSSSfF\n5ptvHldccUWcccYZUVNTE9tuu21cfvnl9a5h0KBB8cYbb8Tw4cMj4uMz6quP9bhx42LMmDFx++23\nx9e//vXYfvvt17kvdtlllzj66KPj/fffj29/+9vx1a9+NSI+Dtd77713LF68OLbeeuu15q3+z5wj\njjgiunXrFt/73vdi0KBBcfrpp8ftt9++wWOw5557xk9/+tPo27dvPPnkk+sct/POOzfoGB9++OFx\n4YUXxh133BElJSWx2267xeGHHx4rVqyITp06xf777x+//vWv49xzz41x48bF+PHjY8SIEYWXHvfv\n3z+eeOKJGDp0aGy11VbRr1+/wnfQjho1Ki699NIYMmRIRET07dt3gy/h3XHHHQt1H3jggdh2223j\n0EMPjc022yy22GKLGDt27Ab3EUBLVpJt6L8jAUjejjvuGE8++WR87nOf29itFMUJJ5wQRx99dL1f\nfdISZFlWCNBf+9rX4t57742ePXtu5K7yMW7cuNhhhx3iuOOO29itANDCeBkwABTR97///bjjjjsi\nIuK5556LLMsKn1C8qXvrrbfiqaeeKnxCLwA0hpcBA0ARnXPOOXHhhRfG1KlTY7PNNotrr7022rZt\nu7HbKrobb7wxHnroobj44ovrfKIyADSUlwEDAACQHC8DBgAAIDnCKgAAAMlJ+j2rFRXV6/xZly7t\no7KyYd/Dlsf4TaVGij3lUSPFnvKokWJPedRIsac8aqTYUx41Uuwpjxop9pRHjRR7yqNGij3lUSPF\nnvKokWJPedRIsac8aqTYU3PWKCtb9+catNgzq6WlrZMav6nUSLGnPGqk2FMeNVLsKY8aKfaUR40U\ne8qjRoo95VEjxZ7yqJFiT3nUSLGnPGqk2FMeNVLsKY8aKfaUR40Ue8qrRosNqwAAAGy6hFUAAACS\nI6wCAACQHGEVAACA5AirAAAAJEdYBQAAIDnCKgAAAMkRVgEAAEiOsAoAAEByhFUAAACSI6wCAACQ\nHGEVAACA5AirAAAAJEdYBQAAIDnCKgAAAMkRVgEAAEiOsAoAAEByhFUAAACSU7qxG2iMsvKOdbc/\nuaxYUJV/MwAAABSNM6sAAAAkR1gFAAAgOcIqAAAAyRFWAQAASI6wCgAAQHKEVQAAAJIjrAIAAJAc\nYRUAAIDkCKsAAAAkR1gFAAAgOcIqAAAAyRFWAQAASI6wCgAAQHKEVQAAAJIjrAIAAJAcYRUAAIDk\nCKsAAAAkR1gFAAAgOaXFuuFly5bFBRdcEIsWLYrly5fHGWecEdOnT4/Zs2dH586dIyLilFNOiQMP\nPLBYLQAAANBCFS2sPv7449G7d+849dRT4913342TTz459thjjzjvvPOif//+xSoLAADAJqBoYfXg\ngw8u/Pu9996L7t27F6sUAAAAm5iiv2d1xIgR8cMf/jDGjBkTERH3339/nHjiiXHuuefG+++/X+zy\nAAAAtEAlWZZlxS7yl7/8Jc4///wYM2ZMdO7cOXr16hUTJkyIefPmxdixY9c5b+XK2igtbb1GtyX1\nDyz+EgAAAMhR0V4G/Nprr0W3bt1i6623jl69ekVtbW306NEjunXrFhERAwYMiHHjxq33Niorl9bZ\nLlvHuIqK6g32U1bWoUHjmjp+U6mRYk951EixpzxqpNhTHjVS7CmPGin2lEeNFHvKo0aKPeVRI8We\n8qiRYk951EixpzxqpNhTHjVS7CmPGin21Jw1yso6rHNO0V4G/MILL8Tdd98dERELFy6MpUuXxtix\nY2POnDkRETFr1qzYYYcdilUeAACAFqxoZ1ZHjBgRP/7xj2PkyJHx0UcfxdixY6N9+/YxatSoaNeu\nXbRv3z6uuuqqYpUHAACgBStaWG3btm1cf/31a10/derUYpUEAABgE1H0TwMGAACAxhJWAQAASI6w\nCgAAQHKEVQAAAJIjrAIAAJAcYRUAAIDkCKsAAAAkR1gFAAAgOcIqAAAAyRFWAQAASI6wCgAAQHKE\nVQAAAJIjrAIAAJAcYRUAAIDkCKsAAAAkR1gFAAAgOcIqAAAAyRFWAQAASI6wCgAAQHKEVQAAAJIj\nrAIAAJAcYRUAAIDkCKsAAAAkR1gFAAAgOcIqAAAAyRFWAQAASI6wCgAAQHKEVQAAAJIjrAIAAJAc\nYRUAAIDkCKsAAAAkR1gFAAAgOcIqAAAAyRFWAQAASI6wCgAAQHKEVQAAAJIjrAIAAJAcYRUAAIDk\nCKsAAAAkR1gFAAAgOaUbu4FiKivvWHf7k8uKBVWNGr++OQAAADQ/Z1YBAABIjrAKAABAcoRVAAAA\nkiOsAgAAkBxhFQAAgOQIqwAAACSnaF9ds2zZsrjgggti0aJFsXz58jjjjDOiZ8+ecf7550dtbW2U\nlZXFddddF23atClWCwAAALRQRQurjz/+ePTu3TtOPfXUePfdd+Pkk0+Of/mXf4mRI0fGsGHD4mc/\n+1lMmTIlRo4cWawWAAAAaKGK9jLggw8+OE499dSIiHjvvfeie/fuMWvWrBg4cGBERPTv3z+ee+65\nYpUHAACgBSvamdXVRowYEfPmzYvbbrstTjrppMLLfrt16xYVFRXFLg8AAEALVJJlWVbsIn/5y1/i\n/PPPj4qKipg5c2ZERLz99tsxevTomDRp0jrnrVxZG6WlrdfotqT+getaQnONb84aAAAAbFDRzqy+\n9tpr0a1bt9h6662jV69eUVtbG1tssUV89NFH0bZt25g/f36Ul5ev9zYqK5fW2S5bx7iKiup6r2+u\n8c1Zo87csg4NGvdp5hR7/KZSI8We8qiRYk951EixpzxqpNhTHjVS7CmPGin2lEeNFHvKo0aKPeVR\nI8We8qiRYk951EixpzxqpNhTc9YoK+uwzjlFe8/qCy+8EHfffXdERCxcuDCWLl0a++23X0yfPj0i\nImbMmBF9+/YtVnkAAABasKKdWR0xYkT8+Mc/jpEjR8ZHH30UY8eOjd69e8fo0aNj8uTJsc0228QR\nRxxRrPIAAAC0YEULq23bto3rr79+revvueeeYpUEAABgE1G0lwEDAABAUwmrAAAAJEdYBQAAIDnC\nKgAAAMkRVgEAAEiOsAoAAEByivbVNdSvrLxj3e1PLisWVDXrHAAAgJbMmVUAAACSI6wCAACQHGEV\nAACA5AirAAAAJEdYBQAAIDnCKgAAAMkRVgEAAEiOsAoAAEByhFUAAACSI6wCAACQnNKN3QDNr6y8\nY93tTy4rFlQ1avz65gAAABSTM6sAAAAkR1gFAAAgOcIqAAAAyRFWAQAASI6wCgAAQHKEVQAAAJIj\nrAIAAJAcYRUAAIDkCKsAAAAkR1gFAAAgOaUbuwFaprLyjnW3P7msWFDVLOMBAIDPNmdWAQAASI6w\nCgAAQHKEVQAAAJIjrAIAAJAcYRUAAIDkCKsAAAAkR1gFAAAgOcIqAAAAyRFWAQAASI6wCgAAQHKE\nVQAAAJJTurEbgHUpK+9Yd/uTy4oFVc0yHgAASJczqwAAACRHWAUAACA5wioAAADJEVYBAABIjrAK\nAABAcoRVAAAAklPUr6659tpr48UXX4yVK1fGaaedFn/4wx9i9uzZ0blz54iIOOWUU+LAAw8sZgsA\nAAC0QEULqzNnzow33ngjJk+eHJWVlTF8+PD42te+Fuedd17079+/WGUBAADYBBQtrO69996x6667\nRkREx44dY9myZVFbW1uscgAAAGxCivae1datW0f79u0jImLKlCnx9a9/PVq3bh33339/nHjiiXHu\nuefG+++/X6zyAAAAtGAlWZZlxSzw2GOPxe233x533313vPbaa9G5c+fo1atXTJgwIebNmxdjx45d\n59yVK2ujtLT1Gt2W1D9wXUtorvF51FjfYbDufHvaUF8AAEDRFfUDlp5++um47bbb4s4774wOHTpE\nnz59Cj8bMGBAjBs3br3zKyuX1tkuW8e4iorqeq9vrvF51FjX+DxqWHfj+irML+vQoHFNHZ9HjRR7\nyqNGij3lUSPFnvKokWJPedRIsac8aqTYUx41Uuwpjxop9pRHjRR7yqNGij3lUSPFnpqzRllZh3XO\nKdrLgKurq+Paa6+N22+/vfDpv2effXbMmTMnIiJmzZoVO+ywQ7HKAwAA0IIV7czqtGnTorKyMkaN\nGlW47sgjj4xRo0ZFu3bton379nHVVVcVqzwAAAAtWNHC6jHHHBPHHHPMWtcPHz68WCUBAADYRBTt\nZcAAAADQVMIqAAAAyRFWAQAASI6wCgAAQHKEVQAAAJIjrAIAAJCcon11DWyKyso71t3+5LJiQVX+\nzQAAwCbMmVUAAACSI6wCAACQHGEVAACA5AirAAAAJEdYBQAAIDnCKgAAAMkRVgEAAEiOsAoAAEBy\nhFUAAACSI6wCAACQnNKN3QD3CzbBAAAgAElEQVRsysrKO9bd/uSyYkFV/s0AAEAL4swqAAAAyRFW\nAQAASI6wCgAAQHKEVQAAAJIjrAIAAJAcYRUAAIDkCKsAAAAkR1gFAAAgOcIqAAAAyRFWAQAASE7p\nxm4AqKusvGPd7U8uKxZUFXV8c9YAAIBPy5lVAAAAkiOsAgAAkBxhFQAAgOQIqwAAACRHWAUAACA5\nwioAAADJEVYBAABIjrAKAABAcoRVAAAAkiOsAgAAkJzSjd0AsOkpK+9Yd/uTy4oFVc06BwCATZcz\nqwAAACRHWAUAACA5wioAAADJEVYBAABIjrAKAABAcoRVAAAAktOgsHrBBResdd0pp5zS7M0AAABA\nxAa+Z/Xhhx+OSZMmxRtvvBHHHXdc4fqamppYuHDhBm/82muvjRdffDFWrlwZp512Wuyyyy5x/vnn\nR21tbZSVlcV1110Xbdq0+fSrAAAAYJOy3rD6jW98I/bdd9/44Q9/GGeffXbh+latWsVXv/rV9d7w\nzJkz44033ojJkydHZWVlDB8+PPr06RMjR46MYcOGxc9+9rOYMmVKjBw5snlWAgAAwCZjgy8D7t69\ne0ycODF69eoVW2+9dWy99dbRvXv3qK6uXu+8vffeO2688caIiOjYsWMsW7YsZs2aFQMHDoyIiP79\n+8dzzz3XDEsAAABgU7PeM6urXXHFFTF16tTo2rVrZFkWERElJSXx+9//fp1zWrduHe3bt4+IiClT\npsTXv/71eOaZZwov++3WrVtUVFR82v4BAADYBJVkq9Pnehx22GExZcqU2HzzzRtd4LHHHovbb789\n7r777hg8eHDhbOrbb78do0ePjkmTJq1z7sqVtVFa2nqNbkvqH7iuJTTX+DxqrO8wWHe+PeVRw7o3\nTg0AAFqMBp1Z3W677ZoUVJ9++um47bbb4s4774wOHTpE+/bt46OPPoq2bdvG/Pnzo7y8fL3zKyuX\n1tkuW8e4ior6X5LcXOPzqLGu8XnUsO78a1j3xqlRmFvWoUHjPs2cFGuk2FMeNVLsKY8aKfaUR40U\ne8qjRoo95VEjxZ7yqJFiT3nUSLGnPGqk2FNz1igr67DOOQ0Kq5/73OfiuOOOiz333DNat/7fM53n\nnHPOOudUV1fHtddeG/fee2907tw5IiL222+/mD59ehx++OExY8aM6Nu3b0PKAwAA8BnToLDauXPn\n6NOnT6NueNq0aVFZWRmjRo0qXHf11VfHRRddFJMnT45tttkmjjjiiMZ1CwAAwGdCg8LqGWec0egb\nPuaYY+KYY45Z6/p77rmn0bcFAADAZ0uDwupOO+0UJWt8mElJSUl06NAhZs2aVbTGAAAA+OxqUFj9\n7//+78K/V6xYEc8991z89a9/LVpTAAAAfLa1auyENm3aRL9+/eLZZ58tRj8AAADQsDOrU6ZMqbM9\nb968mD9/flEaAgAAgAaF1RdffLHO9pZbbhk33HBDURoCAACABoXVq666KiIiPvjggygpKYlOnToV\ntSkAAAA+2xoUVl966aU4//zz48MPP4wsy6Jz585x3XXXxS677FLs/gCaRVl5x7rba/y7YkFVo+Y0\n13gAANatQWH1+uuvj1tvvTV69OgRERGvv/56/OQnP4l//dd/LWpzAAAAfDY16NOAW7VqVQiqER9/\n72rr1q2L1hQAAACfbQ0Oq9OnT48lS5bEkiVLYtq0acIqAAAARdOglwFfeumlcfnll8dFF10UrVq1\nip49e8YVV1xR7N4AAAD4jGrQmdVnn3022rRpE88//3zMmjUrsiyLJ598sti9AQAA8BnVoLD68MMP\nx80331zYvvvuu+M3v/lN0ZoCAADgs61BYbW2trbOe1RLSkoiy7KiNQUAAMBnW4PeszpgwIAYMWJE\n7LnnnrFq1aqYOXNmDB48uNi9AQAA8BnVoLB6xhlnxD777BOvvPJKlJSUxCWXXBK77757sXsDAADg\nM6pBYTUiYq+99oq99tqrmL0AAABARDQirALQ/MrKO9bd/uSyYkFV/s0AACSkQR+wBAAAAHkSVgEA\nAEiOsAoAAEByhFUAAACSI6wCAACQHGEVAACA5AirAAAAJEdYBQAAIDnCKgAAAMkRVgEAAEhO6cZu\nAICGKyvvWHf7k8uKBVWNGt+UOesaDwBQDM6sAgAAkBxhFQAAgOQIqwAAACRHWAUAACA5wioAAADJ\nEVYBAABIjrAKAABAcoRVAAAAkiOsAgAAkBxhFQAAgOSUbuwGAGjZyso71t3+5LJiQVWzzWmu8Rvq\nCwBIhzOrAAAAJEdYBQAAIDnCKgAAAMkRVgEAAEiOsAoAAEByhFUAAACSI6wCAACQnKKG1b/97W8x\naNCguP/++yMi4oILLojDDjssTjjhhDjhhBPiiSeeKGZ5AAAAWqjSYt3w0qVL4/LLL48+ffrUuf68\n886L/v37F6ssAAAAm4CinVlt06ZN3HHHHVFeXl6sEgAAAGyiihZWS0tLo23btmtdf//998eJJ54Y\n5557brz//vvFKg8AAEALVpJlWVbMAjfddFN06dIljj/++Hjuueeic+fO0atXr5gwYULMmzcvxo4d\nu865K1fWRmlp6zW6Lal/4LqW0Fzj86ixvsNg3fn2lEcN686/hnXnX2NTXzcAUFRFe89qfdZ8/+qA\nAQNi3Lhx6x1fWbm0znbZOsZVVFTXe31zjc+jxrrG51HDuvOvYd3517Du/Gts6uuuM7esQ4PGfZo5\nxR6/qdRIsac8aqTYUx41Uuwpjxop9pRHjRR7yqNGij01Z42ysg7rnJPrV9ecffbZMWfOnIiImDVr\nVuywww55lgcAAKCFKNqZ1ddeey2uueaaePfdd6O0tDSmT58exx9/fIwaNSratWsX7du3j6uuuqpY\n5QEAAGjBihZWe/fuHRMnTlzr+iFDhhSrJAAAAJuIXF8GDAAAAA0hrAIAAJAcYRUAAIDkCKsAAAAk\nR1gFAAAgOcIqAAAAySnaV9cAwKasrLxj3e1PLisWVDXbnKbUAIBNhTOrAAAAJEdYBQAAIDnCKgAA\nAMkRVgEAAEiOsAoAAEByhFUAAACSI6wCAACQHGEVAACA5AirAAAAJEdYBQAAIDmlG7sBAKB5lJV3\nrLu9xr8rFlTl2wwAfErOrAIAAJAcYRUAAIDkCKsAAAAkR1gFAAAgOcIqAAAAyRFWAQAASI6wCgAA\nQHKEVQAAAJIjrAIAAJAcYRUAAIDklG7sBgCAjaesvGPd7U8uKxZU5d8MAKzBmVUAAACSI6wCAACQ\nHGEVAACA5AirAAAAJEdYBQAAIDnCKgAAAMkRVgEAAEiOsAoAAEByhFUAAACSI6wCAACQnNKN3QAA\n0HKUlXesu/3JZcWCqvybAWCT5swqAAAAyRFWAQAASI6wCgAAQHKEVQAAAJIjrAIAAJAcYRUAAIDk\nCKsAAAAkp6hh9W9/+1sMGjQo7r///oiIeO+99+KEE06IkSNHxjnnnBMrVqwoZnkAAABaqKKF1aVL\nl8bll18effr0KVw3fvz4GDlyZPzbv/1bbLfddjFlypRilQcAAKAFK1pYbdOmTdxxxx1RXl5euG7W\nrFkxcODAiIjo379/PPfcc8UqDwAAQAtWWrQbLi2N0tK6N79s2bJo06ZNRER069YtKioqilUeAACA\nFqwky7KsmAVuuumm6NKlSxx//PHRp0+fwtnUt99+O0aPHh2TJk1a59yVK2ujtLT1Gt2W1D9wXUto\nrvF51FjfYbDufHvKo4Z151/DuvOvYd351/isrhuATVLRzqzWp3379vHRRx9F27ZtY/78+XVeIlyf\nysqldbbL1jGuoqK63uuba3weNdY1Po8a1p1/DevOv4Z151/DuvOv8Vldd525ZR0aNO7TzEmxRoo9\n5VEjxZ7yqJFiT3nUSLGnPGqk2FNz1igr67DOObl+dc1+++0X06dPj4iIGTNmRN++ffMsDwAAQAtR\ntDOrr732WlxzzTXx7rvvRmlpaUyfPj1++tOfxgUXXBCTJ0+ObbbZJo444ohilQcAAKAFK1pY7d27\nd0ycOHGt6++5555ilQQAAGATkevLgAEAAKAhhFUAAACSI6wCAACQHGEVAACA5AirAAAAJEdYBQAA\nIDlF++oaAIA8lJV3rLu9xr8rFlTl2wwAzcaZVQAAAJIjrAIAAJAcYRUAAIDkCKsAAAAkR1gFAAAg\nOcIqAAAAyRFWAQAASI6wCgAAQHKEVQAAAJIjrAIAAJCc0o3dAABA3srKO9bd/uSyYkFVs4xv6hwA\n/pczqwAAACRHWAUAACA5wioAAADJEVYBAABIjrAKAABAcoRVAAAAkiOsAgAAkBxhFQAAgOQIqwAA\nACRHWAUAACA5pRu7AQAAIsrKO9bd/uSyYkFVo8avbw5AS+LMKgAAAMkRVgEAAEiOsAoAAEByhFUA\nAACSI6wCAACQHGEVAACA5AirAAAAJEdYBQAAIDnCKgAAAMkRVgEAAEhO6cZuAACAfJSVd6y7/cll\nxYKqZhnf1DkA9XFmFQAAgOQIqwAAACRHWAUAACA5wioAAADJEVYBAABIjrAKAABAcoRVAAAAkpPr\n96zOmjUrzjnnnNhhhx0iIqJHjx5x8cUX59kCAAAALUCuYTUiYp999onx48fnXRYAAIAWxMuAAQAA\nSE7uYfV//ud/4vTTT49jjz02nn322bzLAwAA0AKUZFmW5VVs/vz58eKLL8awYcNizpw5ceKJJ8aM\nGTOiTZs29Y5fubI2Sktb/+8VJSX13/C6ltBc4/Oosb7DYN359pRHDevOv4Z151/DuvOvYd3517Du\n/Gukum6g2eX6ntXu3bvHwQcfHBERX/ziF2OrrbaK+fPnxxe+8IV6x1dWLq2zXbaO262oqK73+uYa\nn0eNdY3Po4Z151/DuvOvYd3517Du/GtYd/41rDv/Gqmuu878sg4NHpvH+E2lRoo95VEjxZ6as0ZZ\nWYd1zsn1ZcAPP/xw3HXXXRERUVFREYsWLYru3bvn2QIAAAAtQK5nVgcMGBA//OEP4/e//33U1NTE\nuHHj1vkSYAAAAD67cg2rW265Zdx22215lgQAAKAF8tU1AAAAJEdYBQAAIDnCKgAAAMkRVgEAAEiO\nsAoAAEByhFUAAACSk+tX1wAAwKaorLxj3e1PLisWVBV1fHPWgNQ4swoAAEByhFUAAACSI6wCAACQ\nHGEVAACA5AirAAAAJEdYBQAAIDnCKgAAAMkRVgEAAEiOsAoAAEByhFUAAACSU7qxGwAAADa+svKO\ndbc/uaxYUNVsc5pr/Ib6YtPgzCoAAADJEVYBAABIjrAKAABAcoRVAAAAkiOsAgAAkBxhFQAAgOQI\nqwAAACRHWAUAACA5wioAAADJEVYBAABITunGbgAAAKC5lJV3rLv9yWXFgqpmGZ9XDZxZBQAAIEHC\nKgAAAMkRVgEAAEiOsAoAAEByhFUAAACSI6wCAACQHGEVAACA5AirAAAAJEdYBQAAIDnCKgAAAMkp\n3dgNAAAA8L/KyjvW3V7j3xULqho1p7nG51VjTc6sAgAAkBxhFQAAgOQIqwAAACRHWAUAACA5wioA\nAADJEVYBAABIjrAKAABAcnL/ntUrr7wy/vznP0dJSUmMGTMmdt1117xbAAAAIHG5htX/+q//irff\nfjsmT54cb775ZowZMyYmT56cZwsAAAC0ALm+DPi5556LQYMGRUTE9ttvH4sXL44lS5bk2QIAAAAt\nQK5hdeHChdGlS5fCdteuXaOioiLPFgAAAGgBSrIsy/IqdvHFF0e/fv0KZ1ePPfbYuPLKK+PLX/5y\nXi0AAADQAuR6ZrW8vDwWLlxY2F6wYEGUlZXl2QIAAAAtQK5hdf/994/p06dHRMTs2bOjvLw8ttxy\nyzxbAAAAoAXI9dOA/+Vf/iV23nnnGDFiRJSUlMQll1ySZ3kAAABaiFzfswoAAAANkevLgAEAAKAh\nhFUAAACSI6wCAACQHGEVAACA5OT6acCfxocfflj4jtaysrJo3759UeasXLkyIiJKSze8axpz+1VV\nVTFhwoT44x//WJhTXl4effv2jVNOOWW9X+HTmJ6aOqdY686rp6aMz6NGY/dVivs2j8desR+rjanx\naR6reayj2PfBPGoUc/xn/bk2xePdlBoNHZ/X8c7rWKT23JnquiPSW0cxa9TU1MTUqVPjj3/8Y1RU\nVETE/97Phw8fHq1bt869p09ToyX/jslzTmPGv/nmmzFz5sxYsGBBRHx8/zjggANiu+2222g9fZo5\na0r+04BfffXV+MlPfhJVVVXRpUuXyLIsFixYEN27d4+xY8fGjjvu+KnnzJ07N66//vp46aWXolWr\nVrFq1aqIiNh3333jBz/4QXTv3v1T93TqqafGQQcdFP37949u3bpFlmUxf/78mDFjRsyaNSt+8Ytf\nfKqemjInj3UXu6cU91NT9lWK+zaPx16xH6tNqdHYx2oe68hj3Snezz3XpvN7L48aTemp2Mc7j2PR\nlDkp/p2T4v02xWPRlDnnnntufPGLX1zrfj59+vSoqqqKa6+9Nvl1byq/Y1Lct7feems8++yz0a9f\nv+jatWvh/vHEE0/EoYceGt/5zndy76mpc+qVJW7EiBHZ//zP/6x1/WuvvZaNHDmyWeYcf/zx2TPP\nPJOtWrWqcF1NTU02ffr07Dvf+U6z9HTsscfWe32WZc3SU1Pm5LHuYveU4n7KssbvqxT3bR6PvWI/\nVptSo7GP1TzWkce6U7yfe66ta2P+3sujRlN6KvbxzuNYNGVOin/npHi/TfFYNGXOcccdV+/trOtn\nKa57U/kdk+K+PeaYY+rs19VqamqyY445ZqP01NQ59Un+PatZlsX222+/1vU777xz1NbWNsuc2tra\n2H///aOkpKRwXWlpaQwePDiWL1/eLD116NAh7r777pgzZ04sWbIklixZEm+99Vbcdttt0blz50/d\nU1Pm5LHuYveU4n6KaPy+SnHf5vHYK/ZjtSk1GvtYzWMdeaw7xfu559qGrzvF453H/bzYxzuPY9GU\nOSn+nZPi/TbFY9GUOSUlJTFjxoyoqakpXLdixYr4z//8z2jTps1G6SnF55wUj10efdXW1hZe/rum\n+q7Lq6emzqlP8u9Z3W233eL000+PQYMGRdeuXSMiYuHChTF9+vTYZ599mmXONttsE5dffvla4x95\n5JF6X+vdlJ6uv/76uPfee+PCCy+MioqKKCkpKbye/LrrrvvUPTVlTh7rLnZPKe6npuyrFPdtHo+9\nYj9Wm1KjsY/VPNaRx7pTvJ97rk3n914eNZrSU7GPdx7HoilzUvw7J8X7bYrHoilzrrvuurjxxhvj\nmmuuiY8++igiItq3bx99+vSJa665pkWse1P5HZPivj333HPj5JNPjs6dOxfGV1RUxIcffhiXXHLJ\nRumpqXPqk/x7ViMinn/++XjuuefqfHjC/vvvH3vssUezzFm5cmX85je/qXf8wQcfHK1arX0Cuik9\nNUZTemrsnDzWXeyeUt1PTdlXqe3bpvRU7HXndSyaopjryGPdqd7PPdem83uv2DWa2lNjpHgsmjon\nxb9zUrzfpnYsPs2cxkht3ZvS75jU9u1qc+bMqTP+85///DrH5tVTc9zPW0RYXZcVK1bU+/KH5p5T\n7Nu/5JJL4tJLLy1SR/ko9n7dlDR2X6W4b/N47OWx7sbWaMpjdVM5fsWukcf947P6XJvi8c5DsY93\nXscitefOVNfdWKkei8bOufnmm+Oss85KqqcUn3NSPHZ59PXYY4/FoEGDkuqpsXOSf8/q+lxwwQVF\nn3PmmWcW9fYjIs4+++xGjT/jjDMaXaOx68hj3cXuqbHjmzKnKceisfsqxX2bx2Ov2I/VptRo7GO1\nKTXyuJ83tqcU7+d5PNfm8RyS4mMvj+Odx/282Mc7j2PRlDkp/p2zqfy9lsfzVGPnNDaIpLjuPH6P\npXjsmjJnfeOzLIv3338/Fi1aVLiuurp6o/bUHHNa9JnVlmTlypUxY8aM6NKlS/Tp0ycef/zxeO21\n12K77baLQw45ZJ3fkQXka8KECXH44YfX+zH6pM/x+2zxu5XPiqqqqnjppZfqfM/qnnvuud7vEuaz\n4R//+Edcc8018e6778bcuXNj++23j8WLF8fOO+8cF154YYv/fdh63Lhx4zZ2E+uzatWqmDZtWtxz\nzz3xq1/9Kh5++OF46aWXoqSkJL70pS/VO6e6ujr++Mc/xpe//OWoqqqKG2+8Me67776YPXt27LTT\nTtGuXbs6419//fUoKyuLiI9PS993333xq1/9Kt55553Yaaed1vrS4ieffLJQ+4MPPojrrrsu7rzz\nzpg9e3bssssua91+RMT5558f8+fPj5deeimmTZsWf/vb36Jnz57x8ssvx+9///u1/mds+fLl8R//\n8R/xzDPPRLdu3aJLly6Fn916662x9957r1VjxYoV8cgjj0RVVVVss8028dvf/jYmTZoU77zzTvTs\n2XOtdVRXV8d9990X//jHP6Jnz55x//33x7//+7/HG2+8Eb169Vrr9HxTjkVExNNPPx2TJk2KBx98\nMGbMmBF/+tOfolWrVvGFL3xhrbE1NTXx+uuvR/fu3aOmpiYmT54cv/71r+Odd96JHXfcca01NHbN\nq/3pT3+KKVOmxO9+97t44okn4o033ohOnToV3gDeUPfee2/svvvuDRp7wgknxJFHHlnvzxp7n12X\nH/zgBzFkyJB6fzZ27NjYaqutGvyktWjRorjlllvid7/7XbRv3z623Xbbws8uu+yy6NevX4NuZ7Wf\n/vSnsd9++33qGo25P0VEVFZWxsSJE2Pu3LnRs2fPuP322+OOO+5Y574dM2ZMvPTSS/Hqq6/Gl770\npejUqdMG11ZTUxP/8R//ERMmTIj77rsvpk6dGk8//XR8+OGHseOOO671XpzGPvbqs75jvS7ruw+u\nT2Pu56vVd7wb+xzSlOfaphy/xj4fNPax1NjntcbeZ1fXaMx9sCm/Yxr7eG3s79bG7teIxv9ubY7H\n3oYeR409Fk2p09jHRlPus41dQ3P9HlutvueQxh6/pjyWGvs81ZR91dgaU6ZMibFjx8by5ctj5cqV\nUVVVFX/+859j/Pjx0aVLl+jRo8en2q8Rjb9PNfZ4N+Wx19jj19jnqDz+zmnKvmrsus8555wYN25c\nnH766TF48OCYN29e3HXXXdG+ffu4+uqr630eacpj4//a0HNhU3PD/5X8mdWxY8fG1ltvHfvvv388\n88wzkWVZ7LbbbvHAAw9E9+7dY/To0WvNOemkk+Lggw+Ob37zm/GDH/wgvvrVr8YBBxwQs2fPjt//\n/vdxxx131Bl/4oknxn33/f/2zjyqqmqP49+LTEGGIWJqaZIreCkklKL4SAFFoERAUNOLA0ZOmGOJ\nAyZapg2asUQzX4lZ2bSwnoll9ByI8UmCGuSYCkjAlXlQ4P7eH6x7373cc5F9EKP3fp+1WEvP/e3z\nm/Zvn2mfffYBaHnHRaFQwMvLC5mZmSguLsY777xjVH758uVwdHSEj48PMjIycOLECezatcvApvDw\ncHz88ccAgHHjxuHo0aOSv2mIiopC//79YWtri2+++QZz5sxBUFCQgX5dlixZgvvuuw9lZWUYMGAA\nKioq4OPjg9zcXBQVFWH79u168vPmzYOrqysqKyuRnZ0NNzc3eHh44MyZM8jLy8N7773X4VzExsai\nqqoK3t7e2hM/zQfbBwwYYNDmpZdegpOTExYsWIBXX30VarUao0aNwrlz53Dt2jUDH0R9BoBt27ZB\npVJh1KhRSE1NhY2NDR555BF888038PX1lfx4sjGM5cLJyQn29vYwMzODpsRKS0vRq1cvKBQKJCcn\n68mL9lkA8Pb21i4Br9FRVlYGOzs7SR2BgYEYMmQIampqoFQq77gSW0REBHx8fGBra4tPP/0UI0aM\n0E7VMeZ3fX290f1FRkZi//79HdIh2p80ep988kmUlJRApVJh4MCB8PX1RW5uLo4dO4Y9e/boyWvq\nMS0tDQkJCWhoaMCIESPg5OQEW1tbuLi4GOgQ/WC7aO2J5hoQ74NtcbfyLTqGdGSsbW/+5IwHorUk\nOq6J9llAvA/KOcaI1qvosVU0roD4sVW09uTUkWgu5OgRrQ3R2MrxQc5xTHQMEc2fnFoSHafkxEpU\nx5QpU7Bv3z5YWFjoba+trcWcOXNw4MCBDsUVEO9TovkWzZ3GVpH8iY5R9+I8R06sRP2eOnWqtg+o\n1WoolUp8+umnAICwsDB8+eWXHY6tnLFQznWDJO3+IuufhFKp1Pv/zJkztf8ODQ2VbKO7vXV7qQ+I\n68q0/rhy6/ZEROHh4dp/z5gx447yRC0f7K2pqaHCwkIaPnw4Xb9+nYiIbt68SZMnT27TptraWpo5\ncyZ9/fXXberQbG9sbKQxY8ZQc3OzUb9a++Hn52f0N2O+tScXbX2wXeq3sLAw7b9bfzBYygdRn3Xb\naIiIiCAioqamJgoODjaQHzFihOSfu7s7DR48WFLHiRMnSKlU0pEjR7TbpPKsQbTPEhF99tlnFBER\nQTk5Oe3Sodnv5cuXaf369RQYGEhr166l/fv30+HDh43KExE1NzfTsmXLKC4uTtJGDYMHDyYvLy+9\nP29vb/Ly8iIXF5cO6xDtT0T/7ctqtZp8fX2N6m8tr6G4uJi++OILiomJoXnz5knqEP1gu2jtieaa\nSLwPyunnHck30Z3HEDljrWj+RMcD3TbtrSXRcU20zxrbT1u/deQYQ9S+ehU9torGlUj82Cpae6J1\nRCSeCzl6RGtDNLZyfJBzHBMdQ0TzJ6eWRMcpObES1TFp0iSqqakx2F5dXa03vmgQjSuReJ8Szbdo\n7nS3tzd/HRmjOus8h0h+rNrrd0xMDC1dupQ++ugjioiIoHfffZeIiFatWkXR0dGSNonqkDMWyrlu\nkKLLf2eViJCSkgJnZ2f861//gqWlJYCW6QrG6N+/PzZt2oQJEybA3d0dhw8fxvDhw3HixAntlCRd\n6uvrcenSJRARbG1tcQuzhsQAABphSURBVP36dTzyyCOorq5GbW2tgXx5eblWv7m5OfLz8+Hk5ITr\n168bveMSEREBf39/9OjRA3FxcdoFLKqqqrBu3ToDebVajbNnz2LIkCGwsrJCfHw8Fi5ciJKSEjQ1\nNUnqaGxsRG1tLaytrfHSSy9pp56UlpZKfnC5qakJV69exc2bN1FZWYnTp09j6NChuHTpkt6HpzXI\nyYVarca5c+cwePBgve2aaQCtsbGxQUJCAiZMmIBRo0YhNzcXLi4uyMjIMLijKMdnoGU62uXLl+Hg\n4IB///vf2g8TX7x4UVJ+0qRJ6Nu3L6ZNm2bwW3h4uGQbT09PuLu7Y9euXfj2228RHR0t6a8G0T4L\ntNxJ8/X1xVtvvYXExEQsW7asTR2a3wYOHIhXX30VjY2NyMrKwpkzZ3DlyhX4+/vryZuamuL777+H\nr68vTExM8NZbb2HVqlVYu3atZF0ALVPyVCoVli5davCbVKyM6YiJiZHUYaw/nTp1yqjvTU1NKCws\nRL9+/bB27Vrt9vz8fMl+3prevXsjLCwMYWFhRmU0H2z38vKCmZkZgP9OUZea2iRae6K5BsT7oJx+\nLppv0TFEzlhLrSYL9e7dG6GhoUbzJzoeAOK1JDquyemzon1QzjHG1NQUR44cwfjx49tVr5pjq1qt\nbtexVTSuQMuxNSAgQHtsXbhwIYjI6LFVtPZE60jjh0gu5OjR1AYRtas2RGMrxwc5xzHRMUQ0f3Jq\nSXecOnbs2B3HKYVCge+//x7e3t7tjpXoWDhjxgxMmjQJLi4uet/RPHv2LJYvX24gLxpXQLxPieZb\nNHeaNiL5MzZGGTtvET0HAeTFtnWskpKSMGzYsDZjJeJ3bGwskpOT8fvvv2PmzJl45plnALT0G0dH\nR0mbRHXIGQtFa6mtHXVpLl26RPPnz6eAgABaunQpFRcXk0qlou3bt9OVK1ck2zQ2NtInn3xCL7zw\nAvn7+5Ofnx8FBATQ+++/T/X19QbySqWSwsPDSalUklKppKNHjxIR0axZsygpKclAPjo6Wu8vLS2N\nVCoVRUVFUUZGhqRNQ4cOpQ0bNlBZWRkRtdzJKCsr03sSqEt+fj4plUq9O2lNTU0UHx9Pf//73yXb\nJCcn06xZs/S2nThxgkaPHk0nTpwwkM/KyqKQkBB64YUX6OLFizRz5kz629/+RoGBgfTLL78YyLfO\nRVFRERUUFNDWrVvp8uXLkjbl5eVReHg4eXt7U3BwMAUFBdGYMWMoIiKCLl68aCBfXV1Nb775Jvn7\n+9OwYcPIxcWFxo8fT6+++iqpVKp2+Xzs2DEaM2aMpM9ERNnZ2RQYGEgjR46kyZMn04ULF4io5Q7U\nqVOnDOTVajW9//77VFtba/Dbxo0bJXXocuXKFXrxxRfJx8fHqEzrPjt27Fjy8vKiHTt2SPbZ1qSn\np9P06dMN7lbq8tJLLxlsk4qphhs3blB0dLSefpVKRd9++y1NmTLFaLuDBw/qxUqjY+fOnZI6Vq5c\nqdXR2NhIBQUFlJiYKKkjLy+PZsyYoe1PwcHBbfYnIqJffvmFFi9erLft8OHDNGHCBDp79qyBvIuL\ni16ttgdNrLy9vcnDw4NGjhxJY8eOpZiYGCotLTWQb117M2bMoJEjR9Kzzz4rWXu6ZGRkkFKpNLgT\n2hZXrlyhF154gZ544glqamqSlNH087q6Or1tRG3388TERG2+NflrbGyUzLdmDHn22We143lqairF\nxcVJjuetx9qUlBQqKChoc6w9efIk+fn50bRp0ygnJ4dCQkLI09OTxo8fL9kmOzubJk6cSB4eHtrx\nQK1W0+rVqyk7O1tSR+ta0vVbCs24FhAQQMOGDaMnn3ySfH19jY5rrftsY2MjffTRRxQQECDZZ4kM\n++Dw4cPJycmJVq9eTSUlJQbymmOMbq3eunWLdu7cafQYozsmqFQqbY0YGxM0x1bN8fXHH38ktVpN\ns2fPljy2So1RqampkrZoaJ3voKAgcnFxIV9fX0pPTzeQb117s2bNouHDhxs97umiGcvHjRvXppwm\nTj4+PuTk5ERDhgzRjgdSudBFrVZTTk4OzZw5s81jhtR5SGpqKi1atEiyn2tiq1ar9XLXHh88PDzI\nw8OjzTGNSPrc6/nnn6fdu3dTQ0ODUV0HDx6kmpoaA7ukxpCsrCyaNGkSRUREUFZWFs2aNYs8PDwo\nMDBQsl6zs7Np8eLFen7/8MMPNHHiRKO1JDVOac47pc51WsfqTuO/ro6AgACaMWMGFRcXExFRXFyc\n0fOpuro6SktLo0OHDtGhQ4coMzOzzbjqjs1E/60lqbgSiZ/bavIdGRlJAQEB5O/vT9OnT6fdu3dL\nnrdoctfec04i6eN3UlKS0fyJnre0PgfRxOlunucQGcbKz8+PlEol7d69m27cuNEuv9s6b5GDlI6j\nR49SYGAgZWVlGW2nVqsNxkIpH4gMrxs0cu+9957eTLE70eWfrF6/fh12dnaIj49HWloapk6dCmtr\na9TV1cHFxUXyBd2ff/4Z+fn5+OCDD5CWlobVq1fD2toaBw4cwOOPP44xY8boyZ89exYhISFYsGAB\nevbsqd3+0UcfSdrk5+eH5ORkbNiwAWlpaVi1apXWJmN3YoYMGQI/Pz8sX74cffr0QUhICFxdXY0u\ntPD8888jODgYDQ0NsLa2BgB069YN8+fPx/z58yXbLF++HCEhIVCpVFo/3N3dkZycLLkiYm1tLQYP\nHqz14+rVq3BwcEB1dTXKy8sN5D/99FPEx8cDAFJTUzFt2jTY2dlBpVLh6aefxsCBAw3aTJs2DcHB\nwXjzzTe1vtra2hpd+OiZZ55BcHAwPv74Y71cGMPc3BzFxcWYPn06Vq5cidjYWBQUFKB79+5G72jO\nmTMHwcHBBvnetGmTpPxTTz2F4OBg1NfXw8rKSu833btRuhw/flzbR27cuIHz58/DxMQE3t7eWLdu\nnUEf3Lx5M9auXYtp06YhNTUVa9asgZ2dHb766is4OzvD09PTQIebm5vWD3d3d7i5uSEvL89orEJC\nQrBu3TptvjV1UVdXJ2nTb7/9BjMzM1haWmrl77//ftTW1iImJsao36dOncLEiRMNdEi12bNnDzZv\n3gwAWr979eqFsrIySK39VlZWhpKSEtjb2+OVV17Byy+/jMbGRhQUFKCsrAyPPfaYQZvKyko88MAD\nAGBgk2ZVRV1cXFwka9VYn9WNVXJyslaHhYUFUlJS4O3tbRDbI0eO4Ouvv9b6fe3aNfTr1w8qlQpV\nVVUG+09JScHrr78OW1tbrFy5ErW1tSguLoafnx9iY2Ph7u5u0Oa1117T9s+ioiJcvHgRDz/8MMaN\nG4fY2FiDPpWamorExEQcP35cW0slJSWwtrY2+q1KXR26/ValUknmLzc3F76+viAiKBQKpKWlIT4+\nHgsWLMDp06cNxnNra2uj+29oaJC0aceOHUhISEBlZSXCw8Oxd+9eODk5obCwEC+//LL2PR4NtbW1\nuHXrlvad55UrV2r9DgwMlNSheye8tV1Ssc3JycFPP/0EW1tbbNq0CbGxsSgtLUV6ejoCAgIM3h88\ndOgQ3n33XYP919fX4+bNm5I27dmzB2+88YZem/79+yMtLQ1+fn4Gd+9LS0tRVlaGyMhIbb5LS0th\nZWWFt99+W1JHfX09ysvLERYWpl1xsqqqCk888YTk+gBz587V67exsbFYv349rKys9BZ00jBmzBgc\nPHhQ+38iws6dO7UzkTTv1OqyY8cO7Nu3DxUVFQgPD0dCQgIcHR2N5rugoABKpRIAcObMGQQGBqKg\noACzZ8/G77//brCQmK49QMvxf8eOHdrtUjZp4nTffffB0tISDg4OqKqqQlVVFdRqtWRsW6/m6eDg\nACLCkiVLJFfz1NS8ppZu3LihjVVRUZHB/hcvXox58+bprRaqyZ3U/tPT0+Hu7q7XN+Pj4+Hm5oaU\nlBRJvw8dOgQrKysEBARot+3cuRO9evVCUlKSZJsrV64gKSkJe/bskVzFtDW2traws7NDYWEhIiMj\n4eDgACsrKwwcOBB9+/Y1kLexsUFDQ4M2z7r7t7OzM5AHgGvXruHSpUvo06cP5s2bh8jISDQ3N6O+\nvh5PPvmkwblOfn4+srOz8fDDD2PVqlVYsWIF1Go1Tp48CR8fH8lFehQKBdRqNUxMTJCbm4uFCxdq\n7Wp9ngG0zCL75ptvkJqaipKSEgAts0Y8PT0RHBxscI6n6Z8//PADAP1aeuihhyT9Hj9+PN544w30\n6dMHq1evxooVK9Dc3Iy6ujrU1dUZyF+/fh0nTpzAjRs3UFRUBAcHB/zxxx84d+4cKisrtU/RNNTU\n1KC6uhr3338/mpubcfPmTe2CQ5WVlZI2/f7773rjgq4fFy5cMJhlpcnFvHnztD6o1WrteU5r0tPT\nMWLECBw5csRg/1OnTpW06fjx44iPj0diYqJenOrr6yV1AMCxY8fwwQcfoK6uDmPGjEFMTIx2FWep\nd2MrKiqQl5eHWbNmGeSirKxMUocopaWlyMnJwYgRIzB69GjExMRg7NixGDt2rKRNR48exaZNm1Bf\nX4/Ro0fjnXfe0V7zvPLKK5Lv9zo4OGivG3RZtGiR0XeCJWn3Ze2fREhIiPbO1PTp0+natWtE1PI+\nitQ8fTltlEolZWZm0syZMyk6OpoyMzON3iGXa5PufPzc3FyKiYmh8ePHU0hICEVGRnbYpnvhh64P\n06ZN08qXlJQYnbcuapOo/NSpU6mkpITOnz9P7u7ulJeXR0REBQUFRt+R6WybiOT1QQ2dFVtRm+5V\n7Yn43Trf+fn5RNR2vjvSz9tTqx3V0V6///jjDyG/5cRWV0d7a0lEx9ixYyk0NJTi4uK0f88884z2\n362RM+botmn9BEzqPRw5Y0hn50/uWCtqkxy/Nfu9dOkSrV+/noiIjh8/3q7Y3slv0f6hsUlDe/It\npWP06NFGdci1SSROctrIqaWO7r+tON2rWHW2PFHLe3iFhYWUlZVFXl5e2tooLS2lSZMmdVhejl1L\nliyhrVu30i+//ELXrl2jq1evUmZmJm3cuJFefvllA3k5uRD1Q9QHOXES9UNUx72IE1HL+5nl5eXU\n3NxMn3/+OU2ePJmqqqqISHqckqNDFF2bDhw4cEebROWJiPbv32/0T2R2WJd/strU1KR9sti9e3ft\nstI9evQweDfJWJt+/fq12UahUGDYsGHYu3cvzpw5gy+//BIxMTGwtrZGz549sXv37g7bpLvd2dkZ\nzs7OAICSkhLJpzuiNt0NP+4UJ100K2YCLU8ZjD11ErVJVN7MzAy9evVCr1698MADD8DJyQkA0K9f\nP6Pf1+tsm+TEVnfef2fFVrTf3o3au1MbUb9b51vzLkZb+Ra1SbRWpXTc7VoyMzODvb097O3t2+23\nnNjq6mhvLYnoOHToEOLj4/Hbb78hOjoa/fr1w8mTJxEVFSW5f13aWxc2NjbYtm0bysvL0b9/f6xb\ntw6enp44ffq05GwNOWOIqF1y8ifqd0drqT1+3759W7vfRx99FL/99huAlhkxcXFxd9RxJ7/l9A/R\nfIvqkGOTaJzktBG1q7P3L7eNqF2dLQ+0zNjq27cv+vbtC3t7e21t2NnZSb5jLiovx67S0lJs27ZN\nb1v//v0xbNgw7UwBXeTkQtQPUR/kxEnUD1Ed9yJOQMvMyB49egAAJk+eDFtbW8yZMwe7du2SfO9T\njg5RdG2aMmUKevbs2aZNovJAy2fvRo4cCXt7e4PfjK2NIEWXv1jVLKc/atQo9OjRAwsWLICrqysy\nMjKMLpjRus3ChQvbbCN6cirHpokTJ0pu15zAdNSmu+HHneJ04cIFLF68GESEq1evIikpCf7+/vjw\nww/RvXv3u2KTqLzoicq9sAnomrEV7bd3o/bu1EbUbzn5FrVJtFaldNztfMvxuyvqsLCwwNKlS3H5\n8mVs2LABrq6uRqdFytk/AGzZsgWJiYlwdHREQEAAvv32W/z8888YMGCA9pMEXT22cvy+F/l+/PHH\nsWzZMri4uODkyZPaqairV6/GoEGDOqxDtH8A4vkW1SHHJtE4yWkjaldn719uG1G7OlseAHr27Il/\n/OMfep+EKS4uxocffig5hVZUXo5dxha8+v777yVfeZKTC1E/RH2QEydRP0R13Is4AS2vbc2dOxfb\nt2+HpaUlxo4dCwsLC8yaNQsVFRV3RYcoojaJygMtr2loXhdq3U8zMjLabWuX/84q0DJ3OzU1FYWF\nhSAi2NnZYdSoUW1+3FqkzVdffYXQ0NBOt0kEOTZ1th+ZmZl6/x8wYAB69+6Nf/7zn/D29tY+WeqI\nTaLydXV1SExMxIMPPqg9UcnOzsaAAQMwZcoUyXc/OtsmDV0ttqI2yZHvbL/l5FuuH6J0Nb+7oo7W\nHDx4EMePHzd4YnC39t8eumJs5fh9L/JNRNoVJx9//HHtipP5+flwdHQ0uLsut1413Kl/3A1EdbRH\nXjROctuI2NXZ+5fbRtSuzpYHgIaGBvz00096796eO3cOWVlZeP755w2ebInKy7GruLgY27dvR2Zm\npnZlXmtra4wcORJRUVFGb6RqaE8uRP0Q9UFOnET96KiOzoiThoyMDAwfPlwvLjU1NTh8+DAmT558\nV/1oLyI2yZEHWt7ht7CwMFijR+rLDsb4S1ysMgzDMAzDMAyjj9BCNQzzF6TLTwNmGIZhGIZhmP9X\nPvnkE6O//fHHH/fQEoa59/DFKsMwDMMwDMN0Ue7WQjUM81eEL1YZhmEYhmEYpotytxaqYZi/IvzO\nKsMwDMMwDMN0Ye7GQjUM81eEL1YZhmEYhmEYhmGYLofJnUUYhmEYhmEYhmEY5t7CF6sMwzAMwzAM\nwzBMl4MvVhmGYRjmHlFfX48ffvjhzzaDYRiGYf4S8MUqwzAMw9wjfv31V75YZRiGYZh2wgssMQzD\nMP/zZGRk4N1330Xfvn1RWFiI7t27Y9u2bbj//vtx+PBh7N+/H0QEW1tbvPbaa3jwwQfh5uaG0NBQ\nqNVqrF27FvHx8UhOToaJiQkmTpwIpVKJoqIixMbGor6+HnV1dVi2bBk8PDwQHR0Ne3t7nD9/Hleu\nXEFoaCjCw8MRFBSEqqoqBAUFISoqCitXrkRFRQVqa2vh5+eHF198EUSEDRs2ICcnB3Z2dnjooYfw\n4IMPYunSpUhPT8eOHTtARDA1NcXGjRvxyCOP6Pn69ttvIz09Hebm5ujduze2bNkCU1NTvPbaazh7\n9iwAYPbs2fD390dOTg42b94MU1NTKBQKrFu3DoMGDUJ4eDicnJyQl5eHhIQEZGVl3VEvwzAMw9x1\niGEYhmH+x0lPTydnZ2cqLi4mIqIVK1ZQQkICFRUV0YQJE+jWrVtERLR371564403iIjI0dGRUlJS\niIgoKyuLwsLCqKmpiW7fvk1z586lyspKioyMpLS0NCIiKikpIS8vL2psbKSVK1fSkiVLiIiooKCA\n3NzciIjo66+/puXLlxMR0bVr1ygxMZGIiG7dukVubm5UXV1NP//8M4WEhFBTUxPV1tbSuHHjaOvW\nrVRXV0e+vr5UXl5ORERHjx6lqKgoPT8rKipo6NCh1NTURERE3333HRUWFlJiYiItWrSIiEhrd1NT\nE/n6+lJOTg4REf3000+kVCqJiEipVNLWrVuJiNqll2EYhmE6A9M/+2KZYRiGYe4FgwYNQu/evQEA\nbm5uyMvLg52dHUpLSzFnzhwAwO3bt/Hwww8DAIgIbm5uAICcnBw89dRT6NatG7p164Zdu3YBaHli\nW1tbix07dgAATE1NoVKpAADDhw8HAPTr1w81NTVobm7Ws6dnz544deoUDhw4ADMzM9y6dQsVFRXI\ny8vD008/jW7dusHKygqenp4AgAsXLqC0tBSLFi0CADQ3N0OhUOjt08bGBp6enlAqlRg3bhwCAgLw\n0EMPITc3F+7u7gCABx54ALt370ZVVRVUKhVcXFy09i5btky7L43v7dHLMAzDMJ0BX6wyDMMw/xeQ\nzlsvRASFQgFzc3O4uLjg/fffl2xjZmYGAFAoFHrtNZibmyMuLg62trYGv5ma6h9iW7dPSEjA7du3\n8dlnn0GhUGgvJtVqNUxM/rukhObf5ubm6Nu3Lz7++OM2/Xzvvfdw6dIlHD9+HEqlEnFxcVAoFFCr\n1XpyrS84W9un8b29ehmGYRjmbsMLLDEMwzD/F1y+fBklJSUAgFOnTsHR0RHOzs7Izc1FaWkpACAp\nKQk//vijQVtXV1ekpaWhsbERTU1NCA8PR0lJCZ566ikkJSUBAG7evInXX3+9TRtMTEzQ1NQEAFCp\nVHjsscegUCiQnJyMhoYG3L59Gw4ODjh9+jSICPX19UhJSQEAPProoygvL8f58+cBAFlZWfj888/1\n9n/9+nXs3bsXjz32GCIiIjBu3Djk5+fD1dUVJ0+eBADU1NQgLCwMFhYW6NWrF3JycgAAaWlpGDp0\nqIHN7dHLMAzDMJ0BP1llGIZh/i8YNGgQtm7diqtXr8LGxgZBQUGwsrLCmjVrMHfuXNx3332wtLTE\nli1bDNq6urrC19cX06dPBwA8++yzsLe3x5o1a7Bu3Tp89913uH37NubPn9+mDc7Oznj77bexatUq\nzJgxA8uWLUNKSgp8fHwwYcIErFixAl988QW+++47TJo0CX369IGrqytMTU1haWmJt956C2vWrIGF\nhQUAYMOGDXr77927N3799VeEhobC2toaNjY2iIqKgqWlJbKzszF16lQ0Nzdj9uzZMDc3x5YtW7B5\n82Z069YNJiYmWL9+vYHN7dHLMAzDMJ0BrwbMMAzD/M+jWQ34s88++7NNuSPV1dX48ccfERQUBIVC\ngXnz5uG5557Dc88992ebxjAMwzD3FH6yyjAMwzBdCGtra2RnZ2Pfvn2wsLDAwIED4efn92ebxTAM\nwzD3HH6yyjAMwzAMwzAMw3Q5eIElhmEYhmEYhmEYpsvBF6sMwzAMwzAMwzBMl4MvVhmGYRiGYRiG\nYZguB1+sMgzDMAzDMAzDMF0OvlhlGIZhGIZhGIZhuhx8scowDMMwDMMwDMN0Of4DUH5V4TsJJJQA\nAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "Ktnb-_N1AUbZ",
- "colab_type": "code",
- "outputId": "515e73d6-a1cb-4d2b-c27d-bc8a6b09871f",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 129
- }
- },
- "cell_type": "code",
- "source": [
- "# label encoding for grades\n",
- "# we have to map values to each of the categories\n",
- "\n",
- "data['grades'] = data['grades'].replace('O', 0)\n",
- "data['grades'] = data['grades'].replace('A', 1)\n",
- "data['grades'] = data['grades'].replace('B', 2)\n",
- "data['grades'] = data['grades'].replace('C', 3)\n",
- "data['grades'] = data['grades'].replace('D', 4)\n",
- "data['grades'] = data['grades'].replace('E', 5)\n",
- "\n",
- "data['race/ethnicity'].value_counts()"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "3 319\n",
- "4 262\n",
- "2 190\n",
- "5 140\n",
- "1 89\n",
- "Name: race/ethnicity, dtype: int64"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 209
- }
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# computing percentage for each of the students\n",
+ "# importing math library to use ceil\n",
+ "from math import * \n",
+ "\n",
+ "data['percentage'] = data['total_score']/3\n",
+ "\n",
+ "for i in range(0, 1000):\n",
+ " data['percentage'][i] = ceil(data['percentage'][i])\n",
+ "\n",
+ "data['percentage'].value_counts(normalize = True)\n",
+ "data['percentage'].value_counts(dropna = False).plot.bar(figsize = (16, 8), color = 'red')\n",
+ "\n",
+ "plt.title('Comparison of percentage scored by all the students')\n",
+ "plt.xlabel('percentage score')\n",
+ "plt.ylabel('count')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 251
+ },
+ "colab_type": "code",
+ "id": "JP86Ohe7oBZA",
+ "outputId": "3de2b683-6ded-4e6e-f49f-aabcf13a27ea"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANsAAADqCAYAAAArpTBIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFZ9JREFUeJzt3XtUlGUeB/DvDJclAuSyAxaYF3RT\nTDIxFZBV8TJgZdDxkghS6ilD3TjqaiKkHMkL2cVQ0y09R7NWTrDiJRS2ZTV1ES3UMmNX1Ha9gaDD\nHeQyz/7h7hRRONK8zzDD93NO5/DOC8/8Zk5fn2eemXl/KiGEABEpTm3uAoi6CoaNSBKGjUgSho1I\nEoaNSBKGjUgShq2LuHr1Kvz8/AAAaWlpWL58udnuv7GxEVlZWVLvvzNg2Ei68+fPM2wkx8GDB/H0\n008jLCwMM2fOxH/+8x8UFxdj2LBhaG5uNvxeXFwc/vznP6OxsREpKSnQarUIDQ3Fli1bDL8TGhqK\njRs3QqvV4vr167h06RKmT5+O8PBwjB8/HgcOHDC6rr/85S+YP38+YmNjkZqaCgBIT09HWFgYQkND\nsXDhQjQ0NAAATp48icjISEycOBHh4eE4ePAgACAmJgZ79+41jPnT4/LycsyfPx9nzpxBVFQUAOCd\nd96BVquFVqvFzJkzUVpa2oFn1QIIkuratWsiICBAfP/990IIIbZt2yZiY2OFEEKEh4eL/Px8IYQQ\ndXV14oknnhC3bt0SGzduFLGxseLOnTuitrZWREREiLy8PCGEEGPGjBGJiYmG8V9++WWxdetWIYQQ\nJ0+eFP7+/qKxsVFcuXJFDBgwQAghxHvvvScSEhLa1JaZmSkGDx4sLl++LIQQ4tSpUyIwMFCUlJQI\nIYRISkoSa9euFUII8dxzz4mCggIhhBCXL18WCxcuFEIIER0dLbKysgxj/v/4x/efmZlpeMz/+te/\nxIQJE0RjY6MQQoidO3eKPXv2dPTp7dQ4s0l2/PhxDB8+HD179gQATJkyBQUFBWhuboZWq0VeXh4A\n4OjRo/D394e7uzv+/ve/IyoqCvb29nB0dMSzzz6L3Nxcw5ijR482/Lx582bMnj0bABAQEIA7d+6g\nrKzM6Pp69eqFXr16AQDy8vIwceJEeHl5AQCmT59uuF8PDw9kZWXh4sWL6NWrF956660OPR8uLi64\nffs29u/fj8rKSsTExCAiIqJDY3V2DJtkOp0OLi4uhmNnZ2cIIaDT6VqF7fPPP8fEiRMBANXV1Viz\nZg3CwsIQFhaGnTt3or6+3jBGt27dDD8fPXoUM2bMgFarxcSJEyGEgF6vN7q+H49VXV2NAwcOGO43\nPj4eTU1NAIDVq1fjgQcewIsvvogJEybg0KFDHXo+vLy8kJaWhkOHDmH06NF46aWXcOPGjQ6N1dnZ\nmruArsbDwwOnT582HFdWVkKtVsPNzQ0ajQY2NjYoKirCsWPHsGzZMgCAp6cnZs2ahTFjxrQ7dlNT\nE+Lj4/Huu+9i1KhRaGxshL+/f4dr9fT0RGRkJJYuXdrm3G9/+1skJSUhKSkJx44dw4IFCxASEgK1\nWt0q3JWVlfe8nxEjRmDEiBGoq6vDunXrsH79+g7PlJ0ZZzbJgoOD8eWXX+LKlSsAgN27dyM4OBi2\ntnf/3dNqtUhLS8OAAQPg5uYGABg7diw+/fRTtLS0QAiBzZs344svvmgzdn19Perq6vDYY48BAHbs\n2AE7OzvU1dV1qNbQ0FDk5ubi9u3bAO7Otn/605/Q1NSEmJgY3Lx5EwAwcOBA2NraQq1WQ6PRoKio\nCABw+vRpfP/9923GtbW1RU1NDYQQOHbsGJKTk6HX6+Ho6Ij+/ftDpVJ1qN7OjjObZN27d0dKSgri\n4uLQ1NQEHx8frFq1ynBeq9XiueeeQ0pKiuG2qKgoXL16FU899RSEEHjssccQGxvbZmwXFxfMmTMH\nERER8PDwwCuvvIJx48Zh7ty52Lp1633XOnDgQMydOxcxMTHQ6/Xw8PBAcnIy7OzsMHnyZLzwwgsA\nALVajcTERMOycuHChfjiiy8wbNgwBAcHtxk3ICAA69evR0hICHJzc/HZZ59Bq9XC3t4e7u7uWL16\n9X3XaglUQvD7bEQycBlJJAnDRiQJw0YkCcNGJAnDRiSJRW79l5VVm7sEo7i5OUKn69h7XNSWJTyf\nGo3zL57jzKYgW1sbc5dgVSz9+WTYiCRh2IgkYdiIJGHYiCRh2IgkscitfyVs3vy2uUswSlzcQnOX\nQB3EmY1IEoaNSBKGjUgSho1IEoaNSBKGjUgSho1IEoaNSBKGjUgSho1IEoaNSBKGjUgSho1IEoaN\nSBKGjUgSho1IEoaNSBKGjUgSho1IEoaNSBLFLvhTW1uLpUuXorKyEk1NTZg3bx40Gg1WrlwJAHj0\n0UeRnJwMAPjwww9x6NAhqFQqzJ8/H6NGjVKqLCKzUSxse/bsQe/evbFo0SKUlpYiNjYWGo0GCQkJ\n8Pf3x6JFi3DkyBH06dMH2dnZ2L17N2pqahAVFYWRI0fCxsayr+tO9FOKLSPd3NxQUVEBAKiqqoKr\nqyuuXbsGf39/AMCYMWOQn5+PgoIChISEGJqXe3t7o7i4WKmyiMxGsbA99dRTuH79OsaPH4/o6Ggs\nWbIELi4uhvMeHh4oKytDeXk53N3dDbe7u7ujrKxMqbKIzEaxZeTevXvx8MMPY9u2bSgqKsK8efPg\n7PxD7yohxM/+3S/d/mNubo4W3z6oo9rr/9UVWPLjVyxshYWFGDlyJACgf//+uHPnDpqbmw3nS0tL\n4enpCU9PT1y+fLnN7e3p7A3xlGQpjSCVoNE4d/rHb5ZmiD179sTZs2cBANeuXcODDz4IX19ffPnl\nlwCA3NxchISEYMSIETh8+DAaGxtRWlqKmzdvom/fvkqVRWQ2is1s06ZNQ0JCAqKjo9Hc3IyVK1dC\no9Hg9ddfh16vx+OPP46goCAAwNSpUxEdHQ2VSoWVK1dCrebbf2R9VMKYF0mdjBJLCTbW6Py4jCQi\nozBsRJIwbESSMGxEkjBsRJIwbESSMGxEkjBsRJIwbESSMGxEkjBsRJIwbESSMGxEkjBsRJIwbESS\nMGxEkjBsRJIwbESSMGxEkjBsRJIwbESSMGxEkjBsRJIwbESSKHZFZADYt28fPvzwQ9ja2uIPf/gD\nHn30USxZsgQtLS3QaDR48803YW9vj3379mHHjh1Qq9WYOnUqpkyZomRZRGahWNh0Oh02bdqEzMxM\n1NXVIS0tDTk5OYiKikJ4eDjefvttZGRkICIiAps2bUJGRgbs7OwwefJkjB8/Hq6urkqVRmQWii0j\n8/PzERgYCCcnJ3h6emLVqlUoKCjA2LFjAfzQDPHs2bMYNGgQnJ2d4eDggCFDhqCwsFCpsojMRrGZ\n7erVq2hoaMDcuXNRVVWFBQsWoL6+Hvb29gDYDJG6HkVfs1VUVGDjxo24fv06Zs6c2arRIZshdowl\nNwM0BUt+/IqFzcPDA0888QRsbW3xyCOP4MEHH4SNjQ0aGhrg4ODQqhlieXm54e9u3ryJwYMHtzs2\nmyF2Texi8wtGjhyJEydOQK/XQ6fToa6uDkFBQcjJyQHwQzPExx9/HN988w2qqqpQW1uLwsJCDB06\nVKmyiMxGsZnNy8sLWq0WU6dOBQAkJiZi0KBBWLp0KdLT0/Hwww8jIiICdnZ2WLRoEWbPng2VStWm\n9zaRtWAzxP9hM8TOr0ssI1977bU2t82ePbvjFRF1Qe0uI/ft24fdu3fjwoULmDFjhuH2pqamVpsa\nRHRv7YZt0qRJGD58OBYvXowFCxYYbler1ejbt6/ixRFZk3tukHh5eeGjjz5CdXU1KioqDLdXV1fz\nI1VE98Go3ciUlBRkZmbC3d3d8KazSqXC3/72N0WLI7ImRoWtoKAAJ06cwG9+8xul6yGyWkbtRvbs\n2ZNBI/qVjJrZunfvjhkzZiAgIAA2Nj98JvHVV19VrDAia2NU2FxdXREYGKh0LURWzaiwxcXFKV0H\nkdUzKmx+fn5QqVSGY5VKBWdnZxQUFChWGJG1MSpsRUVFhp8bGxuRn5+Pf/7zn4oVRWSN7vsrNvb2\n9hg1ahSOHz+uRD1EVsuomS0jI6PVcUlJCUpLSxUpiMhaGRW2r776qtWxk5MT3n33XUUKIrJWRoVt\nzZo1AO5eU0SlUqFbt26KFkVkjYwKW2FhIZYsWYLa2loIIeDq6oo333wTgwYNUro+IqthVNjeeust\nbN68Gb/73e8AAOfPn8cbb7yBjz/+WNHiiKyJUbuRarXaEDTg7vtuP/7YFhHdm9Fhy8nJQU1NDWpq\napCdnc2wEd0no5aRycnJWLVqFRITE6FWq9G/f3+kpKQoXRuRVTFqZjt+/Djs7e1x6tQpFBQUQAiB\nI0eOKF0bkVUxKmz79u3Dxo0bDcfbt2/HgQMHFCuKyBoZFbaWlpZWr9FUKpVR1+Qnoh8Y9ZotNDQU\nzz//PAICAqDX63HixAlMmDDhnn/X0NCAp59+GnFxcQgMDGQjROrSjP4+27Bhw/D1119DpVJhxYoV\n92x+AQDvv/++4dMm7733HhshUpdm9LX+hw4del8NLy5evIji4mKMHj0awN2LBiUnJwO42whx+/bt\n6N27t6ERIgBDI8TQ0ND7eAhElkGxxhrr1q1DUlISsrKyAMCkjRDZn63rsuTHr0jYsrKyMHjwYPTo\n0eNnz/+aRogA+7N1VZbeWEORsB0+fBhXrlzB4cOHUVJSAnt7ezg6OpqkESKRpVIkbD/+rltaWhq8\nvb1x+vRp5OTk4Nlnn23VCDExMRFVVVWwsbFBYWEhEhISlCiJyOwU7an9YwsWLGAjROrS2Azxf9gM\nsfOz9NdsivXUJqLWGDYiSRg2IkkYNiJJGDYiSRg2IkkYNiJJGDYiSRg2IkkYNiJJGDYiSRg2IkkY\nNiJJGDYiSRg2IkkYNiJJGDYiSRg2IkkYNiJJGDYiSRg2IkkYNiJJGDYiSRg2IkkUvSJyamoqvvrq\nKzQ3N+Pll1/GoEGD2BCRuizFwnbixAlcuHAB6enp0Ol0iIyMRGBgIBsiUpel2DLyySefxIYNGwAA\nLi4uqK+vR0FBAcaOHQvgbkPE/Px8nD171tAQ0cHBwdAQkcjaKDaz2djYwNHREQCQkZGB3//+9zh2\n7JhJGiKyGWLXZcmPX/EuNp9//jkyMjKwffv2Vk3vf01DRDZD7JrYWKMdR48exZYtW/DBBx/A2dnZ\n0BARQLsNET09PZUsi8gsFAtbdXU1UlNTsXXrVsNmR1BQEHJycgCgVUPEb775BlVVVaitrUVhYSGG\nDh2qVFlEZqPYMjI7Oxs6nQ7x8fGG29auXYvExEQ2RKQuic0Q/4fNEDs/vmYjIqMwbESSMGxEkjBs\nRJIwbESSMGxEkjBsRJIwbESSMGxEkjBsRJIwbESSMGxEkjBsRJIwbESSMGxEkjBsRJIwbESSMGxE\nkih+KTvqmniZibY4sxFJwrARScKwEUnCsBFJ0mk2SFavXo2zZ89CpVIhISEB/v7+5i6JyKQ6RdhO\nnjyJf//730hPT8fFixeRkJCA9PR0c5dFZFKdYhmZn5+PcePGAQB8fX1RWVmJmpoaM1dFZFqdImzl\n5eVwc3MzHBvTo43I0nSKZeRP3av9gBIN8VasWGHyMbsyPp9tdYqZ7ed6tGk0GjNWRGR6nSJswcHB\nhr5t3377LTw9PeHk5GTmqohMq1MsI4cMGYKBAwfi+eefh0ql4hKErJJF9mcjskSdYhlJ1BUwbESS\nMGxEkjBsRJJ0it1Ia3Ljxg2UlZXB398fe/fuxblz5zB9+nT06dPH3KVZjI8//rjd8zNmzJBUiWlx\nZjOxP/7xj7Czs8OZM2eQmZmJsLAwvPHGG+Yuy6LodLp2/7NUnNlMzMbGBgMGDMC6desQGxuLgIAA\ntLS0mLssixIZGQlvb28UFxebuxSTYthMrKWlBe+//z7y8vIQHx+Pr7/+GrW1teYuy6Ls3LkTy5Yt\nQ3JycptzKpUKO3fuNENVvx7f1DaxGzduICcnB8HBwejXrx+ys7PRq1cv+Pn5mbs0q7Bp0ybMmzfP\n3GV0CGc2BQwZMgT9+vUzbJD079/f3CVZpCNHjmDDhg2orKwEADQ1NaF79+4WGzZukJgYN0hMJy0t\nDRs2bED37t2RkZGBefPmYebMmeYuq8MYNhP7/wZJTk6OYYOkubnZ3GVZpAceeAA9evSAXq+Hm5sb\npk2bhszMTHOX1WFcRprYz22Q1NXVmbssi+Tl5YWsrCz4+flh8eLF8PHxwa1bt8xdVodxg8TEfm6D\nxMfHh1cLuw9r1qzBsmXL0NLSgsrKSnzyySfw8fGBTqfDhAkT4O3tbe4SO4Qzm4k99NBDCA4ORkVF\nBU6dOoVu3bph+fLl2L9/v7lLsxjfffcdgLtLcnd3d5w8eRLz5883c1W/HsNmYq+//jouXbqES5cu\nwd/fH+fOncOcOXPMXZZF+eliy1oWX9wgMbHi4mLs2rULvr6+2LJlCz799FNcvHjR3GVZFJVK1e6x\npeLMZmItLS2Ga17evn0bDz30EIqKisxclWU5d+4cJk+eDODurHb58mVMnjwZQgioVCpkZGSYucKO\n4QaJie3fvx8NDQ1wcnLC4sWL4e7ujpEjR2LNmjXmLs1iXLt2rd3z3CAhAHc/5ZCWloZu3bqhZ8+e\nKCkpQWBgoLnLsiiWGqZ7YdhMbMeOHdi7d6/hCs+3b9/Giy++iEmTJpm5MjI3bpCYmJeXF1xdXQ3H\nbm5ueOSRR8xYEXUWfM1mYgsXLkRxcTGGDRsGvV6PM2fOwNvbGz169AAALFmyxMwVkrkwbCa2Z8+e\nds9HRkZKqoQ6G4aNSBK+ZiOShGEjkoRhs2LFxcX49ttv2/2d+vp65ObmSqqoa2PYrNhf//pXnD9/\nvt3fOX/+PMMmCd/UthKlpaVYvHgxAKChoQGhoaHYtWsXnJyc4ODgAD8/P6xYsQI2NjaoqalBfHw8\nnnzySSxfvhxVVVVITU1F37598Y9//APr168HAMTExOCVV16Br69vq7GnTZtm+OwiGY8zm5U4ePAg\n+vTpg48++gi7du2Cs7MzQkJCMGfOHDzzzDMoLy/Hq6++ih07diAxMRHvvPMOHBwc8NJLLyEoKKjd\n9/9+OnZDQ4PER2Y9GDYrERISgvz8fLz22mvIy8vDtGnTWp3XaDTYtm0boqKisHr1alRUVJhsbDIO\nw2YlfH198dlnn2HSpEnIz89HTExMq/OrVq3CuHHj8Mknn/zi1b5++r2xpqYmo8Ym4/A1m5XYv38/\nvL29ERQUhOHDhyM0NBS9e/c2BKa8vBz9+vUDAGRnZ6OxsREAoFarDVf/cnJyQklJCQDg1q1buHDh\nwi+O3dzcDFtb/u9zP/gJEivx3XffYcWKFbC3t4cQAuHh4XB2dkZqairi4uLg6OiILVu2wMfHBy+8\n8ALWrl2LkJAQTJkyBbGxsQgJCUFSUhJmzZoFvV4PX19flJWVYdasWXBzc2szdnR0tLkfssVh2Igk\n4Ws2IkkYNiJJGDYiSRg2IkkYNiJJGDYiSRg2IkkYNiJJ/guQTmn2r9C8SwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "9fcJDzBNJZHT",
- "colab_type": "code",
- "outputId": "27ddb324-ce80-4535-b84e-566493b8c5df",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 36
- }
- },
- "cell_type": "code",
- "source": [
- "data.shape"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "(1000, 15)"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 210
- }
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# checking which student is fail overall\n",
+ "\n",
+ "data['status'] = data.apply(lambda x : 'Fail' if x['pass_math'] == 'Fail' or \n",
+ " x['pass_reading'] == 'Fail' or x['pass_writing'] == 'Fail'\n",
+ " else 'pass', axis = 1)\n",
+ "\n",
+ "data['status'].value_counts(dropna = False).plot.bar(color = 'gray', figsize = (3, 3))\n",
+ "plt.title('overall results')\n",
+ "plt.xlabel('status')\n",
+ "plt.ylabel('count')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 148
+ },
+ "colab_type": "code",
+ "id": "3druUjNTuCpg",
+ "outputId": "45f553fe-63c1-4c31-c5af-8d87d337bb08"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "B 260\n",
+ "C 252\n",
+ "D 223\n",
+ "A 156\n",
+ "O 58\n",
+ "E 51\n",
+ "Name: grades, dtype: int64"
]
- },
- {
- "metadata": {
- "id": "tfaXk6JBbiNZ",
- "colab_type": "code",
- "outputId": "f233545e-91ef-4f6a-f6ed-4b1886603b53",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 54
- }
- },
- "cell_type": "code",
- "source": [
- "# splitting the dependent and independent variables\n",
- "\n",
- "x = data.iloc[:,:14]\n",
- "y = data.iloc[:,14]\n",
- "\n",
- "print(x.shape)\n",
- "print(y.shape)"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "(1000, 14)\n",
- "(1000,)\n"
- ],
- "name": "stdout"
- }
+ },
+ "execution_count": 193,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Assigning grades to the grades according to the following criteria :\n",
+ "# 0 - 40 marks : grade E\n",
+ "# 41 - 60 marks : grade D\n",
+ "# 60 - 70 marks : grade C\n",
+ "# 70 - 80 marks : grade B\n",
+ "# 80 - 90 marks : grade A\n",
+ "# 90 - 100 marks : grade O\n",
+ "\n",
+ "def getgrade(percentage, status):\n",
+ " if status == 'Fail':\n",
+ " return 'E'\n",
+ " if(percentage >= 90):\n",
+ " return 'O'\n",
+ " if(percentage >= 80):\n",
+ " return 'A'\n",
+ " if(percentage >= 70):\n",
+ " return 'B'\n",
+ " if(percentage >= 60):\n",
+ " return 'C'\n",
+ " if(percentage >= 40):\n",
+ " return 'D'\n",
+ " else :\n",
+ " return 'E'\n",
+ "\n",
+ "data['grades'] = data.apply(lambda x: getgrade(x['percentage'], x['status']), axis = 1 )\n",
+ "\n",
+ "data['grades'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 401
+ },
+ "colab_type": "code",
+ "id": "7eKwrPxG02aF",
+ "outputId": "3d6bc2f6-82d7-4519-d7f9-d1b76675e5be"
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAGACAYAAAC6OPj9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xmc1PWd7/tXLb9ae19oaHakwC1N\nxKgQE804ZsEQjSYmnhFjco73RmeQuVfnHsljBp0xoxz1oc6JB3seimdUzuPOuXcmx4sYNRPQJBPU\nGJEo4srWNHRXr9VrdXVtv/tHQUOxN13Vv6pfvZ+PRz+wfxT1+5QN3e/6fr6LwzRNExEREZEi5rS6\nABEREZGJUqARERGRoqdAIyIiIkVPgUZERESKngKNiIiIFD0FGhERESl6CjQiIiJS9BRoREREpOgp\n0IiIiEjRU6ARERGRoqdAIyIiIkVPgUZERESKngKNiIiIFD0FGhERESl6CjQiIiJS9NxWFyAiIiKT\nr6WlhbVr19LT0wNAY2Mj9913HzU1NeN+roceeohQKMQNN9xw2se+8cYbPPbYY7hcLq644gr+4i/+\nYtz3OxGN0IiIiFjOkeOPU0ulUtx5553cdttt/Mu//Av/8i//wgUXXMADDzyQ6xd2nL//+7/niSee\n4J//+Z/ZunUru3btysnzaoRGRESkxGzdupVQKMQXvvCFsWu33XYbpmkCsHr1agzDoK+vj7Vr13L3\n3XcTjUaJxWKsWbOGpqYmNm7cyPr162loaMDn8xEKhUilUqxZs4bW1laSySSrVq1i6dKlY/dobW2l\nsrKSadOmAXDllVfy5ptvMn/+/Am/JgUaERGRErNnzx4WLlyYdc3pzG7aVFZW8tOf/pS9e/dy4403\ncvXVV/Pmm2/y9NNP87Of/YzHH3+cn//851RUVIy1mjZt2kR9fT0PPvggvb293HrrrWzatGnsObu6\nurJaWjU1NbS2tubkNSnQiIiIlBin00kymRz7/I477mBoaIhwOMyLL74IQFNTEwB1dXU8+eSTPPPM\nM8TjcQKBAJFIhGAwSG1tLQCLFy8GYPv27Wzbto13330XgNHRUeLxOB6PJ++vSYFGRESkxIRCIZ5/\n/vmxz5ubmwG46qqrSKfTABiGAcBzzz1HQ0MDjzzyCDt27ODhhx8Gskd0DreqDMPg9ttvZ/ny5Se8\n75QpU+ju7h77vKOjgylTpuTkNWlSsIiISIlZsmQJ4XCY1157bezazp07GR4exuVyZT02Eokwa9Ys\nADZv3kwikaCqqorBwUEGBgZIJBJjIzKLFi1iy5YtAPT09PDYY49lPdeMGTMYGhriwIEDJJNJXn/9\ndS6//PKcvCaN0IjIOKWBbiAMdAC9QBxIHvpIjf13lCDN/G+4yHyzOfpXA6gG6o/6KJ/cFyJSshwO\nB+vXr+f+++9n3bp1GIZBIBCgubkZn8+X9djrrruOe+65h1dffZWbb76Zl156iRdeeIGVK1eyYsUK\npk+fTigUAmDZsmW89dZb3HTTTaRSKVauXHncvf/2b/+Wu+++G4BrrrmGuXPn5uY1mYfHiUSkhJlk\ngsnhkHKqX7vIhJbT6+Q8GvjwjKvwAnWHPg6HnKP/ux6YBSwAKs/4WUWkFGiERqSkJIHPgJ3AB4d+\n3QnsJjPKYq1R4OChj9OZQibYHP5YCFwIzEO9dJFSpEAjYluDwHbgHeBd4H3gEyYzuCRT6Ux/KQ86\nD3387pjrAeAC4HNA06FfFwNV+SlDRAqEAo2ILcSBt4E/ANvIhJjPyMx3sc5oPA7+yb1nlMz/hT8c\ndc1JJtxceejjCqB2cssSkTzTHBqRorUHeAV4FXgdGLa2nBPYG5vHPN9uq8s4joPMKM6VR33kZuGo\niFhFgUakaETJBJdXD33k5vyTfCrUQHMi55IdcBqtLUdExkmBRqSg7eRIgPl3MtNmi0cxBZpjXQhc\nf+jjIotrEZHTU6ARKSgDwGaOhJjcnHFilWIONEeby5Fw80W0ikrsoaWlhbVr19LT0wNAY2Mj9913\nX9ZZS2fqoYceIhQKjZ3pdDqjo6NcfvnlrFy5kh/+8Ifjvt+JaFKwiOWSZObCbAA2ATFry5Hj7AUe\nO/Sx6WAHy0dGYUoNVJRZXJnYxseO3D7fuaceq0ilUtx5553ce++9YyduP/XUUzzwwAM8+uijua3l\nBH79619TV1fHyy+/rEAjUvzeIRNi/pnMZnVS6CpMk6/uOQjpNBzsBJ83E2ym1EBwkpdziUzA1q1b\nCYVCY2EG4Lbbbhs7k2n16tUYhkFfXx9r167l7rvvJhqNEovFWLNmDU1NTWzcuJH169fT0NCAz+cj\nFAqRSqVYs2YNra2tJJNJVq1axdKlS4+7/0svvcSqVat46KGHaG1tZebMmRN+TRo5FZlMyTCMNJNZ\nY3MJ8DMUZorH8lgcb/qopfCxUdjfDu/szHy0huGoE4xFCtWePXtYuHBh1jWn05l1jlNlZSVPPPEE\nXV1d3HjjjWzYsIG77rqLp59+GtM0efzxx3n22Wdpbm6mpaUFgE2bNlFfX8+GDRtYt24dDz744HH3\nHhoa4g9/+ANXXXUV11xzDS+//HJOXpNGaETyzUzD8C+h72kY2gSe2TCv+OeVlKLvdvac/DeHR2DP\nAdjXBlNrYfoUCGjURgqT0+kkeVT4vuOOOxgaGiIcDvPiiy8C0NTUBEBdXR1PPvkkzzzzDPF4nEAg\nQCQSIRgMUlub2dFp8eLFAGzfvp1t27aNHVY5OjpKPB7H4/GM3euXv/wlX/rSl/D5fCxfvpzVq1fz\n4x//eMKvSYFGJF9SvRD5R+h7CpItR67Hd9PfMYXKhk7rapNx88XjfG3fQTK72JxCOg1tXZmP6gqY\n0ZD51ZHjORIiExAKhXj++efHPm9ubgbgqquuIn1oFNIwDACee+45GhoaeOSRR9ixYwcPP/wwkAlF\nhx1uVRmGwe23387y5ctPeu+XXnqJ/fv3c9111wGwb98+du3axfz58yf0mtRyEsm1+F7oWAW7ZkH3\nX2eHmUNGO3wn+INSyC5v7yB4ujBzrMgA7Pgs045q64TUmR3qKZJvS5YsIRwO89prr41d27lzJ8PD\nw1ltJ4BIJMKsWbMA2Lx5M4lEgqqqKgYHBxkYGCCRSIyNyCxatIgtW7YA0NPTw2OPPZb1XF1dXeza\ntYtf/vKXbNy4kY0bN/LjH/+Yl156acKvSYFGJFdG3oGD34c9IYg8AebJd+6tcnWQjOfpkCPJixu7\nI2f/h6Mx+Gw/vPU+7G7NzL0RsZDD4WD9+vVs3LiR73znO9x00008+uijNDc34/Nlv+G67rrr+Kd/\n+if+43/8jzQ1NdHV1cULL7zAypUrWbFiBatWrSIUCgGwbNkyAoEAN910E7fffjsXX3xx1nO9/PLL\nLF++HLf7SIPo+uuv55VXXpn4a9I+NCITYJow/DL0PAIjvxnXH+0yZlJ/TnHvM3M6dtmHxptI0PXG\nHykf7wjNqdRVZ+bZVJXn7jlFSpjm0IicDTMF/Rug9xGIf3hWT+EcTOS4KMmXy9vDuQ0zAN2RzEdZ\nAOY0Qq3OAxeZCAUakfEa+Dl0/w3EP57Q01R7O4j2lxOoHMxRYZIv3+2aQLvpdIai8MEuqCyDeTO0\nWZ/IWdIcGpEzNfwa7LsU2r474TAD4HSYDB4Y/xbjMrm8iQQ3D8Xzf6P+Idj+MXy4G0a0W7TIeGmE\nRuR0YtugczVEN+f8qctSEcw0OPTWomAtbe+gYjJv2BWB7j6YVg+zp4HHmMy7ixQtfRsVOZn4Z3Dw\ne5j7LslLmAEIegaItDXk5bklN76Tz3bTyZhmZpn32zugpU3LvUXOgEZoRI6V6oGuv4G+9UAy11NB\nj5Ps8cCMPN9EzoonmWTFUIzTbqaXL6l0Zufhti6Y3QjT6rRBn8hJKNCIHGaa0P9P0HUPpLon7bY1\n7jCJUQPDq1VPheay9g6qrAozR4sn4LMWONgBc6dnlnyLTFBLSwtr166lpydzpEdjYyP33XcfNTXj\nn9v30EMPEQqFuOGGG0772FtuuYVoNEogEGBkZIQrr7ySO++8c9z3PJYCjQhAbAd03AEjWyf91m5X\ngs6WmUxZYO89aYrRd7t6rS4hWzQGO3dnVkItnK2zomzkv2zP7Rua1Redeu5VKpXizjvv5N577x07\ncfupp57igQce4NFHH81pLSeydu1aFixYQCqV4pprruH73/8+U6ZMmdBzKtBIaUsPQ/ffYvb+Aw6s\nOyXZGNHOsYXGsLrddCoDQ7Dtw0wbauZUtaFk3LZu3UooFBoLMwC33Xbb2JlMq1evxjAM+vr6WLt2\nLXfffTfRaJRYLMaaNWtoampi48aNrF+/noaGBnw+H6FQiFQqxZo1a2htbSWZTLJq1SqWLl160joO\nH7UQCAQm/JoUaKR0Df4vzI7/A0ey1fIfWdXeTgZ7qiiv7bO4Ejns0nAHNabVfzNOIW3C3oOZFVEL\n50BQozVy5vbs2cPChQuzrh192CRAZWUlP/3pT9m7dy833ngjV199NW+++SZPP/00P/vZz3j88cf5\n+c9/TkVFxViradOmTdTX1/Pggw/S29vLrbfeyqZNm467/09+8hMCgQC7d+/mP/2n/0RZ2cT3X1Kg\nkdIT3wcdK2H4F5YHmaNF2ysVaArIdwqt3XQyg8OZ0Zo5Gq2RM+d0Okkmj4xK33HHHQwNDREOh3nx\nxRcBaGpqAqCuro4nn3ySZ555hng8TiAQIBKJEAwGqa2tBWDx4sUAbN++nW3bto0dVjk6Oko8Hsfj\n8WTd/3DLKR6Ps3LlSs477zy++MUvTug1KdBIael7FrNjFQ6z8HbnrTC7SafAqTMrLWckk9wyUERt\nQPPwaE0EFs7VaI2cVigU4vnnnx/7vLm5GYCrrrqKdDoNgGFk5uE899xzNDQ08Mgjj7Bjxw4efvhh\nIHtE53CryjAMbr/9dpYvX35GdXg8Hq688kreeeedCQca7UMjpSHVg3nguxD+UUGGGQC/MUzvgUar\nyxDgknAndVYXcTYGo5nRmpa2TMgROYklS5YQDod57bXXxq7t3LlzbE7L0SKRCLNmzQJg8+bNJBIJ\nqqqqGBwcZGBggEQiMTYis2jRIrZs2QJAT08Pjz322Glref/995k7d+6EX5NGaMT+hv+N9MEf4Ex3\nWF3JaZl9TphtdRVyQ7G0m07ENDN71xyeW1M28cmWYj8Oh4P169dz//33s27dOgzDIBAI0NzcjM/n\ny3rsddddxz333MOrr77KzTffzEsvvcQLL7zAypUrWbFiBdOnTycUCgGwbNky3nrrLW666SZSqRQr\nV6484f0Pz6FJJBIsXLiQb37zmxN/TaapGC82lY5hdv5fEFmHw1Ecf81TaReJ2Qa+oD3O8tkbm8c8\n326ryxgXdypF2++2U291IbngcMCsaZkjFDS3RmxOLSexp9h2Uns+j6PvvxVNmAFwOVP0t05sLwaZ\nmC+EO+wRZiAzWtPSBu9+pAMvxfYUaMReTBN6HiG99zJcyU+sruas+EeHrS6hpF3fWcTtppMZimZC\nTW+/1ZWI5I0CjdhHapBU67eh6z/jdBTvMQIV3h76O2qtLqMkuVIpfjA4YnUZ+ZFMwY7PoKXd6kpE\n8kKBRuxh9BMSuz6PK/qi1ZXkRKxj4ptMyfhd3NHJ1ELeTC8X9h3MHJ+gE7zFZhRopOil+v8/krsX\nY5h7rC4lZ6qcnaSS+uc52a7v7LG6hMnRHcm0oKKaVyP2oe+YUrxMk/jB/4yz7QbczqjV1eSU1z1C\n7/5pVpdRUlzpNLcO2LTddCLRWCbU9Gh3arEH7UMjxSnVz8ie6/GnXi/IswNzwTlQPKuz7OCijk6m\n2b3ddKxUCj7YlTnkUku7S05LSwtr166lpyczMtnY2Mh9991HTU3NuJ/roYceIhQKjZ3pdCrJZJJ/\n+Id/4He/+x1+vx/DMPjrv/7r486WGi8FGik6ZuxD4nu+jt95wOpS8qra287IQBB/hVY9TYbrO7qt\nLsE6LW2ZlVDnzgW3zt6wQv/f/V1On6/yvvtO+fupVIo777yTe++9d+zE7aeeeooHHniARx99NKe1\nHGv9+vUMDAzwwgsv4HA4ePfdd1m5ciWvvPIKbvfZxxIFGikqqcHNmK3X4nXavzXgdJgMHKjDf74C\nTb5l2k0lPp+kpw+2fwQXnAMBnQVld1u3biUUCo2FGYDbbrtt7Eym1atXYxgGfX19rF27lrvvvpto\nNEosFmPNmjU0NTWxceNG1q9fT0NDAz6fj1AoRCqVYs2aNbS2tpJMJlm1ahVLly7Nuvf//J//kxdf\nfBHHoRHBxYsX8/Of/3xCYQY0h0aKyEjHf4fWb+AugTBzWDCpfUMmw6KOTqarw3dkXo32q7G9PXv2\nHNficTqdWec4VVZW8sQTT9DV1cWNN97Ihg0buOuuu3j66acxTZPHH3+cZ599lubmZlpaWgDYtGkT\n9fX1bNiwgXXr1vHggw9m3WNwcBCv10tFRUXW9WM/PxsaoZGiENn9N1TGH8TpLK2fOmWePiJt9VQ3\ndlldiq19u1RWN52JVDozr+a8eVBfbXU1kidOp5NkMjn2+R133MHQ0BDhcJgXX8xsf9HU1ARAXV0d\nTz75JM888wzxeJxAIEAkEiEYDFJbm9kza/HixQBs376dbdu2jR1WOTo6Sjwex+PxjN0rlactAxRo\npOB17byFetf/sO3k39NJdPtBh3DnjTOd5of9pTPqd0ZMEz7cnZlT06BNHu0oFArx/PPPj33e3NwM\nwFVXXUU6nQbAMAwAnnvuORoaGnjkkUfYsWMHDz/8MJAJRYcdblUZhsHtt9/O8uXLT3jf8vJykskk\n3d3d1NUdOdN+586dnH/++WNtqLOhlpMULDOdoOu9r2bCTAmrdoVJxvXeI18WdXYxs7QG/s7cx3uh\nrdPqKiQPlixZQjgc5rXXXhu7tnPnToaHh7PaTgCRSIRZs2YBsHnzZhKJBFVVVQwODjIwMEAikRgb\nkVm0aBFbtmwBoKenh8cee+y4e998882sXbt2bIRo27ZtrF69mng8PqHXpO+SUpDSySEiH1xBvW+7\n1aVYznDF6do/k/r5rVaXYkvXqd10ap/tz7ShZk61uhLJIYfDwfr167n//vtZt24dhmEQCARobm7G\n5/NlPfa6667jnnvu4dVXX+Xmm2/mpZde4oUXXmDlypWsWLGC6dOnEwqFAFi2bBlvvfUWN910E6lU\nipUrVx5379tuu41//Md/5Prrr6eyspLy8nKam5vxer0Te03m4XEikQKRincy+OFSqnz22fl3onpj\nU6n5fNjqMsZtb2we83y7rS7jpBzpNHu2vsuctNWVFIFZ02DudKurEDkptZykoIxG2xjauVhh5hjV\n3jDDfeVWl2E7n+vqVpg5U/vbYZdGCaVwKdBIwRjq30f048uo9B+0upSC43DA0MHx794pp/btUt5M\n72wc7IBP92UmDYsUGAUaKQi9nZ8Q3/VlqgP23v13IsrTvZgaTcgZRzrND/vtdQbYpGjvzkwWVqiR\nAqNAI5brCn9EuuVr1AQVZk4lYAwSOaiJmblyQXc3cxUQz05nL+zcDWn9D5TCoUAjlurp+gyzdRl1\n5futLqUopHq1MDFXrgur3TQhPX2ZDfgUaqRAKNCIZXq795Dc+3WmlLdYXUrRqDbCxGOe0z9QTslh\nmvxI7aaJiwzAJ/vUfpKCoLd7YolITwvxPV9jasVeq0spKm5nko6WWTQs1IjWRJzf1c05GljIjc5e\n8Hpg3gyrK5FxamlpYe3atfT0ZPZiamxs5L777qOmZvwLEB566CFCoRA33HDDaR97yy23EI1GCQQC\nJBIJLr/8cv78z//8uA39xkuBRiZdfyTMyGdfp7GqcPcnKWTemLbpn6hvaXVTbrWGM6Fm+hSrKyle\nv3knt8935RdO+dupVIo777yTe++9d+zE7aeeeooHHniARx99NLe1nMDatWtZsGAB8Xicn/70pzz+\n+OP81V/91YSeU4FGJlV/fzfdH1zLOfWfWF1K0arydjHYXUV5XZ/VpRQlh2nyo75hq8uwn137wWtA\nnQ60LAZbt24lFAqNhRnI7OB7eK/d1atXYxgGfX19rF27lrvvvptoNEosFmPNmjU0NTWxceNG1q9f\nT0NDAz6fj1AoRCqVYs2aNbS2tpJMJlm1ahVLly49aR0ej4ef/OQnfOMb3+Av//Ivx86POhuaQyOT\nZnCgl9Ztf8Y59X+wupSiF22vtLqEonVudw8L1G7Kj4/2wsCQ1VXIGdizZw8LFy7MuuZ0OrPaPpWV\nlTzxxBN0dXVx4403smHDBu666y6efvppTNPk8ccf59lnn6W5uZmWlsxcyE2bNlFfX8+GDRtYt24d\nDz744GlrCQQCTJs2jfb29gm9Jo3QyKQYHhrg4zd/zCWzf2V1KbZQ6eginXLgdGky5nhd29FldQn2\nlU5nVj59/lwI+E7/eLGM0+kcOxwS4I477mBoaIhwOMyLL74IQFNTEwB1dXU8+eSTPPPMM8TjcQKB\nAJFIhGAwSG1t5jT2xYsXA7B9+3a2bds2dljl6Ogo8Xgcj+fUixmGh4ezTu8+Gwo0kneJRJz3/n01\nl83+X1aXYhs+d5Tu1kbq5rRZXUpRcZgmP4yo3ZRXiSTs+AwuOhc8Z98+kPwKhUI8//zzY583NzcD\ncNVVV5E+tBT/cPvnueeeo6GhgUceeYQdO3bw8MMPA2QFkMOtKsMwuP3221m+fPkZ19Lf38/AwACN\njY0Tek1qOUlepdNp3tyylotn/hMup8b5c6rPYXUFRWdBTw/n6q9h/sVG4YPPIJWyuhI5iSVLlhAO\nh3nttdfGru3cuZPh4eHjVhtFIhFmzZoFwObNm0kkElRVVTE4OMjAwACJRGJsRGbRokVs2bIFgJ6e\nHh577LFT1pFMJnnwwQf5wQ9+oBEaKVymafLmb9ZzUcN/xeuOWV2O7VR72okN+/EFterpTH1Lm+lN\nnsEofLgHLpyfOYxMCorD4WD9+vXcf//9rFu3DsMwCAQCNDc34/Nltwuvu+467rnnHl599VVuvvlm\nXnrpJV544QVWrlzJihUrmD59OqFQCIBly5bx1ltvcdNNN5FKpVi5cuUJ7/+Tn/wEv99Pf38/X/nK\nV/jRj3408ddkmtoRSfJj2+9fZAYraajUCb350sFsGs4t3I0J98bmMc9XOMvzP/jdNi5I6VvepJpW\nBwvmWF2FlAC1nCQvPv3obcpH/k5hJs/8o4NWl1A0Qj09CjNWaO+G/RNbvSJyJhRoJOfaD+6me9da\nFkx91+pSbK/C20tfuM7qMorCt9q1usky+9qgX8u5Jb8UaCSn+vu7+eMb/5VL5v3C6lJKxmhnwOoS\nisKt+oFqHdOEj/ZkVkCJ5IkCjeRMMpngt796ii/O/2cMV8LqckpGtbOTVEL/lE9lfk8vTfpZaq3R\neOYgS5E80XdByZl/f/3/4XNT/5lKv1aSTCaPO0bv/ont32B33wyr3VQQevrgYIfVVYhNKdBITux8\n/98JJP4Hc+o+sLqUkuQc1H4fp/LDiNpNBWP3gcySbpEc0z40MmGd4X20fvwcX71ws9WllKxqb5ho\nfxmBSv3gPta83l4+r9VNhcM04aPdcPH5cMwGbjK5WlpaWLt2LT09PQA0NjZy3333UVNTM+7neuih\nhwiFQtxwww2nfewtt9xCNBolEDgy/+973/se3/rWt8Z936Mp0MiEjI6O8OZv/4k/XfivuJwaJbCK\n02EyeKBWgeYEvqnVTYVnZBQ+bYHz5lldScHI9daDp4vwqVSKO++8k3vvvXfsxO2nnnqKBx54gEcf\nfTTH1Rxv7dq1LFiwIKfPqUAjZ800TX6z5f/moun/L2XefqvLKXnBVJ/VJRSkH/Yp5BWkzl6oroCp\n2nbAClu3biUUCo2FGYDbbrtt7Eym1atXYxgGfX19rF27lrvvvptoNEosFmPNmjU0NTWxceNG1q9f\nT0NDAz6fj1AoRCqVYs2aNbS2tpJMJlm1ahVLly6dlNekOTRy1v64bTP+xCZm1X5sdSkClHn6iRyc\nYnUZBWVOJMLipNpNBeuz/TCsozussGfPHhYuXJh1zel0Zp3jVFlZyRNPPEFXVxc33ngjGzZs4K67\n7uLpp5/GNE0ef/xxnn32WZqbm2lpyexYvmnTJurr69mwYQPr1q3jwQcfnLTXpBEaOSsHWj9l90ev\n8K3P/5vVpchREt1emG51FYXjm+2dVpcgp5JOZ/anWXweTPBgQhkfp9NJMnlkL4M77riDoaEhwuEw\nL774IgBNTU0A1NXV8eSTT/LMM88Qj8cJBAJEIhGCwSC1tbUALF68GIDt27ezbdu2scMqR0dHicfj\neDyerPv/5Cc/yZpD8+CDDzJz5swJvSYFGhm3WCzKG7/5V754zst4Db27KiTV7g4So24MrzZdAbhV\nq5sK3/AI7GqFBbOtrqSkhEIhnn/++bHPm5ubAbjqqqtIpzNH0huGAcBzzz1HQ0MDjzzyCDt27ODh\nhx8GyDod+3CryjAMbr/9dpYvX37K++djDo0isYzbG7/5V2ZUvs2Mmk+sLkWOYbjiRPZPs7qMgjCr\nr49L1G4qDu1d0K05YJNpyZIlhMNhXnvttbFrO3fuZHh4OKvtBBCJRJg1axYAmzdvJpFIUFVVxeDg\nIAMDAyQSibERmUWLFrFlyxYAenp6eOyxxybpFWmERsZp92fv0tu5jWsv+qXVpchJGMNxq0soCGo3\nFZldLVBVDm4t5Z4MDoeD9evXc//997Nu3ToMwyAQCNDc3IzP58t67HXXXcc999zDq6++ys0338xL\nL73ECy+8wMqVK1mxYgXTp08nFAoBsGzZMt566y1uuukmUqkUK1euPOH9j205XXbZZSd97Bm/JvPw\nOJHIaYxEh3jx5//Al+Y/z/Tqz6wuR05hqKGSsmrrV57tjc1jnm+3Jfd+Y+u7LE2mLbm3nKXpU2D+\nLKurkCKllpOcsa2//VdmVf9BYaYIDB+ssroES83s61eYKUYHO2FA857k7CjQyBn57JN36O96l4vn\nqNVUDMrNHtIlvM/hsnadF1S0Pm3J7CYsMk4KNHJa0eFB3n37VS6e+zoe96jV5cgZCBhDRA6W7uTg\nH0QGrS5BztbwCLSGra5CipDoCvw1AAAgAElEQVQCjZzWG7/9V6r9u3TwZJFJR0pzcuX0/n4uT+gd\nflFraYeY3jzJ+CjQyCl9+tHbhNs/45K5r1pdioxTjdHOaNRrdRmTbplWNxW/dBp2t1pdhRQZBRo5\nqfhojO3bfsWCae9RHdSchGLjcqboa22wuoxJ94NetZtsobsPeq1fqSfFQ4FGTuoPv/8FTrOfphmv\nW12KnCVfLGp1CZOqcWCALye0usk2drVmRmtEzoACjZxQb087+3a/x6KZr+PT8QZFq9LbTX9njdVl\nTJpvaHWTvYzEMku5Rc6AAo0cxzRN3n5jE9XBLuY3bLO6HJmgWEe51SVMmlt61G6ynZY2GNXu13J6\nCjRynD27/khX134unvMKTodWixS7SkcnqaTD6jLyburAIF9Ru8l+UmnYe9DqKqQIKNBIllQqyR+3\n/Yo5dZ/SUNFidTmSAz73CJHWRqvLyLtvtGvvEtvq6IGh0poPJuOnQCNZtr/zK0aig3xuxq+tLkVy\nacD+I203a3WTve1vt7oCKXAKNDJmcCDCpx/9nrn1H1IV6LK6HMmhGk+YkaHA6R9YpBoGB7k6rnaT\nrXVFMrsIi5yEAo2M+cObm3CQ5sIZv7G6FMkxpyPNwP56q8vIm6+3aXVTSWjRKI2cnAKNANDVuZ+2\nA58yp24Hlf4eq8uRPAgkBqwuIW9W6Oym0tDVC1GN0siJKdAIANvf2YzL5eTC6b+1uhTJk3JvhL52\n+43S1A8N8dXREj5avNRolEZOQoFGCLfvpSO8h7n171Hu77W6HMmjeJff6hJy7mtqN5WWzl6Ixqyu\nQgqQAo3w/rtbcLscGp0pAVWuDpJxe53CvULn/ZQerXiSE1CgKXHhtt10hPcxr/6PlPn6rC5H8szj\nGrXVnjR1Q8N8LaZ2U8np6MkciyByFAWaEvfeu6/hdjm5YPq/W12KTBLnYMLqEnLmq+1hnA7774Is\nJ6C5NHIMBZoS1nZgF50d+5hV+yFlXg3bl4pqbwfDffY43+nmHvuu3JLT6OyFkVGrq5ACokBTwt7f\nvgWXy2Dh1N9bXYpMIqfDZOhg8Z/AXTM8zLJY0uoyxCqmqbk0kkWBpkQd2P8JXZ2t1AQPUld+wOpy\nZJKVpSKYRb6x7lfb1G4qeR09ENMojWQo0JSoDz/4HS6XW6MzJSroGSDS1mB1GRPyZzq7SUwTDmjZ\nvmQo0JSgSG8HHe178BmDzKrdaXU5YpFkj8fqEs5adTTKNSP2mdwsE9DRC+kiH26UnFCgKUE73/8t\nLpdBqOEdXE59IyhVNe4wiVHD6jLOylfbwrjVbhKAZBK6teWEKNCUnER8lNaWnTgdSeZP2WZ1OWIh\ntytBpGWq1WWclZt6tCpPjtLeZXUFUgAUaErMBzv+nVQqzey6D/B7hq0uRyxmFOGy16polG+NaHWT\nHKVvUJODRYGmlJimyd7PtuN0OjUZWACo9nYy2FNldRnj8qdtHWo3yfHau62uQCymQFNC9u1+n+Hh\nPmqCbdQEw1aXIwUi2l5pdQnj8h/UbpIT6ejOrHqSkqVAU0I++egtXC6DuXXvWV2KFJAKs5t0kRyH\nVDkywrVa3SQnMpoAHVRa0hRoSkR310E6O/fjIK2l2pLFbwzTe6A4Dqy8qi2MoXaTnIzaTiVNgaZE\nfLRzK26XwbSq3ZoMLMcx+4rjW4HaTXJKvf0Q1wheqSqO72IyIalUirYDnwEwp+59i6uRQlRjtBMb\n9lldxilVxGJ8O6ofVnIKpglhjdKUKgWaErBv93vER0dwu0aZUf2x1eVIAXI5U/S3TrG6jFP6E7Wb\n5Ewo0JQsBZoSsG/vDlwuN7NqPsTt0v4dcmK+0cJuRX6/R7vByhkYGc3sSyMlR4HG5uLxGOG23QDM\nqdthcTVSyCq9PfR31FpdxgmVx2J8R+0mOVMapSlJCjQ298mHb2Ga4PcMMKVin9XlSIGLdZRZXcIJ\nfaUtjAe1m+QM9fRpT5oSpEBjc637P8bpdDKndgdOh/6By6lVOTtJJQvv28L3u7W6ScYhmYL+Iaur\nkElWeN+5JGcGBnrp7moFYEbNJxZXI8XA6x6hd/80q8vIEhwd5TsjcavLkGKjOVclR4HGxj758E1c\nTjced5TasgNWlyNFwjlQWCN5X2kL41O7ScZLuwaXHAUamzJNk7bWT3A4HDRW7lK7Sc5YtbedkYGg\n1WWM+V633mnLWYjGdAJ3iVGgsalIb5j+vsxM/8bqzyyuRoqJ02EycKDO6jKATLvpxqjaTXKWtLN0\nSVGgsam9u/6Iy23gIM20ql1WlyNFJpgsjB8EV7SH8avdJGerV6N7pUSBxqY6O1pwOBzUlbfidces\nLkeKTJmnj0ib9TsHf1/tJpmIvkFIFclR8jJhCjQ2FI/H6OnKTAKeXv2pxdVIsUp0W3u2kz8e53vD\najfJBKRNiGjX4FKhQGNDuz/bDo7Ml7axSvNn5OxUu8Ik427L7n9Fm9pNkgNa7VQyFGhsKNy2G6fT\nSdDbR1Wgy+pypEgZrjgRC/ekubE7Ytm9xUYUaEqGAo3NpNNpujr3AzBNozMyQa4ha1o+/nic76vd\nJLkwGoehqNVVyCRQoLGZcNtuRmOZU5MbylssrkaKXbW3g+G+8km/75faw5Sp3SS5olGakqBAYzP7\n932Iy2UAUF+x3+JqpNg5HDB0sGbS73tjl1Y3SQ5pP5qSoEBjM10dmVGZMm8vAY9m98vElad7MdOT\ndz9fIsF/GNYOr5JDg8OQnsS/xGIJBRobGY1F6Yt0ADClQu0myY2AMUjk4NRJu9/lajdJrpkmDGs/\nLrtToLGRln07cTgzX9KwewnvDX6XWKpwzuSR4pXqnbzl29/t0uomyYOhYasrkDyzbpMJybnuzv04\nnS4AdlX8kI/df8UrsSSB+H7q039ktuu3LPT/glqvRm9kfKqNMPGYB48vvyuPvIkENw+NgkZoJNcG\no2DdLgQyCRRobKS3px2AtNNL0lubueh0E/XNo4V5tHADv03/A57+LqqTO5nh2ErI90tm+d7CqbE6\nOQW3M0lHyywaFuZ3ovkX2zsoV5iRfBjUCI3dKdDYxGh8lD17d1NTVc5o+fTM8pSTiHvq6fB8hQ6+\nwjb+GudwlIr4J0zlD8zzvMaCwC/xufSPX7J5YyN5v8d3u3rzfg8pUcMjmYnBevdmWwo0NrH/YJhh\nd4jergE8FTPHNTkq7Q7Q576IPi7iY/53Xo4lCcZbqEv9kdnu33Ju4CVqPK15q12KQ5W3i4Huairq\n8jPHxZtI8GdqN0m+mGYm1JRrXqFdKdDYRFu4k/LySsrLKxmpncOEzpd1uhn2ncMw59DCd/ht6r/i\n6e+kJvkB051vEPL9G3P8b+WqdCkiI+0VeQs0S8IdVCnMSD4NRhVobEyBxia6e4/8kEn7K3P+/HHP\nFMKeqwhzFdv4G5yDw1SOtam2sCDwS7yu/LckxFqVji7SKQdOl5nz5/6OVjdJvg0NA/VWVyF5okBj\nA6ZpjgUa0+nC9JTl/Z5pd5CIezERFvMRP+YXsSTB0Rbq09vH2lTVngN5r0Mml88dpbu1kbo5bTl9\nXiOZZMVQDLWbJK8GdaaTnSnQ2MDQcJTh6Agej0HaV3nKCcF543Qz7M+0qfbxXX6T+hmevg5qkh8w\nw/kG8/2/ZI7/7cmvS3KvL/d/v5a0d1BtKsxInmlisK0p0NjA/rZ2XO7M/jNpX+7bTWcr7m0g7G0g\nzJ/yDmtwDQ5REf+Eabw9tprK49LuncWm2tNObNiPL5i7FuN3tLpJJoMmBtuaAo0N9Eb6cB16x5GP\n+TO5knKXEXFfTISL+ZA7IJYkGN/HlPS7zHb9hoWBX1DtyW0rQ3LP5UzT3ToF37m52aDRSCa5Re0m\nmSyDwwo0NqVAYwN9/UcOoSykEZrTcroZ9s1nL/PZy/f4dfK/4Y12Up3cwQznGyzwv8Is/zarq5QT\n8I/m7uDTS8Od1KjdJJNF82hsS4HGBvoGBsb+u6gCzbEcDkbH2lRX8w734hocojL+MVN5+9Bqql+p\nTVUAKry99IXrqJraPeHn+k5nTw4qEjlDUX3/sCsFmiKXSqXoHxgEhwPT5cE0fFaXlFMpdxm97i/Q\nyxf4kD/HEUsQHN1LvbmdOe7fcq7/F1SqTWWJ0c4ATPAQbiOZ5JbB0dwUJHImRvN7HplYR4GmyPX2\n9RNPJDMrnDwBq8vJO9NpMORfwBAL2Mv3eT353/BGO6hJvc9M5xuEfK8y0/+u1WWWhGpnJ6mEE5eR\nPuvn+EJHJ3U5rEnktOKJzORgK1aDSl4p0BS51rYwhpH5MpqeEpzo5nAw6p1KO1Np52u8zd/iGhyk\nMv4x03ibczybmR/4FR6X3pXlmscdo2v/DOrPOfv9hm5Qu0kmm2lmQo3XY3UlkmMKNEWuv38Qx6F3\nGulSDDQnkHKX0+u+hF4uYSd/MdammmK+y2z3bzg38AsqjbDVZdqCc/DsD9lwp1L8YFCrm8QCo3EF\nGhtSoClyQ9EjM/bNEmg5nY2j21R7uInXEybe4TC1yR3McG1lge8VZvj/aHWZRanaGybaX0agcmjc\nf/bicCdTtLpJrKB5NLakQFPkjg40GqE5Qw4Ho95ptHmn0cbXeJu/wzUwQFXiY6Y5fs88zxbm+zer\nTXUGnA6TwQO1ZxVoru9Su0ksokBjSwo0RW54+OgRGgWas5UyKugxLqWHS/mAOw+1qfbQkH6XOcav\nWRh4mQqjw+oyC1Iw1TfuP+NKpbh1YAS1m8QSsYTVFUgeKNAUsVQqxfBIDJfr0C7BajnlTKZNtZAh\nFrKb/8CWhIl3uJ3a5A5mHmpTTfe/Z3WZBaHM00/k4BSqp3ee8Z+5uKOTqWo3iVXiGqGxIwWaIjYw\nNEwymcTl8mA63eDSJLe8cTgY9TbS5m2kja/ze+4/1Kb6iGmO3zPfs5n5/i24XaX5zi/R7YXpZ/74\nb3fq7CaxUEyBxo4UaIpYZ3cv7kOHUppue22oVwwybarL6OEyPmAVjlicstHdTDHfZc6h1VTlRpfV\nZU6KancHiVE3hjd52se60ml+MJC7gy1Fxk1zaGxJgaaI9Q3043IdDjQanbGa6fQw6D+PQc5jNzez\nJZHGN9xObep9Zji3stD3Co3+HVaXmReGK07n/plMCbWe9rGf7+hkujkJRYmcjDbXsyUFmiIWHT5y\nJompdlPhcTiJeadzkOkcZBm/5+9xD/RTmfiIRn7POd5fMd//um3aVMbwmb3rvb5Dq5ukAIzGwee1\nugrJIQWaIhYdPSrQaISmKCSNSnqMJfSwhB38JY6RUcrie2gwtzHb/WvODbxMuTHxAx+tUO3rYChS\nSVl1/0kf40qnuXVQ7SYpAKMJBRqbUaApYvGjZuqbLv3DLEamyzvWptrFikNtqjZqk+9nVlP5X6bR\nt9PqMs/Y8MGqUwaaps4uZpz90U8iuaOVTrajQFPERo+a2KYRGptwOIl5Z3DQO4ODXMNb5gO4B/qp\nSnxII28x37uZeYHXcDvP/siBfCo3e0inwOk68e9f31Gco09iQykla7tRoClio/Gj5l5oDo1tJY1K\nuo2ldLOU9/k/cURHKY/vZoq5jbnu1zk38DJBozCWQQeMIQ60TGPGvPbjfs+ZTvOD/ijaTE8KQloz\n0+1GgaaIxRNHAo3pVsupVJguLwP+8xngfHZxC79KpPENHaQu9T4zXb9jof9lpvo+sqy+VOTEwzNN\nnV3M1mZ6UihMBRq7UaApUqZpZlpOh34+mE59KUuWw0nMN5MDzOQA3+RNcy3ugQjViY+Y5niL+d5f\nMc//60lrUzX62hmJBvAHolk/NK7tVLtJCkhaLSe70U/BIpVMpUgmk7iNQ19Ch9PagqSgJI1quowv\n0sUXeZ+7cERjlMd302C+wxz3rzk3+DJBdyQv9zZcKQ62zmTOwk8wDwUaRzrND/u1ukkKiEZobEeB\npkjFYqOkzPSRL6ACjZyC6fIx4L+AAS7gM27lV/E0/sGD1KbeY5brdyz0/4IG3yc5u18wNggcmS3z\nua5u5uoNsRQSzaGxHQWaIhUdiWW9wTAVaGQ8HE5GxtpUy3nD/C+H2lQf0uh4i3O8v+Ic/69xOc8u\nhdR72+jubIBDB8Bfp9VNUmjUcrIdBZoilUgkcTqPmmCpLbxlgjJtqsvp4nLe4+5DbapdTDXfYY6R\nWU0VcJ98j5ljRQ6U4TkvhSOd5tb+aB4rFzkLajnZjgJNkUokEziODjFOjdBIbmXaVBcywIV8yg/5\nt3ga/+AB6tJ/zLSpfC8zxffpSf98oztMV3oaF3T3cI7eDEuhUcvJdhRoilQylcSZNSqjQCN55nAy\n4ptFK7No5Vq2mg/j7u+lOplpU81z/4L5ZW+OtamCnmF2t03j2pjaTVKATKVsu1GgKVLJZCprhMbU\nCI1YIOmpocvzJbr4Eu/xVziGoxix3dSk3+Nz3tdxGQf50ciw1WWKHE8jNLajQFOkEscEGu2+KoXA\ndAeIl32OMJ8jzApqu/dw7Y5XOFhWAcEyXP4gHl+AoNeH121YXa6UMs2hsR0FmiKVTh0baPSPUwpP\nfeQgvsF+GMyeTBwDBj1eEuUVpIIVOAJBDH8Qv89PwPDi0oij5JtGaGxHgaZIpY75x+hIpxVppODU\nDHSc9PeM+ChGTxf0dI1dSwMDQLysgmRZOWawHJc/iNcfwO/149eojuSKlm3bjgJNkTKPndBmFubp\ny1LayiInDzQn4wR8QwMwNJB1PQ5E3Qbx8kpSZeU4AmUY/iA+n5+Ax4dbozoyHurS244CjV3o3YYU\noNp4bo87cCcTuCPdEDmycsoEhoB4oIxEWQVmWWZUx3NoVCdg6CR6OQHXiQ9RleKlQFOkXK7sd6MO\njdBIgXGkk5Qn45NzL8AbHcIbHYLOI9cTQI/LTby8glRZBY5gGW5/EJ/XT8Drw3Dqh1rJcuvHn93o\nK1qkXE4XpmkemRisPRWkwFT3HqQQ4oI7lcTd1wt9vVnXh4G4P0CyrIJ0sAJn4Miojt/wHLPPk9iO\nuxD+dkouKdAUKcNwkzZNXIe/6aY1QiOFpa53v9UlnJID8I5E8Y5EoSs8dj0J9Dldh0Z1yiFQjtsf\nxOv3E/D48ahVYQ8KNLajQFOkPIYHM22ObRDs0AiNFJia/vDpH1SgXOkU/v4I9Eeyro8A/V4fifJK\n0mXlOANlGL7A2HJzjeoUEQUa21GgKVIew31opdOhf5TppKX1iByrerj39A8qQp7RGJ7RGHQfWcGV\nAvocDuJlmbk6ZrAcdyCI1xcg4PXhdelbbcHRHBrb0Ve0SBmGQfqovWgcyVELqxE5XuXIkNUlTCqX\naeI/ySaCA4c2EUwHK3AGM6M6meXmXlwOLTe3hEZobEeBpkhlRmgUaKRApdOUJ/R38jBPfBTPiTYR\ndDgYDZaPjeq4jhrV8WkTwfxSoLEdBZoi5Xa7s44+UKCRQlLV16ZvLmfAaZr4T7CJ4Cgw7DYYragk\nHSzHESwfG9UJenw6GiIXFGhsR99zipTP58V51F40CjRSSAp9hVMxcCcTuHu7oTd7E8FBDm0iWF4B\nwczEZM+hUR2/NhE8c5pDYzv6ihYpw+3GOOofpCM1ORuYiZyJYl7hVOiyNhE8SuZoCPfYxOQjmwgG\nCHq9uLWJYDaN0NiOAk2Rcjgc+DweYvFMkNEIjRSS6qEeq0soSe7kiTcRHALi/iCJ8sxcncwmgsHM\nqI7bk9W+LgkuJ5Taay4BCjRFzOtVoJHCVDUyaHUJcpTMJoLDeEeGgfax6wlgxOU6MqoTKBtbbh70\n+DDsuomgRmdsSYGmiHm8nkxDncy5OaST4NSXVKynFU7Fw51K4T7BJoJRIO7zZzYRPDxXxx/InINV\n7EdDaP6MLemrWsR8x0wAdMRHMH3lFlUjklHR145x1JYCUrw8sRE8sZGsoyEymwg6iZeXkyyrxBEs\nw+Uvsk0EPVoSb0dF8DdPTsbn9WZ97owPkVKgEYtphZP9ucw0/oF+GDjBJoJeH4myisyoTrAMwx/E\n781sIlgwozp+7+kfI0VHgaaIebzHjtAMW1SJyBG1fe2nf5DY1tjRED2dY9dSQL/DQbysnERZRebA\nz0BwbLn5pG8iqEBjSwo0RSxwzD9K56gCjVivSiuc5AScpolvcADf4PGbCA4ZHhLllaQOHfjp9gcz\nmwga3vxsIuhToLEjBZoiVl1ZSSqVwnVoJYJTIzRSAKpGBk7/IJGjGIk4Rm8X9B45GsIEBoB4sJxk\neQVmsAyX/9Amgj4//omM6vh9E65ZCo8CTRFrqKvNCjSOeGkdBiiFqSIes7oEsQkn4BsehOHsbQAy\nmwgaxMuPLDc3/EG8h46GcJ9uVMenHZXtSIGmiJWXBXEftfxQIzRitbKBTjxa4SSTwJ1M4I70QCS7\nxTkExANBEmWVmGWZUR3D56e6qgZnKo3DY4Bd99cpcQo0RczpdFIWDBAdybwjdqQSkIyDW+8+xBp1\nPS1WlyAlLnM0xDDe6DAcmZfMEIDXh+fCC/GzyKLqJJ90ZGuRCwYDWZ87R7VDq1hHK5ykoI3GyMzO\nETtSoCly5YFjAk2s/ySPFMm/6qHu0z9IxELOujqrS5A8UaApckEFGikgVVGtcJLCpkBjXwo0Ra6i\nLIh51CRM54gCjVhHK5yk0LmmTLG6BMkTBZoi1zi1gUQiOfa5RmjEKoGhHrxm2uoyRE7KEQzirKiw\nugzJEwWaIldXU4XHOGrpdnIURzxqYUVSqrTCSQqdq7HR6hIkjxRoipzL5aK8LPtASudIn0XVSCmr\n7WuzugSRU3JNm2Z1CZJHCjQ2UF2lQCPWqxnUCicpbBqhsTcFGhuoOqYn7BqJWFSJlLLKqOZvSWFT\noLE3BRobaKivI5VKjX3uHNY7ZZl8lfERq0sQOSlHWRnO8vLTP1CKlgKNDcyaPpV0+qil28lRHDHt\nGCyTxxvtw5fWCicpXBqdsT8FGhvw+3yUB4NZ11wapZFJVK8VTlLgXNOnW12C5JkCjU3U1VRlfe4a\n7rKoEilFdZGDVpcgckruOXOsLkHyTIHGJupra7I+d+lMHZlE1VrhJIXMMDRCUwIUaGxizszpJOJH\n7RgcH8KR0CRNmRxVUW0VIIXLPXMmDpfL6jIkzxRobGJaQz1eryfrmlY7yWSpGFV4lsLlUrupJCjQ\n2ITT6aS+tjrrmtpOMhk8sSEC6dTpHyhiEffcuVaXIJNAgcZGjp9H02FRJVJK6rr3Wl2CyMl5PFqy\nXSIUaGxkxrSpJJJH5tG4YgM44sMWViSloK5PK5ykcLlnzcLh1I+6UqCvso3MntmIy5k98c010G5R\nNVIqqge0RYAULrWbSocCjY0Ybjf1NdnzaNwKNJJnVTrDSQqYe8ECq0uQSaJAYzONU6dkfe4a7IR0\n8iSPFpm4ylG1NaUwOWtrcdXVWV2GTBIFGpsJzZtNIpEY+9xhpnANqSUg+WHEowRSWuEkhcm9cKHV\nJcgkUqCxmWlT6ik79lwntZ0kT2q79+GwugiRkzAUaEqKAo3NOBwOGhuy206aRyP5ojOcpFA5gkFc\nM2daXYZMIgUaG5o1fSqpo9oAzvgwzhFtTS+5VzPQaXUJIifkDoVwODR+WEoUaGxo4fx5OBzZX1p3\nZL9F1Yid6QwnKVRqN5UeBRob8hgGDXW1Wdfcfa0WVSN2VhnTCicpQIaB+5xzrK5CJpkCjU1Nn9aA\naZpjnzvjwziHeyysSOzGFY8RSGlLACk8xnnn4TAMq8uQSaZAY1OLzl9AKpXOuqa2k+RSXW+LvoFI\nQTKamqwuQSyg70c2VV5WxtQp2RtKuftawUyf5E+IjE9t5IDVJYgcx1FWpuMOSpQCjY3NnjE9u+2U\njGmTPcmZmn6tcJLCY3zuczqMskTpq25ji85fgJk2s66p7SS5UjUcsboEkeN41G4qWQo0Nhbw+487\n28ndf0BnO0lO6AwnKTTOKVNwTZ1qdRliEQUam5s3ewbp9JF5M45UQku4ZcKcyThlycTpHygyiTQ6\nU9oUaGzuwoULcBxz2o7RvduiasQuanv265uHFBanU6ubSpy+J9mcx2Mwo7Eh65or2otzRPMf5Oxp\nhZMUGuPcc3GWl1tdhlhIgaYEXLAwRCqZvVzb6N5jUTViBzUDHVaXIJLFc8klVpcgFlOgKQGhubMp\nLwtkXXNHWiClORBydqqHeq0uQWSMc8oU3HPmWF2GWEyBpgQ4HA7mz52dtSeNI53UEm45azrDSQqJ\nRmcEFGhKxsVNF2Bmb0mD0aPJwTJ+jnSSsmTc6jJEMrxerW4SQIGmZAQDfmZPn5Z1zTXSh1M7B8s4\n1fS04rK6CJFDPIsW4fB4rC5DCoACTQm58LwFJJOprGuezo8tqkaKVW1E+xhJ4VC7SQ5ToCkh82bN\noLIie1mja6Ad50i/RRVJMart1wonKQzuBQtw1dWd/oFSEhRoSojD4WDhOXOydw4GDI3SyDhohZMU\nCu+Xv2x1CVJAFGhKzBcWXYjb7c665o7sxxHXqhU5M5WxIatLEME1dy7uGTOsLkMKiAJNifEYBgvP\nmZu9hBsTo+tTC6uSopFOUZYYtboKEXxf+pLVJUiBUaApQUsWL4Jjz3fq2QNJ/aCSU6uKHMR9+oeJ\n5JVr+nTc8+ZZXYYUGAWaEhQM+Jk/Z2bWNUc6hdG9y6KKpFjU92ozRrGeV6MzcgIKNCXqssWLSKWy\nz3fydH0K2jBNTqGmP2x1CVLinFOm4F640OoypAAp0JSomqpKZs9ozLrmSCXwdH5iUUVSDLTCSazm\nveIKHA7H6R8oJUeBpoRd9vnPHbfRntH1KY7EiEUVSaHTCiexkquxEeP8860uQwqUAk0JmzZ1CtOn\nNWRdc5gpjI6PLKpIClo6TYVWOImFfFdfrdEZOSkFmhL3pS9clLXRHoDRvRvHqN6JS7bK/nbcx55w\nKjJJ3Oecg3vuXKvLkAKmQFPipk2dwqzpx8ylwcQT/sCiiqRQ1fVohZNYx3f11VaXIAVOgUb48mUX\nHzdK447sxznSZ1FFUqlTitoAABUBSURBVIhqBrTCSaxhNDXhmjrV6jKkwCnQCLXVVZwze9YxuweD\np32HdUVJwakZ7LG6BClFLhe+P/kTq6uQIqBAIwB8+bLFHLt7sHugHVd/mzUFScGpHBm0ugQpQZ5L\nLsFZVWV1GVIEFGgEgIrycs6bPy9rlAbAe3A7pFMn+VNSSioSMatLkBLjCAbxXXml1WVIkVCgkTFf\nunQxLqcr65ozPoyhzfZKXll/B4ZWOMkk8119NQ6fz+oypEgo0MgYn8/LRReeRyqVPSLj6fgIR3zY\noqqkENT3tFhdgpQY14wZGIsWWV2GFBEFGsly2eImKivKs645zBTeg3+0qCIpBLX97VaXIKXE4cD/\nzW9qEz0ZFwUayeJ0OrniskuOOxLB3X8Q14B+qJWq6sFuq0uQEuK59FIt05ZxU6CR48ybPYO5M6dr\ngrCMqRoZsLoEKRGO8nIt05azokAjJ/Qnl1+K85jhXufoEB6d81SSKuJa4SSTw/+Nb+Dweq0uQ4qQ\nAo2cUEV5OZ+/8DxSx57z1PERzpGIRVWJFYKDXXi0wkkmgXHBBTpNW86aAo2c1JLFi6gIBrOuOTDx\n7v8DmOmT/CmxmzqtcJLJEAjgu+Yaq6uQIqZAIyflcrm4cumlxy3jdo30YXR8bFFVMtlq+zQZXPIv\n8K1v4QwErC5DipgCjZzSvNkzCM2dc9wEYU/Hh2o9lQitcJJ8M5qaMM491+oypMgp0MhpXf3lpfiO\nmaTnMNN4W97WqqcSoBVOkk9mMIh/2TKryxAbUKCR0/J4DK5cegmpVPa8GVesH0/4Q4uqkslSER+x\nugSxseC3v63jDSQnFGjkjCyYN4dzZs88rvVkdH6Mc6jToqok3/zDvfjSmgAu+WEsXowxf77VZYhN\nKNDIGfvqFV/Ef2zrCRPfvrdw6CRmW6rr1gonyZPaWvzf+IbVVYiNKNDIGfN6PXzl8stIH/OO3ZmM\n4d3/e9BeJbZT29dmdQliQ2mXi7KbbsJhGFaXIjaiQCPjMn/OLM6dP++4UOMe7MDo1FJuu6kZ0gon\nyb3gtdfiqquzugyxGQUaGbc//dISqiorjrvuaf8Ap34A2kpVtN/qEsRmHBdeiKepyeoyxIYUaGTc\nXC4X37z6ShzHnPXkwMTX8iYkRy2qTHKtYlQrnCR3UlVVlF97rdVliE0p0MhZqa2qOuFSbmdiBN/+\ntzWfxga8IwP4tc+Q5Eja5aLy5ps1b0byRoFGztqFC0OE5s0+fj7NQDue8E6LqpJcqe/eZ3UJYhMm\nmf1mNG9G8kmBRibka1dcTmV5+XHXjY4PcUdaLahIcqWm76DVJYhNuJYswXPhhVaXITanQCMT4na7\nuOZPr8B53Hwa8O5/G2e015rCZMJqBrusLkFsIDFrFmVf+5rVZUgJUKCRCauvreGKJZeQPmY+jcNM\n4du7FUdCE0uLUdWwVjjJxMTKyqhdseK4BQQi+aBAIzlx4bkhms5feOJJwnu36hDLIlQZj1pdghSx\nuNtN3W23aRKwTBoFGsmZK5dewszGqced9+SK9uJtfceiquRsGLEh/CmFUDk7KYeDihUrcFVWWl2K\nlBAFGskZh8PBt772J1SUlR33e0akBUMncxeNup4W1CSQs2EC7q9/He/s2VaXIiVGgUZyynC7ue7r\nf4rhdh/3e97wB7i7d1tQlYxXXUQrnOTsJC69lIrLLrO6DClBCjSSc1WV5XzjT758XOsJwHvgXVx9\nByyoSsajeqDT6hKkCA2FQtQvW2Z1GVKiFGgkL2bPaORLly4+bpJw5niEt3ANdlhUmZyJ6mif1SVI\nkYlMncr0P/szq8uQEqZAI3lz0YXnc9GF55E6ZnKpw0zj27tVe9QUsP+/vTt9juLM7wD+ffqY7p5L\nGo00QuhCQpYwGLAx2IAxsN41hrUh2XhtknW8PrK84C9x8iLXq9RWzqq8TqVSdtXGu97YGC/GBgPm\nsMUhQOhEYkbSCEkzfeaFBMuuRhICST098/1UTUkU1xdK9Hx5+vf0E89zhxM9vExFBZqOHPE7BpU5\nFhpaVi8+/yyebFs763gE4drQrx+HyI37lIzmopiTiDi23zEoIEbDYTQePQpJ4tsJ+YtfgbSshBB4\nec9ONDfUzyo1kp2Hcf0YBJ93UlS4w4keVlbTsProUSia5ncUIhYaWn5CCLz2oz2orameNSgsmZMw\nrn0KYU74lI7+WHWGQ9u0sDFVRc3Ro1ALPKaByA8sNLQiZFnGn/34ZVTG4wVKzQSMa5+x1BQJ7nCi\nhYyqKiqPHIHOB+dREWGhoRWjKgp++to+RIzwrO+TzAkYVz+FyN/1IRk9iDucaD4ZVUX8nXcQr6nx\nOwrRH2ChoRVl6DreOLgPhqbPXqmxJqdXavIcFPZTPMeVMioso6qIvPUWEvX1fkchmoWFhlZcLBrF\nm4deQSRssNQUGcnKcYcTFZRWVcTefhspHmlARYqFhnwRi0bx5sEDiITDBUrN1PTtp9yYT+nKV036\nFi8KNMudUAjxn/8c1Y2NfkchmhOvXeSbaCSMw4cOIBopUGrsHMJXP4V0d9indOUpOcIdTvSH+jQN\nFe++i+qGBr+jEM2LhYZ8FQkbOHzoAGKRyKxSIxwTRtfnPPtpBVVleSQF/d71cBi177+P6ro6v6MQ\nLYiFhnwXNgwc/pMDiEejs0uN50C/eQLq8FWf0pWXygnucCLAA/BdLIY1776LZCrldxyih8JCQ0XB\n0HUcPnQAyUTl7GMSAGh9ZxHqP+9PuDJSkeO2+XLnADhfVYUN772HBLdmU4Cw0FDR0HUNhw8dQOPq\nulmlBgBCQ53Qur8CXKfAz6bHJdkmorbldwzykSkEztfV4blf/ALxRMLvOESLwkJDRUWWZfzp/h9i\nXVvrrFO6AUAd6YZ+/Thg531IV9qqMtzhVM7GJQmXWlvx4vvvQzcMv+MQLRqvX1R0hBDYt+cFPPfM\npoIrNcrdIYSvfAJpivMeS4lnOJWvQUXBjc2bsftnP4OsKH7HIXokLDRUtHY8+zT27nxu1qAwMHNU\nwpXfQhm55UOy0sQdTuXpsqYh+8IL2HXwICSJbwkUXPzqpaK26ckO/PilPZDE7C9V4TnQu09ODwt7\ns1dyaHESEyN+R6AVZAM4FYkgum8ftu3dCyGE35GIHgsLDRW9tWsa8eah/Qgbs49KAKaHhTlX8/i4\nw6l8TEoSTlZVYf0bb2D9li1+xyFaEiw0FAjVVQn85esHUZeqgeMUmKsZvz0zV8NVhkchXBtRy/Q7\nBq2AQUXBNw0N2P3OO1jNc5mohLDQUGCEVBWvv7oPzzy1ruCw8L25GnX4ig/pgq0q0wvZ7xC0rFwA\nFzUN/Rs34sDbbyMWj/sdiWhJsdBQoAghsHv7Nuzb8wKkAvf8hedC6zsHvetzCCvnQ8JgSmZ6/I5A\ny2hCknA8EkF0717sPXiQO5moJLHQUCCta2vFG6/tR2SOuRplfBDG5V9Dzg76kC54qsb491SqekMh\n/K6qCk//5CfYvH07h3+pZAmv0LsBUUDk8yY+/uwL3OjphSzPvmniAbBq2mHWbQQk3lSZy4FPf4k1\n42m/Y9ASsoTAecPAZH099r72GqK8xUQljoWGSsK5S504ceoM3Dm+nB2jErnm7fB0XtQL+fNf/S0S\nFneJlYohRcE5w0Dzli3Yuns3ny9DZYGFhkpGenQUv/rkc6THxiAXuIB7QoK5agOsVAdQ4Lk2Zct1\ncOSjvwGnKoLPFAKXDAO343Hs3LcPjS0tfkciWjEsNFRSXNfFZye+xsXL1yBJhWcFHCOBfNM2uEbl\nCqcrTpWZHvzFF//pdwx6TIOqinOahsSaNdjz6qvQdN3vSEQrioWGStL17l58cvwE8qZZcAjSg4BV\nuw5m7fqyn61pu/Y7vPzdMb9j0CMyhcDFcBgDuo7NO3Zg/ZYtHPylssRCQyVrKpfDb46dwPWeXigF\nBoYBwNWiyDdshRNLrXC64vHc6f/Cs/2X/Y5Bj6A3FMK3qopEUxN27d/PZ8tQWWOhoZLXee0GPj95\nap7VGsBONMNcvQmeaqx8QJ/t/+yf0ZId9jsGLcKYLOOCYSBrGHh6506s27yZqzJU9lhoqCzk8yY+\nOf4lrt3sLri9GwA8SYFZ+ySsmvayug11+H//DlUmH0IYBKYQ6DQMXJdl1DU3Y9crryAcjfodi6go\nsNBQWblxqxefnfga4xMTc25ldUMR5FdvhlPZsMLp/HHkww+g8DJQ1DwA3ZqG73Udnqbh2RdfRPtT\nT/kdi6iosNBQ2bFtB5+fPI1Ll69CzLETCgDsaA3M+mdKejdUfKQfbx3/D79j0DzSioKL4TBGhcCa\n9nY894MfQDfK79Yo0UJYaKhspUdHcezEKdzqH5hzaNiDgJ1sgVm7Hl4ovMIJl19r10m8cun//I5B\nBYzJMjoNAwOShGQqhedfegk1dXV+xyIqWiw0VPa6unvwxVffYDSbnXu+Rkiwkmth1a4rqcHhbWf+\nG1t7v/c7Bj1gXJJwORxGv6IgpOt4escOtG/cyKFfogWw0BBh+oF8p89fwpnzl2DZ9pxvHp6QYVW3\nwUp1wFOD/+Cyfcf+BWvHhvyOQQAmJQlXDAM9oRA8AG0bNmDb7t1QVNXvaESBwEJD9IBcLo9jJ0/h\ncteNec+/8SQFVnUbzFQHoGgrmHBpvfnx3yOZn/I7RlmbkiRc03V0axpsx0FDayue3bULlcmk39GI\nAoWFhqiA9Mgovjx1Fl23eiHLCxcbq+aJQN6K+qsPP0CIlwBfZGUZXbqOvlAItutiVUMDtuzahZpV\nq/yORhRILDRE8xhOZ3Di9Fl09/RBmmO+BpiesbErG2GlOgKzKyo6dhtvH/tXv2OUnTuKgi5dx1Ao\nBMe2UVNXh6d37sTqpia/oxEFGgsN0UO4PZzGl6fP4mZvPxRl/ofu2dEUrFQHnNgqoIgHOVtufI39\nFz7xO0ZZ8AAMqCquGQbGFAW2ZaGqpgabd+xAc1ub3/GISgILDdEiDNwexonTZ9E7MDjnjqh7XC0O\nM9UOO9EESMoKJXx4W8/+D7b1XPI7RknLCYFbmoZbmoYpWYZt26hZtQobtm5Fc1sbdy4RLSEWGqJH\nMHQnja/PXcSN7h5AYN43Jk9SYSeaYCVb4IarVjDl/H50/N/wxMig3zFKjgdgWFHQreu4rarwhIBj\n26hvacHGbdtQW1/vd0SiksRCQ/QYJqem8NWZC7jcdR15y4I8z84oAHD0CtjJVliJJt93R/30439A\nTX7S1wylJP/AasykLOPepbW5rQ2bt29HRVXxlFmiUsRCQ7QEbNvBuUvf42LnVYxmxxecs/GEBLui\nHnZVC5xYChDzF6Hl8P6HH0DjP//HYgMYDIXQHwph6N5qjONANww0t7dj8/PPwwiX3hOmiYoRCw3R\nEvI8D1dvdONi51X09g9CSGLBOQlX0eFU1MOubIQTrV6RchMeT+OdT3+57L9PKXIADKkq+kKh6Z1K\nQsDzPLiOg9r6ejzx1FNoWbdu3ucYEdHSY6EhWiYTk1M4c+E7dN3swejYGBR14cFgV9Fmyk0DnOjy\nrdw0dX+DV7/9eFl+7VLkAEjPlJjBUAj2TEl1bBt6OIymtWuxYetWxCuDsWWfqBSx0BAtM8/zcKuv\nHxc7r+LGrT64nvtQ/3v35ND0bamK1dPlRl66R+Bv+fYjPN99fsl+vVI0JQSGZm4lDasqnJkS47ou\nPM/DqoYGtK5bh7Xr13M1hqgIsNAQrSDTsnD+u8u42dOH/tvTZyg9VLmBgBtJwo6tghOrhRtOPNbq\nzQ+/+He0ZwYe+eeXIg/AiKLgtqpiSFWRVX6/ouZ5HhzHQaquDg0tLWjftAm6EbwnQxOVMhYaIp/k\n8yYudF5ZdLkBZlZvYik4sVVwoil4WnRRv/frv/5HpHITi85cSjxMHz+QVhSkVRVpRYH1wN+/53lw\nbBvJVAr1LS3o2LQJkVjMv8BENC8WGqIiYJoWLl6+ghs9fegfGILruQs+uO9BrqLBDSfhRJJww1Vw\nwlXz3qJ676O/hu66SxE9MGwAo4qCzMxrRFFg/1GBdBwHQghU19YiNTPgW5FI+BOYiBaFhYaoyJiW\nhSvXu9HbP4DBoWGMjE1vA1/MU2U9AK5eATeShBOugqNXwNPigKLCmBjBu7/9p+X7AxSBnBDIyjKy\nioKsLGNMUXBXkgoeRWGZJsKxGGrr67G6qQktHR1QQyEfUhPR42ChISpyY9lxdHZdx8DgMAaH08jl\n8lDUh1+9AYBsJoPKXBZGqhGyHELHnVuIOg6ijoOI42Dpxo1XjgcgJ0mYkCRMShLuyvL9EpOf59ad\nY9uQZRmJVAo1tbVY09GBmro6HkNAFHAsNEQB4rou+gaHcLO3D+n0CO5kRjE+cReyLM87f5Pp6cGa\nCmPOHxNyXRgzL/2Bz++9NNfFSu7j8QBYQiAvBExJQl6I6fIiy5iUJEzOfHQXKCGe58G2LGi6jkR1\nNZK1tVjd3Iy6pqZF3dIjouLHQkMUcON3J9DV3YPhO2kMZ0aRGRmFaVlQVeX+qsN4bzcaKx9voFX2\nPKieB9V1pz8+8FI8D8Lz7pceCYDwPAjg/ssF4AgBB4ArxKzPHywwphDwFrli4nkeLNNEKBRCPJFA\nrLISlckkGltbkayt5QoMUYljoSEqMY7jYCidQd/AbYyMZjE6nsVA53eokAVcz4OiKIF+c7+36gIA\nRjiMeCKBimQS8cpK1Dc3o7K6ms+FISpDLDREZcIyTWSGhzHU34+JbBaTExPITU7e/2jm8xBCQFFV\nXwvPve3SjuNAURQY0SjCkQgisRjCsRgi0SiSqRQSNTV8FgwR3cdCQ0TwPA/5qSmMZjIYuXMHUxMT\nMHM5mKYJyzRhWRZs07z/bds0Yds24HnTp0rPnGeEmcvJvcuKJEkQQkBIEiRJgqIokGbmfRRFQcgw\noGkaVE2DpuvTL8NArKICsYoKRONxyMrCR0YQEbHQENEj8zxv+igA14XrefDufT7zjBtZUe6XmCDf\n5iKi4sdCQ0RERIHHyTkiIiIKPBYaIiIiCjwWGiIiIgo8FhoiIiIKPBYaIiIiCjwWGiIiIgo8Fhoi\nIiIKPBYaIiIiCjwWGiIiIgo8FhoiIiIKPBYaIiIiCjwWGiIiIgo8FhoiIiIKPBYaIiIiCjwWGiIi\nIgo8FhoiIiIKPBYaIiIiCjwWGiIiIgo8FhoiIiIKPBYaIiIiCrz/B7j+LQajBpprAAAAAElFTkSu\nQmCC\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "CLHjid6FY13N",
- "colab_type": "code",
- "outputId": "348964a1-6a7b-4096-8603-4a531fe873e5",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 92
- }
- },
- "cell_type": "code",
- "source": [
- "# splitting the dataset into training and test sets\n",
- "\n",
- "from sklearn.model_selection import train_test_split\n",
- "\n",
- "x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.25, random_state = 45)\n",
- "\n",
- "print(x_train.shape)\n",
- "print(y_train.shape)\n",
- "print(x_test.shape)\n",
- "print(y_test.shape)"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "(750, 14)\n",
- "(750,)\n",
- "(250, 14)\n",
- "(250,)\n"
- ],
- "name": "stdout"
- }
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# plotting a pie chart for the distribution of various grades amongst the students\n",
+ "\n",
+ "labels = ['Grade 0', 'Grade A', 'Grade B', 'Grade C', 'Grade D', 'Grade E']\n",
+ "sizes = [58, 156, 260, 252, 223, 51]\n",
+ "colors = ['yellow', 'gold', 'lightskyblue', 'lightcoral', 'pink', 'cyan']\n",
+ "explode = (0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001)\n",
+ "\n",
+ "patches, texts = plt.pie(sizes, colors=colors, shadow=True, startangle=90)\n",
+ "plt.legend(patches, labels)\n",
+ "plt.axis('equal')\n",
+ "plt.tight_layout()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 426
+ },
+ "colab_type": "code",
+ "id": "qSTFx72A27Hp",
+ "outputId": "5dd0f3f9-2cc3-41f9-af64-5dc96cb85394"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "ciauOTq_b04w",
- "colab_type": "code",
- "outputId": "de29f2bf-2e9b-4f8d-c089-f00e4d676d01",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 74
- }
- },
- "cell_type": "code",
- "source": [
- "# importing the MinMaxScaler\n",
- "from sklearn.preprocessing import MinMaxScaler\n",
- "\n",
- "# creating a scaler\n",
- "mm = MinMaxScaler()\n",
- "\n",
- "# feeding the independent variable into the scaler\n",
- "x_train = mm.fit_transform(x_train)\n",
- "x_test = mm.transform(x_test)\n"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/data.py:323: DataConversionWarning: Data with input dtype int64, float64 were all converted to float64 by MinMaxScaler.\n",
- " return self.partial_fit(X, y)\n"
- ],
- "name": "stderr"
- }
+ },
+ "execution_count": 195,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhkAAAGGCAYAAADWwpOAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlYVGX/BvD7zLDIJksCgrgg7uCG\nSrmUG5avS/maJS6Iub35qzf3XCjNBZMwS03TykLF1ExL08pMLUtRckEELVMTxVhlkU0YmOf3hzCv\nBMo2x8OB+3NdXhfnnGG4fZyR7zznWSQhhAARERGRkWmUDkBERES1E4sMIiIikgWLDCIiIpIFiwwi\nIiKSBYsMIiIikgWLDCIiIpKFyaP+gcnJmY/6R1aJvb0l0tJylI5Ra7A9jYdtaVxsT+NiexqXGtrT\n0dHmgdfYk/EAJiZapSPUKmxP42FbGhfb07jYnsal9vZkkUFERESyYJFBREREsmCRQURERLJgkUFE\nRESyYJFBREREsmCRQURERLJgkUFERESyqFCRcfnyZfj6+iIsLKzUtRMnTmDEiBEYOXIk1q1bZ/SA\nREREpE7lFhk5OTlYunQpunfvXub1ZcuWYe3atdi+fTuOHz+OK1euGD0kERERqU+5RYaZmRk+/vhj\nODk5lbp28+ZN2NrawsXFBRqNBr1790Z4eLgsQYmIiEhdyi0yTExMUK9evTKvJScnw8HBwXDs4OCA\n5ORk46UjIiIi1XrkG6TZ21safS32yd+eNerzyeXjQd5KR6gQtqdxqaE92ZbGxfY0Lran8TzqtqxW\nkeHk5ISUlBTDcWJiYpm3Ve5X03eTk5NadqBVC7an8bAtjYvtaVxsT+ORoy1l24XVzc0NWVlZiIuL\nQ0FBAY4ePYqePXtW5ymJiIiolii3JyM6OhrBwcG4desWTExMcPDgQfTr1w9ubm4YMGAA3nrrLcya\nNQsAMGjQILi7u8semoiIiGq+cosMLy8vbN269YHXu3Xrhp07dxo1FFFt8rLJdqUjVMBCpQMQUS3E\nFT+JiIhIFo98dgkREVFtxF7L0tiTQURERLJgkUFERESyYJFBREREsmCRQURERLJgkUFERESyYJFB\nREREsmCRQURERLLgOhlERHWUOtZ1ALgirXqxJ4OIiIhkwSKDiIiIZMEig4iIiGTBIoOIiIhkwSKD\niIiIZMEig4iIiGTBIoOIiIhkUSvWyeBcbyIiopqHPRlEREQkCxYZREREJItacbuEqCY7cPAppSOU\na2pnpROQEtTw2gT4+lQz9mQQERGRLFhkEBERkSxqxe0SdvkRERHVPLWiyCDj4pRgIqLKU8MH3kf9\nYZe3S4iIiEgW7MkgItVofPiW0hEqpltLpRMQ1QjsySAiIiJZsMggIiIiWbDIICIiIlmwyCAiIiJZ\nsMggIiIiWXB2CZWihrneABc3IyKq6diTQURERLJgkUFERESyYJFBREREsmCRQURERLJgkUFERESy\nYJFBREREsmCRQURERLJgkUFERESyYJFBREREsmCRQURERLKo0LLiy5cvx/nz5yFJEhYsWIAOHToY\nrm3btg379u2DRqOBl5cXAgMDZQtLRERE6lFuT0ZERARiY2Oxc+dOBAUFISgoyHAtKysLmzZtwrZt\n27B9+3ZcvXoVkZGRsgYmIiIidSi3yAgPD4evry8AwMPDAxkZGcjKygIAmJqawtTUFDk5OSgoKEBu\nbi5sbW3lTUxERESqUG6RkZKSAnt7e8Oxg4MDkpOTAQDm5uZ45ZVX4Ovri759+6Jjx45wd3eXLy0R\nERGpRqW3ehdCGL7OysrCxo0b8f3338Pa2hoBAQH4/fff0aZNmwd+v729JUxMtFVLq3KOjjZKR6hV\n2J7Gw7Y0LrancbE9jedRt2W5RYaTkxNSUlIMx0lJSXB0dAQAXL16FY0bN4aDgwMAoGvXroiOjn5o\nkZGWllPdzKqVnJypdIRahe1pPGxL42J7Ghfb03jkaMuHFS7l3i7p2bMnDh48CACIiYmBk5MTrK2t\nAQCNGjXC1atXcffuXQBAdHQ0mjVrZoTIREREpHbl9mR4e3vD09MTfn5+kCQJixYtwp49e2BjY4MB\nAwZg4sSJGDduHLRaLTp37oyuXbs+itxERERUw1VoTMbs2bNLHN9/O8TPzw9+fn7GTUVERESqxxU/\niYiISBYsMoiIiEgWLDKIiIhIFiwyiIiISBYsMoiIiEgWLDKIiIhIFiwyiIiISBYsMoiIiEgWLDKI\niIhIFiwyiIiISBYsMoiIiEgWLDKIiIhIFiwyiIiISBYV2oWViKgm6H8lVOkIFdRH6QBENQJ7MoiI\niEgW7MmgUvhpkahu4Hud5MaeDCIiIpIFiwwiIiKSBYsMIiIikgWLDCIiIpIFiwwiIiKSBYsMIiIi\nkgWLDCIiIpIFiwwiIiKSBYsMIiIikgWLDCIiIpIFiwwiIiKSBYsMIiIikgWLDCIiIpIFiwwiIiKS\nBYsMIiIikgWLDCIiIpIFiwwiIiKShYnSAYyh/5VQpSNUUB+lAxARET0y7MkgIiIiWbDIICIiIlmw\nyCAiIiJZsMggIiIiWbDIICIiIlmwyCAiIiJZ1IoprEREREpTx3IKfR7pT2NPBhEREcmCRQYRERHJ\nokK3S5YvX47z589DkiQsWLAAHTp0MFyLj4/HzJkzodPp0K5dOyxZskS2sERqxC5UIqqryu3JiIiI\nQGxsLHbu3ImgoCAEBQWVuL5ixQpMmDABX375JbRaLf7++2/ZwhIREZF6lFtkhIeHw9fXFwDg4eGB\njIwMZGVlAQD0ej3OnDmDfv36AQAWLVoEV1dXGeMSERGRWpRbZKSkpMDe3t5w7ODggOTkZABAamoq\nrKys8Pbbb2PUqFF499135UtKREREqlLpKaxCiBJfJyYmYty4cWjUqBGmTJmCn376CX369Hng99vb\nW8LERFulsA9y2ajPJh9HRxulI1QI29O41NCebEvjYnsaF9vTeB51W5ZbZDg5OSElJcVwnJSUBEdH\nRwCAvb09XF1d0aRJEwBA9+7d8eeffz60yEhLy6lmZPVKTs5UOkKtwvY0HralcbE9jYvtaTxytOXD\nCpdyb5f07NkTBw8eBADExMTAyckJ1tbWAAATExM0btwY169fN1x3d3c3QmQiIiJSu3J7Mry9veHp\n6Qk/Pz9IkoRFixZhz549sLGxwYABA7BgwQLMmzcPQgi0atXKMAiUiIiI6rYKjcmYPXt2ieM2bdoY\nvm7atCm2b99u3FRERESkelzxk4iIiGTBIoOIiIhkwSKDiIiIZMEig4iIiGTBIoOIiIhkwSKDiIiI\nZMEig4iIiGTBIoOIiIhkwSKDiIiIZMEig4iIiGTBIoOIiIhkwSKDiIiIZMEig4iIiGTBIoOIiIhk\nwSKDiIiIZMEig4iIiGTBIoOIiIhkwSKDiIiIZMEig4iIiGTBIoOIiIhkwSKDiIiIZMEig4iIiGTB\nIoOIiIhkYaJ0ACKiilo92knpCBWyTukARDUEezKIiIhIFiwyiIiISBYsMoiIiEgWLDKIiIhIFiwy\niIiISBYsMoiIiEgWLDKIiIhIFlwng0rhWgRERGQM7MkgIiIiWbDIICIiIlmwyCAiIiJZsMggIiIi\nWbDIICIiIllwdgkRUR3FmWQkN/ZkEBERkSxqRU9GRavxq6HnYN+xIRw6u8icqGysxomIqC5hTwYR\nERHJokb3ZGzZ8im++GI7GjZ0waBBQ/H551vwr38NQUpKMq5cuYwBAwZixAg/xO3/A1lX0yAK9bBq\naovGw9pC0mqQl5qLG7tiUJCTD8vGthB6YXju7Nh03PruTxTeLYCJpSmajPCEuYMFdHfycGP3Reiy\n8iAK9LBr7wwXXw8FW4GIiEidKlRkLF++HOfPn4ckSViwYAE6dOhQ6jHvvvsuIiMjsXXrVqMEu3bt\nKj7/fAvCwr6EjY0NZs36r+FaePhxhIZuh52dHX766TCyY9PR+lUfCL3A5Q2/IT06CfYdGyL+0FVY\nN7eHywAP5MTdwZ+fnIFDZxcU5hXgr8+j0PQFL9i0cEBaVAJiv4hGq5e7ITn8Jqya2aFhX3fo8wtx\nc+8l6DLzYGpjbpS/FxERUV1R7u2SiIgIxMbGYufOnQgKCkJQUFCpx1y5cgW//fabUYOdP38OnTt3\nQYMGDWBubo7Bg581XGvXzgt2dnYAgD59+qPlf7pB0mqgMdXCslF95KXmArjXW2HX/t54DUu3+qjX\nwNJw3rS+OWxaOAAA7Ds0RF5qLvLT78LEyhSZV24jKzYdkokGTV/wYoFBRERUBeX2ZISHh8PX1xcA\n4OHhgYyMDGRlZcHa2trwmBUrVmDGjBn44IMPjBYsM/MObGzqG44dHf83uLN+/f+dT0tLw809F5ET\nnwlJkqDLyofjE24AgMJcHbTm//srai3ufV14twD5qbn4fc1JwzWNVkJBTj4cuzeG0Avc2v8HdJn5\naODTCM593SFJktH+bkREVPuoYUrwo56AUG6RkZKSAk9PT8Oxg4MDkpOTDUXGnj174OPjg0aNGhk1\nmJWVFXJzcw3Ht2+nlPm4jz5aD0krofUrj0NjokHslzGGa9p6JijMKzAcF2TrAACmNuYwd7RCq5e7\nlfmczk81g/NTzZCXkoNrWyNh1cTO0OtBREREFVPpgZ9C/G/wZHp6Ovbs2YPPPvsMiYmJFfp+e3tL\nmJhoy31cjx4+CA39BFqtDtbW1jh8+HtotRpYWZkjM9MUjo42AICcnDuo52QNjYkGuQmZyL6RAVNr\nMwCAZWNbZFxMhkVDG2TfyDDcRrF0qw9dZh6yb2bAqrEt8lJzkXj0GhoPb4e4b/6AXTsn2LRwgJmD\nBUyszQEjdWIUZybjUEt7XlY6QAWopS3Vgu1pXGxP43nUbVlukeHk5ISUlP/1IiQlJcHR0REAcPLk\nSaSmpmLMmDHIz8/HjRs3sHz5cixYsOCBz5eWllOhYC4u7njmmcF47rlhcHZ2Rr9+T+Ovv64jOzsP\nd+/qkJycCQAYPtwPv7zxX6Sei4dVUzu4PtMCN/f+Dks3W7g+3QKxu2KQdj4Blm62sPG41xuhMdWi\n2cj2uPXtZejzCiFpNWjY/94tkce6NULcvt9x69vLgADqt34M1s3tK5S5PMWZyTjYnsbDtjQutqdx\nsT2NR462fFjhUm6R0bNnT6xduxZ+fn6IiYmBk5OT4VbJwIEDMXDgQABAXFwc5s+f/9ACo7JeeWUa\nXn11OgDgxIlfYW1tjYkT/1PiMR07dkbbGT1KnLPz/N99sVZTy74lYtXEFq3+U/qapYtNmeeJiIio\ncsqdXeLt7Q1PT0/4+flh2bJlWLRoEfbs2YNDhw7JGiwtLQ2DB/siISEeQggcOXIInp6lp84SERFR\nzVShMRmzZ88ucdymTZtSj3FzczPaGhkAYG9vjylTpmLatKmQJAlNmjTDK69MM9rzExERkbxq9Iqf\nw4aNwLBhI5SOQURERFXAvUuIiIhIFiwyiIiISBYsMoiIiEgWLDKIiIhIFiwy/iEtKgHn3zqKgux8\npaMQERGpWo2dXTJhxZFKPHpguY+w8Pm+Qs+UHpUIcwcLpF9MRoNuxt2PhYiIqC5hT8Z9CnJ0yLl1\nB67PtEB6VMX2YiEiIqKysci4T0ZMEuq3bgCblo8hLzUHujt5SkciIiJSLRYZ90mLSoRde2dIGgl2\n7ZyQfoG9GURERFVVY8dkPGr5GXeRc+sO/v7+CiABel0htPVM4NizidLRiIiIVIlFRpH0C4lo4NMI\nrgNbAgCEEPh99UnkpebA3MFS4XRERETqwyKjSPqFRDQe3s5wLEkSHDo1RPqFJDj3bqZcMFK91aOd\nlI5QrnVKByCiWqnGFhmfzutX4ce+cuT1av+8VlN9Sp1z7uNe7eclIiKqqzjwk4iIiGTBIoOIiIhk\nwSKDiIiIZMEig4iIiGTBIoOIiIhkwSKDiIiIZFFjp7AqIT8tF3+si4CFqw0AQBTo4fJMC1g3tVM4\nGRERkfrU2CLDGGtfVIV5A0u0mOANAMi6nobEn67DOqCTIlmIiIjUjLdLHqIgSwfT+uZKxyAiIlKl\nGtuToZS8lBxc+fQsRIEeujt5aD6OvRhERERVwSLjH+6/XXI3ORuxO6PRamo3SFp2+hAREVUGf3M+\nRD1HK0imGuTfyVM6ChERkeqwyHiIghwdCjLzYWrDcRlERESVxdsl/1A8JgO4N4W10eBW0JiwFiMi\nIqqsGltkrOv3ToUfa6zprmb2Fmj/Rm+jPBcREVFdx4/oREREJAsWGURERCQLFhlEREQkCxYZRERE\nJIsaO/CTiOifciMGKh2hYvopHYCoZmBPBhEREcmCPRn3ybudg1vf/omCnHxAD1g2sYXrMy24TgYR\nEVEV1Ngi4/Kk8RV+7LQKPGb1aKeHXhd6ges7LqDRoFawdreHEAK3vv0TiT/9BRdfjwpnISIiontq\nbJHxqGVeTYV5AytYu9sDACRJguvTHoAkKZyMiIhInVhkFMlLzoFFQ+sS5zSmWoXSEBERqR8HGxST\nAAihdAoiIqJag0VGEfMGlsiJu1PinL5Aj9zELIUSERERqRuLjCI2Hg7Iz7iLjN9TANwbCBr/wxWk\nRycpnIyIiEidOCajiKSR0HxcJ8Tt/R2JP/0FSSvBxsMBzn3clY5GRESkShUqMpYvX47z589DkiQs\nWLAAHTp0MFw7efIkVq1aBY1GA3d3dwQFBUGjqX4HSatPQiv8WGNt9W5qYw73sR2N8lxERER1XbnV\nQEREBGJjY7Fz504EBQUhKCioxPWFCxdizZo12LFjB7Kzs/HLL7/IFpaIiIjUo9wiIzw8HL6+vgAA\nDw8PZGRkICvrf4Mh9+zZg4YNGwIAHBwckJaWJlNUIiIiUpNyi4yUlBTY29sbjh0cHJCcnGw4tra+\nt7ZEUlISjh8/jt69e8sQk4iIiNSm0gM/RRlrSdy+fRsvv/wyFi1aVKIgKYu9vSVMTOrmIleOjjZK\nR6hV2J7Gw7Y0LrancbE9jedRt2W5RYaTkxNSUlIMx0lJSXB0dDQcZ2VlYfLkyZg+fTp69epV7g9M\nS8upYlT1S07OVDpCrcL2NB62pXGxPY2L7Wk8crTlwwqXcm+X9OzZEwcPHgQAxMTEwMnJyXCLBABW\nrFiBgIAAPPXUU0aISkRERLVFuT0Z3t7e8PT0hJ+fHyRJwqJFi7Bnzx7Y2NigV69e+PrrrxEbG4sv\nv/wSADBkyBCMHDlS9uByyE/LxR/rImDhagOIe2tnOD3VFDYeDkpHIyIiUp0KjcmYPXt2ieM2bdoY\nvo6OjjZuoiIfrvipwo/1wqByHxPt822Fnsu8gSVaTPAGAOSl5uCvbVFo+oJXqc3TarPciIFKR6iY\nfkoHICKih+Gy4g9h7mAJ56eaISUiTukoREREqsMioxwWjWyQl5StdAwiIiLVYZFRDn1eIaCRlI5B\nRESkOiwyypHzdyYsXDhHm4iIqLJYZDxEXmoOkk/cgGP3xkpHISIiUp06s9V7RWZM6HJScTfxDC6/\nfx1CXwAhBBzbjEHh5VbINUYIzoYgIqI6pMYWGVPn9anwYyesOGKUn2lq6YCW/1pmlOciIqrpOF3d\nuFTRno+4LXm7hIiIiGTBIoOIiIhkwSKDiIiIZMEig4iIiGTBIoOIiIhkwSKDiIiIZFFjp7AqQZeT\nius/r0I9W7cS5127joPWzFKhVEREROpUY4uMG+eWVPixbz1Tgccc7FWh5zKzdkTjHi9X+GcTERFR\n2Xi7hIiIiGTBIoOIiIhkUWNvlyglPysZN09sMBybWTvCucPzCiYiIiJSJxYZ/8AxGURERMbB2yVE\nREQkC/Zk/MM/b5cAQIO2g2Bh30ShREREROpUY4uMJp0XVvix3OqdiIio5qmxRQZRbZEbMVDpCOXr\np3QAIqqNOCaDiIiIZMEig4iIiGTBIoOIiIhkwSKDiIiIZMEig4iIiGTB2SX3yc++jeSYfSjIywSE\nHhYOzdCg7WBotKZKRyMiIlKdGltkLPjtzwo/tmH/xuU+JuHwzYdeF0KP+DNb4NhuCCwbtAQApF79\nGYlRu+HS2a/CWYiIiOge3i4pkpP8J0ytHA0FBgDYN38Kd9NvoCAvS8FkRERE6sQio0h+VhLq2bqW\nOCdJEsxtGkKXnaJQKiIiIvVikWEgQQhR6qwQApAkBfIQERGpG4uMImbWjribHlfinBAC+VmJMLNy\nVCgVERGRerHIKGLp2BK6nFRkJV4ynEv/6xdYOLhDa2apYDIiIiJ1qrGzSx41SdLA7fFJSLywB7cv\n/wAIgXp2bnDyfE7paERERKpUY4uM5d1alv+gIsba6t2kng0adQswynMRERHVdbxdQkRERLJgkUFE\nRESyYJFBREREsmCRQURERLJgkUFERESyYJFBREREsqhQkbF8+XKMHDkSfn5+iIqKKnHtxIkTGDFi\nBEaOHIl169bJEpKIiIjUp9wiIyIiArGxsdi5cyeCgoIQFBRU4vqyZcuwdu1abN++HcePH8eVK1dk\nC0tERETqUW6RER4eDl9fXwCAh4cHMjIykJV1b+vzmzdvwtbWFi4uLtBoNOjduzfCw8PlTUxERESq\nUG6RkZKSAnt7e8Oxg4MDkpOTAQDJyclwcHAo8xoRERHVbZVeVrys7dArw9HRplrfX5Zv3uX+IsbE\n9jQutqfxsC2Ni+1pXGzP0srtyXByckJKSorhOCkpCY6OjmVeS0xMhJOTkwwxiYiISG3KLTJ69uyJ\ngwcPAgBiYmLg5OQEa2trAICbmxuysrIQFxeHgoICHD16FD179pQ3MREREamCJCpw/2PlypU4ffo0\nJEnCokWLcPHiRdjY2GDAgAH47bffsHLlSgDA008/jYkTJ8oemoiIiGq+ChUZRERERJXFFT+JiIhI\nFiwyiIiISBYsMoiIiEgWLDLuk5CQgNOnTwMA8vPzFU6jfmxPqokKCgqwf/9+bNq0CQBw+fJl6HQ6\nhVOpG9/r1Zebm/vQP2rFgZ9FQkND8f333yMnJwf79u1DUFAQHB0dMWXKFKWjqRLbs/qeeOIJSJIE\noPQieJIkcQn/Kpo/fz4cHBwQERGBXbt2ISwsDGfPnsWqVauUjqZKfK8bR79+/SBJUpkLXkqShMOH\nDyuQyggECSGEGDNmjBBCiLFjxwohhNDr9eLFF19UMpKqsT2ppgoICBBC/O+1KcT/Xq9UeXyvyyM9\nPV3cuXNH6RjVVullxWurwsJCADB8cszLy0NBQYGSkVSN7Wk8ly5dwvLly3Hjxg0UFhaiVatWCAwM\nhIeHh9LRVEmn0+HOnTuG1+bVq1fZxV8NfK8b14kTJ7B48WKYm5tDp9NBo9FgyZIl6NKli9LRqoS3\nS4ps27YNBw8eRGxsLPr06YNTp04hICAAo0aNUjqaKrE9jWfMmDGYP38+vLy8AACRkZFYtWoVtmzZ\nonAydTp9+jSCgoJw/fp1NGzYEAAQFBQEb29vhZOpU1nv9XHjxmH06NFKR1MlPz8/rFmzxrBFR3x8\nPGbNmoXPP/9c4WRVwyLjPnFxcYiKioKZmRk8PT3h4uKidCRVY3sax7hx40oVFAEBAdi8ebNCiWqH\n27dvw9TUFPXr11c6iurxvW48/v7+2Lp1a4lzZf0foBa8XVIkKysL+/fvx+3btxEYGIiTJ0/CysqK\n/wFVEdvTeOrXr49PPvkEPj4+AICTJ0/C1tZW4VTqdfnyZaxYsQLZ2dnYuXMnQkND0a1bN3h6eiod\nTZXmz59f4vjw4cPQarVo0qQJ/Pz8+J6vJDc3NyxevBg+Pj4QQuDkyZNo0qSJ0rGqjFNYi8ybNw/1\n69fHhQsXAACpqamYNWuWwqnUi+1pPCtWrEBeXh42bNiAjRs3Qq/X4+2331Y6lmotXboUgYGBMDMz\nAwD06tULy5YtUziVetnb2yM3Nxfdu3dHjx49UFBQABsbGwDge74Kli5dio4dO+Ls2bOIjIxEt27d\nsHjxYqVjVRmLjCLZ2dkYPXo0TE1NAQCDBg3C3bt3FU6lXmxP47G2tkbXrl3h4+Nj+GNlZaV0LNUy\nMTEpMWi2RYsW0Gj4X2FVxcTE4P3338ezzz6LoUOHIiQkBH/++SemTJmi6vUdlCKEgF6vLzGVtXhQ\nrRrxdkkRvV6PGzduGP4xjx07Br1er3Aq9WJ7Gk9QUBDi4uLg4+OD/Px8rF+/Hp6enpgxY4bS0VTJ\nxsYGX375JXJzc3H+/HkcOnQIjz32mNKxVOvOnTs4fPgwOnfuDI1Gg+joaCQmJuLy5cv8YFEFCxYs\ngK2tLXx8fKDT6RAREYFTp06ptreNAz+LXL16FUuXLkVUVBQsLS3RunVrLFiwgNMEq4jtaTxjxozB\ntm3bSpwbO3YswsLCFEqkbtnZ2di8eTPOnTsHU1NTdOzYEWPHjmXvUBX98ccfWLduHa5evQohBJo0\naYKpU6cCAMzMzNC2bVuFE6oLB37WUpGRkQgNDVU6Rq3B9jSegoIC3L17F/Xq1QMA5OTkGNYmoMp7\n77338MYbbygdo9Zo3bo1Vq5cicTERDRu3FjpOKqn0+mQmJgIZ2dnAPeWbFfzuiMsMoocP34cnTp1\n4idtI2F7Gk9AQACeffZZNGvWzHAbas6cOUrHUi0hBHbu3IkOHToYxgwB98ZmUOUdOHAAH374IQBg\n//79WLZsGby8vDBs2DCFk6nTjBkzMH78eGg0Guj1esNiXGrF2yVFnn76acTFxcHCwsLwHw/3h6g6\ntqdx5eTk4Pr169BoNGjatCksLCyUjqRa/v7+pc5JkqTa7miljR49GqGhoZg4cSK2bt2KvLw8+Pv7\n44svvlA6mqplZGRAo9EYZuqoFXsyivzwww9KR6hV2J7G8+uvv2LHjh3IzMwsMeKcvxSr5p/3u6l6\ntFotzMzMDIO8i6cGU9Xs2bMHW7duLfV+V+sGaSwyiowbN67UOa1Wi8aNG2PKlClwc3NTIJV6sT2N\nJygoCIGBgYZ7tFQ9vXv3RnJyMrRaLSRJQmFhIezs7GBra4sFCxagV69eSkdUFW9vb8yZMweJiYn4\n6KOPcOTIEXTv3l3pWKq1adMmfPDBB7Xm/c4io0iXLl2Qn59v2G732LFjAICWLVti/vz5/PRTSWxP\n42natCl/8RnRv/71LzzxxBN+BAFdAAAfB0lEQVTo3bs3gHs9RWfPnoWfnx/++9//sq0racaMGTh9\n+jRatWoFMzMzzJ07F507d1Y6lmp5eHjA3d1d6RhGwyKjyOnTp0v84vP29saECRMwffp01W5MoyS2\nZ/UVT1t1dnbGtGnT0KVLF2i1WsP1MWPGKBVN1SIjIzFv3jzD8ZNPPokNGzZg2rRpql706FH757Rq\nS0tLAMDFixdx8eJFvj4rKTg4GJIkwdTUFH5+fujYsWOJ9/vrr7+uYLqqY5FRRKfTYfPmzfD29jYs\nKJOWloZz586BY2Mrj+1ZfWlpaQAAR0dHODo64s6dOwonqh1cXFzwyiuvlHhtWllZ4YcffoCrq6vS\n8VSj+PVJxtGqVSsA93p7axPOLimSmJiI0NDQEgvKjBs3DjqdDlZWVtxVsJLYnsaj1+sRHR2NDh06\nAADCw8PxxBNP8FN3FRUUFOCXX34p8drs27cvcnNzYWVlBRMTfvaqiCtXrjz0OqcEV01OTg7Cw8PR\nv39/AMDXX3+Np59+2tBTpDZ8NxVxdnZGQEAA4uLi0LVrV+Tn53OUdDWwPY1n3rx5cHJyMhQZv/32\nG77++msEBwcrnEy9srKyIEkSJk2ahMuXL0OSJO5sW0mLFy+GJEmGnsniolcIwSnB1TBz5swSA2fz\n8vIwa9Ysw1okasMio0hoaCi+//575ObmYu/evQgJCYGjoyOmTJmidDRVYnsaz99//4133nnHcPza\na6+VudYDVcybb74JBwcHREREYOLEiYiIiMCGDRuwatUqpaOpyv1jrrKzsxEbGwuNRoNmzZoZVqel\nysvMzERAQIDheOTIkdi/f7+CiaqHWw8W+fHHH7Fjxw7Ur18fwL1NatQ6L7kmYHsajyRJ+Omnn5CR\nkYG0tDR8++237NKvhvj4eMyZM8fwi3Ds2LFISkpSOJV67du3D//+97+xdu1ahISE4LnnnsOhQ4eU\njqVa1tbWCAsLw8WLFxEdHY2PP/5Y1Qty8X+qIsV7QRR3+eXl5al6vXilsT2NJzg4GO+99x5CQkKg\n1WrRvn17vP3220rHUi2dToc7d+4YXptXr15Ffn6+wqnUa9u2bdi7d69hFdrs7GxMnDgRAwYMUDiZ\nOq1cuRKbNm3C+++/b3i/39+TqTYsMooMGTIE48aNQ2xsLBYtWoRTp06VuaAUVQzb03icnZ0xd+5c\nNGjQANeuXcO1a9dgb2+vdCzVmjFjBgICAnD9+nUMHDgQkiSpdhvtmkCj0ZRY5p6DZ6tHkiQ8++yz\nmD59Ok6dOoVLly6pugjm7JL7xMXFISoqCmZmZvD09OQMiGpiexrHjBkzMHjwYLRp0wZTp07FoEGD\n8Mcff+D9999XOpqq3b59G2ZmZqruiq4JQkJCcOXKFXTr1g1CCJw6dQpeXl6YPn260tFUadKkSZg8\neTIcHBwwb948BAQE4MCBA9i4caPS0aqkzhcZ8+fPf+h1dktXDtvT+Pz9/bF161Z89NFHsLOzw4sv\nvoiXXnoJn332mdLRVKV49dmySJKEH3/88REnqj1Onz6N6OhoAECHDh3g7e2tcCL1GjduHLZs2YI1\na9bA3d0dQ4cOxfjx4xEaGqp0tCqp831azzzzDADgyJEj0Gg08PHxMVTjnHJZeWxP47t79y7OnDmD\nffv2YcuWLbhz5w4yMjKUjqU6+/fvhxACGzduRJs2bfD4449Dr9fj5MmTiI2NVTqeal25cgUnTpzA\na6+9BgBYsmQJbGxsat2iUo9Kfn4+9u3bhwMHDmD37t2Ii4tDZmam0rGqTpAQQojx48eXOjdlyhQF\nktQObE/j+fXXX8XLL78s9u7dK4QQYt26deKrr75SOJV6jRkzptS5sl6vVDGjR48Wv/32m+E4Jiam\nzDamirl48aJYunSpOHHihBBCiLCwMHHs2DGFU1Vdne/JKJaeno6jR4+iU6dOhqWGExISlI6lWmxP\n4+nZsyd69uxpOP6///s/BdOon5mZGVasWIHOnTtDo9HgwoULhtlQVHkFBQXo2rWr4bhdu3bcOqAa\n2rZtizfeeMNwrPY9YOr8mIxily9fxvr16w1LDTdv3hwvv/wy2rVrp3Q0VWJ7Uk2VlZWFffv2GV6b\n7u7uGDZsGAeAVlFQUBASExPh7e0NvV6PU6dOoXnz5pg7d67S0agGYJFBRETVEh4ejpiYGMO6Dvf3\nbFDdxiKDqIYr3jDpn4O/hg0bplAiIpJLQkICfvjhB2RmZpa47fTqq68qmKrqOCaDqIabOHEiXF1d\n4eTkZDjHHViJaqepU6fiySefhLOzs9JRjIJFRpH4+HgkJyejQ4cO2Lt3L6KjozFq1Cg0b95c6Wiq\nxPY0Hq1Wi3fffVfpGLXGr7/+ioyMDAwePBgLFizAtWvXuAw21Ri2traYOXOm0jGMhhukFZkzZw5M\nTU0RGRmJ3bt3Y+DAgQgKClI6lmqxPasvNzcXubm56N27N37++WdkZWUZzuXm5iodT7XWrl2L3r17\n49ChQ9BqtQgLCyuxoyhVTkJCAt58803DOhkHDhzArVu3FE6lPleuXMGVK1fg7e2Nbdu24ffffzec\nu3LlitLxqow9GUW0Wi3atm2L4OBgBAQEoEuXLpzWVg1sz+obPHgwJEkqczqgJEnc1baKzMzMYG1t\njR9//BEjR46EiYkJX5vVEBgYiHHjxuHjjz8GAMNy2CzcKmfx4sUljr///nvD15IkYcuWLY86klGw\nyChSWFiIDz/8EEeOHMH06dMRFRWF7OxspWOpFtuz+o4cOaJ0hFqpQYMGeOmll5CdnQ1vb2/s27ev\nxAZfVDl6vR69e/fGJ598AgDo3r071q1bp3Aq9amtRRmLjCIhISE4ePAgPvjgA5ibmyMuLq5UZUkV\nx/Y0nrJ2r9VqtWjcuDGmTJkCNzc3BVKpV0hICC5fvmwYH9SiRQusWrVK4VTqZWJigvDwcOj1eqSk\npODQoUMwNzdXOpZq9e/fv9S54vf7zJkz4enpqUCqqqvzU1g/+OADAMDYsWNhZ2encBr1Y3sa3+rV\nq5Gfn2/Y4OvYsWMAgJYtW2LHjh219hOQsfn7+0OSJLzzzjto2LCh0nFqjaSkJKxevRrnzp2DmZkZ\nOnTogFdffbXEbCiquI0bN8LGxsZQbBw7dgypqal4/PHHERwcjO3btyucsHLqfE+Gj48PALC71EiK\n2zM/P1/hJLXH6dOnSxQS3t7emDBhAqZPn47PP/9cwWTqUtyGP//8M4sMI3JycsL8+fORmZkJvV4P\nSZJQUFCgdCzVOnbsGLZt22Y4fuGFFzBu3Dj85z//UTBV1bHIKPqlmJWVhc8++wy3b99GYGAgTp48\niXbt2qF+/foKJ1SX4vYcO3YswsLCFE5TO+h0OmzevBne3t6GvTbS0tJw7tw57hFRBWFhYejcuTPf\n20Yye/ZsnD17Fg4ODgAAIQQkScKXX36pcDJ1Mjc3x/Lly0u833U6HY4fPw5LS0ul41Vanb9dUuzV\nV19Fjx49sG/fPuzYsQPffvstvvrqK8OIaaqcGTNmID4+Hu3bt4epqanh/Ouvv65gKnVKTExEaGio\nYa+Npk2bwt/fHzqdDlZWVnBxcVE6oqqMGjUKv//+O5o0aQJTU1P+UqymF154Abt27VI6Rq2RlZWF\nr7/+usT7fdiwYcjNzYWNjY3q9tip8z0ZxbKzszF69Gh89913AIBBgwap7t5XTfLUU08pHUH1bt26\nhUaNGiEzMxPPP/98iWs6nQ4tWrRQKJm6rVy5UukItcrAgQPxww8/oG3bttBqtYbzrq6uCqZSn/Pn\nz6Njx444c+YMGjdujMaNGxuuRUVFoXfv3gqmqzoWGUX0ej1u3LhhWK752LFj0Ov1CqdSr8GDB2P/\n/v24ePEitFotvLy8MHjwYKVjqcqWLVswf/78MmflqHnevNJsbW0RFhZW6tYoVU1MTAy2bt2Kxx57\nzHCOPUOVd+rUKXTs2LHE+hj3U2uRwdslRa5evYqlS5ciKioKlpaWaN26NQIDA7kMdhXNmTMHtra2\n8PHxgU6nQ0REBAoLC7Fs2TKlo1Edx1ujxvX8889j9+7dSseoVbKyskptkKbWniH2ZBS5ceMGQkND\nS5zbv38/i4wqSkhIQEhIiOF48ODBZa73QOVbv349wsLCSg3yDA8PVyiRuvHWqHE988wzCA8PR/v2\n7UvcLuGMvapZuHAhjh07hgYNGgBQ/0DaOl9kREVF4cKFC9iyZQv+/vtvw/nCwkJ88sknGDJkiILp\n1Eun0yExMdGwk2BCQgKntVXRd999hx9//FGVI8trIt4aNa5du3Zhx44dJc5x2fuqi46OxtGjR2vN\nTst1vshwdHSEpaUldDod0tLSDOclSUJwcLCCydRtxowZGD9+PDQaDfR6PTQaDZYsWaJ0LFVq06YN\nTEzq/FvVaBYuXIiFCxciOjoavXr1QuvWrbF06VKlY6nWoUOHAAAZGRnQaDSqm/1Q03Ts2BFpaWmG\nKcFqxzEZRVJTU0v8o+p0OixevJhjCKopIyMDkiRxTYIqeO211yBJErKzs3Ht2jW0a9euRHf06tWr\nFUynXkePHkXfvn1LnNu/fz97LavoxIkTWLx4MczNzaHT6QwfKLp06aJ0NFV5/vnnIUkS9Ho9rl+/\njqZNm0Kr1fJ2SW1x5MgRrF69GmlpaTAzM4Ner0efPn2UjqU6xW+UB1HrG0UJY8eOVTpCrcJbo/JY\ns2YNtm7dalhGPD4+HrNmzeJqtJW0Zs0apSPIgkVGkR07duDHH3/EpEmTsHXrVhw+fBhxcXFKx1Kd\n2vpGUULx6qlkHA+7NbpixQoFk6mbqalpiX1KXFxceHuvCho1aqR0BFnwlVDE3Nzc0N2n1+vRv39/\n+Pv7IyAgQOloqlL8RsnKyuJaBFSjuLi44N///jd69+4NIQQee+wxXLt2DdeuXWPXfjW4ublh8eLF\n8PHxgRACJ0+eRJMmTZSORTWERukANUX79u0RFhaGXr16ISAgAHPmzMHdu3eVjqVa8+bNQ/369XHh\nwgUA98a8zJo1S+FURMDSpUtx7tw5xMXFYdq0afjzzz8xd+5cpWOp1tKlSw0rVUZGRqJbt25lLiBH\ndRN7MorMmzcP+fn5MDMzw+OPP460tDT06NFD6ViqxbUIqKZKSUmBr68vPvroI/j7++PFF1/ESy+9\npHQs1UpOTkbz5s0xbNgwfP3114iKioKnpyfXGKqihIQErFu3DhkZGVizZg0OHDiATp06qfZ2Sp3v\nySie3x0cHIz3338f77zzDo4ePYrIyEisX79e4XTqxbUIqKa6e/cuzpw5g3379sHX1xd37txBRkaG\n0rFUa86cOTA1NUVkZCT27NmDgQMHIigoSOlYqhUYGAhfX1+kpqYCABwcHDBv3jyFU1VdnS8yiqvD\nVq1aoWXLlqX+UNXcvxZBz549sXnzZq6TQTXCtGnT8Mknn2Dy5MlwcHBAWFgYV6OtBq1Wi7Zt2+Lg\nwYMICAhAly5dUFhYqHQs1dLr9ejdu7fhA1r37t1LrfarJnX+dsmTTz4JAOjRoweOHj0KPz8/AMDG\njRvx73//W8loqubh4VFqmXaimqBXr17o1auX4Xjy5MlYvHgxhg0bpmAq9SosLMSHH36II0eOYPr0\n6YiKikJ2drbSsVTLxMQE4eHh0Ov1SElJwaFDh2Bubq50rCqr8z0ZxYoHKhZr3bq1qruolLZu3Tr0\n6NED3bt3L/GHSGm7du3Ck08+CS8vL3h7e6Nbt27IyspSOpZqhYSEwMLCAh988AHMzc0RFxfHgZ/V\nEBQUhP379yMtLQ2TJk3CpUuX8Pbbbysdq8q44meRUaNGlRqY6O/vj61btyqUSN2GDh2KnTt3cr8N\nqnFGjBiBbdu2lVoTh9PVqaYo3oVVr9cbbptwF1aVc3V1RXBwMLy9vaHX6xEeHq7af9SagPttUE3F\nNXGoJps9ezbOnj1r2OZC7cuKsyejSEFBAb766itcunQJGo0G7du3x6BBg2Bqaqp0NFV50H4bxW8U\n7rdBSluxYgXc3NyQnp6OU6dOoWHDhrh+/Tp27dqldDQivPDCC7XqtciPmkWEENBqtdBoNIY/929G\nRRXD/Taopvvnmjjp6ekcL0Q1xsCBA/HDDz+gbdu2JX4HqbVnnT0ZRebMmQNbW1v4+PhAp9MhIiIC\nhYWF3IW1ipKSknDkyBHDbJ2PPvoIw4YNK7HHAZESoqKicODAAWRmZpaYGqjmwXVUe8ycORNnz57F\nY489Zjin5tsl7MkokpCQgJCQEMPx4MGDOXe+GubOnYsXXnjBcNyyZUvMmzcPn376qYKpiO59oJg8\neTIaNGigdBSiUmJjY/HTTz8pHcNoWGQU0el0SExMhLOzM4B7RUdBQYHCqdTr7t27GDRokOG4b9++\nLDCoRmjevDmef/55w6h9oprkmWeeQXh4ONq3b1/idomFhYWCqaqORUaRGTNmYPz48dBoNNDr9dBo\nNFyhshr+OVvn5MmTqr2nSLXLkCFDMGzYMLRu3brEf+K8XUI1wa5duwzbXRSTJAmHDx9WKFH1cEzG\nP2RkZKCwsBBarRa2trZKx1Gt4tk6Fy9ehFarhZeXFwYPHszZOqS4AQMGYMqUKXB0dCxxvk+fPsoE\nIipDRkYGNBoNbGxslI5SLezJKPLRRx+hfv36GDp0KF566SXY2dmhY8eOmDZtmtLRVMnExASdOnVC\ns2bNAAD5+fkYPnw4vvnmG2WDUZ3n4eFRYrwQUU1y4sQJLF682LCWS3GvepcuXZSOViUsMoocOXIE\nO3bswBdffIH+/fvjlVdewfjx45WOpVoLFy7EtWvXcO3aNXTo0AHR0dGYNGmS0rGIYG9vjzFjxsDL\ny6vE7ZLXX39dwVRE96xZswZbt241zMSLj4/HrFmz8PnnnyucrGpYZBTR6/XQ6/X45ptvDGMxuMlP\n1V25cgWff/45/P39sWHDBsTHx2P9+vVKxyKCj48PfHx8lI5BVCZTU9MSU/1dXFxUvXqyepMbma+v\nL3r27ImBAwfC3d0d69atQ8eOHZWOpVqFhYWGTadSU1Ph4uKC33//XeFURODuylSjubm5YfHixfDx\n8YEQAidPnkSTJk2UjlVlHPhZBr1ej8TERLi4uCgdRbW++eYb5ObmwtbWFkuWLIGJiQl69OjBEfxE\nRA9RUFCA/fv3Izo6usQWF2pdgZpFRpH7B376+/vDzs4OnTp1wmuvvaZ0NFVLT083zNaxs7NTOg4R\nUY0WHx+P5ORkdOjQAV9//TViYmIwatQoNG/eXOloVaJROkBNUbwE9oEDB9C/f398+umnOHv2rNKx\nVGvPnj3o3bs3xo4di4CAAAwfPhz79+9XOhYRUY02Z84cmJqaIjIyEnv27MHAgQMRFBSkdKwq45iM\nIhz4aVyhoaHYu3evofciNTUVL730EoYMGaJwMiKimkur1aJt27YIDg5GQEAAunTpgsLCQqVjVRl7\nMooUD/xs0aIFB34aQcOGDVG/fn3Dsb29vaoHLxERPQqFhYX48MMPceTIEfTq1QtRUVGq/sDLMRkP\nkJWVhUOHDnEkeiUFBwdDkiTExcXh+vXr6NKlCyRJQmRkJNzd3fHuu+8qHZGIqMaKj4/HwYMH0bNn\nT7Rs2RLffvstmjVrhnbt2ikdrUpYZBS5cOECPv74Y6SnpwO4t2FaSkoKDh06pHAydfnqq68eep1F\nGxFR3cEio8jIkSMxY8YMrFy5Em+99RYOHTqETp06oW/fvkpHIyIiUiWOyShSr149PPHEEzAzM4OX\nlxdmzJiBsLAwpWMRERGpFmeXFLGwsMDhw4fh5uaGVatWoXHjxoiPj1c6FhERkWrxdkmRrKwspKSk\noEGDBggNDUV6ejqee+45tG/fXuloREREqsQig4iIiGTBMRlEREQkCxYZREREJAsWGUS1yM8//2xY\n6+VB/P39ceLEiRLnTp06hVGjRhk1S+vWrVFQUFChxxYWFmLUqFEYOXIkdDpdpX/We++9h7Vr11b6\n+x5m7969AIDk5GRulEhURSwyiGqR0NBQZGRkKB2j0pKSkhAbG4udO3fC1NRU6TgoLCzE+vXrAQCO\njo5Ys2aNwomI1IlTWIlkcurUKbz//vtwdXXFrVu3YGNjg/feew/W1tZYvXo1wsPDAdzb5yUkJASm\npqbw9vbGiBEjoNfr8cYbb2Dr1q347rvvUFhYiObNm2PRokVISUnB1KlTS+xrsHHjRhw+fBinT5/G\n7Nmz8fbbb+Ovv/7CJ598AjMzMxQWFuKdd96Bm5tbubn//vtvLF68GLm5ucjJycHMmTPh6OiIV199\nFQcPHgRwb+njF198ET/99BMOHjyIsLAwCCHg4OCAZcuWwd7evsznzsnJwZtvvomEhAQUFBTgueee\nw+jRozF//nzcuXMH/v7+2LRpE8zMzAzfU1Yb1KtXD++99x6OHj0KFxcXWFhYwMPDA8C9HpSYmBiY\nmJhgz549OHHiBFauXInz589j+fLlMDU1ha2tLYKDg6HRaDB37lykp6cjOzsbAwcOxJQpU7BgwQLc\nunULEyZMwJIlSzB69GgcO3YMKSkpCAwMRE5ODvLz8zFp0iQMGDAAa9euRXp6OhISEhAbG4vHH38c\nb775ZnVfQkTqJ4hIFidPnhTt27cXCQkJQgghZs+eLTZv3ix0Op3YuHGjKCwsFEIIMWHCBHHkyBEh\nhBCtW7cWv/76qxBCiPPnzwt/f3+h1+uFEEIEBQWJLVu2iJs3b4q2bduKy5cvCyGEmDdvnvjss8+E\nEEL07dtXXL9+XQghxJdffilu3bolhBBiw4YNYsWKFUIIIcaOHSuOHz9eKqufn58QQojJkyeL8PBw\nIYQQSUlJom/fvkKn04lnn31WXLp0SQghxKZNm8SKFSvE33//LYYOHSry8vKEEEKEhoaKt99+Wwgh\nRKtWrYROpyvxczZs2CDeeustIYQQubm5om/fvuLGjRvi5s2b4sknnyzVhg9qg2vXrom+ffuKvLw8\nodPpxLBhw8SaNWtK/dzdu3eLWbNmCSGEGDBggPjjjz+EEEJ89tlnYv/+/eLGjRviq6++EkIIkZeX\nJ7y9vUVmZmaJPPd//eabb4qPP/5YCCFESkqK6NGjh8jMzBRr1qwRfn5+oqCgQOTm5opOnTqJ9PT0\nUn8forqGPRlEMmrRogWcnZ0BAN7e3rh06RJMTEyg0WgwevRomJiY4Nq1a0hLSwMACCHg7e0N4F5P\nyI0bNzBu3DgA93oBTEzuvWXt7e3RsmVLAICrq2uZ4zAaNGiAuXPnQgiB5ORkdO7cuUKZT506hezs\nbKxbtw4AYGJigtu3b2Po0KE4ePAg2rRpg2+//RZLly7FuXPnkJycjIkTJwIA8vPzH9pbcv78eQwf\nPhzAvVV2vby8EBMTAy8vrwdmKasNLl++DE9PT0OPR9euXR/6d0pNTcWdO3fQqlUrAMD48eMNz3fm\nzBns2LEDpqamyMvLe+iYlvPnzxvGrjz22GNwdnbGX3/9BQDo0qULtFottFot7O3tkZGRAVtb24fm\nIqrtWGQQyUjctwyNEAKSJOHMmTPYvXs3du/eDUtLy1KDCovHJJiZmaFfv35YuHBhietxcXHQarUP\n/DnAvQ3+pk+fjq+++grNmjVDWFgYoqOjK5TZzMwMa9euhYODQ4nzQ4YMwaRJkzB8+HDk5eWhbdu2\nuHXrFjp06ICNGzdW6LklSSqV+5/n/pmlrDb4/vvvS3yfXq8v8/uLB5FKklSqjQBg8+bNyM/Px/bt\n2yFJEh5//PFK5b//XHn/JkR1EQd+Esno2rVrSEpKAgCcOXMGrVu3xu3bt9GoUSNYWlri1q1biIyM\nRH5+fqnv9fb2xrFjx5CdnQ0A2LZtG86dO/fQnydJEgoKCpCdnQ2NRoNGjRohLy8Phw8fLvNnlKVL\nly747rvvANzrAQgKCgJwb+yIvb09Nm3ahGeffRYA0L59e0RFRSE5ORkA8N133+HHH3984HN37NgR\nv/zyC4B7vQgxMTHw9PR84OMf1AYeHh64ePEi8vPzodPpEBERYfgea2trw5YAp06dAnCv58fOzg5R\nUVEAgE8//RTbtm3D7du34eHhAUmScPjwYdy9exf5+fnQaDRlzoy5P39iYiKSkpLg7u5eXpMS1Vns\nySCSUYsWLbBq1SrExsbC1tYWw4YNgxACn376KUaNGoWWLVviv//9L9atW1fqU3T79u0xZswY+Pv7\nw9zcHE5OThg+fDhu3779wJ/Xq1cvvPzyywgODsaQIUMwYsQIuLq6YuLEiXj99dcNxcPDBAYGYuHC\nhThw4ADy8/MxdepUw7WhQ4diyZIlhkLC2dkZgYGB+M9//gMLCwvUq1cPwcHBD3xuf39/vPnmmxgz\nZgzy8/Pxf//3f3Bzc0NcXFyZj39QG1hYWMDX1xcvvvgiXF1d0bZtW8P3TJkyBRMnTkTTpk3Rpk0b\nQ8EREhKC5cuXw8TEBDY2NggJCcHNmzcxc+ZM/Prrr+jfvz+GDh2K2bNn44svvkCDBg0wfPjwEn+f\n1157DYGBgfD390deXh6WLl0KKyurctuUqK7isuJEMimeXbJ9+3aloxARKYK3S4iIiEgW7MkgIiIi\nWbAng4iIiGTBIoOIiIhkwSKDiIiIZMEig4iIiGTBIoOIiIhkwSKDiIiIZPH/tW+c4lGH2e0AAAAA\nSUVORK5CYII=\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "t3e-fhJPKtFm",
- "colab_type": "code",
- "colab": {}
- },
- "cell_type": "code",
- "source": [
- "# applying principal components analysis\n",
- "\n",
- "from sklearn.decomposition import PCA\n",
- "\n",
- "# creating a principal component analysis model\n",
- "#pca = PCA(n_components = None)\n",
- "\n",
- "# feeding the independent variables to the PCA model\n",
- "#x_train = pca.fit_transform(x_train)\n",
- "#x_test = pca.transform(x_test)\n",
- "\n",
- "# visualising the principal components that will explain the highest share of variance\n",
- "#explained_variance = pca.explained_variance_ratio_\n",
- "#print(explained_variance)\n",
- "\n",
- "# creating a principal component analysis model\n",
- "#pca = PCA(n_components = 2)\n",
- "\n",
- "# feeding the independent variables to the PCA model\n",
- "#x_train = pca.fit_transform(x_train)\n",
- "#x_test = pca.transform(x_test)"
- ],
- "execution_count": 0,
- "outputs": []
- },
- {
- "metadata": {
- "id": "7KJx14EzKk91",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "**Modelling**"
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# comparison parent's degree and their corresponding grades\n",
+ "\n",
+ "x = pd.crosstab(data['parental level of education'], data['grades'])\n",
+ "x.div(x.sum(1).astype(float), axis = 0).plot(kind = 'bar', stacked = True, figsize = (9, 5))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 418
+ },
+ "colab_type": "code",
+ "id": "Om9KcvtS6zoC",
+ "outputId": "7653c751-cecc-455a-ac69-26d4a231693e"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/seaborn/categorical.py:1468: FutureWarning: remove_na is deprecated and is a private function. Do not use.\n",
+ " stat_data = remove_na(group_data[hue_mask])\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFYCAYAAACVhB8+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlcVOX+B/DPMDAiiogIKBZYbqTi\nbr60yFDKNC3yelNR7JaWS7hUCijuqLjvlZZC5XLFH+rNXELFzDJEM5fcFRURFRABkXUYnt8fXOaC\nDHBEDsMZPu+/YDhznu88c858eM45cx6VEEKAiIiIFMHM2AUQERGRdAxuIiIiBWFwExERKQiDm4iI\nSEEY3ERERArC4CYiIlIQc2MXUJakpHRjl0BERFSl7O2ty/w7R9xEREQKwuAmIiJSEAY3ERGRgjC4\niYiIFITBTUREpCAMbiIiIgVhcBMRESkIg5uIiEhBGNxP8PX9BImJCcYug4iIyCAGNxERkYJU61ue\nVkRSUiIWLJiDJk2eh7m5Gjdv3kROTjbs7R3w8cdjcPjwIdy4EYPHj9PRr98AeHr2wdatP+Dvv8/B\n0bER0tJSAQAxMdfxzTdfokGDhlCpgM8/90ds7C1s2PA16tWzQUbGY0ybNhtWVlZGfsVERFSTmFxw\n79nzI958sy/69u2PLVu+x82bN5Gc/ABff70RKpUK9evbYu7cYKSmpsLf/zP07NkL+/fvwaZN26HT\n6TBw4NsAgPXr12Ls2Al44YUXERr6LX799Rc8fJgMN7f2GDrUB3fvxgMQxn2xRERU45hccCcmJqJ9\n+44AgGbNWuDEiWg4OTWBSqWCEALp6Y+wePF8aDS1kJOTg7S0NNjY1AcAqNVqNGrUGABw9248tm79\nAQDw+HE6bG0bYMAAL2ze/B0mTBgDF5emGD/+M+O8SCIiqrFMLrhtbW3x4EESACAm5tp/H1UBAK5f\nv4YzZ05j2bLVuHMnDqdP/4l69eohJeUhACAvL++/I2nAyakJRo4cjUaNGiMh4T6sra0RG3sLgwcP\nw6hRY7B+/Zc4fvwP9OzZq8pfY011Ki1Z0nKdbexkroSIyHhMLrj7938XwcFz8fff56DT5UGlAsR/\nj2g3buyEzMwMBAfPhYtLU2g0GkRF/Y433ngLU6ZMhIODI+zt7QEAn3zyKVatWoY6deogI+Mx/PwC\n8fhxOubMCUSDBnbIzMzA4MHDjPhKiYioJlIJIartidqKzMedlJSIhw8folUrV+zfvwd37sTh44/H\nylAdVTWOuImoJihvPm6TG3Gr1Wp8/fVq2Nk1RFpaKvz8Ao1dEhERUaUxuRE3mS6OuImoJqhxI24q\naV+MtP/N+jVTyVwJERE9K945jYiISEEY3ERERArC4CYiIlIQnuOugHv37mLEiCFo1coVKpUKubm5\nGDduItq372Ds0oiIyMQpPrilXnglldQLtJydXbB27TcAgDNn/sL332/A8uVrK7UWIiKiJ/FQeSV4\n+PAhGja0N3YZRERUAyh+xG0st2/Hwtf3E+Tm5uLBgyQsW7bG2CUREVENwOCuoKKHymNjb2HGDH+E\nhGyBuTm7lIiI5CNryuzevRsbNmyAubk5JkyYgFatWsHPzw86nQ729vZYsmQJNBqNnCVUCReXpqhV\nqxYSExPg5NTE2OUQEZEJk+0cd0pKCr788kts3boV69atQ2RkJFavXg1vb29s3boVLi4uCA8Pl6v5\nKvXoURqSk5Nhb+9g7FKIiMjEyTbijoqKQvfu3VG3bl3UrVsXQUFB6NWrF+bMmQMA8PDwQEhICLy9\nveUqQVaF57gBIDc3F599NgUWFhZGroqIiEydbMF9584dZGdnY8yYMXj06BHGjx+PrKws/aFxOzs7\nJCUlPXM7xri/duPGTjh48GiVt0tERCTrOe7U1FSsXbsWd+/exYgRI1B0IjIpk5LZ2lrB3FwtZ4k1\nQ8wjSYuVNyON0UmcHazavw4iomcgW3Db2dmhY8eOMDc3h7OzM+rUqQO1Wo3s7GxYWloiISEBDg5l\nnxNOScmUqzwywFSmUTWV10FENVN5gw/ZLk579dVXcfz4ceTn5yMlJQWZmZno0aMHIiIiAAAHDhyA\nu7u7XM0TERGZJNlG3I6OjujTpw/ef/99AMD06dPh5uYGf39/hIWFwcnJCV5eXnI1T0REZJJUQsrJ\nZiPhIc/KIfV+7sa40O9pnJJ4jruzjZ3MlZCpbFNE1ZHRDpUTERFR5WNwV9DBgz+jZ89uSE1NNXYp\nRERUgyj+xto/aw9X6vresuglabmDByPQpMlzOHLkELy8BlVqDURERKXhiLsCHj1Kw6VLF+Dr+xkO\nHTpg7HKIiKgGYXBXwOHDh9Cjx6vo1q074uJuIykp0dglERFRDcHgroBDhyLg6dkHarUaHh69ERnJ\nUTcREVUNxZ/jrmqJiQm4ePE81q5dCZVKhezsbFhb18WQIcONXRoREdUADO6ndOhQBN57758YP/4z\nAAX3XB8y5D3Ex99BkybPGbk6IiIydQzup3ToUASmT5+j/12lUqFv3/44dCgCH3ww0oiVEREVSLgq\nbYphx5ZamSshOSg+uKV+fauyhIRsKfHYv/41qkprICKimosXpxERESkIg5uIiEhBGNxEREQKwuAm\nIiJSEAY3ERGRgjC4iYiIFETxXwczlvj4O1i1ahkePkxGfr4Obm7tMW7cBNSqZWns0oiIyIQpPrgt\nj+yt1PVlv/52ucvk5+cjMNAPvr6T0KXLywCAf/97MxYvno8ZM4IqtR4iIqKieKi8Ak6cOI7nn3fW\nhzYADBkyDBcuXEBKykMjVkZERKaOwV0Bt2/fQsuWrYo9plKp8OKLzRAXd9tIVRERUU3A4K4QFXQ6\nXYlHhRAwM1MboR4iIqopGNwV4OLSFFeuXCr2mBACN2/egLOzs5GqIiKimkDxF6cZQ9eu3fDVV6sR\nFfU7und/FQAQFrYF7dt3QL16Nkaujoiocp1KS5a0XGcbO5krIYDBXSFmZmZYvnwNli4NxoYN6yFE\nPlq1ao1Jk6YYuzQiIjJxig9uKV/fkoOdXUMEBy8zSttERFRz8Rw3ERGRgih+xE1ENUfCVQtJyzm2\n1MpcCZHxcMRNRESkIAxuIiIiBWFwExERKQiDm4iISEF4cVoF3Lt3FyNGDEGrVq4AALVaDR+fD4tN\nOkJERCQHxQe31KtMpZJ6NaqzswvWrv0GQMHc3P7+n2H27AVo3rxFpdZDRERUFA+VV4ImTZ7DiBEf\nYefO7cYuhYiITByDu5K4ur6EW7duGrsMIiIycQzuSpKZmQkzM3YnERHJS7Zz3NHR0Zg4cSJatCg4\n59uyZUuMGjUKfn5+0Ol0sLe3x5IlS6DRaOQqoUpdvnwRLVu2MnYZRERk4mS9OO3ll1/G6tWr9b9P\nnToV3t7e6Nu3L5YvX47w8HB4e3vLWUKViI+/g23btmLlyq+MXQoREZm4Kr2qPDo6GnPmzAEAeHh4\nICQkRLHBfft2LHx9P4FWq0V+vg5ffOGHRo0aGbssIiIycbIG9/Xr1zFmzBikpaXB19cXWVlZ+kPj\ndnZ2SEpKKvP5trZWMDdXl7mMvX2llftfluUuYW/fCmfOnK7shuUT80jSYvb21jIX8ozSkiUtVu1f\nhykw0jaVcDW7Utv9+fotScu91byppOWqi8ruJ+571Ytswd20aVP4+vqib9++iIuLw4gRI6DT6fR/\nF0KUu46UlEy5yiMDkpLSjV1CpTCV12EKKv+9kHbfhspuV3nbFPtJycr7B0i2y6AdHR3Rr18/qFQq\nODs7o2HDhkhLS0N2dsF/ggkJCXBwcJCreSIiIpMkW3Dv3r0bGzduBAAkJSUhOTkZAwcOREREBADg\nwIEDcHd3l6t5IiIikyTbofJevXph8uTJiIyMhFarxezZs/HSSy/B398fYWFhcHJygpeXl1zNExER\nmSTZgrtu3bpYt25dicdDQ0PlapKIiMjk8VZfRERECqL42cGM4clpPQstWLAE9erZGKkqIiKqCRQf\n3LVrR1bq+rKyektarui0nkRERFWFh8qJiIgUhMFNRESkIIo/VG4shfcqL+Ts7AI/v0AjVkRERDUB\ng7uCeI6biIiMgYfKiYiIFIQj7gp68lA5AIwbNwGtW7c1UkVEVN3siyl/MiUA6NdMJXMlVJqEq9Im\nZHFsqZW5EukUH9xSv75VmRo3dsLBg0ervF0iIiIeKiciIlIQBjcREZGCMLiJiIgUhMFNRESkIAxu\nIiIiBWFwExERKYjivw5mLHFxt7F69TKkpqZAp8uHm1s7fPrpJGg0GmOXRkREJkzxwX0qLblS19fZ\nxq7cZXQ6HaZP98OkSVPQsWNnCCGwcuUShIZ+i9GjP63UeoiIagLerEY6xQe3MZw8GQ1n56bo2LEz\nAEClUmHcuAlQqXjmgYiI5MXgroDbt2+hRYuWxR6rVcvSSNUQEVFNwiFihaiQn59v7CKIiKgGYnBX\ngItLU1y8eKHYY7m5ubhx47qRKiIiopqCwV0BXbt2Q0LCPfz+e8FEI/n5+fj66zWIjDxo5MqIiMjU\n8Rx3BZiZmWHZsrVYvHg+QkO/hYWFBbp27YYPP/zY2KUREZGJU3xwS/n6lhwaNmyIxYtXGKVtIiKq\nuXionIiISEEY3ERERArC4CYiIlIQBjcREZGCMLiJiIgUhMFNRESkIAxuIiIiBWFwExERKQiDm4iI\nSEEUf+c0qr4SrlpIWs6xpVbmSoiITIesI+7s7Gx4enpi586duHfvHnx8fODt7Y2JEyciNzdXzqaJ\niIhMkqzB/fXXX8PGxgYAsHr1anh7e2Pr1q1wcXFBeHi4nE0TERGZJNmCOyYmBtevX8frr78OAIiO\njkbv3r0BAB4eHoiKipKraSIiIpMlW3AvWrQIAQEB+t+zsrKg0WgAAHZ2dkhKSpKraSIiIpMly8Vp\n//nPf9ChQwc8//zzBv8uhJC0HltbK5ibqyuztJop5pGkxeztrSu12YSr2ZXbblpy5a6PKo7blDTs\nJ+lMpa+qgCzBfeTIEcTFxeHIkSO4f/8+NBoNrKyskJ2dDUtLSyQkJMDBwaHc9aSkZMpRHpUiKSm9\nktco7aryym638l8HVRS3KWOt3zT7SZ42jNNXZSnvnwRZgnvlypX6n9esWYMmTZrg9OnTiIiIwLvv\nvosDBw7A3d1djqaJiIhMWpXdgGX8+PH4z3/+A29vb6SmpsLLy6uqmiYiIjIZst+AZfz48fqfQ0ND\n5W6OiIjIKE5JvBags43dM7XDW54SEREpCIObiIhIQRjcRERECsLgJiIiUhAGNxERkYIwuImIiBSE\nwU1ERKQgDG4iIiIFYXATEREpCIObiIhIQRjcRERECsLgJiIiUhBJwR0QEFDisZEjR1Z6MURERFS2\nMmcH2717N7Zt24Zr165h2LBh+se1Wi0ePHgge3FUtX7WHpa03FsWvWSuhEwFtymiyldmcL/zzjvo\n1q0bJk+eXGx6TjMzMzRv3lz24oiIiKi4cufjdnR0xKZNm5Ceno7U1FT94+np6ahfv76sxREREVFx\n5QY3AMybNw87duxAgwYNIIQAAKhUKkRGRspaHBERERUnKbijo6Nx/Phx1KpVS+56iIiIqAySrip3\ncXFhaBMREVUDkkbcjRo1wrBhw9C5c2eo1Wr94xMnTpStMCIiIipJUnDXr18f3bt3l7sWIiIiKoek\n4B43bpzcdRAREZEEkoK7devWUKlU+t9VKhWsra0RHR0tW2FERERUkqTgvnz5sv7n3NxcREVF4cqV\nK7IVRURERIY99SQjGo0GPXv2xLFjx+Soh4iIiMogacQdHh5e7Pf79+8jISFBloKIiIiodJKC+9Sp\nU8V+r1u3LlauXClLQURERFQ6ScEdHBwMAEhNTYVKpYKNjY2sRREREZFhkoL7r7/+gp+fHzIyMiCE\nQP369bFkyRK4ubnJXR8REREVISm4ly1bhq+++gotW7YEAFy8eBHz58/Hli1bZC2OiIiIipMU3GZm\nZvrQBgq+11301qfGsi9GSFquXzNV+QsREREpgKSvg5mZmSEiIgKPHz/G48ePsW/fvmoR3ERERDWN\npBH3nDlzEBQUhOnTp8PMzAyurq6YN2+e3LURERHREySNuI8dOwaNRoOTJ08iOjoaQgj8+uuvctdG\nRERET5AU3Lt378batWv1v4eEhGDPnj2yFUVERESGSTpUrtPpip3TVqlUEELahWFUtlNpyZKW62xj\nJ3MlRESkBJKCu1evXhgyZAg6d+6M/Px8HD9+HG+++WaZz8nKykJAQACSk5ORk5ODcePGwdXVFX5+\nftDpdLC3t8eSJUug0Wgq5YUQERHVBJLn43755Zdx7tw5qFQqzJo1Cx06dCjzOb/88gvatm2Ljz/+\nGPHx8fjoo4/QqVMneHt7o2/fvli+fDnCw8Ph7e1dKS+EiIioJpAU3ADQpUsXdOnSRfKK+/Xrp//5\n3r17cHR0RHR0NObMmQMA8PDwQEhICIObiIjoKUgO7ooaMmQI7t+/j3Xr1uHDDz/UHxq3s7NDUlJS\nmc+1tbWCuXkZ3xePeSSpBnt7a8n1VjmJ57if6TVI7CeppNaScDW7UtdXJX1F0nCbksZIn1GK6yfA\nNPqqij6jZA/ubdu24dKlS5gyZUqxC9qkXNyWkpJZKTUkJaVXynqMqTq9Bum1WFTy+qSpTn1F0tT0\nbary12+a/SRPG1XfV+Wtq7xgl/R1sIo4f/487t27BwB46aWXoNPpUKdOHWRnF/x3k5CQAAcHB7ma\nJyIiMkmyBfeff/6JkJAQAMCDBw+QmZmJHj16ICIiAgBw4MABuLu7y9U8ERGRSZLtUPmQIUMQGBgI\nb29vZGdnY+bMmWjbti38/f0RFhYGJycneHl5ydU8ERGRSZItuC0tLbFs2bISj4eGhsrVJBERkcmT\n7VA5ERERVT4GNxERkYIwuImIiBRE9u9xExERVZaftYclLfeWRS+ZKzEejriJiIgUhMFNRESkIAxu\nIiIiBWFwExERKQiDm4iISEEY3ERERArC4CYiIlIQBjcREZGCMLiJiIgUhMFNRESkIAxuIiIiBWFw\nExERKQiDm4iISEEY3ERERArC4CYiIlIQBjcREZGCMLiJiIgUhMFNRESkIAxuIiIiBWFwExERKQiD\nm4iISEEY3ERERArC4CYiIlIQBjcREZGCMLiJiIgUhMFNRESkIObGLqAq/Kw9LGm5tyx6yVwJERHR\ns+GIm4iISEEY3ERERArC4CYiIlIQBjcREZGCyHpx2uLFi3Hq1Cnk5eVh9OjRcHNzg5+fH3Q6Hezt\n7bFkyRJoNBo5SyAiIjIpsgX38ePHce3aNYSFhSElJQXvvfceunfvDm9vb/Tt2xfLly9HeHg4vL29\n5SqBiIjI5Mh2qLxr165YtWoVAKBevXrIyspCdHQ0evfuDQDw8PBAVFSUXM0TERGZJNmCW61Ww8rK\nCgAQHh6O1157DVlZWfpD43Z2dkhKSpKreSIiIpMk+w1YDh06hPDwcISEhODNN9/UPy6EKPe5trZW\nMDdXl75AzKPKKFHP3t66UtcnSVqypMWeqTYj9VPC1exKXV+V9BVJw21KGon9VNnbrOL6CTCNbaqK\nPqNkDe7ffvsN69atw4YNG2BtbQ0rKytkZ2fD0tISCQkJcHBwKPP5KSmZcpZXQlJSepW29zSqU23S\na7Go5PVJU536iqSp6dtU5a/fNPvpaVTnbaq8dZUX7LIdKk9PT8fixYuxfv161K9fHwDQo0cPRERE\nAAAOHDgAd3d3uZonIiIySbKNuPft24eUlBRMmjRJ/9jChQsxffp0hIWFwcnJCV5eXnI1T0REZJJk\nC+7Bgwdj8ODBJR4PDQ2Vq0kiUijLI3ulLehkmv/scyIkehq8cxoREZGCMLiJiIgUhMFNRESkIAxu\nIiIiBWFwExERKQiDm4iISEEY3ERERArC4CYiIlIQBjcREZGCMLiJiIgUhMFNRESkIAxuIiIiBWFw\nExERKYhss4OZsoSr0iZed2yplbkSIqKKq107UtqCaR3kLUQBJPVVFfUTR9xEREQKwuAmIiJSEAY3\nERGRgvAcN1EF/Kw9LGm5tyx6yVwJEdU0HHETEREpCIObiIhIQRjcRERECsLgJiIiUhBenEZUxL4Y\nIWk5M2eZC3kGp9KSJS3X2cZO5kqISA4ccRMRESkIg5uIiEhBGNxEREQKwnPcRVge2SttQScveQsh\nIiIqBUfcRERECsLgJiIiUhAGNxERkYLwHDc9NV4LQERkPBxxExERKQiDm4iISEEY3ERERArC4CYi\nIlIQBjcREZGCyBrcV69ehaenJzZv3gwAuHfvHnx8fODt7Y2JEyciNzdXzuaJiIhMjmzBnZmZiaCg\nIHTv3l3/2OrVq+Ht7Y2tW7fCxcUF4eHhcjVPRERkkmQLbo1Gg2+//RYODg76x6Kjo9G7d28AgIeH\nB6KiouRqnoiIyCTJdgMWc3NzmJsXX31WVhY0Gg0AwM7ODklJSWWuw9bWCubm6tIXiHn0zHXKyd7e\nuvyF0pIrb12lqeb9VLt2pLQF0zpIWqw69dUz1VJR3Kakvza5+8pI21PC1exKbVeq6rRNVee+etbP\nBaPdOU0IUe4yKSmZVVCJfJKS0qvlukxddeqr6lTLk6pzbc+qsl9bdekr6XVYyFpHaapLPwHVu6/K\nq628YK/Sq8qtrKyQnV3w301CQkKxw+hERERUvioN7h49eiAiIgIAcODAAbi7u1dl80RERIon26Hy\n8+fPY9GiRYiPj4e5uTkiIiKwdOlSBAQEICwsDE5OTvDy4iQURERET0O24G7bti02bdpU4vHQ0FC5\nmiRSpISr0s6xObbUylwJESkB75xGRESkIAxuIiIiBWFwExERKQiDm4iISEEY3ERERArC4CYiIlIQ\nBjcREZGCMLiJiIgUxGiTjBDVBJZH9pa/kBPvIEhE0nHETUREpCAMbiIiIgVhcBMRESkIg5uIiEhB\nGNxEREQKwuAmIiJSEAY3ERGRgjC4iYiIFIQ3YCEik1O7dqS0BdM6yFsIkQw44iYiIlIQBjcREZGC\nMLiJiIgUhOe4ZSTpPBvPsRERVTpJE/wAipzkhyNuIiIiBWFwExERKQiDm4iISEF4jpuISCFM+bwt\nSccRNxERkYIwuImIiBSEwU1ERKQgDG4iIiIFYXATEREpCIObiIhIQRjcRERECsLgJiIiUhAGNxER\nkYJU+Z3TFixYgLNnz0KlUmHatGlo165dVZdARESkWFUa3CdOnEBsbCzCwsIQExODadOmISwsrCpL\nICIiUrQqPVQeFRUFT09PAECzZs2QlpaGx48fV2UJREREilalwf3gwQPY2trqf2/QoAGSkpKqsgQi\nIiJFUwkhRFU1NmPGDPTs2VM/6h46dCgWLFiAF154oapKICIiUrQqHXE7ODjgwYMH+t8TExNhb29f\nlSUQEREpWpUG9yuvvIKIiAgAwIULF+Dg4IC6detWZQlERESKVqVXlXfq1Alt2rTBkCFDoFKpMGvW\nrKpsnoiISPGq9Bw3ERERPRveOY2IiEhBGNxEREQKUi2De+fOnVi0aFGFnx8dHY0JEyZIWvbOnTsY\nOHCg5PWuWbPmqWr55ZdfEBAQ8FTPqUl8fHxw9epVrFmzBps3bzZ2ORVy9+5dnDt3TvLyPj4+T7X+\njIwM9OrV62nLqpaOHj2KrVu3lvr38vrSFPbB0j6f5s+fj7i4uFKf16tXL2RkZDxz+5Wxr3Xr1u2Z\n65BLaZ/p33zzDU6fPl3q8wo/i57Vs+YXUP57XeX3KicyNcePH0dmZibvuy/Ba6+9Vubfa3JfBgYG\nGrsEk/bJJ58Yu4RKU22D+86dO/j4449x//59fPDBBxg0aBB2796NzZs3w8zMDC1atEBQUBC0Wi0C\nAgIQHx+PWrVqYfHixQAKRimTJ0/GlStX0KdPH/j6+uL69euYO3cuVCoV6tSpg4ULFxZrMzo6GitW\nrIC5uTkcHR0RHByMPXv24OjRo0hMTMSKFSvQokUL3L17F1OmTIGZmRl0Oh2WLFmCJk2a6Ndz5coV\n+Pv7w8bGBs7OzvrHt2zZgp9++glmZmbw9PTERx99hPv372PixImwsLBAly5dcOrUKWzatAlvvvkm\nWrdujVdeeQUdO3YsUXe9evUMrq80hmp2cHDAzJkzERcXh9zcXEyYMAGvvvoqPD098f777+Pnn3+G\ni4sL2rRpo/952bJlSEhIQGBgILRaLdRqNebNmwcnJ6di7c2bNw/nzp2DWq3GnDlz0LJlSyxevBh/\n/fUXdDodhg0bBi8vL4O1rlixAn/++Sd0Oh2GDx+O/v374/LlywgICIC1tTXatm2LlJQULFy48Kn6\noKidO3fi5MmTSElJwbVr1/DZZ59hz549iImJwdKlS9G+fXsEBwfj3LlzyMnJwdChQ/HPf/4Tv//+\nO1auXAlLS0vY2dlh1qxZWLt2LczNzdG4cWO4uLiUeK8ePXqEKVOmwMrKCsOHD8eiRYug1WoxZcoU\nJCUlITc3F+PHjy8Wao8fP8b48eORk5ODzp076x//888/sXz5cn17QUFBUKlUmDJlCu7evYuOHTti\n//79OHr0KHx8fNCiRQsAwOeff45p06YhLS0NOp0O06dPh6urq359QME+5+zsjJycHMyYMQPt2rXD\nN998g4MHD8LMzAweHh4YM2aMwccM7TsqlarEvnns2DFcu3YN/v7+Jfq3d+/e5fZlu3btFLsPFmXo\n88nHxwczZsxAvXr1DNZTWP+vv/4KnU6HDRs2FPs67ZPb5tKlS5GYmIiAgADodDo4OTnpR4JXr17F\n6NGjcevWLQQGBuK1117Dvn378N1330GtVqNNmzaYPn060tPTERAQgEePHiEvLw/Tp09HmzZtJL3G\noqr680cIgVmzZuHvv/9GmzZtEBQUhICAAPTp0wddunTBhAkTkJ2djZ49e2L79u04fPgwAGD//v2Y\nP38+UlNT8fXXXxdb78WLFzFnzhxoNBpoNBqsWLECADB58mQ8fvwY1tbW+n0pMTER48ePx/Xr1zFy\n5EgMGjSo1H3EUB+US1RDO3bsEP379xe5ubni4cOHwt3dXeTn54tt27aJtLQ0IYQQ3t7e4vLly2L7\n9u1iwYIFQggh9uzZI7Zs2SLnYDWHAAAU00lEQVSOHz8uevbsKTIzM8Xjx49Ft27dhBBCjBgxQty8\neVMIIcTmzZvFV199JeLi4sR7770nhBCiT58+4u7du0IIIebMmSPCw8PFjh07xPvvvy/y8/P19YWE\nhIi1a9cKIYQ4f/68OH36dLH6J0yYIA4ePCiEEGLmzJnC399f3L59WwwfPlzk5+eL/Px8MXjwYBEf\nHy+Cg4NFaGioEEKIRYsWieHDhwshhHB1dRVXr14tte7S1lcaQzXv2rVLzJw5UwghxP3798Wbb74p\nhBDCw8ND/PbbbyI/P1+89tprYt++fUIIIXr27CnS0tLE1KlTxbFjx4QQQhw5ckQEBgYWa+vYsWPi\n008/FUIIceLECbFixQpx4sQJMWrUKCGEEBkZGaJ3794iPT1dDB8+XFy5ckWsXr1abNq0SZw8eVJ8\n8cUXQgghcnJyRL9+/URWVpbw9fUVBw4c0PdvWX0qxY4dO8SQIUNEfn6+CAsLE/379xd5eXli+/bt\nYt68eSI7O1t8//33QgghsrKyxCuvvCKEEGL06NHi5MmTQgghIiIiRGJior720t6ruLg40b59e/Hw\n4UN9++fPnxcjRowQQgiRlpYmdu/eXay+zZs3i/nz5wshhNi7d6/w8PAQQgjx7rvvipSUFCFEwfby\n448/isjISDFmzBghhBCHDx8WrVq1EkIIMXz4cLF161YhhBBr164V27dvF0IIce3aNfGvf/2r2Ppu\n3Lghxo4dK3788Ufxxx9/CF9fXyGEEN26dRNarVbk5+eLLVu2lPqYoX3H0L65Y8cOsXDhwlL7t7y+\nLKTEfbBQaZ9PhftCafV4eHiIw4cPCyGE+Oyzz/Svr5ChbfOLL74Qhw4d0q/rzJkzYvXq1WL8+PFC\nCCGOHj0qxo4dKx4/fiw8PT3F48eP9euKiooSa9asEevXrxdCCHHu3DkxbNgwIYQQL7/8crmvs6iq\n/PyJi4sTHTp0EImJiUKn0wl3d3eRlpYm/P39xeHDh8UPP/wggoKChBAF72XhvjV8+HD9trd06VL9\ne1AoKChI7Nq1SwghxB9//CGuX78uli9frt+OQ0NDxcGDB8WOHTvEP//5T5GXlydiYmLEO++8I4Qw\nvI+U1QeF74Uh1XbE3alTJ1hYWMDW1hZ169ZFSkoKbGxsMG7cOABATEwMUlNTceHCBXTv3h0A8Pbb\nbwMoGDm3bt0atWvXBlDw3xcAnDt3DjNmzAAA5Obmws3NTd9eamoqVCoVGjduDKDgHM7JkyfRunVr\nuLm5QaVS6Zd95ZVX4Ovri/T0dPTp0wcdO3YsVntMTAw6deqkX8/Ro0fx999/IzY2FiNGjABQ8B93\nfHw8YmJi0K9fPwAF5zX+/vtvAEDt2rX1oyVDdZe2vif/8yyr5j179ujPVTk6OkKj0SA1NRUA0K5d\nO6hUKtjZ2aF169YACu4tn56ejtOnT+PmzZv4+uuvodPp0KBBg2JtXbhwQf/6u3btiq5duyI0NBRd\nu3YFAFhZWaF58+aIjY0tUedff/2Fs2fP6s8D5+fnIykpqVif9urVC1FRUU/dB09q27YtVCoV7O3t\n0apVK6jVajRs2BB//fUXatWqhbS0NAwZMgQWFhZISUkBALz11luYNWsWBgwYgLfffrvEnf9K28ae\nf/75Yvfpf/HFF5GRkYEpU6bgjTfe0G+7hWJiYvT99fLLLwMouNd/bGwsxo8fDwDIzMyEra0tEhIS\n9H3Ts2dPmJv/b7cuPOR8+vRpPHz4ELt37wYAZGVlFVtfXl4eYmJicPnyZdja2sLKygoA0KdPH3z4\n4Yfo378/3nnnHYOPlbbv5OXlldg3d+7cCQCl9q+UvgSUuQ8WZejzqWjthuoBoD/64ujoiPT09GLP\nM7RtXrx4UX8I3s/PD0DBdQaFfVO4nlu3bsHFxQV16tQBULDNXbp0CefPn8fYsWMBAG5ubgb3WSmq\n8vMHAJydnfX7ZsOGDYv1VUxMjH6f6t27NzZu3GiwfwtrKdS7d2/Mnj0bt27dQr9+/dCsWTNcvHgR\nEydOBAD861//AlCwjbdv3x5qtVrfv6XtI4U/G+qDslTb4C4alEDBB/jcuXPx448/wt7eHqNHjwYA\nqNVq5Ofnl3h+0Q+vQrVr18YPP/xQbN137tzRt1d0B9JqtfrlLCwsiq2nZcuW+PHHH3Hs2DEsX74c\n//jHP4od9hVC6J9bWJuFhQVef/11zJ07t9i61q9fr1+2aF1F2zRU98GDBw2urzSGai6stVBubi7M\nzAquV1Sr1frHi/4shICFhQVWrVoFBwcHg20Zek+efD+1Wq2+raI0Gg0GDRqkf3+LtvtkP5XWp1IV\n3UaK/iyEwIkTJ3D8+HFs2rQJFhYW+mDw8vKCu7s7Dh06hLFjx2LVqlXF1lnaNvbkNlS7dm1s374d\nf/31F3bt2oVffvkFwcHBxWoo7J+i25CDg4P+sGmhb775Rv8ePdnPhe1aWFhgxowZxQIuLS1Nv761\na9eic+fOmDx5Mv7++2/9Kac5c+YgJiYG+/fvh4+PD/7v//6vxGMbN240uO+Utm8CKLV/y+vLQkrc\nB4sy9PlkqPYnX/uT+2JRhrZNtVpdYjlD7Rv6/KtVq1aJx0t7P8tTlZ8/Tz7nyXaK7ltP07/du3dH\neHi4/mJHPz8/yflTWr4IIUrtg7JUy6vKAeDMmTPQ6XR4+PAhsrKyoFaroVarYW9vj3v37uH8+fPQ\narVwc3PD8ePHARRcPbpu3bpS1+nq6oqjR48CAPbu3YuoqCj932xsbKBSqXD37l0ABR8sbdu2Nbie\nvXv34tq1a/D09MTEiRNx/vz5Yn9/4YUX9I9FR0cDANq0aYPo6GhkZWVBCIF58+YhOzsbzs7O+mUL\na5NSd2nrK42hmt3c3PT13bt3D2ZmZqhXr16p6yjUvn17HDp0CEDBVK0//fRTsb8XXW/heaG2bdvq\nH8vIyMDt27fh4uJSYt3t2rXDL7/8gvz8fOTk5CAoKAgADPbT0/bB00hJSUGjRo1gYWGByMhI6HQ6\n5Obm4ssvv4S5uTkGDx6Mfv36ISYmBiqVCnl5eQDK3saKunDhAn766Sd06dIFs2fPRkxMTLG/G9qG\nbGxsAADXr18HAGzatAmXL18u1je///47dDpdifaKvmfXr19HaGhosfWlpKQgPj4ely9fxqFDh6DV\napGeno61a9eiWbNm8PX1hY2NDRISEko8ZmZmZnDfKWvfLK1/pfalEvdBqaTUY4ihbbNt27b692DV\nqlX4448/DD63adOmiI2N1U+zXPQ9LOy/M2fO6I9APK2q/PwpT0X7d/PmzUhNTcU777yDDz74AJcu\nXSrWv9u2bcOuXbsMPre0fKloH1TbEfeLL76IiRMnIjY2FpMmTYKtrS1eeeUV/OMf/4CrqytGjRqF\n4OBg7Nq1C3/88QeGDx8Oc3NzLFq0CLdu3TK4zsDAQMyYMQPffvstatWqhWXLlhWbDzwoKAhffPEF\nzM3N8fzzz+Ptt9/WH1osqmnTppg1axasrKygVqsxffr0Yn8fO3Yspk6dih9++AHPP/88tFotnJyc\nMGLECAwbNgxqtRqenp6wtLTEiBEjMGnSJERERKB9+/YG/9syVHf9+vUNrq80hmp2cXHBiRMn4OPj\nA61WK3nk4Ovri2nTpmHv3r1QqVTFRopAweHxyMhIeHt7AwBmzZqFVq1aoW3bthg2bBjy8vLwxRdf\n6A/HFtWpUyd069YNgwcPhhBCv46xY8di+vTp+P7779G8eXOkp6eX2qeVoUePHvj2228xfPhweHp6\n4vXXX8fs2bPRtWtXfPjhh6hXrx7q1auHDz/8EHXq1IG/vz8aNGhQ7jZW6LnnnsPy5csRFhYGtVqN\nkSNHFvu7l5cXPv30U3zwwQfFLk6bP38+pk6dqh99Dx48GC+88AJ27NiBoUOH4uWXX0b9+vVLtDd8\n+HBMnToV3t7eyM/P1x8+LVxfbm4u4uLikJKSAh8fH+zZswcHDhxASkoKBg0aBCsrK3Ts2BFNmjQp\n8Vj9+vUN7jv5+fkl9s1jx46V2b9vv/12mX1ZSIn7oFRS6jHEycmpxLbp5uaGqVOnYuvWrWjcuDF8\nfX1x6tSpEs+1srKCn58fRo0aBTMzM3Tu3BldunSBq6srpk2bhhEjRkAIgZkzZ1boNVXl50953nvv\nPYwbNw4+Pj7o0aOH5P51dnbGxIkTYW1tDY1Gg+DgYNSqVQt+fn7w8fFBnTp1sHTpUhw4cMDg8w3t\nIwAq1Ae85amRXbt2DY8ePULnzp2xZ88eREdH60eZ9D9nzpyBpaUlXF1dsX79egghMGbMGGOXVS2k\npqYiOjoaffr0QUJCAj744AP8/PPPxi5LMarbPljd6jE18fHxuHHjBtzd3XH69GmsWbMGISEhxi7r\nqVTbEXdNUadOHcycORMqlQpmZmZP/d9jTaHRaBAYGAhLS0tYWloWG33VdHXq1MH+/fuxceNG5Ofn\nY+rUqcYuSVGq2z5Y3eoxNdbW1vjuu+/w5ZdfAlDm9+c54iYiIlKQantxGhEREZXE4CYiIlIQBjcR\nEZGCMLiJqolff/213Lsm+fj4lPgubnR0NIYOHVqptbRq1Ur/fery6HQ6DB06FIMHD4ZWq33qtlas\nWPHUM36V58cffwQAJCUlSZ4pkEgpGNxE1cR3332HtLQ0Y5fx1BITExEbG4uwsLASd4gzBp1Oh6++\n+goAYG9vj9WrVxu5IqLKxa+DERkQHR2NlStXwsnJCfHx8bC2tsaKFStQt25drFq1Sn8Xr0aNGmHJ\nkiWwsLBAp06dMGjQIOTn52P69OnYtGkT9u/fD51OhxdffBGzZs3CgwcPMHbsWLz66qs4d+4cMjIy\nsH79ekRGRuLPP//E5MmTERwcjJs3b2LDhg3QaDTQ6XRYvHgxnnvuuXLrvnv3LubMmYOsrCxkZmbi\n888/h729PXx9fREREQGg4A5N77//Po4cOYKIiAhs3rwZQgg0aNAA8+bNK3ZP9aIyMzMxY8YM3L9/\nH3l5eXj33Xfh7e2NqVOn4tGjR/rbn2o0Gv1zDPWBpaUlVqxYgV9++QWNGzdG7dq10axZMwAFI/0L\nFy7A3NwcO3fuxB9//IGlS5fi7NmzWLBgASwsLGBjY4NFixbBzMwM/v7+SE1NRUZGBt566y188skn\nmDZtGuLj4/HRRx9h7ty58Pb2xtGjR/HgwQMEBgYiMzMTubm5GDVqFN544w2sWbMGqampuH//PmJj\nY9GtWzf9fcmJqqVSpx8hqsGOHz8u3NzcxP3794UQQkyePFl8//33QqvVivXr1wudTieEEOKjjz7S\nz9jUqlUr8fvvvwshhDh79qzw8fHRzyo3f/588cMPP4i4uDjx0ksv6WedCggI0M9C5OHhIW7duiWE\nECI8PFw/09S6devEwoULhRAFMxgVzoxUtNYhQ4YIIYT4+OOPRVRUlBBCiMTEROHh4SG0Wq145513\nxKVLl4QQQmzcuFEsXLhQ3L17VwwYMEDk5OQIIYT47rvvRHBwsBBCiJYtWwqtVlusnXXr1onZs2cL\nIQpm9PLw8BC3b98WcXFxwt3dvUQfltYHN27cEB4eHiInJ0dotVrh5eUlVq9eXaLdHTt26GeKe+ON\nN8SVK1eEEAWzMO3Zs0fcvn1bP1tTTk6O6NSpk0hPTy9WT9GfZ8yYIb799lshhBAPHjwQPXr0EOnp\n6WL16tViyJAhIi8vT2RlZYkOHTqI1NTUEq+HqLrgiJuoFM2bN4ejoyOAgluxXrp0Cebm5jAzM4O3\ntzfMzc1x48YN/cxWQgj9rEvR0dG4ffu2fuaozMxM/cQDtra2+ns+Ozk5GTyv3bBhQ/j7+0MIgaSk\nJIOTcBgSHR2NjIwM/c0lzM3NkZycjAEDBiAiIgKurq7Yt28fgoKCcPr0aSQlJelvt5qbm1vmqP7s\n2bMYOHAgAMDS0hJt27bFhQsXSr2nf2l9cPXqVbRp00Y/Mu/SpUuZr+nhw4d49OgRWrZsCeB/szBl\nZmbi1KlT2LZtGywsLJCTk1PmNQJnz57VXwtgZ2cHR0dH3Lx5E0DBrFCF8yHY2toiLS1Nfy93ouqG\nwU1UCvHEjEIqlQqnTp3Cjh07sGPHDlhZWZW48KnwHK9Go0GvXr1K3Nv5zp07Zc5cBBTMHDRp0iTs\n2rULTZs2xebNm0tMolEajUaDNWvWlJjqsH///hg1ahQGDhyInJwcvPTSS4iPj0e7du2wfv16Set+\nciYlUWQWq9JqMdQHP//8c7HnlTbjVOGFbk/OrFTo+++/R25uLv79739DpVLpp0eUWn/Rx8p7T4iq\nE16cRlSKGzduIDExEQBw6tQptGrVCsnJyWjSpAmsrKwQHx+PM2fOIDc3t8RzO3XqhKNHjyIjIwMA\nsGXLFpw+fbrM9gpnxsrIyICZmRmaNGmCnJwcREZGGmzDkM6dO2P//v0ACkaq8+fPB1BwLt7W1hYb\nN27Uz6vt5uaGc+fOISkpCQCwf/9+/axLhrRv3x6//fYbgILR7oULF9CmTZtSly+tDwrnMc7NzYVW\nq8WJEyf0z6lbty7u3bsH4H+zetna2qJ+/fo4d+4cACAkJARbtmxBcnIymjVrBpVKhcjISGRnZ+un\nRTR0RXzR+hMSEpCYmIgXXnihvC4lqnY44iYqRfPmzbF8+XLExsbCxsYGXl5eEEIgJCQEQ4cORYsW\nLTB+/Hh8+eWXJUZ7bm5uGDZsGHx8fFCrVi04ODhg4MCBSE5OLrW9V199FWPGjMGiRYvQv39/DBo0\nCE5OThg5ciT8/Pz0gVyWwMBAzJw5E3v37kVubi7Gjh2r/9uAAQMwd+5cfTg7OjoiMDAQo0ePRu3a\ntWFpaYlFixaVum4fHx/MmDEDw4YNQ25uLsaNG4fnnntOP6f9k0rrg9q1a8PT0xPvv/8+nJyc8NJL\nL+mf88knn2DkyJFwcXGBq6urPsSXLFmCBQsWwNzcHNbW1liyZAni4uLw+eef4/fff0fv3r0xYMAA\nTJ48Gdu3b0fDhg0xcODAYq9nwoQJCAwMhI+Pj37K2Dp16pTbp0TVDe9VTmRA4VXl//73v41dChFR\nMTxUTkREpCAccRMRESkIR9xEREQKwuAmIiJSEAY3ERGRgjC4iYiIFITBTUREpCAMbiIiIgX5f63s\n9BiOiXFcAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "P6fR-dCXN4SK",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "**Logistic Regression**"
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# for better visualization we will plot it again using seaborn\n",
+ "\n",
+ "sns.countplot(x = data['parental level of education'], data = data, hue = data['grades'], palette = 'pastel')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 418
+ },
+ "colab_type": "code",
+ "id": "V6TBXagn5F7H",
+ "outputId": "de6f5eff-5403-4084-9b95-4085e19482d1"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/seaborn/categorical.py:1468: FutureWarning: remove_na is deprecated and is a private function. Do not use.\n",
+ " stat_data = remove_na(group_data[hue_mask])\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAFYCAYAAACoFn5YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlAVPXC//HPwIhclBSQUXGXW7a4\ny62r5i1TU7tWWrn8UMuyxavZ8jOXfMgNc+2WuaRdKzWUmzdvGZqFjy3eFqQFQ23T3EWFwUCJRbZ5\n/uhpHikFNGbOfOH9+gvOmTnfzxzO+PGcM3OOzeVyuQQAAIzkZ3UAAABw6ShyAAAMRpEDAGAwihwA\nAINR5AAAGIwiBwDAYHarA1wKpzPH6ggAAHhNeHjwBeexRw4AgMEocgAADEaRAwBgMIocAACDUeQA\nABiMIgcAwGAUOQAABqPIAQAwGEUOAMAFvPzyi0pM3GJ1jHJR5AAAGMzIS7QCAFAepzNDc+bMVJMm\nzWS3+6ugoED16tWX05mhoqIiDRp0lzp3jtI99/w/9e59s06fPq309JOKjZ2nlJQvtGbNy2rVKlKH\nDx9U06bNlJeXq7lzY1WnTh3l5+dp3LjHVFJSopkzYxQe7tADD4xR8+YtLXmtFDkAoNrZvPkt3Xxz\nf/XvP0Dr1q3RZ58lKzc3V7Gx81RQUKDx4x/SypVrlJeXq/79b1WDBg30wAN36/TpbK1e/ZL+679m\nqGHDRpo27UlJ0saNb6hTpy66447B+uqrFL366ioNH363Tp3K1PLlL8tms1n2WilyAEC1k5GRoQ4d\nOkmSIiMv18aN/9bp03X19NMzJEn+/v4qLS2Vn5+fGjRoIEmqXTtQZ8+eVWamUw5HQ0lSREQTSdLx\n48d0/Phxffvt1yopKVHt2rXd860scamaFvktTw3w+phbYjd7fUwAwPmFhIQoM9MpSdq/f58iIpqq\nYcOGmjp1ulwulw4dOig/v/N/TCw0NEzp6SfVqFFjHTlyWK1atVZERFNdc0079e8/QLm5Pyk3N1cl\nJSWSrC1xqZoWOQCgZhsw4HbNnTtLu3fvUklJsSIiIhQcHKzZs6frp59ydN113dSqVevzPnfkyHsV\nGztNLVq0VHFxkSTp9tsHacGCOdq580udOnVK99xzn8LDHd58SRdkc7lcLqtDXKyK7kfOHjkA1GxO\nZ4Z+/PFHtWlzpd55Z7OOHTuqBx74m9WxLll59yNnjxwAUO34+/tr+fLFCgtroNOnszVp0n9ZHclj\nKHIAQLUTGhqmRYtesDqGV3BBGAAADEaRAwBgMIocAACDUeQAABiMIgcAQFJxcbEeeOAezZ49vcqW\neeLEcY0ePbLKlnc+fGodAOCTqvqaIBVd7yMzM1NFRUWKiZlZpeN6GkUOAICkJUv+rrS0Y5ozZ6by\n8nKVk5OjkpISPfbYRP3xj5dryJDbdeutg/Thh++padOmatPmKn3wwTY1bdpc06fP1r59e/Xss/Nl\nt9vl5+en2Nh5ZZafmrpTL764THa7XQ5HQ02eHKNatWr97twcWgcAQNLDDz+u5s1bKCKiia67rpue\nf365JkyYoqVLn5MklZaWqk2bK/XSS69q9+5datQoQitXvqrU1J3KyclRdvaPevzxiVqy5EW1a9dB\nW7e+U2b5ixYt1Lx5f9fixSsUGhqqDz7YViW52SMHAOAcu3fvUnZ2lhITt0iSzp4tcM+76qprZLPZ\nFBISqiuuaCNJCgkJVW7uTwoJCdPy5Ut09myBMjOd6tOnn/t5P/54SseOHdXUqRMlyX1/9Krg0SLf\nu3evxo4dq1GjRmnEiBHu6R999JHuv/9+ff/995KkhIQErVmzRn5+fhoyZIgGDx7syVgAAFxQrVp2\nPf74RLVt2/438/z9/c/7s8vl0vPPP6Phw+/Rn//cTfHxccrPz3PPt9trqUGDcC1d+o8qz+uxQ+t5\neXmKjY1V165dy0w/e/as/vGPfyg8PNz9uGXLlmn16tWKi4vTmjVrlJ2d7alYAACU6+qr2+o///lQ\nknTw4AG99traSj3v9OlsNWnSVIWFhdqx4xMVFxe751122WXu5UnShg2v6Ycf9lVJXo8VeUBAgFau\nXCmHo+xt3lasWKHo6GgFBARIklJTU9WuXTsFBwcrMDBQnTt3VkpKiqdiAQBQrrvuGqq0tKMaO/Z+\nzZ8/Wx07dq7U8+68c6iefPIJPfXUZN1551C9885m/fTTT+75U6ZM05w5MzV27P3atStVzZu3qJK8\nHr+N6ZIlSxQSEqIRI0bo4MGDWrBggZYvX66bbrpJ77//vjZt2qTdu3dr6tSpkqRFixapcePGGjp0\n6AWXWVxcIrvd/4Lz/zTmhip/HRX5fMV2r48JAIBXP+w2d+5cxcTElPuYyvy/Iisrr8LHeFtF90gH\nAOBSlXc/cq99/Sw9PV0HDhzQE088oSFDhigjI0MjRoyQw+FQZmam+3EZGRm/ORwPAADOz2t75A0b\nNtS2bf/3nbmbbrpJa9euVUFBgWJiYnTmzBn5+/srJSXFfZgdAACUz2NFvmfPHs2fP19paWmy2+1K\nTEzUkiVLVL9+2e/NBQYGasKECRo9erRsNpvGjRun4OALH0IAgHMdfmOnJeO2uKOTJeMCv+bxD7t5\nQkXno6v6+ryVUdE1fAF4BkWOmsAnzpEDAICqR5EDAPA7PP30DH3yyUeWjc+11gEAPqmqT5tU19Mh\nFDkAAP9ry5ZN+uqrFGVnZ+vgwQN68MG/adu2RB06dFDTps3W++9v1TfffK3CwkINHHinbr11oPu5\nJSUlWrDgaR0/nqbi4mLdf/8YdenyJ49npsgBADjH0aNH9MILL2nTpo1au3a1Xnllnd55Z5O2bElQ\ny5atNX78/9fZswUaMmRgmSL/7/9+V2FhDfTkk9OUnZ2tRx8dozVrXvN4XoocAIBzXHnl1bLZbAoL\na6DIyMvl7++vkJAwFRUV6cyZ0xoz5j7Z7XZlZ2eVed6ePbuUmrpTu3Z9Jennm4QVFRWpVq1aHs1L\nkQMAcI4L3ar0xInjSks7pqVL/yG73a4+fXqUeZ7dXkt3331fmfuQewOfWgcAoBK+++5bORwNZbfb\n9fHH21VSUqqioiL3/KuvbquPP/75BlpZWT/qxReXeSUXRQ4AQCVERV2rY8eO6OGHH1Ra2jF163a9\nnnlmrnv+TTf11h/+EKQxY+7TpEmPq337jl7JxZXdqghXdgOswZXdUBNwZTcAAKopihwAAINR5AAA\nGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBgMG6aAgDwWVyps2LskQMAYDCKHAAAg1Hk\nAAAYjHPkAACcw7Q76rFHDgCAwShyAAAMRpEDAGAwihwAAINR5AAAGMyjRb5371717t1ba9eulSSd\nOHFCo0aN0ogRIzRq1Cg5nU5JUkJCgu68804NHjxYr7/+uicjAQBQrXisyPPy8hQbG6uuXbu6py1a\ntEhDhgzR2rVr1adPH61atUp5eXlatmyZVq9erbi4OK1Zs0bZ2dmeigUAQLXisSIPCAjQypUr5XA4\n3NOmT5+uvn37SpJCQkKUnZ2t1NRUtWvXTsHBwQoMDFTnzp2VkpLiqVgAAFQrHrsgjN1ul91edvFB\nQUGSpJKSEsXHx2vcuHHKzMxUaGio+zGhoaHuQ+4XEhISJLvdv+pD/w7h4cFWRwBqpMMWjct7HlXt\nUrcpr1/ZraSkRJMmTdKf//xnde3aVZs2bSoz3+VyVbiMrKw8T8W7ZE5njtURAHgR73lUtfK2qfJK\n3uufWn/yySfVokULPfzww5Ikh8OhzMxM9/yMjIwyh+MBAMCFebXIExISVKtWLT3yyCPuaR06dNDu\n3bt15swZ5ebmKiUlRVFRUd6MBQCAsTx2aH3Pnj2aP3++0tLSZLfblZiYqFOnTql27doaOXKkJCky\nMlIzZszQhAkTNHr0aNlsNo0bN07BwZx7AgCgMjxW5G3btlVcXFylHtuvXz/169fPU1EAAKi2uLIb\nAAAGo8gBADAYRQ4AgMEocgAADEaRAwBgMIocAACDUeQAABiMIgcAwGAUOQAABqPIAQAwGEUOAIDB\nKHIAAAzmsZum1DSH39hpybgt7uhkybgAAN/AHjkAAAajyAEAMBhFDgCAwShyAAAMRpEDAGAwihwA\nAINR5AAAGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBgMIocAACDUeQAABiMIgcAwGAe\nLfK9e/eqd+/eWrt2rSTpxIkTGjlypKKjo/Xoo4+qsLBQkpSQkKA777xTgwcP1uuvv+7JSAAAVCse\nK/K8vDzFxsaqa9eu7mmLFy9WdHS04uPj1aJFC23YsEF5eXlatmyZVq9erbi4OK1Zs0bZ2dmeigUA\nQLXisSIPCAjQypUr5XA43NOSk5PVq1cvSVLPnj2VlJSk1NRUtWvXTsHBwQoMDFTnzp2VkpLiqVgA\nAFQrdo8t2G6X3V528fn5+QoICJAkhYWFyel0KjMzU6Ghoe7HhIaGyul0eioWAADViseKvCIul+ui\npp8rJCRIdrt/VUcyUnh4sNURAEsdtmhc3nuoape6TXm1yIOCglRQUKDAwEClp6fL4XDI4XAoMzPT\n/ZiMjAx17Nix3OVkZeV5OqoxnM4cqyMANRLvPVS18rap8kreq18/69atmxITEyVJW7duVY8ePdSh\nQwft3r1bZ86cUW5urlJSUhQVFeXNWAAAGMtje+R79uzR/PnzlZaWJrvdrsTERD3zzDOaMmWK1q9f\nr4iICA0cOFC1atXShAkTNHr0aNlsNo0bN07BwRyyAgCgMjxW5G3btlVcXNxvpq9ateo30/r166d+\n/fp5KgoAANUWV3YDAMBgFDkAAAajyAEAMBhFDgCAwShyAAAMRpEDAGAwihwAAINR5AAAGIwiBwDA\nYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBgMIocAACDUeQAABiMIgcAwGAUOQAABqPIAQAwGEUO\nAIDBKHIAAAxGkQMAYDCKHAAAg9mtDgCg+rjlqQFeH3N5p1ivjwn4EvbIAQAwWKWKfMqUKb+ZNnr0\n6CoPAwAALk65h9YTEhL02muvad++fRo+fLh7elFRkTIzMz0eDgAAlK/cIr/tttt03XXX6YknntD4\n8ePd0/38/PTHP/7R4+EAAED5KvywW8OGDRUXF6ecnBxlZ2e7p+fk5Kh+/foeDQcAAMpXqU+tz549\nW//+978VGhoql8slSbLZbHrvvfcuarDc3FxNnjxZp0+fVlFRkcaNG6fw8HDNmDFDktSmTRvNnDnz\n4l4BLpkVnzCWpC2xmy0ZFwCqo0oVeXJysnbs2KHatWv/rsHefPNNtWrVShMmTFB6erruuecehYeH\na+rUqWrfvr0mTJig7du364Ybbvhd4wAAUFNU6lPrLVq0+N0lLkkhISHuw/NnzpxR/fr1lZaWpvbt\n20uSevbsqaSkpN89DgAANUWl9sgbNWqk4cOHq0uXLvL393dPf/TRRy9qsL/+9a9644031KdPH505\nc0bLly/XrFmz3PPDwsLkdDovapkAANRklSry+vXrq2vXrr97sLfeeksRERF6+eWX9d1332ncuHEK\nDg52z//l/HtFQkKCZLf7V/zAGiA8PLjiB/kYEzMDv8Z2jKp2qdtUpYp87Nixl7TwX0tJSdH1118v\nSbryyit19uxZFRcXu+enp6fL4XBUuJysrLwqyVMdOJ05Vke4aCZmBn6N7RhVrbxtqrySr1SRX331\n1bLZbO7fbTabgoODlZycfBERfz7Xnpqaqr59+yotLU116tRRkyZN9MUXXygqKkpbt27VyJEjL2qZ\nAADUZJUq8u+++879c2FhoZKSkvT9999f9GBDhw7V1KlTNWLECBUXF2vGjBkKDw/XtGnTVFpaqg4d\nOqhbt24XvVwAAGqqi777WUBAgG644Qa98sorevDBBy/quXXq1NHzzz//m+nx8fEXGwMAAKiSRb5h\nw4Yyv588eVLp6ekeCQQAACqvUkX+5Zdflvm9bt26WrRokUcCAQCAyqtUkc+dO1eSlJ2dLZvNpnr1\n6nk0FAAAqJxKFXlKSoomTZqk3NxcuVwu1a9fXwsXLlS7du08nQ8AAJSjUkX+97//XS+88IKuuOIK\nSdI333yjp59+WuvWrfNoOAAAUL5KXWvdz8/PXeLSz98rP/dSrQAAwBqV2iP38/NTYmKiunfvLkn6\nz3/+Q5Hjkh1+Y6fXx2xxRyevjwkA3lCpIp85c6ZiY2MVExMjPz8/XXnllZo9e7answEAgApU6tD6\nJ598ooCAAH3++edKTk6Wy+XS9u3bPZ0NAABUoFJFnpCQoKVLl7p/f+WVV7R582aPhQIAAJVTqSIv\nKSkpc07cZrNV+pajAADAcyp1jvymm27SsGHD1KVLF5WWlmrHjh26+eabPZ0NAABUoNL3I7/22mu1\na9cu2Ww2TZ8+XR07dvR0NgAAUIFK3/0sKipKUVFRnswCAAAuUqXOkQMAAN9EkQMAYDCKHAAAg1Hk\nAAAYjCIHAMBgFDkAAAajyAEAMBhFDgCAwShyAAAMRpEDAGAwihwAAINR5AAAGIwiBwDAYBQ5AAAG\no8gBADAYRQ4AgMHs3h4wISFBL730kux2ux555BG1adNGkyZNUklJicLDw7Vw4UIFBAR4OxYAAEby\n6h55VlaWli1bpvj4eK1YsULvvfeeFi9erOjoaMXHx6tFixbasGGDNyMBAGA0rxZ5UlKSunbtqrp1\n68rhcCg2NlbJycnq1auXJKlnz55KSkryZiQAAIzm1UPrx44dU0FBgcaMGaMzZ85o/Pjxys/Pdx9K\nDwsLk9PprHA5ISFBstv9PR3XCOHhwVZHMALrCVWNbQpV7VK3Ka+fI8/OztbSpUt1/Phx3X333XK5\nXO555/5cnqysPE/FM47TmWN1BCOwnlDV2KZQ1crbpsorea8eWg8LC1OnTp1kt9vVvHlz1alTR3Xq\n1FFBQYEkKT09XQ6Hw5uRAAAwmleL/Prrr9eOHTtUWlqqrKws5eXlqVu3bkpMTJQkbd26VT169PBm\nJAAAjObVQ+sNGzZU3759NWTIEElSTEyM2rVrp8mTJ2v9+vWKiIjQwIEDvRkJAACjef0c+bBhwzRs\n2LAy01atWuXtGAAAVAtc2Q0AAINR5AAAGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBg\nMIocAACDUeQAABiMIgcAwGAUOQAABqPIAQAwGEUOAIDBKHIAAAxGkQMAYDCKHAAAg1HkAAAYjCIH\nAMBgFDkAAAajyAEAMBhFDgCAwShyAAAMRpEDAGAwihwAAIPZrQ4A+LpbnhpgybhbYjdbMi4As7BH\nDgCAwShyAAAMRpEDAGAwS4q8oKBAvXv31htvvKETJ05o5MiRio6O1qOPPqrCwkIrIgEAYCRLinz5\n8uWqV6+eJGnx4sWKjo5WfHy8WrRooQ0bNlgRCQAAI3m9yPfv368ffvhBN954oyQpOTlZvXr1kiT1\n7NlTSUlJ3o4EAICxvP71s/nz5+upp57Sxo0bJUn5+fkKCAiQJIWFhcnpdFa4jJCQINnt/h7NaYrw\n8GCrIxjBxPVkYuaahL8PqtqlblNeLfKNGzeqY8eOatas2Xnnu1yuSi0nKyuvKmMZzenMsTqCEUxc\nTyZmrkn4+6CqlbdNlVfyXi3yDz/8UEePHtWHH36okydPKiAgQEFBQSooKFBgYKDS09PlcDi8GQkA\nAKN5tcgXLVrk/nnJkiVq0qSJdu7cqcTERN1+++3aunWrevTo4c1IAAAYzfLvkY8fP14bN25UdHS0\nsrOzNXDgQKsjAQBgDMuutT5+/Hj3z6tWrbIqBgAARrN8jxwAAFw6ihwAAINR5AAAGIwiBwDAYBQ5\nAAAGo8gBADAYRQ4AgMEocgAADEaRAwBgMIocAACDUeQAABiMIgcAwGCW3TQFAGqqW54aYMm4W2I3\nWzIuPIs9cgAADEaRAwBgMIocAACDUeQAABiMIgcAwGAUOQAABqPIAQAwGEUOAIDBKHIAAAxGkQMA\nYDCKHAAAg1HkAAAYjCIHAMBgFDkAAAajyAEAMBhFDgCAwezeHnDBggX68ssvVVxcrIceekjt2rXT\npEmTVFJSovDwcC1cuFABAQHejgUAgJG8WuQ7duzQvn37tH79emVlZWnQoEHq2rWroqOj1b9/fz37\n7LPasGGDoqOjvRkLAABjefXQ+p/+9Cc9//zzkqTLLrtM+fn5Sk5OVq9evSRJPXv2VFJSkjcjAQBg\nNK8Wub+/v4KCgiRJGzZs0F/+8hfl5+e7D6WHhYXJ6XR6MxIAAEbz+jlySdq2bZs2bNigV155RTff\nfLN7usvlqtTzQ0KCZLf7eyqeUcLDg62OYAQT15OJmWsSE/8+h9/Yacm4UQ/9xZJxTXOp25TXi/yj\njz7SihUr9NJLLyk4OFhBQUEqKChQYGCg0tPT5XA4KlxGVlaeF5KawenMsTqCEUxcTyZmrkn4+1Qe\n66pyyltP5ZW8Vw+t5+TkaMGCBXrxxRdVv359SVK3bt2UmJgoSdq6dat69OjhzUgAABjNq3vkW7Zs\nUVZWlh577DH3tHnz5ikmJkbr169XRESEBg4c6M1IAAAYzatFPnToUA0dOvQ301etWuXNGAAAVBtc\n2Q0AAINR5AAAGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEsuUQrgIpZdTnNFnd0smRcAJeGPXIAAAxG\nkQMAYDCKHAAAg1HkAAAYjCIHAMBgFDkAAAajyAEAMBhFDgCAwShyAAAMRpEDAGAwihwAAINR5AAA\nGIwiBwDAYBQ5AAAGo8gBADAYRQ4AgMEocgAADEaRAwBgMIocAACDUeQAABiMIgcAwGAUOQAABrNb\nHeAXc+bMUWpqqmw2m6ZOnar27dtbHQkAAJ/nE0X+2Wef6fDhw1q/fr3279+vqVOnav369VbHAgDA\n5/nEofWkpCT17t1bkhQZGanTp0/rp59+sjgVAAC+zyeKPDMzUyEhIe7fQ0ND5XQ6LUwEAIAZfOLQ\n+q+5XK5y54eHB5c7//MV26syTrXFeqoc1lPlsa4qh/VUeayrivnEHrnD4VBmZqb794yMDIWHh1uY\nCAAAM/hEkXfv3l2JiYmSpK+//loOh0N169a1OBUAAL7PJw6td+7cWddcc42GDRsmm82m6dOnWx0J\nAAAj2FwVnZAGAAA+yycOrQMAgEtDkQMAYDCfOEdusmPHjunWW29V27ZtJUmFhYWaOHGioqKiLE7m\nezZv3qzJkyfro48+UmhoqNVxfNaRI0c0Z84cOZ1OlZaWqnPnzpo4caICAwOtjuZTzn3vuVwu+fv7\na8yYMeratavV0XzKr/+N+sWSJUtUv359i1L5pkOHDmnOnDn68ccfVVpaqk6dOmny5MkKCAiwOlr5\nXPhdjh496ho0aJD7988++8x13333WZjIdz300EOuvn37uuLj462O4rNKSkpct912m+vTTz91T3v5\n5ZddTzzxhIWpfNOv33uHDx929e/f3/Xtt99amMr3/Ho94fyKi4tdAwYMcCUnJ7tcLpertLTUNWvW\nLNezzz5rcbKKcWi9imVmZsrhcFgdw+dkZ2dr165dmjJlit5++22r4/isjz/+WC1btiyzV3nvvfdq\n165dOnXqlIXJfF/z5s01ZswYxcfHWx0FBvrkk0/UunVrXXvttZIkm82miRMnaty4cRYnqxhFXgUO\nHjyokSNHasiQIZo3b55Gjx5tdSSf8+677+rGG29Ujx49dOjQIaWnp1sdyScdOHBAV199dZlpNptN\nl19+uQ4dOmRNKIO0bdtWP/zwg9UxYKADBw7oqquuKjMtMDDQ9w+ri3PkVaJVq1aKi4uTJO3fv1+P\nPfaY3nzzTdntrN5fbN68WWPHjpW/v7/69eunLVu26N5777U6ls+x2WwqKSn5zXTX/54DRvlyc3NZ\nT+fxy87GL1q1aqVZs2ZZmMj3XOi9ZwKapopFRkaqdu3aOnHihJo1a2Z1HJ9w8uRJpaamat68ebLZ\nbCooKFBwcDBFfh6tW7fWP//5zzLTXC6XfvjhB7Vs2dKaUAbZs2fPb/aqUHZnA+fXunVrrVu3rsy0\nwsJCHTp0SFdccYVFqSqHQ+tVLDs7W06nUw0bNrQ6is/YvHmzhg8froSEBL311lt69913dfr0aR05\ncsTqaD6ne/fuOnbsmLZv/78bRaxevVpdunThE8YVOHLkiFavXq1Ro0ZZHQUG6t69u9LS0vT+++9L\nkkpLS7Vw4UJt2bLF4mQV48puv9Ovv9px9uxZPfjgg+77q0MaNGiQ5s+fX+Z/tcuWLZOfn5/+9re/\nWZjMNzmdTk2fPl0nT56Uy+VS27Zt9eSTTyooKMjqaD7l3PdeYWGhSkpK9Pjjj6t79+5WR/MpF/r6\n2cSJE9W+fXuLUvmmjIwMTZs2TRkZGQoICFC3bt308MMPy8/Pt/d5KXIAAAzm2//NAAAA5aLIAQAw\nGEUOAIDBKHIAAAxGkQMAYDCKHMAlee6557RkyRKrYwA1HkUOAIDBuEQrUIO4XC7NmjVLqampatCg\ngRo1aqSQkBDFxcXprrvuUmlpqaZOnarp06frwIEDKiwsVIcOHRQTEyPp573wDz74QI0bN9Yf/vAH\nRUZGSpJ27NihZcuWyeVyyW63KzY2Vs2aNdMzzzyjHTt2KCAgQA0bNtT8+fONuAkFYBKKHKhBkpKS\ntGvXLr3++us6e/asBg4cqP79+ysvL0833HCDunfvrqysLLVp00axsbGSpH79+mnv3r2qVauWNm3a\npHfffVd+fn4aPHiwIiMjlZ+fr+nTp2v9+vWqX7++tm3bpgULFmj27Nlat26dvvjiC/n7+2vLli3K\nzMxURESExWsBqF4ocqAG+fbbbxUVFSV/f38FBQWpR48ekn7eU+/cubMk6bLLLtOJEyc0dOhQBQQE\nyOl0KisrS9nZ2brmmmvce9RRUVGSpH379snpdGr8+PGSpJKSEtlsNtWrV089evTQiBEj1KdPH91y\nyy1q1KiRBa8aqN4ocqAGKS0tLXPd6HN/rlWrliTp7bff1u7du7Vu3TrZ7Xbdcccdkn4ue5vNVmZZ\nkhQQEKCIiIjz3l1r8eLF2r+77vAcAAABfElEQVR/v7Zv364RI0ZoyZIl3J0MqGJ82A2oQVq3bq2v\nvvpKLpdL+fn5+vjjj3/zmFOnTqlVq1ay2+3as2ePjhw5osLCQkVGRuqbb75RYWGhioqK9Nlnn0mS\nWrZsqaysLO3du1eS9Pnnn2v9+vU6evSoVq9ercjISN13333q06ePvvvuO6++XqAm4KYpQA1SXFys\nSZMm6dChQ2rcuLHq1aunxo0ba+nSpfr6669lt9t14sQJjRkzRsHBwercubMCAwP11ltv6V//+peW\nL1+uHTt2KCIiQnXr1lWzZs00fvx4ffrpp3ruuedUu3ZtSdKsWbPUtGlTxcTE6MCBA6pTp47q1aun\nuXPnqk6dOhavBaB6ociBGiQnJ0fbtm3TwIEDZbPZNGbMGA0YMEADBgywOhqAS8Q5cqAGqVOnjlJS\nUvTqq6+qdu3aatWqlfr162d1LAC/A3vkAAAYjA+7AQBgMIocAACDUeQAABiMIgcAwGAUOQAABqPI\nAQAw2P8A+tnNgQIRYB0AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
]
- },
- {
- "metadata": {
- "id": "EVJHYo1IhJ2k",
- "colab_type": "code",
- "outputId": "eed70f37-79b7-4aa6-8041-66e6c86cdd9f",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 149
- }
- },
- "cell_type": "code",
- "source": [
- "from sklearn.linear_model import LogisticRegression\n",
- "\n",
- "# creating a model\n",
- "model = LogisticRegression()\n",
- "\n",
- "# feeding the training data to the model\n",
- "model.fit(x_train, y_train)\n",
- "\n",
- "# predicting the test set results\n",
- "y_pred = model.predict(x_test)\n",
- "\n",
- "# calculating the classification accuracies\n",
- "print(\"Training Accuracy :\", model.score(x_train, y_train))\n",
- "print(\"Testing Accuracy :\", model.score(x_test, y_test))\n"
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# comparing the distribution of grades among males and females\n",
+ "\n",
+ "sns.countplot(x = data['grades'], data = data, hue = data['gender'], palette = 'cubehelix')\n",
+ "#sns.palplot(sns.dark_palette('purple'))\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 348
+ },
+ "colab_type": "code",
+ "id": "fSEMQE4W87U4",
+ "outputId": "2d415ca5-5dd8-4c3f-d6ab-050405826c33"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " gender | \n",
+ " race/ethnicity | \n",
+ " parental level of education | \n",
+ " lunch | \n",
+ " test preparation course | \n",
+ " math score | \n",
+ " reading score | \n",
+ " writing score | \n",
+ " pass_math | \n",
+ " pass_reading | \n",
+ " pass_writing | \n",
+ " total_score | \n",
+ " percentage | \n",
+ " status | \n",
+ " grades | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " female | \n",
+ " group B | \n",
+ " bachelor's degree | \n",
+ " standard | \n",
+ " none | \n",
+ " 72 | \n",
+ " 72 | \n",
+ " 74 | \n",
+ " Pass | \n",
+ " Pass | \n",
+ " Pass | \n",
+ " 218 | \n",
+ " 73.0 | \n",
+ " pass | \n",
+ " B | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " female | \n",
+ " group C | \n",
+ " some college | \n",
+ " standard | \n",
+ " completed | \n",
+ " 69 | \n",
+ " 90 | \n",
+ " 88 | \n",
+ " Pass | \n",
+ " Pass | \n",
+ " Pass | \n",
+ " 247 | \n",
+ " 83.0 | \n",
+ " pass | \n",
+ " A | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " female | \n",
+ " group B | \n",
+ " master's degree | \n",
+ " standard | \n",
+ " none | \n",
+ " 90 | \n",
+ " 95 | \n",
+ " 93 | \n",
+ " Pass | \n",
+ " Pass | \n",
+ " Pass | \n",
+ " 278 | \n",
+ " 93.0 | \n",
+ " pass | \n",
+ " O | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " male | \n",
+ " group A | \n",
+ " associate's degree | \n",
+ " free/reduced | \n",
+ " none | \n",
+ " 47 | \n",
+ " 57 | \n",
+ " 44 | \n",
+ " Pass | \n",
+ " Pass | \n",
+ " Pass | \n",
+ " 148 | \n",
+ " 50.0 | \n",
+ " pass | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " male | \n",
+ " group C | \n",
+ " some college | \n",
+ " standard | \n",
+ " none | \n",
+ " 76 | \n",
+ " 78 | \n",
+ " 75 | \n",
+ " Pass | \n",
+ " Pass | \n",
+ " Pass | \n",
+ " 229 | \n",
+ " 77.0 | \n",
+ " pass | \n",
+ " B | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "Training Accuracy : 0.7786666666666666\n",
- "Testing Accuracy : 0.768\n"
- ],
- "name": "stdout"
- },
- {
- "output_type": "stream",
- "text": [
- "/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
- " FutureWarning)\n",
- "/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:460: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
- " \"this warning.\", FutureWarning)\n"
- ],
- "name": "stderr"
- }
+ "text/plain": [
+ " gender race/ethnicity parental level of education lunch \\\n",
+ "0 female group B bachelor's degree standard \n",
+ "1 female group C some college standard \n",
+ "2 female group B master's degree standard \n",
+ "3 male group A associate's degree free/reduced \n",
+ "4 male group C some college standard \n",
+ "\n",
+ " test preparation course math score reading score writing score pass_math \\\n",
+ "0 none 72 72 74 Pass \n",
+ "1 completed 69 90 88 Pass \n",
+ "2 none 90 95 93 Pass \n",
+ "3 none 47 57 44 Pass \n",
+ "4 none 76 78 75 Pass \n",
+ "\n",
+ " pass_reading pass_writing total_score percentage status grades \n",
+ "0 Pass Pass 218 73.0 pass B \n",
+ "1 Pass Pass 247 83.0 pass A \n",
+ "2 Pass Pass 278 93.0 pass O \n",
+ "3 Pass Pass 148 50.0 pass D \n",
+ "4 Pass Pass 229 77.0 pass B "
]
- },
- {
- "metadata": {
- "id": "3aK-UV7jRE2D",
- "colab_type": "code",
- "outputId": "5b67c319-18a8-4268-d78d-232a81e159b1",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 129
- }
- },
- "cell_type": "code",
- "source": [
- "# printing the confusion matrix\n",
- "\n",
- "from sklearn.metrics import confusion_matrix\n",
- "\n",
- "# creating a confusion matrix\n",
- "cm = confusion_matrix(y_test, y_pred)\n",
- "\n",
- "# printing the confusion matrix\n",
- "print(cm)"
+ },
+ "execution_count": 198,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 300
+ },
+ "colab_type": "code",
+ "id": "du9CiE7c8ER7",
+ "outputId": "d2ffd396-abd0-42fb-d0a2-548a78401a24"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " math score | \n",
+ " reading score | \n",
+ " writing score | \n",
+ " total_score | \n",
+ " percentage | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | count | \n",
+ " 1000.00000 | \n",
+ " 1000.000000 | \n",
+ " 1000.000000 | \n",
+ " 1000.000000 | \n",
+ " 1000.000000 | \n",
+ "
\n",
+ " \n",
+ " | mean | \n",
+ " 66.08900 | \n",
+ " 69.169000 | \n",
+ " 68.054000 | \n",
+ " 203.312000 | \n",
+ " 68.105000 | \n",
+ "
\n",
+ " \n",
+ " | std | \n",
+ " 15.16308 | \n",
+ " 14.600192 | \n",
+ " 15.195657 | \n",
+ " 42.771978 | \n",
+ " 14.258095 | \n",
+ "
\n",
+ " \n",
+ " | min | \n",
+ " 0.00000 | \n",
+ " 17.000000 | \n",
+ " 10.000000 | \n",
+ " 27.000000 | \n",
+ " 9.000000 | \n",
+ "
\n",
+ " \n",
+ " | 25% | \n",
+ " 57.00000 | \n",
+ " 59.000000 | \n",
+ " 57.750000 | \n",
+ " 175.000000 | \n",
+ " 59.000000 | \n",
+ "
\n",
+ " \n",
+ " | 50% | \n",
+ " 66.00000 | \n",
+ " 70.000000 | \n",
+ " 69.000000 | \n",
+ " 205.000000 | \n",
+ " 69.000000 | \n",
+ "
\n",
+ " \n",
+ " | 75% | \n",
+ " 77.00000 | \n",
+ " 79.000000 | \n",
+ " 79.000000 | \n",
+ " 233.000000 | \n",
+ " 78.000000 | \n",
+ "
\n",
+ " \n",
+ " | max | \n",
+ " 100.00000 | \n",
+ " 100.000000 | \n",
+ " 100.000000 | \n",
+ " 300.000000 | \n",
+ " 100.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "[[ 2 9 0 0 0 0]\n",
- " [ 0 15 17 0 0 0]\n",
- " [ 0 2 56 14 0 0]\n",
- " [ 0 0 6 44 8 0]\n",
- " [ 0 0 0 2 59 0]\n",
- " [ 0 0 0 0 0 16]]\n"
- ],
- "name": "stdout"
- }
+ "text/plain": [
+ " math score reading score writing score total_score percentage\n",
+ "count 1000.00000 1000.000000 1000.000000 1000.000000 1000.000000\n",
+ "mean 66.08900 69.169000 68.054000 203.312000 68.105000\n",
+ "std 15.16308 14.600192 15.195657 42.771978 14.258095\n",
+ "min 0.00000 17.000000 10.000000 27.000000 9.000000\n",
+ "25% 57.00000 59.000000 57.750000 175.000000 59.000000\n",
+ "50% 66.00000 70.000000 69.000000 205.000000 69.000000\n",
+ "75% 77.00000 79.000000 79.000000 233.000000 78.000000\n",
+ "max 100.00000 100.000000 100.000000 300.000000 100.000000"
]
- },
- {
- "metadata": {
- "id": "ujNMPnsXKqfT",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "**Random Forest**"
+ },
+ "execution_count": 199,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 73
+ },
+ "colab_type": "code",
+ "id": "TGVw87JkX0rJ",
+ "outputId": "4947d499-85d4-4297-edda-959560307770"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "1 642\n",
+ "0 358\n",
+ "Name: test preparation course, dtype: int64"
]
- },
- {
- "metadata": {
- "id": "st1bVJlgPvr2",
- "colab_type": "code",
- "outputId": "1288b059-af96-4f25-ce18-c5a6ba6da90e",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 112
- }
- },
- "cell_type": "code",
- "source": [
- "from sklearn.ensemble import RandomForestClassifier\n",
- "\n",
- "# creating a model\n",
- "model = RandomForestClassifier()\n",
- "\n",
- "# feeding the training data to the model\n",
- "model.fit(x_train, y_train)\n",
- "\n",
- "# predicting the x-test results\n",
- "y_pred = model.predict(x_test)\n",
- "\n",
- "# calculating the accuracies\n",
- "print(\"Training Accuracy :\", model.score(x_train, y_train))\n",
- "print(\"Testing Accuracy :\", model.score(x_test, y_test))"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "Training Accuracy : 1.0\n",
- "Testing Accuracy : 0.996\n"
- ],
- "name": "stdout"
- },
- {
- "output_type": "stream",
- "text": [
- "/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
- " \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
- ],
- "name": "stderr"
- }
+ },
+ "execution_count": 200,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from sklearn.preprocessing import LabelEncoder\n",
+ "\n",
+ "# creating an encoder\n",
+ "le = LabelEncoder()\n",
+ "\n",
+ "# label encoding for test preparation course\n",
+ "data['test preparation course'] = le.fit_transform(data['test preparation course'])\n",
+ "data['test preparation course'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 73
+ },
+ "colab_type": "code",
+ "id": "23lY5N_PY-U-",
+ "outputId": "67fbccbd-c127-4047-ffd0-3d9dcfb023bd"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "1 645\n",
+ "0 355\n",
+ "Name: lunch, dtype: int64"
]
- },
- {
- "metadata": {
- "id": "17rfXUPzQlvk",
- "colab_type": "code",
- "outputId": "f4bec713-a072-4588-8cca-e6069a3bdbd3",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 129
- }
- },
- "cell_type": "code",
- "source": [
- "# printing the confusion matrix\n",
- "\n",
- "from sklearn.metrics import confusion_matrix\n",
- "\n",
- "# creating a confusion matrix\n",
- "cm = confusion_matrix(y_test, y_pred)\n",
- "\n",
- "# printing the confusion matrix\n",
- "print(cm)"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "[[11 0 0 0 0 0]\n",
- " [ 0 32 0 0 0 0]\n",
- " [ 0 0 72 0 0 0]\n",
- " [ 0 0 0 58 0 0]\n",
- " [ 0 0 0 0 61 0]\n",
- " [ 0 0 0 0 1 15]]\n"
- ],
- "name": "stdout"
- }
+ },
+ "execution_count": 201,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# label encoding for lunch\n",
+ "\n",
+ "data['lunch'] = le.fit_transform(data['lunch'])\n",
+ "data['lunch'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 129
+ },
+ "colab_type": "code",
+ "id": "f_L3U8clZMuO",
+ "outputId": "b72d7ce0-52f7-43cd-fd00-812ed7ced612"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "3 319\n",
+ "4 262\n",
+ "2 190\n",
+ "5 140\n",
+ "1 89\n",
+ "Name: race/ethnicity, dtype: int64"
]
- },
- {
- "metadata": {
- "id": "-h5wuSOfVHk4",
- "colab_type": "code",
- "outputId": "4d0561c3-4dfe-4428-dc56-e48a55048cbd",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 73
- }
- },
- "cell_type": "code",
- "source": [
- "# k fold cross validation \n",
- "\n",
- "from sklearn.model_selection import cross_val_score\n",
- "\n",
- "# computing accuracies for 20 different model's accuracy\n",
- "accuracies = cross_val_score(estimator = model, X = x_train, y = y_train, cv = 20)\n",
- "print(accuracies)\n",
- "\n",
- "# computing mean of accuaracies obtained by all the models\n",
- "print(\"mean accuracy :\", accuracies.mean())\n",
- "\n",
- "# computing the standard variance of the models\n",
- "print(\"mean standard variance :\", accuracies.std())"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
- "mean accuracy : 1.0\n",
- "mean standard variance : 0.0\n"
- ],
- "name": "stdout"
- }
+ },
+ "execution_count": 202,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# label encoding for race/ethnicity\n",
+ "# we have to map values to each of the categories\n",
+ "\n",
+ "data['race/ethnicity'] = data['race/ethnicity'].replace('group A', 1)\n",
+ "data['race/ethnicity'] = data['race/ethnicity'].replace('group B', 2)\n",
+ "data['race/ethnicity'] = data['race/ethnicity'].replace('group C', 3)\n",
+ "data['race/ethnicity'] = data['race/ethnicity'].replace('group D', 4)\n",
+ "data['race/ethnicity'] = data['race/ethnicity'].replace('group E', 5)\n",
+ "\n",
+ "data['race/ethnicity'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 148
+ },
+ "colab_type": "code",
+ "id": "PpowtC99ZdPM",
+ "outputId": "eda1d827-15ab-4dd8-c3ed-85f56d55d2ff"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "4 226\n",
+ "0 222\n",
+ "2 196\n",
+ "5 179\n",
+ "1 118\n",
+ "3 59\n",
+ "Name: parental level of education, dtype: int64"
]
- },
- {
- "metadata": {
- "id": "NLUnNmY_RLmN",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "**Decision Forest**"
+ },
+ "execution_count": 203,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# label encoding for parental level of education\n",
+ "\n",
+ "data['parental level of education'] = le.fit_transform(data['parental level of education'])\n",
+ "data['parental level of education'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 73
+ },
+ "colab_type": "code",
+ "id": "geX7js-LbEgB",
+ "outputId": "be192129-00b1-49b5-e66e-e4e2de1b446b"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 518\n",
+ "1 482\n",
+ "Name: gender, dtype: int64"
]
- },
- {
- "metadata": {
- "id": "cZvzebMFQcZO",
- "colab_type": "code",
- "outputId": "ec3c6d7b-90a8-4b96-dec1-2746eaa41308",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 54
- }
- },
- "cell_type": "code",
- "source": [
- "from sklearn.tree import DecisionTreeClassifier\n",
- "\n",
- "# creating a model\n",
- "model = DecisionTreeClassifier()\n",
- "\n",
- "# feeding the training data to the model\n",
- "model.fit(x_train, y_train)\n",
- "\n",
- "# predicting the x-test results\n",
- "y_pred = model.predict(x_test)\n",
- "\n",
- "# calculating the accuracies\n",
- "print(\"Training Accuracy :\", model.score(x_train, y_train))\n",
- "print(\"Testing Accuracy :\", model.score(x_test, y_test))"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "Training Accuracy : 1.0\n",
- "Testing Accuracy : 1.0\n"
- ],
- "name": "stdout"
- }
+ },
+ "execution_count": 204,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# label encoding for gender\n",
+ "\n",
+ "data['gender'] = le.fit_transform(data['gender'])\n",
+ "data['gender'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 73
+ },
+ "colab_type": "code",
+ "id": "q_-OubIg-dOv",
+ "outputId": "8b9b2f10-decc-4900-9544-be7b790fdbd9"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "1 960\n",
+ "0 40\n",
+ "Name: pass_math, dtype: int64"
]
- },
- {
- "metadata": {
- "id": "MYo6K7puRj6_",
- "colab_type": "code",
- "outputId": "263bcb1c-4de3-49d8-c32c-cdfb6c2e7eb4",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 129
- }
- },
- "cell_type": "code",
- "source": [
- "# printing the confusion matrix\n",
- "\n",
- "from sklearn.metrics import confusion_matrix\n",
- "\n",
- "# creating a confusion matrix\n",
- "cm = confusion_matrix(y_test, y_pred)\n",
- "\n",
- "# printing the confusion matrix\n",
- "print(cm)"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "[[11 0 0 0 0 0]\n",
- " [ 0 32 0 0 0 0]\n",
- " [ 0 0 72 0 0 0]\n",
- " [ 0 0 0 58 0 0]\n",
- " [ 0 0 0 0 61 0]\n",
- " [ 0 0 0 0 0 16]]\n"
- ],
- "name": "stdout"
- }
+ },
+ "execution_count": 205,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# label encoding for pass_math\n",
+ "\n",
+ "data['pass_math'] = le.fit_transform(data['pass_math'])\n",
+ "data['pass_math'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 73
+ },
+ "colab_type": "code",
+ "id": "SEdTTzYK-y51",
+ "outputId": "0b1a7ae1-3d30-4434-ac6e-28674d542197"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "1 974\n",
+ "0 26\n",
+ "Name: pass_reading, dtype: int64"
]
- },
- {
- "metadata": {
- "id": "U0hMQ5FiSzoh",
- "colab_type": "code",
- "outputId": "779752b9-981d-4d78-b4e4-a8780f019422",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 73
- }
- },
- "cell_type": "code",
- "source": [
- "# k fold cross validation \n",
- "\n",
- "from sklearn.model_selection import cross_val_score\n",
- "\n",
- "# computing accuracies for 20 different model's accuracy\n",
- "accuracies = cross_val_score(estimator = model, X = x_train, y = y_train, cv = 20)\n",
- "print(accuracies)\n",
- "\n",
- "# computing mean of accuaracies obtained by all the models\n",
- "print(\"mean accuracy :\", accuracies.mean())\n",
- "\n",
- "# computing the standard variance of the models\n",
- "print(\"mean standard variance :\", accuracies.std())\n",
- " "
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
- "mean accuracy : 1.0\n",
- "mean standard variance : 0.0\n"
- ],
- "name": "stdout"
- }
+ },
+ "execution_count": 206,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# label encoding for pass_reading\n",
+ "\n",
+ "data['pass_reading'] = le.fit_transform(data['pass_reading'])\n",
+ "data['pass_reading'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 73
+ },
+ "colab_type": "code",
+ "id": "c_DXag2R_OIp",
+ "outputId": "43f88b31-2adc-4d2a-8f18-62068cdb4cca"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "1 968\n",
+ "0 32\n",
+ "Name: pass_writing, dtype: int64"
]
- },
- {
- "metadata": {
- "id": "-qX9Y2FWQkza",
- "colab_type": "text"
- },
- "cell_type": "markdown",
- "source": [
- "**Support Vector Machine**"
+ },
+ "execution_count": 207,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# label encoding for pass_writing\n",
+ "\n",
+ "data['pass_writing'] = le.fit_transform(data['pass_writing'])\n",
+ "data['pass_writing'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 73
+ },
+ "colab_type": "code",
+ "id": "ItRtcvtDACEh",
+ "outputId": "0b6dd4e9-dfe5-4994-866a-742516b3c178"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "1 949\n",
+ "0 51\n",
+ "Name: status, dtype: int64"
]
- },
- {
- "metadata": {
- "id": "kgbwZfCAVeS6",
- "colab_type": "code",
- "outputId": "55dcaf90-0f11-4cb2-81ff-6bad274da5bd",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 112
- }
- },
- "cell_type": "code",
- "source": [
- "from sklearn.svm import SVC\n",
- "\n",
- "# creating a model\n",
- "model = SVC()\n",
- "\n",
- "# feeding the training data to the model\n",
- "model.fit(x_train, y_train)\n",
- "\n",
- "# predicting the x-test results\n",
- "y_pred = model.predict(x_test)\n",
- "\n",
- "# calculating the accuracies\n",
- "print(\"Training Accuracy :\", model.score(x_train, y_train))\n",
- "print(\"Testing Accuracy :\", model.score(x_test, y_test))"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "Training Accuracy : 0.732\n",
- "Testing Accuracy : 0.76\n"
- ],
- "name": "stdout"
- },
- {
- "output_type": "stream",
- "text": [
- "/usr/local/lib/python3.6/dist-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.\n",
- " \"avoid this warning.\", FutureWarning)\n"
- ],
- "name": "stderr"
- }
+ },
+ "execution_count": 208,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# label encoding for status\n",
+ "\n",
+ "data['status'] = le.fit_transform(data['status'])\n",
+ "data['status'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 129
+ },
+ "colab_type": "code",
+ "id": "Ktnb-_N1AUbZ",
+ "outputId": "515e73d6-a1cb-4d2b-c27d-bc8a6b09871f"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "3 319\n",
+ "4 262\n",
+ "2 190\n",
+ "5 140\n",
+ "1 89\n",
+ "Name: race/ethnicity, dtype: int64"
]
- },
- {
- "metadata": {
- "id": "QNhhAW-PVq6P",
- "colab_type": "code",
- "outputId": "94861392-0397-4d1f-ba53-4b74b8780d1c",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 129
- }
- },
- "cell_type": "code",
- "source": [
- "# printing the confusion matrix\n",
- "\n",
- "from sklearn.metrics import confusion_matrix\n",
- "\n",
- "# creating a confusion matrix\n",
- "cm = confusion_matrix(y_test, y_pred)\n",
- "\n",
- "# printing the confusion matrix\n",
- "print(cm)"
- ],
- "execution_count": 0,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "[[ 0 11 0 0 0 0]\n",
- " [ 0 9 23 0 0 0]\n",
- " [ 0 0 64 8 0 0]\n",
- " [ 0 0 5 50 3 0]\n",
- " [ 0 0 0 10 51 0]\n",
- " [ 0 0 0 0 0 16]]\n"
- ],
- "name": "stdout"
- }
+ },
+ "execution_count": 209,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# label encoding for grades\n",
+ "# we have to map values to each of the categories\n",
+ "\n",
+ "data['grades'] = data['grades'].replace('O', 0)\n",
+ "data['grades'] = data['grades'].replace('A', 1)\n",
+ "data['grades'] = data['grades'].replace('B', 2)\n",
+ "data['grades'] = data['grades'].replace('C', 3)\n",
+ "data['grades'] = data['grades'].replace('D', 4)\n",
+ "data['grades'] = data['grades'].replace('E', 5)\n",
+ "\n",
+ "data['race/ethnicity'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 36
+ },
+ "colab_type": "code",
+ "id": "9fcJDzBNJZHT",
+ "outputId": "27ddb324-ce80-4535-b84e-566493b8c5df"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(1000, 15)"
]
+ },
+ "execution_count": 210,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
}
- ]
-}
\ No newline at end of file
+ ],
+ "source": [
+ "data.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 54
+ },
+ "colab_type": "code",
+ "id": "tfaXk6JBbiNZ",
+ "outputId": "f233545e-91ef-4f6a-f6ed-4b1886603b53"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(1000, 14)\n",
+ "(1000,)\n"
+ ]
+ }
+ ],
+ "source": [
+ "# splitting the dependent and independent variables\n",
+ "\n",
+ "x = data.iloc[:,:14]\n",
+ "y = data.iloc[:,14]\n",
+ "\n",
+ "print(x.shape)\n",
+ "print(y.shape)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 92
+ },
+ "colab_type": "code",
+ "id": "CLHjid6FY13N",
+ "outputId": "348964a1-6a7b-4096-8603-4a531fe873e5"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(750, 14)\n",
+ "(750,)\n",
+ "(250, 14)\n",
+ "(250,)\n"
+ ]
+ }
+ ],
+ "source": [
+ "# splitting the dataset into training and test sets\n",
+ "\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "\n",
+ "x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.25, random_state = 45)\n",
+ "\n",
+ "print(x_train.shape)\n",
+ "print(y_train.shape)\n",
+ "print(x_test.shape)\n",
+ "print(y_test.shape)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 74
+ },
+ "colab_type": "code",
+ "id": "ciauOTq_b04w",
+ "outputId": "de29f2bf-2e9b-4f8d-c089-f00e4d676d01"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/data.py:323: DataConversionWarning: Data with input dtype int64, float64 were all converted to float64 by MinMaxScaler.\n",
+ " return self.partial_fit(X, y)\n"
+ ]
+ }
+ ],
+ "source": [
+ "# importing the MinMaxScaler\n",
+ "from sklearn.preprocessing import MinMaxScaler\n",
+ "\n",
+ "# creating a scaler\n",
+ "mm = MinMaxScaler()\n",
+ "\n",
+ "# feeding the independent variable into the scaler\n",
+ "x_train = mm.fit_transform(x_train)\n",
+ "x_test = mm.transform(x_test)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "t3e-fhJPKtFm"
+ },
+ "outputs": [],
+ "source": [
+ "# applying principal components analysis\n",
+ "\n",
+ "from sklearn.decomposition import PCA\n",
+ "\n",
+ "# creating a principal component analysis model\n",
+ "#pca = PCA(n_components = None)\n",
+ "\n",
+ "# feeding the independent variables to the PCA model\n",
+ "#x_train = pca.fit_transform(x_train)\n",
+ "#x_test = pca.transform(x_test)\n",
+ "\n",
+ "# visualising the principal components that will explain the highest share of variance\n",
+ "#explained_variance = pca.explained_variance_ratio_\n",
+ "#print(explained_variance)\n",
+ "\n",
+ "# creating a principal component analysis model\n",
+ "#pca = PCA(n_components = 2)\n",
+ "\n",
+ "# feeding the independent variables to the PCA model\n",
+ "#x_train = pca.fit_transform(x_train)\n",
+ "#x_test = pca.transform(x_test)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "7KJx14EzKk91"
+ },
+ "source": [
+ "**Modelling**"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "P6fR-dCXN4SK"
+ },
+ "source": [
+ "**Logistic Regression**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 149
+ },
+ "colab_type": "code",
+ "id": "EVJHYo1IhJ2k",
+ "outputId": "eed70f37-79b7-4aa6-8041-66e6c86cdd9f"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Training Accuracy : 0.7786666666666666\n",
+ "Testing Accuracy : 0.768\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
+ " FutureWarning)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:460: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
+ " \"this warning.\", FutureWarning)\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.linear_model import LogisticRegression\n",
+ "\n",
+ "# creating a model\n",
+ "model = LogisticRegression()\n",
+ "\n",
+ "# feeding the training data to the model\n",
+ "model.fit(x_train, y_train)\n",
+ "\n",
+ "# predicting the test set results\n",
+ "y_pred = model.predict(x_test)\n",
+ "\n",
+ "# calculating the classification accuracies\n",
+ "print(\"Training Accuracy :\", model.score(x_train, y_train))\n",
+ "print(\"Testing Accuracy :\", model.score(x_test, y_test))\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 129
+ },
+ "colab_type": "code",
+ "id": "3aK-UV7jRE2D",
+ "outputId": "5b67c319-18a8-4268-d78d-232a81e159b1"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[ 2 9 0 0 0 0]\n",
+ " [ 0 15 17 0 0 0]\n",
+ " [ 0 2 56 14 0 0]\n",
+ " [ 0 0 6 44 8 0]\n",
+ " [ 0 0 0 2 59 0]\n",
+ " [ 0 0 0 0 0 16]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "# printing the confusion matrix\n",
+ "\n",
+ "from sklearn.metrics import confusion_matrix\n",
+ "\n",
+ "# creating a confusion matrix\n",
+ "cm = confusion_matrix(y_test, y_pred)\n",
+ "\n",
+ "# printing the confusion matrix\n",
+ "print(cm)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "ujNMPnsXKqfT"
+ },
+ "source": [
+ "**Random Forest**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 112
+ },
+ "colab_type": "code",
+ "id": "st1bVJlgPvr2",
+ "outputId": "1288b059-af96-4f25-ce18-c5a6ba6da90e"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Training Accuracy : 1.0\n",
+ "Testing Accuracy : 0.996\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+ " \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.ensemble import RandomForestClassifier\n",
+ "\n",
+ "# creating a model\n",
+ "model = RandomForestClassifier()\n",
+ "\n",
+ "# feeding the training data to the model\n",
+ "model.fit(x_train, y_train)\n",
+ "\n",
+ "# predicting the x-test results\n",
+ "y_pred = model.predict(x_test)\n",
+ "\n",
+ "# calculating the accuracies\n",
+ "print(\"Training Accuracy :\", model.score(x_train, y_train))\n",
+ "print(\"Testing Accuracy :\", model.score(x_test, y_test))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 129
+ },
+ "colab_type": "code",
+ "id": "17rfXUPzQlvk",
+ "outputId": "f4bec713-a072-4588-8cca-e6069a3bdbd3"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[11 0 0 0 0 0]\n",
+ " [ 0 32 0 0 0 0]\n",
+ " [ 0 0 72 0 0 0]\n",
+ " [ 0 0 0 58 0 0]\n",
+ " [ 0 0 0 0 61 0]\n",
+ " [ 0 0 0 0 1 15]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "# printing the confusion matrix\n",
+ "\n",
+ "from sklearn.metrics import confusion_matrix\n",
+ "\n",
+ "# creating a confusion matrix\n",
+ "cm = confusion_matrix(y_test, y_pred)\n",
+ "\n",
+ "# printing the confusion matrix\n",
+ "print(cm)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 73
+ },
+ "colab_type": "code",
+ "id": "-h5wuSOfVHk4",
+ "outputId": "4d0561c3-4dfe-4428-dc56-e48a55048cbd"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
+ "mean accuracy : 1.0\n",
+ "mean standard variance : 0.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "# k fold cross validation \n",
+ "\n",
+ "from sklearn.model_selection import cross_val_score\n",
+ "\n",
+ "# computing accuracies for 20 different model's accuracy\n",
+ "accuracies = cross_val_score(estimator = model, X = x_train, y = y_train, cv = 20)\n",
+ "print(accuracies)\n",
+ "\n",
+ "# computing mean of accuaracies obtained by all the models\n",
+ "print(\"mean accuracy :\", accuracies.mean())\n",
+ "\n",
+ "# computing the standard variance of the models\n",
+ "print(\"mean standard variance :\", accuracies.std())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "NLUnNmY_RLmN"
+ },
+ "source": [
+ "**Decision Forest**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 54
+ },
+ "colab_type": "code",
+ "id": "cZvzebMFQcZO",
+ "outputId": "ec3c6d7b-90a8-4b96-dec1-2746eaa41308"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Training Accuracy : 1.0\n",
+ "Testing Accuracy : 1.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.tree import DecisionTreeClassifier\n",
+ "\n",
+ "# creating a model\n",
+ "model = DecisionTreeClassifier()\n",
+ "\n",
+ "# feeding the training data to the model\n",
+ "model.fit(x_train, y_train)\n",
+ "\n",
+ "# predicting the x-test results\n",
+ "y_pred = model.predict(x_test)\n",
+ "\n",
+ "# calculating the accuracies\n",
+ "print(\"Training Accuracy :\", model.score(x_train, y_train))\n",
+ "print(\"Testing Accuracy :\", model.score(x_test, y_test))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 129
+ },
+ "colab_type": "code",
+ "id": "MYo6K7puRj6_",
+ "outputId": "263bcb1c-4de3-49d8-c32c-cdfb6c2e7eb4"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[11 0 0 0 0 0]\n",
+ " [ 0 32 0 0 0 0]\n",
+ " [ 0 0 72 0 0 0]\n",
+ " [ 0 0 0 58 0 0]\n",
+ " [ 0 0 0 0 61 0]\n",
+ " [ 0 0 0 0 0 16]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "# printing the confusion matrix\n",
+ "\n",
+ "from sklearn.metrics import confusion_matrix\n",
+ "\n",
+ "# creating a confusion matrix\n",
+ "cm = confusion_matrix(y_test, y_pred)\n",
+ "\n",
+ "# printing the confusion matrix\n",
+ "print(cm)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 73
+ },
+ "colab_type": "code",
+ "id": "U0hMQ5FiSzoh",
+ "outputId": "779752b9-981d-4d78-b4e4-a8780f019422"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
+ "mean accuracy : 1.0\n",
+ "mean standard variance : 0.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "# k fold cross validation \n",
+ "\n",
+ "from sklearn.model_selection import cross_val_score\n",
+ "\n",
+ "# computing accuracies for 20 different model's accuracy\n",
+ "accuracies = cross_val_score(estimator = model, X = x_train, y = y_train, cv = 20)\n",
+ "print(accuracies)\n",
+ "\n",
+ "# computing mean of accuaracies obtained by all the models\n",
+ "print(\"mean accuracy :\", accuracies.mean())\n",
+ "\n",
+ "# computing the standard variance of the models\n",
+ "print(\"mean standard variance :\", accuracies.std())\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "-qX9Y2FWQkza"
+ },
+ "source": [
+ "**Support Vector Machine**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 112
+ },
+ "colab_type": "code",
+ "id": "kgbwZfCAVeS6",
+ "outputId": "55dcaf90-0f11-4cb2-81ff-6bad274da5bd"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Training Accuracy : 0.732\n",
+ "Testing Accuracy : 0.76\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.\n",
+ " \"avoid this warning.\", FutureWarning)\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.svm import SVC\n",
+ "\n",
+ "# creating a model\n",
+ "model = SVC()\n",
+ "\n",
+ "# feeding the training data to the model\n",
+ "model.fit(x_train, y_train)\n",
+ "\n",
+ "# predicting the x-test results\n",
+ "y_pred = model.predict(x_test)\n",
+ "\n",
+ "# calculating the accuracies\n",
+ "print(\"Training Accuracy :\", model.score(x_train, y_train))\n",
+ "print(\"Testing Accuracy :\", model.score(x_test, y_test))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 129
+ },
+ "colab_type": "code",
+ "id": "QNhhAW-PVq6P",
+ "outputId": "94861392-0397-4d1f-ba53-4b74b8780d1c"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[ 0 11 0 0 0 0]\n",
+ " [ 0 9 23 0 0 0]\n",
+ " [ 0 0 64 8 0 0]\n",
+ " [ 0 0 5 50 3 0]\n",
+ " [ 0 0 0 10 51 0]\n",
+ " [ 0 0 0 0 0 16]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "# printing the confusion matrix\n",
+ "\n",
+ "from sklearn.metrics import confusion_matrix\n",
+ "\n",
+ "# creating a confusion matrix\n",
+ "cm = confusion_matrix(y_test, y_pred)\n",
+ "\n",
+ "# printing the confusion matrix\n",
+ "print(cm)"
+ ]
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "collapsed_sections": [],
+ "include_colab_link": true,
+ "name": "Student Performance.ipynb",
+ "provenance": [],
+ "version": "0.3.2"
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
From e1120b086c7473076400fc697d517232185ab06d Mon Sep 17 00:00:00 2001
From: Ansh0611 <62184938+Ansh0611@users.noreply.github.com>
Date: Thu, 11 Jun 2020 10:41:50 +0530
Subject: [PATCH 2/2] Add files via upload