|
6 | 6 | "metadata": { |
7 | 7 | "collapsed": true, |
8 | 8 | "ExecuteTime": { |
9 | | - "end_time": "2025-10-07T09:52:07.812763Z", |
10 | | - "start_time": "2025-10-07T09:52:05.905923Z" |
| 9 | + "end_time": "2025-10-07T10:20:23.561430Z", |
| 10 | + "start_time": "2025-10-07T10:20:21.620124Z" |
11 | 11 | } |
12 | 12 | }, |
13 | 13 | "source": [ |
14 | 14 | "import pytensor\n", |
15 | 15 | "import pytensor.tensor as pt\n", |
16 | 16 | "import numpy as np\n", |
17 | 17 | "\n", |
| 18 | + "N_STEPS = 1000\n", |
| 19 | + "\n", |
18 | 20 | "b_symbolic = pt.scalar(\"b_symbolic\", dtype=\"int32\")\n", |
19 | 21 | "\n", |
20 | 22 | "def step(a, b):\n", |
|
23 | 25 | "(outputs_a, outputs_b), _ = pytensor.scan(\n", |
24 | 26 | " fn=step,\n", |
25 | 27 | " outputs_info=[pt.constant(1, dtype=\"int32\"), b_symbolic],\n", |
26 | | - " n_steps=10\n", |
| 28 | + " n_steps=N_STEPS\n", |
27 | 29 | ")\n", |
28 | 30 | "\n", |
29 | 31 | "# compile function returning final a\n", |
|
36 | 38 | { |
37 | 39 | "metadata": { |
38 | 40 | "ExecuteTime": { |
39 | | - "end_time": "2025-10-07T09:52:07.821649Z", |
40 | | - "start_time": "2025-10-07T09:52:07.817580Z" |
| 41 | + "end_time": "2025-10-07T10:20:23.571190Z", |
| 42 | + "start_time": "2025-10-07T10:20:23.567707Z" |
41 | 43 | } |
42 | 44 | }, |
43 | 45 | "cell_type": "code", |
|
46 | 48 | "\n", |
47 | 49 | "@numba.jit(nopython=True)\n", |
48 | 50 | "def fibonacci_numba(b):\n", |
49 | | - " n = 10\n", |
50 | 51 | " b = b.copy()\n", |
51 | 52 | " a = np.ones((), dtype=np.int32)\n", |
52 | | - " # b = np.ones(1, dtype=np.int32)\n", |
53 | | - " for _ in range(n):\n", |
| 53 | + " for _ in range(N_STEPS):\n", |
54 | 54 | " a[()], b[()] = a[()] + b[()], a[()]\n", |
55 | 55 | " return a" |
56 | 56 | ], |
|
61 | 61 | { |
62 | 62 | "metadata": { |
63 | 63 | "ExecuteTime": { |
64 | | - "end_time": "2025-10-07T09:52:11.125118Z", |
65 | | - "start_time": "2025-10-07T09:52:07.865156Z" |
| 64 | + "end_time": "2025-10-07T10:20:26.947566Z", |
| 65 | + "start_time": "2025-10-07T10:20:23.615573Z" |
66 | 66 | } |
67 | 67 | }, |
68 | 68 | "cell_type": "code", |
69 | 69 | "source": [ |
70 | | - "# n = np.int64(10)\n", |
71 | 70 | "b = np.ones((), dtype=np.int32)\n", |
72 | 71 | "assert fibonacci_pytensor(b) == fibonacci_numba(b)\n", |
73 | 72 | "assert fibonacci_pytensor_numba(b) == fibonacci_numba(b)" |
|
79 | 78 | { |
80 | 79 | "metadata": { |
81 | 80 | "ExecuteTime": { |
82 | | - "end_time": "2025-10-07T09:52:14.968797Z", |
83 | | - "start_time": "2025-10-07T09:52:11.202449Z" |
| 81 | + "end_time": "2025-10-07T10:20:28.819553Z", |
| 82 | + "start_time": "2025-10-07T10:20:27.015141Z" |
84 | 83 | } |
85 | 84 | }, |
86 | 85 | "cell_type": "code", |
|
91 | 90 | "name": "stdout", |
92 | 91 | "output_type": "stream", |
93 | 92 | "text": [ |
94 | | - "46.6 μs ± 4.15 μs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)\n" |
| 93 | + "2.22 ms ± 37.8 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" |
95 | 94 | ] |
96 | 95 | } |
97 | 96 | ], |
|
100 | 99 | { |
101 | 100 | "metadata": { |
102 | 101 | "ExecuteTime": { |
103 | | - "end_time": "2025-10-07T09:52:19.495645Z", |
104 | | - "start_time": "2025-10-07T09:52:15.020419Z" |
| 102 | + "end_time": "2025-10-07T10:20:42.302214Z", |
| 103 | + "start_time": "2025-10-07T10:20:28.871240Z" |
105 | 104 | } |
106 | 105 | }, |
107 | 106 | "cell_type": "code", |
|
112 | 111 | "name": "stdout", |
113 | 112 | "output_type": "stream", |
114 | 113 | "text": [ |
115 | | - "5.53 μs ± 114 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n" |
| 114 | + "165 μs ± 468 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)\n" |
116 | 115 | ] |
117 | 116 | } |
118 | 117 | ], |
|
121 | 120 | { |
122 | 121 | "metadata": { |
123 | 122 | "ExecuteTime": { |
124 | | - "end_time": "2025-10-07T09:52:22.257300Z", |
125 | | - "start_time": "2025-10-07T09:52:19.547530Z" |
| 123 | + "end_time": "2025-10-07T10:20:55.256172Z", |
| 124 | + "start_time": "2025-10-07T10:20:42.355007Z" |
126 | 125 | } |
127 | 126 | }, |
128 | 127 | "cell_type": "code", |
|
133 | 132 | "name": "stdout", |
134 | 133 | "output_type": "stream", |
135 | 134 | "text": [ |
136 | | - "3.37 μs ± 258 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n" |
| 135 | + "159 μs ± 1.41 μs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)\n" |
137 | 136 | ] |
138 | 137 | } |
139 | 138 | ], |
|
142 | 141 | { |
143 | 142 | "metadata": { |
144 | 143 | "ExecuteTime": { |
145 | | - "end_time": "2025-10-07T09:52:32.320998Z", |
146 | | - "start_time": "2025-10-07T09:52:22.315343Z" |
| 144 | + "end_time": "2025-10-07T10:20:57.954364Z", |
| 145 | + "start_time": "2025-10-07T10:20:55.346865Z" |
147 | 146 | } |
148 | 147 | }, |
149 | 148 | "cell_type": "code", |
|
154 | 153 | "name": "stdout", |
155 | 154 | "output_type": "stream", |
156 | 155 | "text": [ |
157 | | - "1.19 μs ± 175 ns per loop (mean ± std. dev. of 7 runs, 1,000,000 loops each)\n" |
| 156 | + "3.2 μs ± 19.2 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n" |
158 | 157 | ] |
159 | 158 | } |
160 | 159 | ], |
|
163 | 162 | { |
164 | 163 | "metadata": { |
165 | 164 | "ExecuteTime": { |
166 | | - "end_time": "2025-10-07T09:52:32.381905Z", |
167 | | - "start_time": "2025-10-07T09:52:32.372905Z" |
| 165 | + "end_time": "2025-10-07T10:20:58.015849Z", |
| 166 | + "start_time": "2025-10-07T10:20:58.006831Z" |
168 | 167 | } |
169 | 168 | }, |
170 | 169 | "cell_type": "code", |
|
177 | 176 | "text": [ |
178 | 177 | "Subtensor{i} [id A] <Scalar(int32, shape=())> v={0: [0]} 6\n", |
179 | 178 | " ├─ Scan{scan_fn, while_loop=False, inplace=all}.0 [id B] <Vector(int32, shape=(?,))> d={0: [1], 1: [2]} 5\n", |
180 | | - " │ ├─ 10 [id C] <Scalar(int8, shape=())>\n", |
| 179 | + " │ ├─ 1000 [id C] <Scalar(int16, shape=())>\n", |
181 | 180 | " │ ├─ SetSubtensor{:stop} [id D] <Vector(int32, shape=(1,))> d={0: [0]} 4\n", |
182 | 181 | " │ │ ├─ AllocEmpty{dtype='int32'} [id E] <Vector(int32, shape=(1,))> 3\n", |
183 | 182 | " │ │ │ └─ 1 [id F] <Scalar(int64, shape=())>\n", |
|
203 | 202 | { |
204 | 203 | "data": { |
205 | 204 | "text/plain": [ |
206 | | - "<ipykernel.iostream.OutStream at 0x7f8462e7bbe0>" |
| 205 | + "<ipykernel.iostream.OutStream at 0x7fa4fbfacdf0>" |
207 | 206 | ] |
208 | 207 | }, |
209 | 208 | "execution_count": 8, |
|
216 | 215 | { |
217 | 216 | "metadata": { |
218 | 217 | "ExecuteTime": { |
219 | | - "end_time": "2025-10-07T09:52:32.429959Z", |
220 | | - "start_time": "2025-10-07T09:52:32.426275Z" |
| 218 | + "end_time": "2025-10-07T10:20:58.063585Z", |
| 219 | + "start_time": "2025-10-07T10:20:58.059985Z" |
221 | 220 | } |
222 | 221 | }, |
223 | 222 | "cell_type": "code", |
|
239 | 238 | " tensor_variable_3 = allocempty_1(tensor_constant_1)\n", |
240 | 239 | " # SetSubtensor{:stop}(AllocEmpty{dtype='int32'}.0, [1], 1)\n", |
241 | 240 | " tensor_variable_4 = set_subtensor_1(tensor_variable_3, tensor_constant_2, scalar_constant)\n", |
242 | | - " # Scan{scan_fn, while_loop=False, inplace=all}(10, SetSubtensor{:stop}.0, SetSubtensor{:stop}.0)\n", |
| 241 | + " # Scan{scan_fn, while_loop=False, inplace=all}(1000, SetSubtensor{:stop}.0, SetSubtensor{:stop}.0)\n", |
243 | 242 | " tensor_variable_5, tensor_variable_6 = scan(tensor_constant_3, tensor_variable_4, tensor_variable_2)\n", |
244 | 243 | " # Subtensor{i}(Scan{scan_fn, while_loop=False, inplace=all}.0, 0)\n", |
245 | 244 | " tensor_variable_7 = subtensor(tensor_variable_5, scalar_constant_1)\n", |
|
252 | 251 | { |
253 | 252 | "metadata": { |
254 | 253 | "ExecuteTime": { |
255 | | - "end_time": "2025-10-07T09:52:32.479422Z", |
256 | | - "start_time": "2025-10-07T09:52:32.475763Z" |
| 254 | + "end_time": "2025-10-07T10:20:58.113352Z", |
| 255 | + "start_time": "2025-10-07T10:20:58.109693Z" |
257 | 256 | } |
258 | 257 | }, |
259 | 258 | "cell_type": "code", |
|
278 | 277 | { |
279 | 278 | "metadata": { |
280 | 279 | "ExecuteTime": { |
281 | | - "end_time": "2025-10-07T09:52:32.529805Z", |
282 | | - "start_time": "2025-10-07T09:52:32.526392Z" |
| 280 | + "end_time": "2025-10-07T10:20:58.162062Z", |
| 281 | + "start_time": "2025-10-07T10:20:58.158525Z" |
283 | 282 | } |
284 | 283 | }, |
285 | 284 | "cell_type": "code", |
|
305 | 304 | { |
306 | 305 | "metadata": { |
307 | 306 | "ExecuteTime": { |
308 | | - "end_time": "2025-10-07T09:52:32.579642Z", |
309 | | - "start_time": "2025-10-07T09:52:32.576246Z" |
| 307 | + "end_time": "2025-10-07T10:20:58.211349Z", |
| 308 | + "start_time": "2025-10-07T10:20:58.207479Z" |
310 | 309 | } |
311 | 310 | }, |
312 | 311 | "cell_type": "code", |
|
363 | 362 | { |
364 | 363 | "metadata": { |
365 | 364 | "ExecuteTime": { |
366 | | - "end_time": "2025-10-07T09:52:32.638631Z", |
367 | | - "start_time": "2025-10-07T09:52:32.625594Z" |
| 365 | + "end_time": "2025-10-07T10:20:58.266498Z", |
| 366 | + "start_time": "2025-10-07T10:20:58.254087Z" |
368 | 367 | } |
369 | 368 | }, |
370 | 369 | "cell_type": "code", |
|
451 | 450 | " b_expanded = dimshuffle(b)\n", |
452 | 451 | " b_buf_set = set_subtensor(b_buf, b_expanded, np.int64(1))\n", |
453 | 452 | "\n", |
454 | | - " a_buf_updated, b_buf_updated = scan_fib(np.array(10, dtype=\"int64\"), a_buf_set, b_buf_set)\n", |
| 453 | + " a_buf_updated, b_buf_updated = scan_fib(np.array(N_STEPS, np.int64), a_buf_set, b_buf_set)\n", |
455 | 454 | "\n", |
456 | 455 | " res = subtensor(a_buf_updated, np.uint8(0))\n", |
457 | 456 | "\n", |
|
464 | 463 | { |
465 | 464 | "metadata": { |
466 | 465 | "ExecuteTime": { |
467 | | - "end_time": "2025-10-07T09:52:35.990806Z", |
468 | | - "start_time": "2025-10-07T09:52:32.676348Z" |
| 466 | + "end_time": "2025-10-07T10:21:01.526942Z", |
| 467 | + "start_time": "2025-10-07T10:20:58.310079Z" |
469 | 468 | } |
470 | 469 | }, |
471 | 470 | "cell_type": "code", |
|
480 | 479 | { |
481 | 480 | "metadata": { |
482 | 481 | "ExecuteTime": { |
483 | | - "end_time": "2025-10-07T09:52:37.812669Z", |
484 | | - "start_time": "2025-10-07T09:52:36.040144Z" |
| 482 | + "end_time": "2025-10-07T10:21:06.041171Z", |
| 483 | + "start_time": "2025-10-07T10:21:01.578757Z" |
485 | 484 | } |
486 | 485 | }, |
487 | 486 | "cell_type": "code", |
|
492 | 491 | "name": "stdout", |
493 | 492 | "output_type": "stream", |
494 | 493 | "text": [ |
495 | | - "2.12 μs ± 51.6 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)\n" |
| 494 | + "55 μs ± 756 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)\n" |
496 | 495 | ] |
497 | 496 | } |
498 | 497 | ], |
|
501 | 500 | { |
502 | 501 | "metadata": { |
503 | 502 | "ExecuteTime": { |
504 | | - "end_time": "2025-10-07T09:52:37.864066Z", |
505 | | - "start_time": "2025-10-07T09:52:37.861775Z" |
| 503 | + "end_time": "2025-10-07T10:21:06.095536Z", |
| 504 | + "start_time": "2025-10-07T10:21:06.093418Z" |
506 | 505 | } |
507 | 506 | }, |
508 | 507 | "cell_type": "code", |
|
0 commit comments