Skip to content

Scenarios to train and test results #15

@rpytel1

Description

@rpytel1

Char based approach

  • one-hot encoding config/char_based/one_hot.json
  • 10 embedding layer dim config/char_based/10_dim.json
  • 20 embedding layer dim config/char_based/20_dim.json

Try for both LSTM 1 layer and 2 layers (max 5/7 epochs)

Word-based approach

  • 500 embedding layer dim config/word_based/500dim.json
  • 100 embedding layer dim config/word_based/100dim.json
  • 20 embedding layer dim 'config/word_based/20dim.json

Try for both LSTM 1 layer and 2 layers (max 5/7 epochs)

Code2vec training

  • config/code_2_vec/code2vec.json (Still need some fixing with paths for dicts and data)

Code2vec pretrained output

  • Linear (Casper)
  • SVM (Jan)
  • Random Forest (Jan)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions