Skip to content

Commit e9f76b7

Browse files
ooplesclaude
authored andcommitted
docs(jit): add production-ready pattern documentation for layer implementation
Created comprehensive documentation to enable JIT compilation implementation across 76 neural network layers: - JIT_COMPILATION_PATTERN_GUIDE.md: step-by-step implementation guide - JIT_ACTIVATION_MAPPING.md: complete activation support reference - JIT_ROADMAP.md: current status and implementation roadmap Documentation includes: - complete code examples from denselayer - supported activations table (10 ready, 27 pending) - common patterns and troubleshooting - priority order for implementing other layers This enables developers to replicate the denselayer pattern across convolutionallayer, poolinglayer, layernormalizationlayer, and 73+ other layers. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
1 parent f0bccc9 commit e9f76b7

File tree

3 files changed

+1551
-0
lines changed

3 files changed

+1551
-0
lines changed

docs/JIT_ACTIVATION_MAPPING.md

Lines changed: 376 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,376 @@
1+
# JIT Activation Mapping Reference
2+
3+
This document provides a complete reference for all activation functions available in AiDotNet, their JIT compilation support status, and how to use them in your layers.
4+
5+
## Quick Reference
6+
7+
**Total Activations**: 37
8+
**Production-Ready**: 10
9+
**Available (Pending Integration)**: 27
10+
11+
---
12+
13+
## Production-Ready Activations (10)
14+
15+
These activations are fully integrated into DenseLayer and ready for use in JIT compilation.
16+
17+
### ReLU Family (1)
18+
19+
| Activation Class | TensorOperations Method | IEngine Method | Parameters | Status |
20+
|------------------|-------------------------|----------------|------------|--------|
21+
| `ReLUActivation<T>` | `TensorOperations<T>.ReLU(node)` | `IEngine<T>.ReLU(tensor)` | None | ✅ Ready |
22+
23+
**Usage Example:**
24+
```csharp
25+
// In CanActivationBeJitted()
26+
if (ScalarActivation is ReLUActivation<T>)
27+
return true;
28+
29+
// In ApplyActivationToGraph()
30+
if (ScalarActivation is ReLUActivation<T>)
31+
return TensorOperations<T>.ReLU(input);
32+
```
33+
34+
**Forward Function**: `f(x) = max(0, x)`
35+
36+
**Use Cases**: Default activation for hidden layers in most neural networks.
37+
38+
---
39+
40+
### Sigmoid Family (5)
41+
42+
| Activation Class | TensorOperations Method | IEngine Method | Parameters | Status |
43+
|------------------|-------------------------|----------------|------------|--------|
44+
| `SigmoidActivation<T>` | `TensorOperations<T>.Sigmoid(node)` | `IEngine<T>.Sigmoid(tensor)` | None | ✅ Ready |
45+
| `TanhActivation<T>` | `TensorOperations<T>.Tanh(node)` | `IEngine<T>.Tanh(tensor)` | None | ✅ Ready |
46+
| `SwishActivation<T>` | `TensorOperations<T>.Swish(node)` | `IEngine<T>.Swish(tensor)` | None | ✅ Ready |
47+
| `SiLUActivation<T>` | `TensorOperations<T>.SiLU(node)` | `IEngine<T>.SiLU(tensor)` | None | ✅ Ready |
48+
| `MishActivation<T>` | `TensorOperations<T>.Mish(node)` | `IEngine<T>.Mish(tensor)` | None | ✅ Ready |
49+
50+
**Usage Example (Sigmoid):**
51+
```csharp
52+
// In CanActivationBeJitted()
53+
if (ScalarActivation is SigmoidActivation<T>)
54+
return true;
55+
56+
// In ApplyActivationToGraph()
57+
if (ScalarActivation is SigmoidActivation<T>)
58+
return TensorOperations<T>.Sigmoid(input);
59+
```
60+
61+
**Forward Functions**:
62+
- **Sigmoid**: `f(x) = 1 / (1 + e^(-x))`
63+
- **Tanh**: `f(x) = (e^x - e^(-x)) / (e^x + e^(-x))`
64+
- **Swish**: `f(x) = x * sigmoid(x)` (also known as SiLU)
65+
- **SiLU**: Same as Swish
66+
- **Mish**: `f(x) = x * tanh(softplus(x))`
67+
68+
**Use Cases**:
69+
- **Sigmoid**: Binary classification output layers, LSTM gates
70+
- **Tanh**: RNN hidden states, centered outputs (-1 to 1)
71+
- **Swish/SiLU**: Modern alternative to ReLU with smooth gradients
72+
- **Mish**: Self-regularized activation, good for deep networks
73+
74+
---
75+
76+
### Modern Activations (2)
77+
78+
| Activation Class | TensorOperations Method | IEngine Method | Parameters | Status |
79+
|------------------|-------------------------|----------------|------------|--------|
80+
| `GELUActivation<T>` | `TensorOperations<T>.GELU(node)` | `IEngine<T>.GELU(tensor)` | None | ✅ Ready |
81+
| `ELUActivation<T>` | `TensorOperations<T>.ELU(node, alpha)` | `IEngine<T>.ELU(tensor, alpha)` | `alpha` (default: 1.0) | ✅ Ready |
82+
83+
**Usage Example (GELU):**
84+
```csharp
85+
// In CanActivationBeJitted()
86+
if (ScalarActivation is GELUActivation<T>)
87+
return true;
88+
89+
// In ApplyActivationToGraph()
90+
if (ScalarActivation is GELUActivation<T>)
91+
return TensorOperations<T>.GELU(input);
92+
```
93+
94+
**Usage Example (ELU with parameter):**
95+
```csharp
96+
// In CanActivationBeJitted()
97+
if (ScalarActivation is ELUActivation<T>)
98+
return true;
99+
100+
// In ApplyActivationToGraph()
101+
if (ScalarActivation is ELUActivation<T> elu)
102+
return TensorOperations<T>.ELU(input, elu.Alpha);
103+
```
104+
105+
**Forward Functions**:
106+
- **GELU**: `f(x) = x * Φ(x)` where Φ is the cumulative distribution function of the standard normal distribution
107+
- **ELU**: `f(x) = x if x > 0, else alpha * (e^x - 1)`
108+
109+
**Use Cases**:
110+
- **GELU**: Used in Transformers (BERT, GPT), superior to ReLU for NLP tasks
111+
- **ELU**: Reduces vanishing gradient problem, smooth negative values
112+
113+
---
114+
115+
### Vector Activations (1)
116+
117+
| Activation Class | TensorOperations Method | IEngine Method | Parameters | Status |
118+
|------------------|-------------------------|----------------|------------|--------|
119+
| `SoftmaxActivation<T>` | `TensorOperations<T>.Softmax(node, axis)` | `IEngine<T>.Softmax(tensor, axis)` | `axis` (default: -1) | ✅ Ready |
120+
121+
**Usage Example:**
122+
```csharp
123+
// In CanActivationBeJitted()
124+
if (VectorActivation is SoftmaxActivation<T>)
125+
return true;
126+
127+
// In ApplyActivationToGraph()
128+
if (VectorActivation is SoftmaxActivation<T>)
129+
return TensorOperations<T>.Softmax(input);
130+
```
131+
132+
**Forward Function**: `f(x_i) = e^(x_i) / Σ(e^(x_j))`
133+
134+
**Use Cases**: Multi-class classification output layers, attention mechanisms.
135+
136+
---
137+
138+
### Identity (1)
139+
140+
| Activation Class | TensorOperations Method | IEngine Method | Parameters | Status |
141+
|------------------|-------------------------|----------------|------------|--------|
142+
| `IdentityActivation<T>` | `input` (no-op) | N/A | None | ✅ Ready |
143+
144+
**Usage Example:**
145+
```csharp
146+
// In CanActivationBeJitted()
147+
if (ScalarActivation is IdentityActivation<T>)
148+
return true;
149+
150+
// In ApplyActivationToGraph()
151+
if (ScalarActivation is IdentityActivation<T>)
152+
return input; // No transformation
153+
```
154+
155+
**Forward Function**: `f(x) = x`
156+
157+
**Use Cases**: Linear layers, skip connections, output layers for regression.
158+
159+
---
160+
161+
## Available Activations - Pending Integration (27)
162+
163+
These activations have TensorOperations methods implemented but are not yet integrated into layer implementations. To use them, follow the pattern shown in the "Production-Ready" section above.
164+
165+
### ReLU Family (7)
166+
167+
| Activation Class | TensorOperations Method | Parameters | Forward Function | IEngine Status |
168+
|------------------|-------------------------|------------|------------------|----------------|
169+
| `LeakyReLUActivation<T>` | `TensorOperations<T>.LeakyReLU(node, negativeSlope)` | `negativeSlope` (default: 0.01) | `f(x) = max(negativeSlope*x, x)` | ✅ Integrated |
170+
| `SELUActivation<T>` | `TensorOperations<T>.SELU(node)` | None | `f(x) = scale * (max(0,x) + min(0, alpha*(e^x-1)))` | ✅ Integrated |
171+
| `CELUActivation<T>` | `TensorOperations<T>.CELU(node, alpha)` | `alpha` (default: 1.0) | `f(x) = max(0,x) + min(0, alpha*(e^(x/alpha)-1))` | ✅ Integrated |
172+
| `PReLUActivation<T>` | `TensorOperations<T>.PReLU(node, alpha)` | `alpha` (default: 0.25) | `f(x) = max(alpha*x, x)` | ✅ Integrated |
173+
| `RReLUActivation<T>` | `TensorOperations<T>.RReLU(node, lower, upper)` | `lower` (0.125), `upper` (0.333) | `f(x) = max(a*x, x)` where a ~ U(lower, upper) | ✅ Integrated |
174+
| `ThresholdedReLUActivation<T>` | `TensorOperations<T>.ThresholdedReLU(node, threshold)` | `threshold` (default: 1.0) | `f(x) = x if x > threshold, else 0` | ✅ Integrated |
175+
176+
**Integration Example (LeakyReLU):**
177+
```csharp
178+
// Add to CanActivationBeJitted()
179+
if (ScalarActivation is LeakyReLUActivation<T>)
180+
return true;
181+
182+
// Add to ApplyActivationToGraph()
183+
if (ScalarActivation is LeakyReLUActivation<T> leakyRelu)
184+
return TensorOperations<T>.LeakyReLU(input, leakyRelu.NegativeSlope);
185+
```
186+
187+
---
188+
189+
### Sigmoid Family (9)
190+
191+
| Activation Class | TensorOperations Method | Parameters | Forward Function | IEngine Status |
192+
|------------------|-------------------------|------------|------------------|----------------|
193+
| `HardSigmoidActivation<T>` | `TensorOperations<T>.HardSigmoid(node)` | None | `f(x) = clip((x+1)/2, 0, 1)` | ✅ Integrated |
194+
| `HardTanhActivation<T>` | `TensorOperations<T>.HardTanh(node)` | None | `f(x) = clip(x, -1, 1)` | ✅ Integrated |
195+
| `ScaledTanhActivation<T>` | `TensorOperations<T>.ScaledTanh(node, alpha, beta)` | `alpha` (1.0), `beta` (1.0) | `f(x) = alpha * tanh(beta * x)` | ✅ Integrated |
196+
| `SoftplusActivation<T>` | `TensorOperations<T>.Softplus(node)` | None | `f(x) = log(1 + e^x)` | ✅ Integrated |
197+
| `SoftsignActivation<T>` | `TensorOperations<T>.Softsign(node)` | None | `f(x) = x / (1 + abs(x))` | ✅ Integrated |
198+
| `BentIdentityActivation<T>` | `TensorOperations<T>.BentIdentity(node)` | None | `f(x) = (sqrt(x^2 + 1) - 1)/2 + x` | ✅ Integrated |
199+
200+
**Integration Example (Softplus):**
201+
```csharp
202+
// Add to CanActivationBeJitted()
203+
if (ScalarActivation is SoftplusActivation<T>)
204+
return true;
205+
206+
// Add to ApplyActivationToGraph()
207+
if (ScalarActivation is SoftplusActivation<T>)
208+
return TensorOperations<T>.Softplus(input);
209+
```
210+
211+
---
212+
213+
### Softmax Family (3)
214+
215+
| Activation Class | TensorOperations Method | Parameters | Forward Function | IEngine Status |
216+
|------------------|-------------------------|------------|------------------|----------------|
217+
| `SoftminActivation<T>` | `TensorOperations<T>.Softmin(node, axis)` | `axis` (default: -1) | `f(x_i) = e^(-x_i) / Σ(e^(-x_j))` | ✅ Integrated |
218+
| `LogSoftmaxActivation<T>` | `TensorOperations<T>.LogSoftmax(node, axis)` | `axis` (default: -1) | `f(x_i) = log(e^(x_i) / Σ(e^(x_j)))` | ✅ Integrated |
219+
| `LogSoftminActivation<T>` | `TensorOperations<T>.LogSoftmin(node, axis)` | `axis` (default: -1) | `f(x_i) = log(e^(-x_i) / Σ(e^(-x_j)))` | ✅ Integrated |
220+
221+
**Integration Example (LogSoftmax):**
222+
```csharp
223+
// Add to CanActivationBeJitted() - check VectorActivation
224+
if (VectorActivation is LogSoftmaxActivation<T>)
225+
return true;
226+
227+
// Add to ApplyActivationToGraph() - check VectorActivation
228+
if (VectorActivation is LogSoftmaxActivation<T>)
229+
return TensorOperations<T>.LogSoftmax(input);
230+
```
231+
232+
---
233+
234+
### Special Activations (8)
235+
236+
| Activation Class | TensorOperations Method | Parameters | Forward Function | IEngine Status |
237+
|------------------|-------------------------|------------|------------------|----------------|
238+
| `SignActivation<T>` | `TensorOperations<T>.Sign(node)` | None | `f(x) = 1 if x > 0, -1 if x < 0, 0 if x == 0` | ✅ Integrated |
239+
| `GaussianActivation<T>` | `TensorOperations<T>.Gaussian(node)` | None | `f(x) = e^(-x^2)` | ✅ Integrated |
240+
| `ISRUActivation<T>` | `TensorOperations<T>.ISRU(node, alpha)` | `alpha` (default: 1.0) | `f(x) = x / sqrt(1 + alpha*x^2)` | ✅ Integrated |
241+
| `LiSHTActivation<T>` | `TensorOperations<T>.LiSHT(node)` | None | `f(x) = x * tanh(x)` | ✅ Integrated |
242+
| `SQRBFActivation<T>` | `TensorOperations<T>.SQRBF(node, center, width)` | `center` (0.0), `width` (1.0) | `f(x) = e^(-((x-center)/width)^2)` | ✅ Integrated |
243+
| `SquashActivation<T>` | `TensorOperations<T>.Squash(node)` | None | `f(x) = (norm^2 / (1 + norm^2)) * (x / norm)` | ✅ Integrated |
244+
| `BinarySpikingActivation<T>` | `TensorOperations<T>.BinarySpiking(node, threshold)` | `threshold` (default: 0.0) | `f(x) = 1 if x > threshold, else 0` | ✅ Integrated |
245+
246+
**Integration Example (Gaussian):**
247+
```csharp
248+
// Add to CanActivationBeJitted()
249+
if (ScalarActivation is GaussianActivation<T>)
250+
return true;
251+
252+
// Add to ApplyActivationToGraph()
253+
if (ScalarActivation is GaussianActivation<T>)
254+
return TensorOperations<T>.Gaussian(input);
255+
```
256+
257+
---
258+
259+
### Complex Activations - Placeholder Status (6)
260+
261+
These activations have placeholder implementations in TensorOperations. Full implementation requires complex algorithms and will be completed in the gradient computation phase.
262+
263+
| Activation Class | TensorOperations Method | Parameters | Description | Status |
264+
|------------------|-------------------------|------------|-------------|--------|
265+
| `SparsemaxActivation<T>` | `TensorOperations<T>.Sparsemax(node, axis)` | `axis` (default: -1) | Projects onto simplex, produces sparse outputs | ⚠️ Placeholder |
266+
| `SphericalSoftmaxActivation<T>` | `TensorOperations<T>.SphericalSoftmax(node, axis)` | `axis` (default: -1) | Normalizes to unit sphere | ⚠️ Placeholder |
267+
| `GumbelSoftmaxActivation<T>` | `TensorOperations<T>.GumbelSoftmax(node, temp, axis)` | `temp` (1.0), `axis` (-1) | Differentiable sampling | ⚠️ Placeholder |
268+
| `TaylorSoftmaxActivation<T>` | `TensorOperations<T>.TaylorSoftmax(node, order, axis)` | `order` (2), `axis` (-1) | Taylor approximation of softmax | ⚠️ Placeholder |
269+
| `HierarchicalSoftmaxActivation<T>` | `TensorOperations<T>.HierarchicalSoftmax(node)` | None | Tree-structured softmax | ⚠️ Placeholder |
270+
| `MaxoutActivation<T>` | `TensorOperations<T>.Maxout(node, numPieces)` | `numPieces` (default: 2) | Learnable piecewise linear | ⚠️ Placeholder |
271+
272+
**Note**: These activations currently throw `NotImplementedException` for backward pass. Do not use in production until fully implemented.
273+
274+
---
275+
276+
## Backward Pass Status
277+
278+
**Current Status**: Placeholder implementations only
279+
280+
All TensorOperations activation methods currently have placeholder backward functions:
281+
282+
```csharp
283+
backward: (gradOutput) =>
284+
{
285+
throw new NotImplementedException("Backward pass for [Activation] not yet implemented");
286+
}
287+
```
288+
289+
**Future Work**: Gradient computation will be implemented in a future phase. This includes:
290+
- Analytical gradient formulas for all 37 activations
291+
- Efficient backward pass implementations
292+
- Support for training with JIT-compiled graphs
293+
294+
**Current Limitation**: JIT compilation is only suitable for **inference** (forward pass only). For **training**, use eager mode until backward pass is implemented.
295+
296+
---
297+
298+
## Activation Selection Guide
299+
300+
### For Image Classification (CNNs)
301+
302+
**Recommended**:
303+
- Hidden layers: `ReLUActivation<T>` (fast, effective)
304+
- Modern alternative: `GELUActivation<T>` (smoother gradients)
305+
- Output layer: `SoftmaxActivation<T>` (multi-class)
306+
307+
**Example**:
308+
```csharp
309+
var conv1 = new ConvolutionalLayer<float>(filters: 32, kernelSize: 3, activation: new ReLUActivation<float>());
310+
var conv2 = new ConvolutionalLayer<float>(filters: 64, kernelSize: 3, activation: new ReLUActivation<float>());
311+
var dense = new DenseLayer<float>(inputSize: 1024, outputSize: 10, activation: new SoftmaxActivation<float>());
312+
```
313+
314+
### For Natural Language Processing (Transformers)
315+
316+
**Recommended**:
317+
- Hidden layers: `GELUActivation<T>` (used in BERT, GPT)
318+
- Alternative: `SwishActivation<T>` or `MishActivation<T>`
319+
- Output layer: `SoftmaxActivation<T>` (classification) or `IdentityActivation<T>` (regression)
320+
321+
**Example**:
322+
```csharp
323+
var feedForward = new DenseLayer<float>(inputSize: 768, outputSize: 3072, activation: new GELUActivation<float>());
324+
var output = new DenseLayer<float>(inputSize: 3072, outputSize: 768, activation: new IdentityActivation<float>());
325+
```
326+
327+
### For Recurrent Networks (RNNs, LSTMs, GRUs)
328+
329+
**Recommended**:
330+
- Gates: `SigmoidActivation<T>` (LSTM/GRU gates)
331+
- Hidden state: `TanhActivation<T>` (LSTM/GRU hidden state)
332+
- Output layer: `SoftmaxActivation<T>` (classification)
333+
334+
**Example**:
335+
```csharp
336+
// LSTM uses both Sigmoid (for gates) and Tanh (for cell state)
337+
var lstm = new LSTMLayer<float>(inputSize: 100, hiddenSize: 128);
338+
// Gates internally use Sigmoid, cell state uses Tanh
339+
```
340+
341+
### For Generative Models (GANs, VAEs)
342+
343+
**Recommended**:
344+
- Generator hidden: `LeakyReLUActivation<T>` or `ELUActivation<T>` (avoid dying ReLU)
345+
- Generator output: `TanhActivation<T>` (normalize to [-1, 1])
346+
- Discriminator: `LeakyReLUActivation<T>` (stable gradients)
347+
348+
**Example**:
349+
```csharp
350+
var genHidden = new DenseLayer<float>(inputSize: 100, outputSize: 256, activation: new LeakyReLUActivation<float>());
351+
var genOutput = new DenseLayer<float>(inputSize: 256, outputSize: 784, activation: new TanhActivation<float>());
352+
```
353+
354+
---
355+
356+
## Integration Checklist
357+
358+
When adding JIT support for an activation to your layer:
359+
360+
- [ ] Check if activation is in "Production-Ready" list
361+
- [ ] If not, check "Available Activations - Pending Integration" list
362+
- [ ] Add activation type check to `CanActivationBeJitted()`
363+
- [ ] Add activation mapping to `ApplyActivationToGraph()`
364+
- [ ] Handle parameterized activations correctly (extract parameters)
365+
- [ ] Update `SupportsJitCompilation` property
366+
- [ ] Update XML documentation with supported activations
367+
- [ ] Test with sample data
368+
- [ ] Verify JIT compilation succeeds
369+
- [ ] Benchmark performance
370+
371+
---
372+
373+
## See Also
374+
375+
- [JIT_COMPILATION_PATTERN_GUIDE.md](JIT_COMPILATION_PATTERN_GUIDE.md) - Complete implementation guide
376+
- [JIT_ROADMAP.md](JIT_ROADMAP.md) - Current status and future work

0 commit comments

Comments
 (0)