|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": { |
| 7 | + "id": "buOgxm25ONit" |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "!curl -ssL https://magic.modular.com/ | bash" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": null, |
| 17 | + "metadata": { |
| 18 | + "id": "FVZvyhRiONiw" |
| 19 | + }, |
| 20 | + "outputs": [], |
| 21 | + "source": [ |
| 22 | + "import os\n", |
| 23 | + "os.environ['PATH'] +=':/root/.modular/bin'" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "code", |
| 28 | + "execution_count": null, |
| 29 | + "metadata": { |
| 30 | + "id": "TqFD0EK0ONiw" |
| 31 | + }, |
| 32 | + "outputs": [], |
| 33 | + "source": [ |
| 34 | + "!magic init gpu_puzzles --format mojoproject" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "code", |
| 39 | + "execution_count": null, |
| 40 | + "metadata": { |
| 41 | + "id": "k3Ddb6GcONiw" |
| 42 | + }, |
| 43 | + "outputs": [], |
| 44 | + "source": [ |
| 45 | + "%cd gpu_puzzles/" |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "code", |
| 50 | + "execution_count": 16, |
| 51 | + "metadata": { |
| 52 | + "colab": { |
| 53 | + "base_uri": "https://localhost:8080/" |
| 54 | + }, |
| 55 | + "id": "IaxB1auxONix", |
| 56 | + "outputId": "3474befe-bbb9-459a-ddd5-e9855ca305b5" |
| 57 | + }, |
| 58 | + "outputs": [ |
| 59 | + { |
| 60 | + "output_type": "stream", |
| 61 | + "name": "stdout", |
| 62 | + "text": [ |
| 63 | + "Overwriting add_10_2dlayout.mojo\n" |
| 64 | + ] |
| 65 | + } |
| 66 | + ], |
| 67 | + "source": [ |
| 68 | + "%%writefile add_10_2dlayout.mojo\n", |
| 69 | + "\n", |
| 70 | + "### Add constant to 2D Layout tensor\n", |
| 71 | + "### Implement a kernel that adds 10 to each position of 2D LayoutTensor a and stores it in 2D LayoutTensor out.\n", |
| 72 | + "\n", |
| 73 | + "from gpu.host import DeviceContext\n", |
| 74 | + "from gpu import thread_idx\n", |
| 75 | + "from layout import Layout, LayoutTensor\n", |
| 76 | + "from math import iota\n", |
| 77 | + "\n", |
| 78 | + "\n", |
| 79 | + "alias SIZE = 2\n", |
| 80 | + "alias BLOCKS_PER_GRID = 1\n", |
| 81 | + "alias THREADS_PER_BLOCK = (3, 3)\n", |
| 82 | + "alias dtype = DType.float32\n", |
| 83 | + "alias layout = Layout.row_major(SIZE, SIZE)\n", |
| 84 | + "\n", |
| 85 | + "\n", |
| 86 | + "fn add_10_2dlayout(\n", |
| 87 | + " out: LayoutTensor[mut=True, dtype, layout],\n", |
| 88 | + " a: LayoutTensor[mut=True, dtype, layout],\n", |
| 89 | + " size: Int,\n", |
| 90 | + "):\n", |
| 91 | + " row = thread_idx.y\n", |
| 92 | + " col = thread_idx.x\n", |
| 93 | + " # FILL ME IN (roughly 2 lines)\n", |
| 94 | + " if row < size and col < size:\n", |
| 95 | + " out[row, col] = a[row, col] + 10\n", |
| 96 | + "\n", |
| 97 | + "\n", |
| 98 | + "fn main():\n", |
| 99 | + " try:\n", |
| 100 | + " ctx = DeviceContext()\n", |
| 101 | + "\n", |
| 102 | + " buffer_a = ctx.enqueue_create_buffer[dtype](SIZE * SIZE).enqueue_fill(\n", |
| 103 | + " 0.0\n", |
| 104 | + " )\n", |
| 105 | + " buffer_out = ctx.enqueue_create_buffer[dtype](SIZE * SIZE).enqueue_fill(\n", |
| 106 | + " 0.0\n", |
| 107 | + " )\n", |
| 108 | + "\n", |
| 109 | + " with buffer_a.map_to_host() as h_buffer_a:\n", |
| 110 | + " iota(h_buffer_a.unsafe_ptr(), SIZE * SIZE)\n", |
| 111 | + "\n", |
| 112 | + " out = LayoutTensor[mut=True, dtype, layout](buffer_out)\n", |
| 113 | + " a = LayoutTensor[mut=True, dtype, layout](buffer_a)\n", |
| 114 | + "\n", |
| 115 | + " ctx.enqueue_function[add_10_2dlayout](\n", |
| 116 | + " out,\n", |
| 117 | + " a,\n", |
| 118 | + " SIZE,\n", |
| 119 | + " grid_dim=(BLOCKS_PER_GRID, BLOCKS_PER_GRID),\n", |
| 120 | + " block_dim=THREADS_PER_BLOCK,\n", |
| 121 | + " )\n", |
| 122 | + "\n", |
| 123 | + " ctx.synchronize()\n", |
| 124 | + "\n", |
| 125 | + " with buffer_out.map_to_host() as h_buffer_out:\n", |
| 126 | + " print(h_buffer_out)\n", |
| 127 | + " except e:\n", |
| 128 | + " print(e)\n" |
| 129 | + ] |
| 130 | + }, |
| 131 | + { |
| 132 | + "cell_type": "code", |
| 133 | + "execution_count": 17, |
| 134 | + "metadata": { |
| 135 | + "colab": { |
| 136 | + "base_uri": "https://localhost:8080/" |
| 137 | + }, |
| 138 | + "id": "h2k9wkDaONiz", |
| 139 | + "outputId": "3cb08451-43dd-4400-bab3-fcb435191c05" |
| 140 | + }, |
| 141 | + "outputs": [ |
| 142 | + { |
| 143 | + "output_type": "stream", |
| 144 | + "name": "stdout", |
| 145 | + "text": [ |
| 146 | + "\u001b[32m⠁\u001b[0m \r\u001b[2K\u001b[32m⠁\u001b[0m activating environment \r\u001b[2K\u001b[32m⠁\u001b[0m activating environment \r\u001b[2KHostBuffer([10.0, 11.0, 12.0, 13.0])\n" |
| 147 | + ] |
| 148 | + } |
| 149 | + ], |
| 150 | + "source": [ |
| 151 | + "!magic run mojo add_10_2dlayout.mojo" |
| 152 | + ] |
| 153 | + }, |
| 154 | + { |
| 155 | + "cell_type": "code", |
| 156 | + "execution_count": 15, |
| 157 | + "metadata": { |
| 158 | + "colab": { |
| 159 | + "base_uri": "https://localhost:8080/" |
| 160 | + }, |
| 161 | + "id": "bSglX7bNONi0", |
| 162 | + "outputId": "4f7126e7-85f3-4ef3-fed9-79673b282bc4" |
| 163 | + }, |
| 164 | + "outputs": [ |
| 165 | + { |
| 166 | + "output_type": "stream", |
| 167 | + "name": "stdout", |
| 168 | + "text": [ |
| 169 | + "\u001b[32m⠁\u001b[0m \r\u001b[2K\u001b[32m⠁\u001b[0m activating environment \r\u001b[2K\u001b[32m⠁\u001b[0m activating environment \r\u001b[2K\u001b[1mreformatted add_10_2dlayout.mojo\u001b[0m\n", |
| 170 | + "\n", |
| 171 | + "\u001b[1mAll done! ✨ 🍰 ✨\u001b[0m\n", |
| 172 | + "\u001b[34m\u001b[1m1 file \u001b[0m\u001b[1mreformatted\u001b[0m.\n" |
| 173 | + ] |
| 174 | + } |
| 175 | + ], |
| 176 | + "source": [ |
| 177 | + "!magic run mojo format add_10_2dlayout.mojo" |
| 178 | + ] |
| 179 | + } |
| 180 | + ], |
| 181 | + "metadata": { |
| 182 | + "accelerator": "GPU", |
| 183 | + "colab": { |
| 184 | + "gpuType": "T4", |
| 185 | + "provenance": [] |
| 186 | + }, |
| 187 | + "kaggle": { |
| 188 | + "accelerator": "nvidiaTeslaT4", |
| 189 | + "dataSources": [], |
| 190 | + "dockerImageVersionId": 31041, |
| 191 | + "isGpuEnabled": true, |
| 192 | + "isInternetEnabled": true, |
| 193 | + "language": "python", |
| 194 | + "sourceType": "notebook" |
| 195 | + }, |
| 196 | + "kernelspec": { |
| 197 | + "display_name": "Python 3", |
| 198 | + "name": "python3" |
| 199 | + }, |
| 200 | + "language_info": { |
| 201 | + "codemirror_mode": { |
| 202 | + "name": "ipython", |
| 203 | + "version": 3 |
| 204 | + }, |
| 205 | + "file_extension": ".py", |
| 206 | + "mimetype": "text/x-python", |
| 207 | + "name": "python", |
| 208 | + "nbconvert_exporter": "python", |
| 209 | + "pygments_lexer": "ipython3", |
| 210 | + "version": "3.11.11" |
| 211 | + } |
| 212 | + }, |
| 213 | + "nbformat": 4, |
| 214 | + "nbformat_minor": 0 |
| 215 | +} |
0 commit comments