@@ -177,8 +177,9 @@ def test_multiply_by_xk_bloq_counts(n, k):
177177 qlt_testing .assert_equivalent_bloq_counts (blq )
178178
179179
180- @pytest .mark .parametrize (['n' , 'k' ], [(n , k ) for n in range (1 , 4 ) for k in range (1 , n + 2 )])
181- def test_multiply_by_xk_classical_action (n , k ):
180+ def test_multiply_by_xk_classical_action ():
181+ n = 2
182+ k = 2
182183 blq = MultiplyPolyByOnePlusXk (n , k )
183184 fg_polys = tuple (itertools .product (range (2 ), repeat = n ))[1 :]
184185 h_polys = [* itertools .product (range (2 ), repeat = blq .signature [- 1 ].shape [0 ])]
@@ -222,7 +223,7 @@ def test_binary_mult_classical_action(n):
222223 qlt_testing .assert_consistent_classical_action (blq , f = fg_polys , g = fg_polys , h = h_polys )
223224
224225
225- # @pytest.mark.slow
226+ @pytest .mark .slow
226227@pytest .mark .parametrize ('n' , range (4 , 7 ))
227228def test_binary_mult_classical_action_slow (n ):
228229 blq = BinaryPolynomialMultiplication (n )
@@ -331,8 +332,8 @@ def test_gf2mulmod_complexity(m_x):
331332 assert cost .total_toffoli_only () == 3 ** k
332333
333334
334- @ pytest . mark . parametrize ( 'm_x' , [[ 2 , 1 , 0 ], [ 3 , 1 , 0 ], [ 5 , 2 , 0 ]])
335- def test_gf2mulmod_classical_action ( m_x ):
335+ def test_gf2mulmod_classical_action ():
336+ m_x = [ 3 , 1 , 0 ]
336337 blq = GF2MulViaKaratsuba (m_x )
337338 qlt_testing .assert_consistent_classical_action (blq , x = blq .gf .elements , y = blq .gf .elements )
338339
0 commit comments