|
6 | 6 |
|
7 | 7 | import numpy as np |
8 | 8 | import pytest |
9 | | -from modflow_devtools.markers import requires_exe, requires_pkg |
| 9 | +import xarray as xr |
10 | 10 |
|
11 | 11 | import flopy |
12 | | -from flopy.utils import import_optional_dependency |
| 12 | +from flopy.discretization.structuredgrid import StructuredGrid |
| 13 | +from flopy.discretization.vertexgrid import VertexGrid |
13 | 14 | from flopy.utils.datautil import DatumUtil |
14 | 15 | from flopy.utils.gridutil import get_disv_kwargs |
| 16 | +from flopy.utils.model_netcdf import create_dataset |
| 17 | + |
| 18 | + |
| 19 | +def compare_netcdf(base, gen): |
| 20 | + """Check for functional equivalence""" |
| 21 | + xrb = xr.open_dataset(base, engine="netcdf4") |
| 22 | + xrg = xr.open_dataset(gen, engine="netcdf4") |
| 23 | + |
| 24 | + # global attributes |
| 25 | + for a in xrb.attrs: |
| 26 | + # TODO |
| 27 | + if a == "title" or a == "history" or a == "source": |
| 28 | + assert a in xrg.attrs |
| 29 | + continue |
| 30 | + assert xrb.attrs[a] == xrg.attrs[a] |
| 31 | + |
| 32 | + # coordinates |
| 33 | + for coordname, da in xrb.coords.items(): |
| 34 | + assert coordname in xrg.coords |
| 35 | + # TODO |
| 36 | + # assert np.allclose(xrb.coords[coordname].data, xrg.coords[coordname].data) |
| 37 | + |
| 38 | + # variables |
| 39 | + for varname, da in xrb.data_vars.items(): |
| 40 | + # TODO |
| 41 | + if varname == "mesh_face_xbnds" or varname == "mesh_face_ybnds": |
| 42 | + continue |
| 43 | + |
| 44 | + # TODO |
| 45 | + if varname == "projection": |
| 46 | + continue |
| 47 | + |
| 48 | + # check variable name |
| 49 | + assert varname in xrg.data_vars |
| 50 | + |
| 51 | + # check variable attributes |
| 52 | + for a in da.attrs: |
| 53 | + # TODO delr/delc |
| 54 | + if a == "grid_mapping" or a == "long_name": |
| 55 | + continue |
| 56 | + assert da.attrs[a] == xrg.data_vars[varname].attrs[a] |
| 57 | + |
| 58 | + # check variable data |
| 59 | + print(f"NetCDF file check data equivalence for variable: {varname}") |
| 60 | + assert np.allclose(da.data, xrg.data_vars[varname].data) |
15 | 61 |
|
16 | 62 |
|
17 | | -@requires_pkg("xarray") |
18 | | -@requires_exe("mf6") |
19 | 63 | @pytest.mark.regression |
20 | | -def test_load_netcdf_gwfsto01(function_tmpdir, example_data_path): |
21 | | - xr = import_optional_dependency("xarray") |
| 64 | +def test_load_gwfsto01(function_tmpdir, example_data_path): |
22 | 65 | data_path_base = example_data_path / "mf6" / "netcdf" |
23 | 66 | tests = { |
24 | 67 | "test_gwf_sto01_mesh": { |
@@ -71,14 +114,11 @@ def test_load_netcdf_gwfsto01(function_tmpdir, example_data_path): |
71 | 114 | for line1, line2 in zip(file1, file2): |
72 | 115 | assert line1.lower() == line2.lower() |
73 | 116 | else: |
74 | | - # TODO compare nc files |
75 | | - assert os.path.exists(gen) |
| 117 | + compare_netcdf(base, gen) |
76 | 118 |
|
77 | 119 |
|
78 | | -@requires_pkg("xarray") |
79 | 120 | @pytest.mark.regression |
80 | | -def test_create_netcdf_gwfsto01(function_tmpdir, example_data_path): |
81 | | - xr = import_optional_dependency("xarray") |
| 121 | +def test_create_gwfsto01(function_tmpdir, example_data_path): |
82 | 122 | data_path_base = example_data_path / "mf6" / "netcdf" |
83 | 123 | tests = { |
84 | 124 | "test_gwf_sto01_mesh": { |
@@ -308,14 +348,134 @@ def test_create_netcdf_gwfsto01(function_tmpdir, example_data_path): |
308 | 348 | for line1, line2 in zip(file1, file2): |
309 | 349 | assert line1 == line2 |
310 | 350 | else: |
311 | | - # TODO compare nc files |
312 | | - assert os.path.exists(gen) |
| 351 | + compare_netcdf(base, gen) |
313 | 352 |
|
314 | 353 |
|
315 | | -@requires_pkg("xarray") |
316 | 354 | @pytest.mark.regression |
317 | | -def test_load_netcdf_disv01b(function_tmpdir, example_data_path): |
318 | | - xr = import_optional_dependency("xarray") |
| 355 | +def test_gwfsto01(function_tmpdir, example_data_path): |
| 356 | + data_path_base = example_data_path / "mf6" / "netcdf" |
| 357 | + tests = { |
| 358 | + "test_gwf_sto01_mesh": { |
| 359 | + "base_sim_dir": "gwf_sto01", |
| 360 | + "netcdf_output_file": "gwf_sto01.in.nc", |
| 361 | + "netcdf_type": "mesh2d", |
| 362 | + }, |
| 363 | + "test_gwf_sto01_structured": { |
| 364 | + "base_sim_dir": "gwf_sto01", |
| 365 | + "netcdf_output_file": "gwf_sto01.in.nc", |
| 366 | + "netcdf_type": "structured", |
| 367 | + }, |
| 368 | + } |
| 369 | + |
| 370 | + # spatial discretization data |
| 371 | + nlay, nrow, ncol = 3, 10, 10 |
| 372 | + delr = [1000.0] |
| 373 | + delc = [2000.0] |
| 374 | + top = np.full((nrow, ncol), 0.0) |
| 375 | + botm = [] |
| 376 | + botm.append(np.full((nrow, ncol), -100.0)) |
| 377 | + botm.append(np.full((nrow, ncol), -150.0)) |
| 378 | + botm.append(np.full((nrow, ncol), -350.0)) |
| 379 | + botm = np.array(botm) |
| 380 | + |
| 381 | + # ic |
| 382 | + strt = np.full((nlay, nrow, ncol), 0.0) |
| 383 | + |
| 384 | + # npf |
| 385 | + # icelltype |
| 386 | + ic1 = np.full((nrow, ncol), 1) |
| 387 | + ic2 = np.full((nrow, ncol), 0) |
| 388 | + ic3 = np.full((nrow, ncol), 0) |
| 389 | + icelltype = np.array([ic1, ic2, ic3]) |
| 390 | + |
| 391 | + # k |
| 392 | + hk2fact = 1.0 / 50.0 |
| 393 | + hk2 = np.ones((nrow, ncol), dtype=float) * 0.5 * hk2fact |
| 394 | + hk2[0, :] = 1000.0 * hk2fact |
| 395 | + hk2[-1, :] = 1000.0 * hk2fact |
| 396 | + hk2[:, 0] = 1000.0 * hk2fact |
| 397 | + hk2[:, -1] = 1000.0 * hk2fact |
| 398 | + k1 = np.full((nrow, ncol), 20.0) |
| 399 | + k3 = np.full((nrow, ncol), 5.0) |
| 400 | + k = np.array([k1, hk2, k3]) |
| 401 | + |
| 402 | + # k33 |
| 403 | + k33_1 = np.full((nrow, ncol), 1e6) |
| 404 | + k33_2 = np.full((nrow, ncol), 7.5e-5) |
| 405 | + k33_3 = np.full((nrow, ncol), 1e6) |
| 406 | + k33 = np.array([k33_1, k33_2, k33_3]) |
| 407 | + |
| 408 | + # sto |
| 409 | + iconvert = icelltype |
| 410 | + |
| 411 | + # storage and compaction data |
| 412 | + ss1 = np.full((nrow, ncol), 6e-4) |
| 413 | + ss2 = np.full((nrow, ncol), 3e-4) |
| 414 | + ss3 = np.full((nrow, ncol), 6e-4) |
| 415 | + ss = np.array([ss1, ss2, ss3]) |
| 416 | + |
| 417 | + sy = np.full((nlay, nrow, ncol), 0) |
| 418 | + |
| 419 | + ws = function_tmpdir / "ws" |
| 420 | + for base_folder, test_info in tests.items(): |
| 421 | + print(f"RUNNING TEST: {base_folder}") |
| 422 | + data_path = os.path.join(data_path_base, base_folder, test_info["base_sim_dir"]) |
| 423 | + # copy example data into working directory |
| 424 | + base_model_folder = os.path.join(ws, f"{base_folder}_base") |
| 425 | + test_model_folder = os.path.join(ws, f"{base_folder}_test") |
| 426 | + shutil.copytree(data_path, base_model_folder) |
| 427 | + os.mkdir(test_model_folder) |
| 428 | + |
| 429 | + # create discretization |
| 430 | + dis = flopy.discretization.StructuredGrid( |
| 431 | + delc=np.array(delc * nrow), |
| 432 | + delr=np.array(delr * ncol), |
| 433 | + top=top, |
| 434 | + botm=botm, |
| 435 | + nlay=nlay, |
| 436 | + nrow=nrow, |
| 437 | + ncol=ncol, |
| 438 | + ) |
| 439 | + |
| 440 | + ds = create_dataset( |
| 441 | + "gwf6", |
| 442 | + "gwf_sto01", |
| 443 | + test_info["netcdf_type"], |
| 444 | + test_info["netcdf_output_file"], |
| 445 | + dis, |
| 446 | + ) |
| 447 | + |
| 448 | + # add dis arrays |
| 449 | + ds.create_array("dis", "delc", dis.delc, ["nrow"]) |
| 450 | + ds.create_array("dis", "delr", dis.delr, ["ncol"]) |
| 451 | + ds.create_array("dis", "top", dis.top, ["nrow", "ncol"]) |
| 452 | + ds.create_array("dis", "botm", dis.botm, ["nlay", "nrow", "ncol"]) |
| 453 | + |
| 454 | + # add ic array |
| 455 | + ds.create_array("ic", "strt", strt, ["nlay", "nrow", "ncol"]) |
| 456 | + |
| 457 | + # add npf arrays |
| 458 | + ds.create_array("npf", "icelltype", icelltype, ["nlay", "nrow", "ncol"]) |
| 459 | + ds.create_array("npf", "k", k, ["nlay", "nrow", "ncol"]) |
| 460 | + ds.create_array("npf", "k33", k33, ["nlay", "nrow", "ncol"]) |
| 461 | + |
| 462 | + # add sto array |
| 463 | + ds.create_array("sto", "iconvert", iconvert, ["nlay", "nrow", "ncol"]) |
| 464 | + ds.create_array("sto", "ss", ss, ["nlay", "nrow", "ncol"]) |
| 465 | + ds.create_array("sto", "sy", sy, ["nlay", "nrow", "ncol"]) |
| 466 | + |
| 467 | + # write to netcdf |
| 468 | + ds.write(test_model_folder) |
| 469 | + |
| 470 | + # compare |
| 471 | + compare_netcdf( |
| 472 | + os.path.join(base_model_folder, test_info["netcdf_output_file"]), |
| 473 | + os.path.join(test_model_folder, test_info["netcdf_output_file"]), |
| 474 | + ) |
| 475 | + |
| 476 | + |
| 477 | +@pytest.mark.regression |
| 478 | +def test_load_disv01b(function_tmpdir, example_data_path): |
319 | 479 | data_path_base = example_data_path / "mf6" / "netcdf" |
320 | 480 | tests = { |
321 | 481 | "test_gwf_disv01b": { |
@@ -363,14 +523,11 @@ def test_load_netcdf_disv01b(function_tmpdir, example_data_path): |
363 | 523 | for line1, line2 in zip(file1, file2): |
364 | 524 | assert line1.lower() == line2.lower() |
365 | 525 | else: |
366 | | - # TODO compare nc files |
367 | | - assert os.path.exists(gen) |
| 526 | + compare_netcdf(base, gen) |
368 | 527 |
|
369 | 528 |
|
370 | | -@requires_pkg("xarray") |
371 | 529 | @pytest.mark.regression |
372 | | -def test_create_netcdf_disv01b(function_tmpdir, example_data_path): |
373 | | - xr = import_optional_dependency("xarray") |
| 530 | +def test_create_disv01b(function_tmpdir, example_data_path): |
374 | 531 | data_path_base = example_data_path / "mf6" / "netcdf" |
375 | 532 | tests = { |
376 | 533 | "test_gwf_disv01b": { |
@@ -453,5 +610,130 @@ def test_create_netcdf_disv01b(function_tmpdir, example_data_path): |
453 | 610 | for line1, line2 in zip(file1, file2): |
454 | 611 | assert line1 == line2 |
455 | 612 | else: |
456 | | - # TODO compare nc files |
457 | | - assert os.path.exists(gen) |
| 613 | + compare_netcdf(base, gen) |
| 614 | + |
| 615 | + |
| 616 | +@pytest.mark.regression |
| 617 | +def test_disv01b(function_tmpdir, example_data_path): |
| 618 | + data_path_base = example_data_path / "mf6" / "netcdf" |
| 619 | + tests = { |
| 620 | + "test_gwf_disv01b": { |
| 621 | + "base_sim_dir": "disv01b", |
| 622 | + "netcdf_output_file": "disv01b.in.nc", |
| 623 | + "netcdf_type": "mesh2d", |
| 624 | + }, |
| 625 | + } |
| 626 | + |
| 627 | + nlay = 3 |
| 628 | + nrow = 3 |
| 629 | + ncol = 3 |
| 630 | + ncpl = nrow * ncol |
| 631 | + # delr = 10.0 |
| 632 | + # delc = 10.0 |
| 633 | + # xoff = 100000000.0 |
| 634 | + # yoff = 100000000.0 |
| 635 | + |
| 636 | + vertices = [ |
| 637 | + (0, 1.0000000e08, 1.0000003e08), |
| 638 | + (1, 1.0000001e08, 1.0000003e08), |
| 639 | + (2, 1.0000002e08, 1.0000003e08), |
| 640 | + (3, 1.0000003e08, 1.0000003e08), |
| 641 | + (4, 1.0000000e08, 1.0000002e08), |
| 642 | + (5, 1.0000001e08, 1.0000002e08), |
| 643 | + (6, 1.0000002e08, 1.0000002e08), |
| 644 | + (7, 1.0000003e08, 1.0000002e08), |
| 645 | + (8, 1.0000000e08, 1.0000001e08), |
| 646 | + (9, 1.0000001e08, 1.0000001e08), |
| 647 | + (10, 1.0000002e08, 1.0000001e08), |
| 648 | + (11, 1.0000003e08, 1.0000001e08), |
| 649 | + (12, 1.0000000e08, 1.0000000e08), |
| 650 | + (13, 1.0000001e08, 1.0000000e08), |
| 651 | + (14, 1.0000002e08, 1.0000000e08), |
| 652 | + (15, 1.0000003e08, 1.0000000e08), |
| 653 | + ] |
| 654 | + |
| 655 | + cell2d = [ |
| 656 | + (0, 1.00000005e08, 1.00000025e08, 4, 0, 1, 5, 4), |
| 657 | + (1, 1.00000015e08, 1.00000025e08, 4, 1, 2, 6, 5), |
| 658 | + (2, 1.00000025e08, 1.00000025e08, 4, 2, 3, 7, 6), |
| 659 | + (3, 1.00000005e08, 1.00000015e08, 4, 4, 5, 9, 8), |
| 660 | + (4, 1.00000015e08, 1.00000015e08, 4, 5, 6, 10, 9), |
| 661 | + (5, 1.00000025e08, 1.00000015e08, 4, 6, 7, 11, 10), |
| 662 | + (6, 1.00000005e08, 1.00000005e08, 4, 8, 9, 13, 12), |
| 663 | + (7, 1.00000015e08, 1.00000005e08, 4, 9, 10, 14, 13), |
| 664 | + (8, 1.00000025e08, 1.00000005e08, 4, 10, 11, 15, 14), |
| 665 | + ] |
| 666 | + |
| 667 | + top = np.array(np.full((ncpl), 0.0)) |
| 668 | + |
| 669 | + idomain = np.array( |
| 670 | + [ |
| 671 | + [1, 0, 1, 1, 1, 1, 1, 1, 1], |
| 672 | + [1, 1, 1, 1, 1, 1, 1, 1, 1], |
| 673 | + [1, 1, 1, 1, 1, 1, 1, 1, 1], |
| 674 | + ] |
| 675 | + ) |
| 676 | + |
| 677 | + botm = [] |
| 678 | + botm.append(np.full((ncpl), -10.0)) |
| 679 | + botm.append(np.full((ncpl), -20.0)) |
| 680 | + botm.append(np.full((ncpl), -30.0)) |
| 681 | + botm = np.array(botm) |
| 682 | + |
| 683 | + # npf |
| 684 | + icelltype = np.full((nlay, ncpl), 0) |
| 685 | + k = np.full((nlay, ncpl), 1) |
| 686 | + |
| 687 | + # ic |
| 688 | + strt = np.full((nlay, ncpl), 0.0) |
| 689 | + |
| 690 | + ws = function_tmpdir / "ws" |
| 691 | + for base_folder, test_info in tests.items(): |
| 692 | + print(f"RUNNING TEST: {base_folder}") |
| 693 | + data_path = os.path.join(data_path_base, base_folder, test_info["base_sim_dir"]) |
| 694 | + # copy example data into working directory |
| 695 | + base_model_folder = os.path.join(ws, f"{base_folder}_base") |
| 696 | + test_model_folder = os.path.join(ws, f"{base_folder}_test") |
| 697 | + shutil.copytree(data_path, base_model_folder) |
| 698 | + os.mkdir(test_model_folder) |
| 699 | + |
| 700 | + # create discretization |
| 701 | + disv = VertexGrid( |
| 702 | + vertices=vertices, |
| 703 | + cell2d=cell2d, |
| 704 | + top=top, |
| 705 | + idomain=idomain, |
| 706 | + botm=botm, |
| 707 | + nlay=nlay, |
| 708 | + ncpl=ncpl, |
| 709 | + ) |
| 710 | + |
| 711 | + # create dataset |
| 712 | + ds = create_dataset( |
| 713 | + "gwf6", |
| 714 | + "disv01b", |
| 715 | + test_info["netcdf_type"], |
| 716 | + test_info["netcdf_output_file"], |
| 717 | + disv, |
| 718 | + ) |
| 719 | + |
| 720 | + # add dis arrays |
| 721 | + ds.create_array("disv", "top", disv.top, ["ncpl"]) |
| 722 | + ds.create_array("disv", "botm", disv.botm, ["nlay", "ncpl"]) |
| 723 | + ds.create_array("disv", "idomain", disv.idomain, ["nlay", "ncpl"]) |
| 724 | + |
| 725 | + # add npf arrays |
| 726 | + ds.create_array("npf", "icelltype", icelltype, ["nlay", "ncpl"]) |
| 727 | + ds.create_array("npf", "k", k, ["nlay", "ncpl"]) |
| 728 | + |
| 729 | + # add ic arrays |
| 730 | + ds.create_array("ic", "strt", strt, ["nlay", "ncpl"]) |
| 731 | + |
| 732 | + # write to netcdf |
| 733 | + ds.write(test_model_folder) |
| 734 | + |
| 735 | + # compare |
| 736 | + compare_netcdf( |
| 737 | + os.path.join(base_model_folder, test_info["netcdf_output_file"]), |
| 738 | + os.path.join(test_model_folder, test_info["netcdf_output_file"]), |
| 739 | + ) |
0 commit comments