@@ -16,11 +16,11 @@ e.g. certain X/Y coordinates. The available selectors are listed here:
1616
1717| | |
1818| :--------------------- | :----------------------------------------------------------------- |
19- | ` At(x) ` | get the index exactly matching the passed in value(s) |
20- | ` Near(x) ` | get the closest index to the passed in value(s) |
19+ | ` At(x) ` | get the index exactly matching the passed in value(s). |
20+ | ` Near(x) ` | get the closest index to the passed in value(s). |
2121| ` Where(f::Function) ` | filter the array axis by a function of the dimension index values. |
2222| ` a..b ` /` Between(a, b) ` | get all indices between two values, excluding the high value. |
23- | ` Contains(x) ` | get indices where the value x falls within an interval |
23+ | ` Contains(x) ` | get indices where the value x falls within an interval. |
2424
2525
2626Use the ` .. ` selector to take a ` view ` of madagascar:
@@ -56,7 +56,7 @@ Note that most regular Julia methods, such as `replace`, work as for a standard
5656| | |
5757| :------------------------ | :--------------------------------------------------------------------------- |
5858| [ ` classify ` ] ( @ref ) | classify values into categories. |
59- | [ ` mask ` ] ( @ref ) | mask and object by a polygon or ` Raster ` along ` X/Y ` , or other dimensions. |
59+ | [ ` mask ` ] ( @ref ) | mask an object by a polygon or ` Raster ` along ` X/Y ` , or other dimensions. |
6060| [ ` replace_missing ` ] ( @ref ) | replace all missing values in an object and update ` missingval ` . |
6161
6262
@@ -158,7 +158,7 @@ We can also reassign dimensions, here `X` becomes `Z`:
158158set (A, X => Z)
159159```
160160
161- ` setcrs(A, crs) ` and ` setmappedcrs(A, crs) ` will set the crs value/s of and
161+ ` setcrs(A, crs) ` and ` setmappedcrs(A, crs) ` will set the crs value/s of an
162162object to any ` GeoFormat ` from GeoFormatTypes.jl.
163163
164164
@@ -202,9 +202,9 @@ Here we plot every third month in the first year, just using the regular index:
202202A[Ti=1:3:12] |> plot
203203```
204204
205- Now plot the ocean temperatures areound the Americas in the first month of 2001.
205+ Now plot the ocean temperatures around the Americas in the first month of 2001.
206206Notice we are using lat/lon coordinates and date/time instead of regular
207- indexes: The time dimension uses ` DateTime360Day ` , so we need to load CFTime.jl
207+ indexes. The time dimension uses ` DateTime360Day ` , so we need to load CFTime.jl
208208to index it with ` Near ` .
209209
210210``` @example nc
@@ -269,14 +269,14 @@ Extract the longitude/latitude value to a Vector of Tuple:
269269coords = [(r.longitude, r.latitude) for r in records if !ismissing(r.longitude)]
270270```
271271
272- Get BioClim layers and subset to south-east australia
272+ Get BioClim layers and subset to south-east Australia
273273
274274``` @example sdm
275275A = RasterStack(WorldClim{BioClim}, (1, 3, 7, 12))
276276SE_aus = A[X=138..155, Y=-40..(-25), Band=1]
277277```
278278
279- And plot BioClim predictors and scatter occurrence points on all subplots
279+ Plot BioClim predictors and scatter occurrence points on all subplots
280280
281281``` @example sdm
282282p = plot(SE_aus);
@@ -302,7 +302,7 @@ df[1:5, :]
302302
303303## Polygon masking, mosaic and plot
304304
305- In this example we wil l ` mask ` the scandinavian countries with border polygons,
305+ In this example we will ` mask ` the Scandinavian countries with border polygons,
306306then ` mosaic ` together to make a single plot.
307307
308308First, get the country boundary shape files using GADM.jl.
@@ -322,14 +322,14 @@ norway_border = shapes.shapes[53]
322322sweden_border = shapes.shapes[54]
323323```
324324
325- Then load raster data. We load some worldclim layers using RasterDataSources via
325+ Then load raster data. We load some worldclim layers using ` RasterDataSources ` via
326326Rasters.jl, and drop the Band dimension.
327327
328328``` @example mask
329329climate = RasterStack(WorldClim{Climate}, (:tmin, :tmax, :prec, :wind); month=July)[Band(1)]
330330```
331331
332- ` mask ` denmark, norway and sweden from the global dataset using their border polygon,
332+ ` mask ` Denmark, Norway and Sweden from the global dataset using their border polygon,
333333then trim the missing values. We pad ` trim ` with a 10 pixel margin.
334334
335335``` @example mask
@@ -419,7 +419,7 @@ arrays of common raster file types. These methods also work for entire
419419
420420Spatial raster data is essentially just an ` Array ` . But ` Raster ` wrappers
421421allow treating them as an array that maintains its spatial index, crs and other
422- metadata through all transformations. This means the can always be plotted and
422+ metadata through all transformations. This means they can always be plotted and
423423written to disk after applying most base Julia methods, and most ` broadcast ` s.
424424
425425``` @docs
@@ -441,7 +441,7 @@ RasterStack(T::Type{<:RasterDataSources.RasterDataSource})
441441
442442### RasterSeries
443443
444- A series is an meta-array that holds other files/data that is distributed over
444+ A series is a meta-array that holds other files/data that is distributed over
445445some dimension, often time. These files/data can be ` Raster ` s or ` RasterStack ` s.
446446
447447``` @docs
@@ -529,7 +529,7 @@ smapseries
529529
530530Files can be written to disk in all formats other than SMAP HDF5 using
531531` write("filename.ext", A) ` . See the docs for [ ` write ` ] ( @ref ) . They can (with
532- some caveats) be written to different formats than they were loaded in,
532+ some caveats) be written to different formats than they were loaded in as ,
533533providing file-type conversion for spatial data.
534534
535535Some metadata may be lost in formats that store little metadata, or where
@@ -603,7 +603,7 @@ zonal
603603
604604### File operations
605605
606- These Base and DimensionalData methods have specific Rasters.jl versions:
606+ These ` Base ` and ` DimensionalData ` methods have specific Rasters.jl versions:
607607
608608``` @docs
609609modify
0 commit comments