|
| 1 | +### Dumb matrix multiplication |
| 2 | +### Use one one GPU thread for each column of the output matrix |
| 3 | + |
| 4 | +from gpu.host import DeviceContext, HostBuffer |
| 5 | +from gpu import thread_idx, block_idx, block_dim |
| 6 | +import random |
| 7 | +from layout import Layout, LayoutTensor |
| 8 | +from memory import UnsafePointer, memcpy |
| 9 | +from python import Python, PythonObject |
| 10 | +from testing import assert_true |
| 11 | + |
| 12 | +alias ROWS_A = 64 |
| 13 | +alias COLS_A = 16 |
| 14 | +alias ROWS_B = 16 |
| 15 | +alias COLS_B = 8 |
| 16 | +alias ROWS_C = ROWS_A |
| 17 | +alias COLS_C = COLS_B |
| 18 | + |
| 19 | +alias MATRIX_MIN_ELEM = -5.0 |
| 20 | +alias MATRIX_MAX_ELEM = 5.0 |
| 21 | + |
| 22 | +alias dtype = DType.float32 |
| 23 | +# Num threads per block |
| 24 | +alias THREADS = (5, 5) |
| 25 | +# Total numbers blocks in the grid |
| 26 | +alias BLOCKS = ( |
| 27 | + (COLS_C + THREADS[0] - 1) // THREADS[0], |
| 28 | + (ROWS_C + THREADS[1] - 1) // THREADS[1], |
| 29 | +) |
| 30 | + |
| 31 | +alias layout_a = Layout.row_major(ROWS_A, COLS_A) |
| 32 | +alias layout_b = Layout.row_major(ROWS_B, COLS_B) |
| 33 | +alias layout_c = Layout.row_major(ROWS_C, COLS_C) |
| 34 | + |
| 35 | + |
| 36 | +alias MatrixA = LayoutTensor[dtype, layout_a, MutableAnyOrigin] |
| 37 | +alias MatrixB = LayoutTensor[dtype, layout_b, MutableAnyOrigin] |
| 38 | +alias MatrixC = LayoutTensor[dtype, layout_c, MutableAnyOrigin] |
| 39 | + |
| 40 | + |
| 41 | +fn matmul_thread_per_output_cell[ |
| 42 | + a: Layout, b: Layout, c: Layout |
| 43 | +](A: MatrixA, B: MatrixB, C: MatrixC,): |
| 44 | + var i = block_idx.y * block_dim.y + thread_idx.y # Rows |
| 45 | + var j = block_idx.x * block_dim.x + thread_idx.x # Colums |
| 46 | + |
| 47 | + if i < ROWS_C and j < COLS_C: |
| 48 | + for k in range(ROWS_B): |
| 49 | + C[i, j] += A[i, k] * B[k, j] |
| 50 | + |
| 51 | + |
| 52 | +# Initialize the matrix buffer with values in the range 0 to 100 |
| 53 | +fn fill_buffer(buffer: HostBuffer[dtype]): |
| 54 | + # Randomize |
| 55 | + random.seed() |
| 56 | + for i in range(len(buffer)): |
| 57 | + buffer[i] = random.random_float64( |
| 58 | + MATRIX_MIN_ELEM, MATRIX_MAX_ELEM |
| 59 | + ).cast[dtype]()[0] |
| 60 | + |
| 61 | + |
| 62 | +fn main(): |
| 63 | + try: |
| 64 | + ctx = DeviceContext() |
| 65 | + |
| 66 | + buffer_a = ctx.enqueue_create_buffer[dtype]( |
| 67 | + ROWS_A * COLS_A |
| 68 | + ).enqueue_fill(0.0) |
| 69 | + buffer_b = ctx.enqueue_create_buffer[dtype]( |
| 70 | + ROWS_B * COLS_B |
| 71 | + ).enqueue_fill(0.0) |
| 72 | + buffer_c = ctx.enqueue_create_buffer[dtype]( |
| 73 | + ROWS_C * COLS_C |
| 74 | + ).enqueue_fill(0.0) |
| 75 | + |
| 76 | + with buffer_a.map_to_host() as h_buffer_a: |
| 77 | + fill_buffer(h_buffer_a) |
| 78 | + |
| 79 | + with buffer_b.map_to_host() as h_buffer_b: |
| 80 | + fill_buffer(h_buffer_b) |
| 81 | + |
| 82 | + matrix_a = MatrixA(buffer_a) |
| 83 | + matrix_b = MatrixB(buffer_b) |
| 84 | + matrix_c = MatrixC(buffer_c) |
| 85 | + |
| 86 | + ctx.enqueue_function[ |
| 87 | + matmul_thread_per_output_cell[layout_a, layout_b, layout_c] |
| 88 | + ]( |
| 89 | + matrix_a, |
| 90 | + matrix_b, |
| 91 | + matrix_c, |
| 92 | + grid_dim=BLOCKS, |
| 93 | + block_dim=THREADS, |
| 94 | + ) |
| 95 | + |
| 96 | + ctx.synchronize() |
| 97 | + |
| 98 | + with buffer_a.map_to_host() as h_buffer_a: |
| 99 | + with buffer_b.map_to_host() as h_buffer_b: |
| 100 | + with buffer_c.map_to_host() as h_buffer_c: |
| 101 | + assert_allclose( |
| 102 | + (ROWS_A, COLS_A, h_buffer_a), |
| 103 | + (ROWS_B, COLS_B, h_buffer_b), |
| 104 | + (ROWS_C, COLS_C, h_buffer_c), |
| 105 | + ) |
| 106 | + |
| 107 | + except e: |
| 108 | + print("Prininting here: ", e) |
| 109 | + |
| 110 | + |
| 111 | +fn assert_allclose( |
| 112 | + buff_a_with_dims: (Int, Int, HostBuffer[dtype]), |
| 113 | + buff_b_with_dims: (Int, Int, HostBuffer[dtype]), |
| 114 | + buff_c_with_dims: (Int, Int, HostBuffer[dtype]), |
| 115 | +) raises: |
| 116 | + a_rows, a_cols, a_buff = buff_a_with_dims |
| 117 | + matrix_a = reshape(to_ndarray(a_buff), a_rows, a_cols) |
| 118 | + |
| 119 | + b_rows, b_cols, b_buff = buff_b_with_dims |
| 120 | + matrix_b = reshape(to_ndarray(b_buff), b_rows, b_cols) |
| 121 | + |
| 122 | + c_rows, c_cols, c_buff = buff_c_with_dims |
| 123 | + matrix_c = reshape(to_ndarray(c_buff), c_rows, c_cols) |
| 124 | + np = Python.import_module("numpy") |
| 125 | + assert_true(np.allclose(np.matmul(matrix_a, matrix_b), matrix_c)) |
| 126 | + print("Assertion was successful") |
| 127 | + |
| 128 | + |
| 129 | +fn to_ndarray(buffer: HostBuffer[dtype]) raises -> PythonObject: |
| 130 | + np = Python.import_module("numpy") |
| 131 | + ndarray = np.zeros(len(buffer), dtype=np.float32) |
| 132 | + ndarray_ptr = ndarray_ptr[dtype](ndarray) |
| 133 | + buffer_ptr = buffer.unsafe_ptr() |
| 134 | + memcpy(ndarray_ptr, buffer_ptr, len(buffer)) |
| 135 | + return ndarray |
| 136 | + |
| 137 | + |
| 138 | +fn reshape(ndarray: PythonObject, rows: Int, cols: Int) raises -> PythonObject: |
| 139 | + return ndarray.reshape(rows, cols) |
| 140 | + |
| 141 | + |
| 142 | +fn ndarray_ptr[ |
| 143 | + dtype: DType |
| 144 | +](ndarray: PythonObject) raises -> UnsafePointer[Scalar[dtype]]: |
| 145 | + return ndarray.__array_interface__["data"][0].unsafe_get_as_pointer[dtype]() |
| 146 | + |
0 commit comments