Skip to content

How to leverage Azure Open AI embeddings instead of Open AI embeddings in langchain framewrok #12

@kingafy

Description

@kingafy

As there is a difference in the way we generate embeddings in Azure Open AI vs Open AI as we are not able to create bulk embeddings in single request through Azure Open AI. I have created Azure Open AI embeddings in the below way:-
from langchain.text_splitter import CharacterTextSplitter
#from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.create_documents(contents)
print(texts)
texts_new = [doc.page_content for doc in texts]

Print the extracted texts

list_docs=[]
for text in texts_new:
print(text)
list_docs.append(text)

import time
Embeddings_list=[]
for item in list_docs:
print(item)
while True:
try:
response = openai.Embedding.create(input=item, engine="text-embedding-ada-002")
embeddings = response['data'][0]['embedding']
Embeddings_list.append(embeddings)
break
except Exception as e:
print(e)
time.sleep(15)

How to use this Embedding_list to ingest into vector store and club it to QNA process as this way of embedding integration into the below process has no guided documentation

Create a vectorstore from documents

db = Chroma.from_documents(texts, embeddings)

Create retriever interface

retriever = db.as_retriever()

Create QA chain

qa = RetrievalQA.from_chain_type(llm=OpenAI(openai_api_key=openai_api_key), chain_type='stuff', retriever=retriever)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions