You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
No faster way to get started than by diving in and playing around with one of our demos.
25
+
##Demos
26
+
No faster way to get started than by diving in and playing around with a demo.
38
27
39
28
| Demo | Description |
40
29
| --- | --- |
41
-
|[ArxivChatGuru](https://github.com/redis-developer/ArxivChatGuru)|Streamlit demo of RAGover Arxiv documents with Redis & OpenAI|
30
+
|[Redis RAG Workbench](https://github.com/redis-developer/redis-rag-workbench)|Interactive demo to build a RAG-based chatbot over a user-uploaded PDF. Toggle different settings and configurations to improve chatbot performance and quality. Utilizes RedisVL, LangChain, RAGAs, and more.|
**Retrieval Augmented Generation** (aka RAG) is a technique to enhance the ability of an LLM to respond to user queries. The **retrieval** part of RAG is supported by a vector database, which can return semantically relevant results to a user’s query, serving as contextual information to **augment** the **generative** capabilities of an LLM.
62
54
@@ -67,70 +59,91 @@ To get started with RAG, either from scratch or using a popular framework like L
67
59
|[/RAG/01_redisvl.ipynb](python-recipes/RAG/01_redisvl.ipynb)| RAG from scratch with the Redis Vector Library |
68
60
|[/RAG/02_langchain.ipynb](python-recipes/RAG/02_langchain.ipynb)| RAG using Redis and LangChain |
69
61
|[/RAG/03_llamaindex.ipynb](python-recipes/RAG/03_llamaindex.ipynb)| RAG using Redis and LlamaIndex |
70
-
|[/RAG/04_advanced_redisvl.ipynb](python-recipes/RAG/04_advanced_redisvl.ipynb)| Advanced RAG with redisvl|
71
-
|[/RAG/05_nvidia_ai_rag_redis.ipynb](python-recipes/RAG/05_nvidia_ai_rag_redis.ipynb)| RAG using Redis and Nvidia |
72
-
|[/RAG/06_ragas_evaluation.ipynb](python-recipes/RAG/06_ragas_evaluation.ipynb)| Utilize RAGAS framework to evaluate RAG performance |
|[/RAG/05_nvidia_ai_rag_redis.ipynb](python-recipes/RAG/05_nvidia_ai_rag_redis.ipynb)| RAG using Redis and Nvidia NIMs |
64
+
|[/RAG/06_ragas_evaluation.ipynb](python-recipes/RAG/06_ragas_evaluation.ipynb)| Utilize the RAGAS framework to evaluate RAG performance |
73
65
74
-
## LLM Session Management
66
+
###LLM Memory
75
67
LLMs are stateless. To maintain context within a conversation chat sessions must be stored and resent to the LLM. Redis manages the storage and retrieval of chat sessions to maintain context and conversational relevance.
76
68
| Recipe | Description |
77
69
| --- | --- |
78
70
|[/llm-session-manager/00_session_manager.ipynb](python-recipes/llm-session-manager/00_llm_session_manager.ipynb)| LLM session manager with semantic similarity |
79
71
|[/llm-session-manager/01_multiple_sessions.ipynb](python-recipes/llm-session-manager/01_multiple_sessions.ipynb)| Handle multiple simultaneous chats with one instance |
80
72
81
-
## Semantic Cache
73
+
###Semantic Cache
82
74
An estimated 31% of LLM queries are potentially redundant ([source](https://arxiv.org/pdf/2403.02694)). Redis enables semantic caching to help cut down on LLM costs quickly.
83
75
84
76
| Recipe | Description |
85
77
| --- | --- |
78
+
|[/semantic-cache/doc2cache_llama3_1.ipynb](python-recipes/semantic-cache/doc2cache_llama3_1.ipynb)| Build a semantic cache using the Doc2Cache framework and Llama3.1 |
86
79
|[/semantic-cache/semantic_caching_gemini.ipynb](python-recipes/semantic-cache/semantic_caching_gemini.ipynb)| Build a semantic cache with Redis and Google Gemini |
87
80
88
-
## Advanced RAG
89
-
For further insights on enhancing RAG applications with dense content representations, query re-writing, and other techniques.
81
+
### Agents
90
82
91
83
| Recipe | Description |
92
84
| --- | --- |
93
-
[/RAG/04_advanced_redisvl.ipynb](python-recipes/RAG/04_advanced_redisvl.ipynb) | Notebook for additional tips and techniques to improve RAG quality |
85
+
[/agents/00_langgraph_redis_agentic_rag.ipynb](python-recipes/agents/00_langgraph_redis_agentic_rag.ipynb) | Notebook to get started with lang-graph and agents |
86
+
[/agents/01_crewai_langgraph_redis.ipynb](python-recipes/agents/01_crewai_langgraph_redis.ipynb) | Notebook to get started with lang-graph and agents |
87
+
88
+
### Computer Vision
89
+
| Recipe | Description |
90
+
| ------ | ----------- |
91
+
| [/computer-vision/00_facial_recognition_facenet.ipynb](python-recipes/computer-vision/00_facial_recognition_facenet.ipynb) | Build a facial recognition system using the Facenet embedding model and RedisVL.
92
+
94
93
95
-
## Recommendation systems
94
+
###Recommendation Systems
96
95
97
-
An exciting example of how Redis can power production-ready systems is highlighted in our collaboration with [NVIDIA](https://developer.nvidia.com/blog/offline-to-online-feature-storage-for-real-time-recommendation-systems-with-nvidia-merlin/) to construct a state-of-the-art recommendation system.
96
+
| Recipe | Description |
97
+
| --- | --- |
98
+
|[/recommendation-systems/00_content_filtering.ipynb](python-recipes/recommendation-systems/00_content_filtering.ipynb)| Intro content filtering example with redisvl |
99
+
|[/recommendation-systems/01_collaborative_filtering.ipynb](python-recipes/recommendation-systems/01_collaborative_filtering.ipynb)| Intro collaborative filtering example with redisvl |
98
100
99
-
Within [this repository](https://github.com/redis-developer/redis-nvidia-recsys), you'll find three examples, each escalating in complexity, showcasing the process of building such a system.
100
101
102
+
## Tutorials
103
+
Need a *deeper-dive* through different use cases and topics?
101
104
102
-
# Integrations/Tools
103
-
-[⭐ RedisVL](https://github.com/redis/redis-vl-python) - a dedicated Python client lib for Redis as a Vector DB.
104
-
-[⭐ AWS Bedrock](https://redis.io/docs/latest/integrate/amazon-bedrock/) - Streamlines GenAI deployment by offering foundational models as a unified API.
105
-
-[⭐ LangChain Python](https://github.com/langchain-ai/langchain) - popular Python client lib for building LLM applications.
106
-
powered by Redis.
107
-
-[⭐ LangChain JS](https://github.com/langchain-ai/langchainjs) - popular JS client lib for building LLM applications.
108
-
powered by Redis.
109
-
-[⭐ LlamaIndex](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/RedisIndexDemo.html) - LlamaIndex Integration for Redis as a vector Database (formerly GPT-index).
110
-
-[Semantic Kernel](https://github.com/microsoft/semantic-kernel/tree/main) - popular lib by MSFT to integrate LLMs with plugins.
111
-
-[RelevanceAI](https://relevance.ai/) - Platform to ag, search and analyze unstructured data faster, built on Redis.
112
-
-[DocArray](https://docs.docarray.org/user_guide/storing/index_redis/) - DocArray Integration of Redis as a VectorDB by Jina AI.
105
+
| Tutorial | Description |
106
+
| -------- | ------------ |
107
+
|[Agentic RAG](https://github.com/redis-developer/agentic-rag)| A tutorial focused on agentic RAG with LlamaIndex and Cohere |
108
+
|[RAG on VertexAI](https://github.com/redis-developer/gcp-redis-llm-stack/tree/main)| A RAG tutorial featuring Redis with Vertex AI |
109
+
|[Recommendation Systems w/ NVIDIA Merlin & Redis]((https://github.com/redis-developer/redis-nvidia-recsys))| Three examples, each escalating in complexity, showcasing the process of building a realtime recsys with NVIDIA and Redis |
113
110
114
111
115
-
# Additional content
112
+
## Integrations
113
+
Redis integrates with many different players in the AI ecosystem. Here's a curated list below:
114
+
115
+
| Integration | Description |
116
+
| --- | --- |
117
+
|[RedisVL](https://github.com/redis/redis-vl-python)| A dedicated Python client lib for Redis as a Vector DB |
118
+
|[AWS Bedrock](https://redis.io/docs/latest/integrate/amazon-bedrock/)| Streamlines GenAI deployment by offering foundational models as a unified API |
119
+
|[LangChain Python](https://github.com/langchain-ai/langchain)| Popular Python client lib for building LLM applications powered by Redis |
120
+
|[LangChain JS](https://github.com/langchain-ai/langchainjs)| Popular JS client lib for building LLM applications powered by Redis |
121
+
|[LlamaIndex](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/RedisIndexDemo.html)| LlamaIndex Integration for Redis as a vector Database (formerly GPT-index) |
122
+
|[LiteLLM](https://www.litellm.ai/)| Popular LLM proxy layer to help manage and streamline usage of multiple foundation models |
123
+
|[Semantic Kernel](https://github.com/microsoft/semantic-kernel/tree/main)| Popular lib by MSFT to integrate LLMs with plugins |
124
+
|[RelevanceAI](https://relevance.ai/)| Platform to tag, search and analyze unstructured data faster, built on Redis |
125
+
|[DocArray](https://docs.docarray.org/user_guide/storing/index_redis/)| DocArray Integration of Redis as a VectorDB by Jina AI |
126
+
127
+
128
+
## Content
116
129
-[Vector Similarity Search: From Basics to Production](https://mlops.community/vector-similarity-search-from-basics-to-production/) - Introductory blog post to VSS and Redis as a VectorDB.
117
-
-[AI-Powered Document Search](https://datasciencedojo.com/blog/ai-powered-document-search/) - Blog post covering AI Powered Document Search Use Cases & Architectures.
118
-
-[Vector Search on Azure](https://techcommunity.microsoft.com/t5/azure-developer-community-blog/vector-similarity-search-with-azure-cache-for-redis-enterprise/ba-p/3822059) - Using Azure Redis Enterprise for Vector Search
130
+
-[Improving RAG quality with RAGAs](https://redis.io/blog/get-better-rag-responses-with-ragas/)
131
+
-[Level-up RAG with RedisVL](https://redis.io/blog/level-up-rag-apps-with-redis-vector-library/)
119
132
-[Vector Databases and Large Language Models](https://youtu.be/GJDN8u3Y-T4) - Talk given at LLMs in Production Part 1 by Sam Partee.
120
133
-[Vector Databases and AI-powered Search Talk](https://www.youtube.com/watch?v=g2bNHLeKlAg) - Video "Vector Databases and AI-powered Search" given by Sam Partee at SDSC 2023.
121
-
-[Engineering Lab Review](https://mlops.community/redis-vector-search-engineering-lab-review/) - Review of the first Redis VSS Hackathon.
122
134
-[Real-Time Product Recommendations](https://jina.ai/news/real-time-product-recommendation-using-redis-and-docarray/) - Content-based recsys design with Redis and DocArray.
135
+
-[NVIDIA Recsys with Redis](https://developer.nvidia.com/blog/offline-to-online-feature-storage-for-real-time-recommendation-systems-with-nvidia-merlin/)
123
136
-[LabLab AI Redis Tech Page](https://lablab.ai/tech/redis)
124
137
-[Storing and querying for embeddings with Redis](https://blog.baeke.info/2023/03/21/storing-and-querying-for-embeddings-with-redis/)
125
138
-[Building Intelligent Apps with Redis Vector Similarity Search](https://redis.com/blog/build-intelligent-apps-redis-vector-similarity-search/)
126
-
-[RedisDays Keynote](https://www.youtube.com/watch?v=EEIBTEpb2LI) - Video "Infuse Real-Time AI Into Your "Financial Services" Application".
127
139
-[RedisDays Trading Signals](https://www.youtube.com/watch?v=_Lrbesg4DhY) - Video "Using AI to Reveal Trading Signals Buried in Corporate Filings".
128
140
129
-
# Benchmarks
141
+
##Benchmarks
130
142
-[Benchmarking results for vector databases](https://redis.io/blog/benchmarking-results-for-vector-databases/) - Benchmarking results for vector databases, including Redis and 7 other Vector Database players.
131
143
-[ANN Benchmarks](https://ann-benchmarks.com) - Standard ANN Benchmarks site. *Only using single Redis OSS instance/client.*
-[Redis Vector Similarity Docs](https://redis.io/docs/interact/search-and-query/advanced-concepts/vectors/) - Official Redis literature for Vector Similarity Search.
136
149
-[Redis-py Search Docs](https://redis.readthedocs.io/en/latest/redismodules.html#redisearch-commands) - Redis-py client library docs for RediSearch.
0 commit comments