|
| 1 | +{ |
| 2 | + "metadata": { |
| 3 | + "kernelspec": { |
| 4 | + "display_name": "Python 3", |
| 5 | + "name": "python3" |
| 6 | + }, |
| 7 | + "language_info": { |
| 8 | + "name": "python", |
| 9 | + "version": "3.11.11", |
| 10 | + "mimetype": "text/x-python", |
| 11 | + "codemirror_mode": { |
| 12 | + "name": "ipython", |
| 13 | + "version": 3 |
| 14 | + }, |
| 15 | + "pygments_lexer": "ipython3", |
| 16 | + "nbconvert_exporter": "python", |
| 17 | + "file_extension": ".py" |
| 18 | + }, |
| 19 | + "kaggle": { |
| 20 | + "accelerator": "nvidiaTeslaT4", |
| 21 | + "dataSources": [], |
| 22 | + "dockerImageVersionId": 31011, |
| 23 | + "isInternetEnabled": true, |
| 24 | + "language": "python", |
| 25 | + "sourceType": "notebook", |
| 26 | + "isGpuEnabled": true |
| 27 | + }, |
| 28 | + "colab": { |
| 29 | + "provenance": [], |
| 30 | + "gpuType": "T4" |
| 31 | + }, |
| 32 | + "accelerator": "GPU" |
| 33 | + }, |
| 34 | + "nbformat_minor": 0, |
| 35 | + "nbformat": 4, |
| 36 | + "cells": [ |
| 37 | + { |
| 38 | + "cell_type": "code", |
| 39 | + "source": [ |
| 40 | + "!nvcc --version\n", |
| 41 | + "\n", |
| 42 | + "!nvidia-smi" |
| 43 | + ], |
| 44 | + "metadata": { |
| 45 | + "trusted": true, |
| 46 | + "id": "6V0kOh2GuD3g" |
| 47 | + }, |
| 48 | + "outputs": [], |
| 49 | + "execution_count": null |
| 50 | + }, |
| 51 | + { |
| 52 | + "cell_type": "code", |
| 53 | + "source": [ |
| 54 | + "!curl -ssL https://magic.modular.com/ | bash" |
| 55 | + ], |
| 56 | + "metadata": { |
| 57 | + "trusted": true, |
| 58 | + "id": "UYmfAndVuD3h" |
| 59 | + }, |
| 60 | + "outputs": [], |
| 61 | + "execution_count": null |
| 62 | + }, |
| 63 | + { |
| 64 | + "cell_type": "code", |
| 65 | + "source": [ |
| 66 | + "import os\n", |
| 67 | + "os.environ['PATH'] +=':/root/.modular/bin'\n", |
| 68 | + "\n" |
| 69 | + ], |
| 70 | + "metadata": { |
| 71 | + "trusted": true, |
| 72 | + "id": "TUOeZZECuD3i" |
| 73 | + }, |
| 74 | + "outputs": [], |
| 75 | + "execution_count": null |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "code", |
| 79 | + "source": [ |
| 80 | + "!magic init gpu_puzzles --format mojoproject" |
| 81 | + ], |
| 82 | + "metadata": { |
| 83 | + "trusted": true, |
| 84 | + "id": "rDmQeBRVuD3i" |
| 85 | + }, |
| 86 | + "outputs": [], |
| 87 | + "execution_count": null |
| 88 | + }, |
| 89 | + { |
| 90 | + "cell_type": "code", |
| 91 | + "source": [ |
| 92 | + "%cd gpu_puzzles/" |
| 93 | + ], |
| 94 | + "metadata": { |
| 95 | + "trusted": true, |
| 96 | + "id": "tNMsV7VwuD3i" |
| 97 | + }, |
| 98 | + "outputs": [], |
| 99 | + "execution_count": null |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "code", |
| 103 | + "source": [ |
| 104 | + "%%writefile add_10_2d.mojo\n", |
| 105 | + "### Add a constant 10\n", |
| 106 | + "### Implement a kernel that adds 10 to each position of 2d matrix a and stores it in out 2d matrix.\n", |
| 107 | + "\n", |
| 108 | + "\n", |
| 109 | + "from gpu.host import DeviceContext\n", |
| 110 | + "from memory import UnsafePointer\n", |
| 111 | + "from gpu import thread_idx, block_dim\n", |
| 112 | + "from testing import assert_equal\n", |
| 113 | + "\n", |
| 114 | + "alias SIZE = 2\n", |
| 115 | + "alias BLOCKS_PER_GRID = 1\n", |
| 116 | + "alias THREADS_PER_BLOCK = (3,3)\n", |
| 117 | + "alias dtype = DType.float32\n", |
| 118 | + "\n", |
| 119 | + "\n", |
| 120 | + "fn add_10_2d(\n", |
| 121 | + " out: UnsafePointer[Scalar[dtype]], array: UnsafePointer[Scalar[dtype]], size: Int\n", |
| 122 | + "):\n", |
| 123 | + " tid = thread_idx.z * (block_dim.y * block_dim.x) + thread_idx.y * block_dim.x + thread_idx.x\n", |
| 124 | + " if tid < size * size:\n", |
| 125 | + " out[tid] = array[tid] + 10\n", |
| 126 | + "\n", |
| 127 | + "\n", |
| 128 | + "fn main():\n", |
| 129 | + " try:\n", |
| 130 | + " ctx = DeviceContext()\n", |
| 131 | + " d_array_buff = ctx.enqueue_create_buffer[dtype](SIZE * SIZE).enqueue_fill(0)\n", |
| 132 | + " d_out_buff = ctx.enqueue_create_buffer[dtype](SIZE * SIZE).enqueue_fill(0)\n", |
| 133 | + " expected = ctx.enqueue_create_host_buffer[dtype](SIZE * SIZE).enqueue_fill(0)\n", |
| 134 | + "\n", |
| 135 | + "\n", |
| 136 | + " with d_array_buff.map_to_host() as h_array_buff:\n", |
| 137 | + " for i in range(SIZE):\n", |
| 138 | + " for j in range(SIZE):\n", |
| 139 | + " h_array_buff[i * SIZE + j] = i * SIZE + j\n", |
| 140 | + " expected[i * SIZE + j] = h_array_buff[i * SIZE + j] + 10\n", |
| 141 | + " print(\"Input: \", h_array_buff)\n", |
| 142 | + "\n", |
| 143 | + " ctx.enqueue_function[add_10_2d](\n", |
| 144 | + " d_out_buff.unsafe_ptr(),\n", |
| 145 | + " d_array_buff.unsafe_ptr(),\n", |
| 146 | + " SIZE,\n", |
| 147 | + " grid_dim=BLOCKS_PER_GRID,\n", |
| 148 | + " block_dim=THREADS_PER_BLOCK,\n", |
| 149 | + " )\n", |
| 150 | + "\n", |
| 151 | + " ctx.synchronize()\n", |
| 152 | + "\n", |
| 153 | + " with d_out_buff.map_to_host() as h_out_buff:\n", |
| 154 | + " print(h_out_buff)\n", |
| 155 | + " print(expected)\n", |
| 156 | + " for i in range(SIZE * SIZE ):\n", |
| 157 | + " assert_equal(h_out_buff[i], expected[i])\n", |
| 158 | + "\n", |
| 159 | + " except e:\n", |
| 160 | + " print(e)" |
| 161 | + ], |
| 162 | + "metadata": { |
| 163 | + "trusted": true, |
| 164 | + "execution": { |
| 165 | + "iopub.status.busy": "2025-05-14T12:13:26.016637Z", |
| 166 | + "iopub.execute_input": "2025-05-14T12:13:26.017309Z", |
| 167 | + "iopub.status.idle": "2025-05-14T12:13:26.022915Z", |
| 168 | + "shell.execute_reply.started": "2025-05-14T12:13:26.017280Z", |
| 169 | + "shell.execute_reply": "2025-05-14T12:13:26.022289Z" |
| 170 | + }, |
| 171 | + "id": "lXVGbVNbuD3j", |
| 172 | + "outputId": "6e70e176-460a-42b4-fa78-975bc9f13559" |
| 173 | + }, |
| 174 | + "outputs": [ |
| 175 | + { |
| 176 | + "name": "stdout", |
| 177 | + "text": "Overwriting add_10_2d.mojo\n", |
| 178 | + "output_type": "stream" |
| 179 | + } |
| 180 | + ], |
| 181 | + "execution_count": null |
| 182 | + }, |
| 183 | + { |
| 184 | + "cell_type": "code", |
| 185 | + "source": [ |
| 186 | + "!magic run mojo add_10_2d.mojo" |
| 187 | + ], |
| 188 | + "metadata": { |
| 189 | + "trusted": true, |
| 190 | + "execution": { |
| 191 | + "iopub.status.busy": "2025-05-14T12:13:33.613285Z", |
| 192 | + "iopub.execute_input": "2025-05-14T12:13:33.613855Z", |
| 193 | + "iopub.status.idle": "2025-05-14T12:13:39.393304Z", |
| 194 | + "shell.execute_reply.started": "2025-05-14T12:13:33.613833Z", |
| 195 | + "shell.execute_reply": "2025-05-14T12:13:39.392434Z" |
| 196 | + }, |
| 197 | + "id": "ruyQcZM7uD3j", |
| 198 | + "outputId": "dcbd01c5-d6d4-41c7-85d3-dbf3c6995eac" |
| 199 | + }, |
| 200 | + "outputs": [ |
| 201 | + { |
| 202 | + "name": "stdout", |
| 203 | + "text": "\u001b[2K\u001b[32mâ \u001b[0m activating environment Input: HostBuffer([0.0, 1.0, 2.0, 3.0])\nHostBuffer([10.0, 11.0, 12.0, 13.0])\nHostBuffer([10.0, 11.0, 12.0, 13.0])\n", |
| 204 | + "output_type": "stream" |
| 205 | + } |
| 206 | + ], |
| 207 | + "execution_count": null |
| 208 | + }, |
| 209 | + { |
| 210 | + "cell_type": "code", |
| 211 | + "source": [ |
| 212 | + "!magic run mojo format add_10_2d.mojo" |
| 213 | + ], |
| 214 | + "metadata": { |
| 215 | + "trusted": true, |
| 216 | + "id": "xYEQBuCeuD3k" |
| 217 | + }, |
| 218 | + "outputs": [], |
| 219 | + "execution_count": null |
| 220 | + } |
| 221 | + ] |
| 222 | +} |
0 commit comments