|
289 | 289 | "show_call_graph(gf2_multiply_by_constant_modulu_g)\n", |
290 | 290 | "show_counts_sigma(gf2_multiply_by_constant_modulu_sigma)" |
291 | 291 | ] |
| 292 | + }, |
| 293 | + { |
| 294 | + "cell_type": "markdown", |
| 295 | + "id": "0b276213", |
| 296 | + "metadata": { |
| 297 | + "cq.autogen": "MultiplyPolyByOnePlusXk.bloq_doc.md" |
| 298 | + }, |
| 299 | + "source": [ |
| 300 | + "## `MultiplyPolyByOnePlusXk`\n", |
| 301 | + "Out of place multiplication of $(1 + x^k) fg$\n", |
| 302 | + "\n", |
| 303 | + "Applies the transformation\n", |
| 304 | + "$$\n", |
| 305 | + "\\ket{f}\\ket{g}\\ket{h} \\rightarrow \\ket{f}{\\ket{g}}\\ket{h \\oplus (1+x^k)fg}\n", |
| 306 | + "$$\n", |
| 307 | + "\n", |
| 308 | + "Note: While this construction follows Algorithm2 of https://arxiv.org/abs/1910.02849v2,\n", |
| 309 | + "it has a slight modification. Namely that the original construction doesn't work in\n", |
| 310 | + "some cases where $k < n$. However reversing the order of the first set of CNOTs (line 2)\n", |
| 311 | + "makes the construction work for all $k \\leq n+1$.\n", |
| 312 | + "\n", |
| 313 | + "#### Parameters\n", |
| 314 | + " - `n`: The degree of the polynomial ($2^n$ is the size of the galois field).\n", |
| 315 | + " - `k`: An integer specifing the shift $1 + x^k$ (or $1 + 2^k$ for galois fields.) \n", |
| 316 | + "\n", |
| 317 | + "#### Registers\n", |
| 318 | + " - `f`: The first polynomial.\n", |
| 319 | + " - `g`: The second polyonmial.\n", |
| 320 | + " - `h`: The target polynomial. \n", |
| 321 | + "\n", |
| 322 | + "#### References\n", |
| 323 | + " - [Space-efficient quantum multiplication of polynomials for binary finite fields with sub-quadratic Toffoli gate count](https://arxiv.org/abs/1910.02849v2). Algorithm 2\n" |
| 324 | + ] |
| 325 | + }, |
| 326 | + { |
| 327 | + "cell_type": "code", |
| 328 | + "execution_count": null, |
| 329 | + "id": "9949a24e", |
| 330 | + "metadata": { |
| 331 | + "cq.autogen": "MultiplyPolyByOnePlusXk.bloq_doc.py" |
| 332 | + }, |
| 333 | + "outputs": [], |
| 334 | + "source": [ |
| 335 | + "from qualtran.bloqs.gf_arithmetic import MultiplyPolyByOnePlusXk" |
| 336 | + ] |
| 337 | + }, |
| 338 | + { |
| 339 | + "cell_type": "markdown", |
| 340 | + "id": "dd7c9a74", |
| 341 | + "metadata": { |
| 342 | + "cq.autogen": "MultiplyPolyByOnePlusXk.example_instances.md" |
| 343 | + }, |
| 344 | + "source": [ |
| 345 | + "### Example Instances" |
| 346 | + ] |
| 347 | + }, |
| 348 | + { |
| 349 | + "cell_type": "code", |
| 350 | + "execution_count": null, |
| 351 | + "id": "ad918c9f", |
| 352 | + "metadata": { |
| 353 | + "cq.autogen": "MultiplyPolyByOnePlusXk.multiplypolybyoneplusxk" |
| 354 | + }, |
| 355 | + "outputs": [], |
| 356 | + "source": [ |
| 357 | + "n = 5\n", |
| 358 | + "k = 3\n", |
| 359 | + "multiplypolybyoneplusxk = MultiplyPolyByOnePlusXk(n, k)" |
| 360 | + ] |
| 361 | + }, |
| 362 | + { |
| 363 | + "cell_type": "markdown", |
| 364 | + "id": "aa939469", |
| 365 | + "metadata": { |
| 366 | + "cq.autogen": "MultiplyPolyByOnePlusXk.graphical_signature.md" |
| 367 | + }, |
| 368 | + "source": [ |
| 369 | + "#### Graphical Signature" |
| 370 | + ] |
| 371 | + }, |
| 372 | + { |
| 373 | + "cell_type": "code", |
| 374 | + "execution_count": null, |
| 375 | + "id": "648d128f", |
| 376 | + "metadata": { |
| 377 | + "cq.autogen": "MultiplyPolyByOnePlusXk.graphical_signature.py" |
| 378 | + }, |
| 379 | + "outputs": [], |
| 380 | + "source": [ |
| 381 | + "from qualtran.drawing import show_bloqs\n", |
| 382 | + "show_bloqs([multiplypolybyoneplusxk],\n", |
| 383 | + " ['`multiplypolybyoneplusxk`'])" |
| 384 | + ] |
| 385 | + }, |
| 386 | + { |
| 387 | + "cell_type": "markdown", |
| 388 | + "id": "4bb8dcef", |
| 389 | + "metadata": { |
| 390 | + "cq.autogen": "MultiplyPolyByOnePlusXk.call_graph.md" |
| 391 | + }, |
| 392 | + "source": [ |
| 393 | + "### Call Graph" |
| 394 | + ] |
| 395 | + }, |
| 396 | + { |
| 397 | + "cell_type": "code", |
| 398 | + "execution_count": null, |
| 399 | + "id": "0890198e", |
| 400 | + "metadata": { |
| 401 | + "cq.autogen": "MultiplyPolyByOnePlusXk.call_graph.py" |
| 402 | + }, |
| 403 | + "outputs": [], |
| 404 | + "source": [ |
| 405 | + "from qualtran.resource_counting.generalizers import ignore_split_join\n", |
| 406 | + "multiplypolybyoneplusxk_g, multiplypolybyoneplusxk_sigma = multiplypolybyoneplusxk.call_graph(max_depth=1, generalizer=ignore_split_join)\n", |
| 407 | + "show_call_graph(multiplypolybyoneplusxk_g)\n", |
| 408 | + "show_counts_sigma(multiplypolybyoneplusxk_sigma)" |
| 409 | + ] |
| 410 | + }, |
| 411 | + { |
| 412 | + "cell_type": "markdown", |
| 413 | + "id": "9d9d1540", |
| 414 | + "metadata": { |
| 415 | + "cq.autogen": "BinaryPolynomialMultiplication.bloq_doc.md" |
| 416 | + }, |
| 417 | + "source": [ |
| 418 | + "## `BinaryPolynomialMultiplication`\n", |
| 419 | + "Out of place multiplication of binary polynomial multiplication.\n", |
| 420 | + "\n", |
| 421 | + "Applies the transformation\n", |
| 422 | + "$$\n", |
| 423 | + "\\ket{f}\\ket{g}\\ket{h} \\rightarrow \\ket{f}{\\ket{g}}\\ket{h \\oplus fg}\n", |
| 424 | + "$$\n", |
| 425 | + "\n", |
| 426 | + "The toffoli cost of this construction is $n^{\\log_2{3}}$, while CNOT count is\n", |
| 427 | + "upper bounded by $(10 + \\frac{1}{3}) n^{\\log_2{3}}$.\n", |
| 428 | + "\n", |
| 429 | + "#### Parameters\n", |
| 430 | + " - `n`: The degree of the polynomial ($2^n$ is the size of the galois field). \n", |
| 431 | + "\n", |
| 432 | + "#### Registers\n", |
| 433 | + " - `f`: The first polynomial.\n", |
| 434 | + " - `g`: The second polyonmial.\n", |
| 435 | + " - `h`: The target polynomial. \n", |
| 436 | + "\n", |
| 437 | + "#### References\n", |
| 438 | + " - [Space-efficient quantum multiplication of polynomials for binary finite fields with sub-quadratic Toffoli gate count](https://arxiv.org/abs/1910.02849v2). Algorithm 3\n" |
| 439 | + ] |
| 440 | + }, |
| 441 | + { |
| 442 | + "cell_type": "code", |
| 443 | + "execution_count": null, |
| 444 | + "id": "1ba3a057", |
| 445 | + "metadata": { |
| 446 | + "cq.autogen": "BinaryPolynomialMultiplication.bloq_doc.py" |
| 447 | + }, |
| 448 | + "outputs": [], |
| 449 | + "source": [ |
| 450 | + "from qualtran.bloqs.gf_arithmetic import BinaryPolynomialMultiplication" |
| 451 | + ] |
| 452 | + }, |
| 453 | + { |
| 454 | + "cell_type": "markdown", |
| 455 | + "id": "296d193b", |
| 456 | + "metadata": { |
| 457 | + "cq.autogen": "BinaryPolynomialMultiplication.example_instances.md" |
| 458 | + }, |
| 459 | + "source": [ |
| 460 | + "### Example Instances" |
| 461 | + ] |
| 462 | + }, |
| 463 | + { |
| 464 | + "cell_type": "code", |
| 465 | + "execution_count": null, |
| 466 | + "id": "907fcd25", |
| 467 | + "metadata": { |
| 468 | + "cq.autogen": "BinaryPolynomialMultiplication.binarypolynomialmultiplication" |
| 469 | + }, |
| 470 | + "outputs": [], |
| 471 | + "source": [ |
| 472 | + "n = 5\n", |
| 473 | + "binarypolynomialmultiplication = BinaryPolynomialMultiplication(n)" |
| 474 | + ] |
| 475 | + }, |
| 476 | + { |
| 477 | + "cell_type": "markdown", |
| 478 | + "id": "a100a193", |
| 479 | + "metadata": { |
| 480 | + "cq.autogen": "BinaryPolynomialMultiplication.graphical_signature.md" |
| 481 | + }, |
| 482 | + "source": [ |
| 483 | + "#### Graphical Signature" |
| 484 | + ] |
| 485 | + }, |
| 486 | + { |
| 487 | + "cell_type": "code", |
| 488 | + "execution_count": null, |
| 489 | + "id": "aad80309", |
| 490 | + "metadata": { |
| 491 | + "cq.autogen": "BinaryPolynomialMultiplication.graphical_signature.py" |
| 492 | + }, |
| 493 | + "outputs": [], |
| 494 | + "source": [ |
| 495 | + "from qualtran.drawing import show_bloqs\n", |
| 496 | + "show_bloqs([binarypolynomialmultiplication],\n", |
| 497 | + " ['`binarypolynomialmultiplication`'])" |
| 498 | + ] |
| 499 | + }, |
| 500 | + { |
| 501 | + "cell_type": "markdown", |
| 502 | + "id": "c1d23614", |
| 503 | + "metadata": { |
| 504 | + "cq.autogen": "BinaryPolynomialMultiplication.call_graph.md" |
| 505 | + }, |
| 506 | + "source": [ |
| 507 | + "### Call Graph" |
| 508 | + ] |
| 509 | + }, |
| 510 | + { |
| 511 | + "cell_type": "code", |
| 512 | + "execution_count": null, |
| 513 | + "id": "8dc799ef", |
| 514 | + "metadata": { |
| 515 | + "cq.autogen": "BinaryPolynomialMultiplication.call_graph.py" |
| 516 | + }, |
| 517 | + "outputs": [], |
| 518 | + "source": [ |
| 519 | + "from qualtran.resource_counting.generalizers import ignore_split_join\n", |
| 520 | + "binarypolynomialmultiplication_g, binarypolynomialmultiplication_sigma = binarypolynomialmultiplication.call_graph(max_depth=1, generalizer=ignore_split_join)\n", |
| 521 | + "show_call_graph(binarypolynomialmultiplication_g)\n", |
| 522 | + "show_counts_sigma(binarypolynomialmultiplication_sigma)" |
| 523 | + ] |
292 | 524 | } |
293 | 525 | ], |
294 | 526 | "metadata": { |
295 | 527 | "kernelspec": { |
296 | | - "display_name": "Python 3", |
| 528 | + "display_name": "Python 3 (ipykernel)", |
297 | 529 | "language": "python", |
298 | 530 | "name": "python3" |
299 | 531 | }, |
300 | 532 | "language_info": { |
301 | | - "name": "python" |
| 533 | + "codemirror_mode": { |
| 534 | + "name": "ipython", |
| 535 | + "version": 3 |
| 536 | + }, |
| 537 | + "file_extension": ".py", |
| 538 | + "mimetype": "text/x-python", |
| 539 | + "name": "python", |
| 540 | + "nbconvert_exporter": "python", |
| 541 | + "pygments_lexer": "ipython3", |
| 542 | + "version": "3.11.9" |
302 | 543 | } |
303 | 544 | }, |
304 | 545 | "nbformat": 4, |
|
0 commit comments