Skip to content

RuntimeError: No such operator aten::cudnn_convolution_backward_weight #97

@chun-chih-lin

Description

@chun-chih-lin

I'm trying to create a new model by myself by using the following command:

python train.py --outdir=training-runs --data=https://data-efficient-gans.mit.edu/datasets/100-shot-obama.zip --gpus=1

And I ran into the Error:

return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] Traceback (most recent call last): File "F:\USB Backup\Clemson University\Course\Artificial Intellengent\Project\data-efficient-gans-master\data-efficient-gans-master\DiffAugment-stylegan2-pytorch\train.py", line 554, in main() # pylint: disable=no-value-for-parameter File "C:\Users\Dinner.conda\envs\pytorch\lib\site-packages\click\core.py", line 1130, in call return self.main(*args, **kwargs) File "C:\Users\Dinner.conda\envs\pytorch\lib\site-packages\click\core.py", line 1055, in main rv = self.invoke(ctx) File "C:\Users\Dinner.conda\envs\pytorch\lib\site-packages\click\core.py", line 1404, in invoke return ctx.invoke(self.callback, **ctx.params) File "C:\Users\Dinner.conda\envs\pytorch\lib\site-packages\click\core.py", line 760, in invoke return _callback(*args, **kwargs) File "C:\Users\Dinner.conda\envs\pytorch\lib\site-packages\click\decorators.py", line 26, in new_func return f(get_current_context(), *args, **kwargs) File "F:\USB Backup\Clemson University\Course\Artificial Intellengent\Project\data-efficient-gans-master\data-efficient-gans-master\DiffAugment-stylegan2-pytorch\train.py", line 547, in main subprocess_fn(rank=0, args=args, temp_dir=temp_dir) File "F:\USB Backup\Clemson University\Course\Artificial Intellengent\Project\data-efficient-gans-master\data-efficient-gans-master\DiffAugment-stylegan2-pytorch\train.py", line 398, in subprocess_fn training_loop.training_loop(rank=rank, **args) File "F:\USB Backup\Clemson University\Course\Artificial Intellengent\Project\data-efficient-gans-master\data-efficient-gans-master\DiffAugment-stylegan2-pytorch\training\training_loop.py", line 284, in training_loop loss.accumulate_gradients(phase=phase.name, real_img=real_img, real_c=real_c, gen_z=gen_z, gen_c=gen_c, sync=sync, gain=gain) File "F:\USB Backup\Clemson University\Course\Artificial Intellengent\Project\data-efficient-gans-master\data-efficient-gans-master\DiffAugment-stylegan2-pytorch\training\loss.py", line 79, in accumulate_gradients loss_Gmain.mean().mul(gain).backward() File "C:\Users\Dinner.conda\envs\pytorch\lib\site-packages\torch_tensor.py", line 363, in backward torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs) File "C:\Users\Dinner.conda\envs\pytorch\lib\site-packages\torch\autograd_init.py", line 173, in backward Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "C:\Users\Dinner.conda\envs\pytorch\lib\site-packages\torch\autograd\function.py", line 253, in apply return user_fn(self, *args) File "F:\USB Backup\Clemson University\Course\Artificial Intellengent\Project\data-efficient-gans-master\data-efficient-gans-master\DiffAugment-stylegan2-pytorch\torch_utils\ops\conv2d_gradfix.py", line 133, in backward grad_weight = Conv2dGradWeight.apply(grad_output, input) File "F:\USB Backup\Clemson University\Course\Artificial Intellengent\Project\data-efficient-gans-master\data-efficient-gans-master\DiffAugment-stylegan2-pytorch\torch_utils\ops\conv2d_gradfix.py", line 145, in forward op = torch._C._jit_get_operation('aten::cudnn_convolution_backward_weight' if not transpose else 'aten::cudnn_convolution_transpose_backward_weight') RuntimeError: No such operator aten::cudnn_convolution_backward_weight

My Cuda version:
nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2021 NVIDIA Corporation Built on Sun_Mar_21_19:24:09_Pacific_Daylight_Time_2021 Cuda compilation tools, release 11.3, V11.3.58 Build cuda_11.3.r11.3/compiler.29745058_0

Pytorch version:
1.11.0

How should I fix it?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions