|
| 1 | +import numpy as np |
| 2 | +from torch import nn |
| 3 | +from torch.nn import functional as F |
| 4 | +import torch |
| 5 | + |
| 6 | + |
| 7 | +class Conv2dBnRelu(nn.Module): |
| 8 | + PADDING_METHODS = {'replication': nn.ReplicationPad2d, |
| 9 | + 'reflection': nn.ReflectionPad2d, |
| 10 | + 'zero': nn.ZeroPad2d, |
| 11 | + } |
| 12 | + |
| 13 | + def __init__(self, in_channels, out_channels, kernel_size=(3, 3), |
| 14 | + use_relu=True, use_batch_norm=True, use_padding=True, padding_method='replication'): |
| 15 | + super().__init__() |
| 16 | + self.use_relu = use_relu |
| 17 | + self.use_batch_norm = use_batch_norm |
| 18 | + self.use_padding = use_padding |
| 19 | + self.kernel_w = kernel_size[0] |
| 20 | + self.kernel_h = kernel_size[1] |
| 21 | + self.padding_w = kernel_size[0] - 1 |
| 22 | + self.padding_h = kernel_size[1] - 1 |
| 23 | + |
| 24 | + self.batch_norm = nn.BatchNorm2d(out_channels) |
| 25 | + self.relu = nn.ReLU(inplace=True) |
| 26 | + self.padding = Conv2dBnRelu.PADDING_METHODS[padding_method](padding=(0, self.padding_h, self.padding_w, 0)) |
| 27 | + self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, padding=0) |
| 28 | + |
| 29 | + def forward(self, x): |
| 30 | + if self.use_padding: |
| 31 | + x = self.padding(x) |
| 32 | + x = self.conv(x) |
| 33 | + if self.use_batch_norm: |
| 34 | + x = self.batch_norm(x) |
| 35 | + if self.use_relu: |
| 36 | + x = self.relu(x) |
| 37 | + return x |
| 38 | + |
| 39 | + |
| 40 | +class DeconvConv2dBnRelu(nn.Module): |
| 41 | + def __init__(self, in_channels, out_channels, use_relu=True, use_batch_norm=True): |
| 42 | + super().__init__() |
| 43 | + self.use_relu = use_relu |
| 44 | + self.use_batch_norm = use_batch_norm |
| 45 | + |
| 46 | + self.batch_norm = nn.BatchNorm2d(out_channels) |
| 47 | + self.relu = nn.ReLU(inplace=True) |
| 48 | + self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=3, |
| 49 | + stride=2, padding=1, output_padding=1) |
| 50 | + |
| 51 | + def forward(self, x): |
| 52 | + x = self.deconv(x) |
| 53 | + if self.use_batch_norm: |
| 54 | + x = self.batch_norm(x) |
| 55 | + if self.use_relu: |
| 56 | + x = self.relu(x) |
| 57 | + return x |
| 58 | + |
| 59 | + |
| 60 | +class NoOperation(nn.Module): |
| 61 | + def forward(self, x): |
| 62 | + return x |
| 63 | + |
| 64 | + |
| 65 | +class DecoderBlock(nn.Module): |
| 66 | + def __init__(self, in_channels, middle_channels, out_channels): |
| 67 | + super(DecoderBlock, self).__init__() |
| 68 | + self.conv1 = Conv2dBnRelu(in_channels, middle_channels) |
| 69 | + self.conv2 = Conv2dBnRelu(middle_channels, out_channels) |
| 70 | + self.upsample = nn.Upsample(scale_factor=2, mode='bilinear') |
| 71 | + self.relu = nn.ReLU(inplace=True) |
| 72 | + self.channel_se = ChannelSELayer(out_channels, reduction=16) |
| 73 | + self.spatial_se = SpatialSELayer(out_channels) |
| 74 | + |
| 75 | + def forward(self, x, e=None): |
| 76 | + x = self.upsample(x) |
| 77 | + if e is not None: |
| 78 | + x = torch.cat([x, e], 1) |
| 79 | + x = self.conv1(x) |
| 80 | + x = self.conv2(x) |
| 81 | + |
| 82 | + channel_se = self.channel_se(x) |
| 83 | + spatial_se = self.spatial_se(x) |
| 84 | + |
| 85 | + x = self.relu(channel_se + spatial_se) |
| 86 | + return x |
| 87 | + |
| 88 | + |
| 89 | +class ChannelSELayer(nn.Module): |
| 90 | + def __init__(self, channel, reduction=16): |
| 91 | + super().__init__() |
| 92 | + self.avg_pool = nn.AdaptiveAvgPool2d(1) |
| 93 | + self.fc = nn.Sequential( |
| 94 | + nn.Linear(channel, channel // reduction), |
| 95 | + nn.ReLU(inplace=True), |
| 96 | + nn.Linear(channel // reduction, channel), |
| 97 | + nn.Sigmoid() |
| 98 | + ) |
| 99 | + |
| 100 | + def forward(self, x): |
| 101 | + b, c, _, _ = x.size() |
| 102 | + y = self.avg_pool(x).view(b, c) |
| 103 | + y = self.fc(y).view(b, c, 1, 1) |
| 104 | + return x * y |
| 105 | + |
| 106 | + |
| 107 | +class SpatialSELayer(nn.Module): |
| 108 | + def __init__(self, channels): |
| 109 | + super().__init__() |
| 110 | + self.fc = nn.Conv2d(channels, 1, kernel_size=1) |
| 111 | + self.sigmoid = nn.Sigmoid() |
| 112 | + |
| 113 | + def forward(self, x): |
| 114 | + module_input = x |
| 115 | + x = self.fc(x) |
| 116 | + x = self.sigmoid(x) |
| 117 | + return module_input * x |
| 118 | + |
| 119 | + |
| 120 | +class DepthChannelExcitation(nn.Module): |
| 121 | + def __init__(self, channels): |
| 122 | + super().__init__() |
| 123 | + |
| 124 | + self.fc = nn.Sequential(nn.Linear(1, channels), |
| 125 | + nn.Sigmoid() |
| 126 | + ) |
| 127 | + |
| 128 | + def forward(self, x, d=None): |
| 129 | + b, c, _, _ = x.size() |
| 130 | + y = self.fc(d).view(b, c, 1, 1) |
| 131 | + return x * y |
| 132 | + |
| 133 | + |
| 134 | +class DepthSpatialExcitation(nn.Module): |
| 135 | + def __init__(self, grid_size=16): |
| 136 | + super().__init__() |
| 137 | + self.grid_size = grid_size |
| 138 | + self.grid_size_sqrt = int(np.sqrt(grid_size)) |
| 139 | + |
| 140 | + self.fc = nn.Sequential(nn.Linear(1, grid_size), |
| 141 | + nn.Sigmoid() |
| 142 | + ) |
| 143 | + |
| 144 | + def forward(self, x, d=None): |
| 145 | + b, _, h, w = x.size() |
| 146 | + y = self.fc(d).view(b, 1, self.grid_size_sqrt, self.grid_size_sqrt) |
| 147 | + scale_factor = h // self.grid_size_sqrt |
| 148 | + y = F.upsample(y, scale_factor=scale_factor, mode='bilinear') |
| 149 | + return x * y |
| 150 | + |
| 151 | + |
| 152 | +class GlobalConvolutionalNetwork(nn.Module): |
| 153 | + def __init__(self, in_channels, out_channels, kernel_size, use_relu=False): |
| 154 | + super().__init__() |
| 155 | + |
| 156 | + self.conv1 = nn.Sequential(Conv2dBnRelu(in_channels=in_channels, |
| 157 | + out_channels=out_channels, |
| 158 | + kernel_size=(kernel_size, 1), |
| 159 | + use_relu=use_relu, use_padding=True), |
| 160 | + Conv2dBnRelu(in_channels=out_channels, |
| 161 | + out_channels=out_channels, |
| 162 | + kernel_size=(1, kernel_size), |
| 163 | + use_relu=use_relu, use_padding=True), |
| 164 | + ) |
| 165 | + self.conv2 = nn.Sequential(Conv2dBnRelu(in_channels=in_channels, |
| 166 | + out_channels=out_channels, |
| 167 | + kernel_size=(1, kernel_size), |
| 168 | + use_relu=use_relu, use_padding=True), |
| 169 | + Conv2dBnRelu(in_channels=out_channels, |
| 170 | + out_channels=out_channels, |
| 171 | + kernel_size=(kernel_size, 1), |
| 172 | + use_relu=use_relu, use_padding=True), |
| 173 | + ) |
| 174 | + |
| 175 | + def forward(self, x): |
| 176 | + conv1 = self.conv1(x) |
| 177 | + conv2 = self.conv2(x) |
| 178 | + return conv1 + conv2 |
| 179 | + |
| 180 | + |
| 181 | +class BoundaryRefinement(nn.Module): |
| 182 | + def __init__(self, in_channels, out_channels, kernel_size): |
| 183 | + super().__init__() |
| 184 | + |
| 185 | + self.conv = nn.Sequential(Conv2dBnRelu(in_channels=in_channels, |
| 186 | + out_channels=out_channels, |
| 187 | + kernel_size=(kernel_size, kernel_size), |
| 188 | + use_relu=True, use_padding=True), |
| 189 | + Conv2dBnRelu(in_channels=in_channels, |
| 190 | + out_channels=out_channels, |
| 191 | + kernel_size=(kernel_size, kernel_size), |
| 192 | + use_relu=False, use_padding=True), |
| 193 | + ) |
| 194 | + |
| 195 | + def forward(self, x): |
| 196 | + conv = self.conv(x) |
| 197 | + return x + conv |
0 commit comments