@@ -324,9 +324,7 @@ def get_rest_doc(function):
324324
325325 >>> print(get_rest_doc("ellap"))
326326 Let :math:`E` be an :literal:`ell` structure as output by :literal:`ellinit`, defined over
327- a number field or a finite field :math:`\mathbb{F}_q`. The argument :math:`p` is best left
328- omitted if the curve is defined over a finite field, and must be a prime
329- number or a maximal ideal otherwise. This function computes the trace of
327+ a number field...computes the trace of
330328 Frobenius :math:`t` for the elliptic curve :math:`E`, defined by the equation :math:`\#E(\mathbb{F}_q)
331329 = q+1 - t` (for primes of good reduction).
332330 <BLANKLINE>
@@ -339,7 +337,7 @@ def get_rest_doc(function):
339337 :math:`L(E,s) = \sum_n a_n n^{-s}`, whence the function name. The equation must be
340338 integral at :math:`p` but need not be minimal at :math:`p`; of course, a minimal model
341339 will be more efficient.
342- <BLANKLINE>
340+ ...
343341 ::
344342 <BLANKLINE>
345343 ? E = ellinit([0,1]); \\ y^2 = x^3 + 0.x + 1, defined over Q
@@ -358,18 +356,15 @@ def get_rest_doc(function):
358356 *** ^-----------
359357 *** ellap: inconsistent moduli in Rg_to_Fp:
360358 11
361- 13
362- <BLANKLINE>
359+ 13...
363360 ? Fq = ffgen(ffinit(11,3), 'a); \\ defines F_q := F_{11^3}
364361 ? E = ellinit([a+1,a], Fq); \\ y^2 = x^3 + (a+1)x + a, defined over F_q
365362 ? ellap(E)
366363 %8 = -3
367364 <BLANKLINE>
368365 If the curve is defined over a more general number field than :math:`\mathbb{Q}`,
369366 the maximal ideal :math:`p` must be explicitly given in :literal:`idealprimedec`
370- format. If :math:`p` is above :math:`2` or :math:`3`, the function currently assumes (without
371- checking) that the given model is locally minimal at :math:`p`. There is no
372- restriction at other primes.
367+ format...
373368 <BLANKLINE>
374369 ::
375370 <BLANKLINE>
0 commit comments