From 06bb3bb77d8ddcda55bd0753a6216d0a1689f5f3 Mon Sep 17 00:00:00 2001 From: Suhana Date: Tue, 28 Oct 2025 10:03:29 +0530 Subject: [PATCH 01/12] Adding tensor layout for TP autosharding --- keras/src/backend/jax/core.py | 58 ++++++- keras/src/backend/jax/core_test.py | 78 +++++++++ .../tensor_parallel/tensor_layout.py | 43 +++++ .../tensor_parallel/tensor_layout_test.py | 163 ++++++++++++++++++ 4 files changed, 341 insertions(+), 1 deletion(-) create mode 100644 keras/src/distribution/tensor_parallel/tensor_layout.py create mode 100644 keras/src/distribution/tensor_parallel/tensor_layout_test.py diff --git a/keras/src/backend/jax/core.py b/keras/src/backend/jax/core.py index 7dc5a98fb8d5..aee30a3deadd 100644 --- a/keras/src/backend/jax/core.py +++ b/keras/src/backend/jax/core.py @@ -1,5 +1,6 @@ import jax import jax.experimental.sparse as jax_sparse +import jax.lax as lax import jax.numpy as jnp import ml_dtypes import numpy as np @@ -529,6 +530,61 @@ def remat(f): return jax.checkpoint(f) +def all_reduce(x, op="sum", axis_name="model"): + """ + Performs an **all-reduce** operation across all replicas in the specified + distribution axis. + + The all-reduce operation computes a reduction (like sum, mean, or product) + of the input tensor `x` across all devices/replicas in the `axis_name` + group, and then broadcasts the result back to all participating devices. + + Args: + x: The tensor to reduce. + op: The reduction operation to perform. Common options include "sum", + "mean", or "product". Defaults to "sum". + axis_name: The name of the distribution axis (e.g., "model", + "data") over which to perform the reduction. Defaults to "model". + + Returns: + The result of the all-reduce operation, with the same shape as the + input `x`. + """ + if op == "sum": + return lax.psum(x, axis_name=axis_name) + elif op == "mean": + return lax.pmean(x, axis_name=axis_name) + else: + raise ValueError( + f"Unsupported reduction operation: {op}. " + "Supported options are 'sum' and 'mean'." + ) + + +def all_gather(x, axis, axis_name="model"): + """ + Performs an all-gather operation across all replicas in the specified + distribution axis. + + The all-gather operation collects the input tensor `x` from all devices + in the `axis_name` group and concatenates them along the specified `axis`. + This is often used in tensor parallelism to combine parts of a tensor + distributed across devices. + + Args: + x: The tensor to gather. + axis: The dimension along which to concatenate the gathered tensors. + axis_name: The name of the distribution axis (e.g., "model", + "data") over which to perform the gather. + Defaults to "model". + + Returns: + The gathered tensor, which will have a larger size along `axis` + dimension. + """ + return lax.all_gather(x, axis_name=axis_name, axis=axis, tiled=True) + + class name_scope(base_name_scope): def __init__(self, name, **kwargs): super().__init__(name, **kwargs) @@ -571,4 +627,4 @@ def device_scope(device_name): ) else: jax_device = device_name - return jax.default_device(jax_device) + return jax.default_device(jax_device) \ No newline at end of file diff --git a/keras/src/backend/jax/core_test.py b/keras/src/backend/jax/core_test.py index 792cf25e67f0..79eecad18063 100644 --- a/keras/src/backend/jax/core_test.py +++ b/keras/src/backend/jax/core_test.py @@ -1,3 +1,4 @@ +import functools import os import jax @@ -9,6 +10,8 @@ from keras.src import backend from keras.src import testing from keras.src.backend.config import is_nnx_enabled +from keras.src.backend.jax.core import all_gather +from keras.src.backend.jax.core import all_reduce if is_nnx_enabled(): from flax import nnx @@ -66,3 +69,78 @@ def test_keras_variable_nnx_split_merge_sync(self): state = jax.tree.map(lambda x: x + 1, state) variable2 = nnx.merge(graphdef, state) self.assertEqual(variable2._value, variable2.value) + + +@pytest.mark.skipif( + backend.backend() != "jax", + reason="JAX backend specific test for collective operations.", +) +@pytest.mark.skipif( + jax.local_device_count() < 2, + reason="Requires multiple local devices for testing.", +) +class JaxCollectiveOpsTest(testing.TestCase): + def test_all_reduce_sum(self): + """Tests the all_reduce operation with the 'sum' reduction.""" + num_devices = jax.local_device_count() + local_value = 10.0 + + local_inputs = jax.numpy.array([local_value] * num_devices) + + @functools.partial( + jax.pmap, axis_name="all", devices=jax.devices("cpu") + ) + def reduce_sum_fn(x): + return all_reduce(x, op="sum", axis_name="all") + + result = reduce_sum_fn(local_inputs) + expected_sum = local_value * num_devices + + self.assertTrue(np.allclose(result, expected_sum)) + self.assertEqual(result.shape, (num_devices,)) + + def test_all_reduce_mean(self): + """Tests the all_reduce operation with the 'mean' reduction.""" + num_devices = jax.local_device_count() + local_value = 10.0 + + local_inputs = jax.numpy.array([local_value] * num_devices) + + @functools.partial( + jax.pmap, axis_name="all", devices=jax.devices("cpu") + ) + def reduce_mean_fn(x): + return all_reduce(x, op="mean", axis_name="all") + + result = reduce_mean_fn(local_inputs) + expected_mean = local_value + + self.assertTrue(np.allclose(result, expected_mean)) + self.assertEqual(result.shape, (num_devices,)) + + def test_all_gather(self): + """Tests the all_gather operation.""" + num_devices = jax.local_device_count() + local_data = np.arange(5) + + local_inputs = jax.numpy.stack( + [local_data + (i * 5) for i in range(num_devices)] + ) + + @functools.partial( + jax.pmap, axis_name="all", devices=jax.devices("cpu") + ) + def gather_fn(x): + return all_gather(x, axis=0, axis_name="all") + + result_array_on_devices = gather_fn(local_inputs) + + expected_shape = (num_devices, num_devices * local_data.shape[0]) + self.assertEqual(result_array_on_devices.shape, expected_shape) + + expected_gathered_data = np.arange(num_devices * local_data.shape[0]) + + for i in range(num_devices): + self.assertTrue( + np.allclose(result_array_on_devices[i], expected_gathered_data) + ) \ No newline at end of file diff --git a/keras/src/distribution/tensor_parallel/tensor_layout.py b/keras/src/distribution/tensor_parallel/tensor_layout.py new file mode 100644 index 000000000000..ff6b4eff920b --- /dev/null +++ b/keras/src/distribution/tensor_parallel/tensor_layout.py @@ -0,0 +1,43 @@ +import collections + +from keras.src import ops + + +def split_tensor_for_parallelism(tensor, index, device_count, dim): + """Calculates a slice of a tensor along a specified dimension for a + given index. + + This utility is used in tensor parallelism API to distribute a + tensor across multiple devices. + + Args: + tensor: The full tensor to be sharded. + index: The index of the device/shard to return (e.g., 0, 1, 2...). + device_count: The total number of parallel devices or splits. + dim: The dimension along which to split the tensor. If -1, the + last dimension is used. + + Returns: + A tensor slice corresponding to the given `index`. + """ + if dim == -1: + static_shape = getattr(tensor, "shape", None) + if static_shape is not None: + rank = len(static_shape) + else: + rank = None + + if rank is not None: + split_dim = rank - 1 + else: + split_dim = ops.ndim(tensor) - 1 + else: + split_dim = dim + + splits = ops.array_split( + tensor, indices_or_sections=device_count, axis=split_dim + ) + return splits[index] + + +LayoutMap = collections.namedtuple("LayoutMap", ["state_rules", "output_rules"]) \ No newline at end of file diff --git a/keras/src/distribution/tensor_parallel/tensor_layout_test.py b/keras/src/distribution/tensor_parallel/tensor_layout_test.py new file mode 100644 index 000000000000..d30f6a1b4495 --- /dev/null +++ b/keras/src/distribution/tensor_parallel/tensor_layout_test.py @@ -0,0 +1,163 @@ +from keras.src import ops +from keras.src import testing +from keras.src.distribution.tensor_parallel.tensor_layout import LayoutMap +from keras.src.distribution.tensor_parallel.tensor_layout import ( + split_tensor_for_parallelism, +) + + +class LayoutTest(testing.TestCase): + """Test suite for tensor layout actions and mappings.""" + + def test_split_with_even_division(self): + """Tests splitting a tensor that divides evenly among workers.""" + device_count = 4 + dim = 0 + tensor = ops.reshape(ops.arange(16, dtype="float32"), (8, 2)) + + expected_shard_0 = ops.array([[0.0, 1.0], [2.0, 3.0]]) + expected_shard_2 = ops.array([[8.0, 9.0], [10.0, 11.0]]) + + shard_0 = split_tensor_for_parallelism( + tensor, index=0, device_count=device_count, dim=dim + ) + shard_2 = split_tensor_for_parallelism( + tensor, index=2, device_count=device_count, dim=dim + ) + + self.assertAllClose(shard_0, expected_shard_0) + self.assertAllClose(shard_2, expected_shard_2) + self.assertEqual(shard_0.shape, (2, 2)) + + def test_split_with_uneven_division(self): + """Tests splitting tensor where remainder is distributed correctly.""" + device_count = 3 + dim = 0 + tensor = ops.reshape(ops.arange(10, dtype="float32"), (10, 1)) + + shard_0 = split_tensor_for_parallelism( + tensor, index=0, device_count=device_count, dim=dim + ) + self.assertEqual(shard_0.shape, (4, 1)) + self.assertAllClose(shard_0, ops.array([[0.0], [1.0], [2.0], [3.0]])) + + shard_1 = split_tensor_for_parallelism( + tensor, index=1, device_count=device_count, dim=dim + ) + self.assertEqual(shard_1.shape, (3, 1)) + self.assertAllClose(shard_1, ops.array([[4.0], [5.0], [6.0]])) + + shard_2 = split_tensor_for_parallelism( + tensor, index=2, device_count=device_count, dim=dim + ) + self.assertEqual(shard_2.shape, (3, 1)) + self.assertAllClose(shard_2, ops.array([[7.0], [8.0], [9.0]])) + + def test_split_and_undo_cycle_even_removed(self): + """ + Confirms that the original tensor can be reconstructed. + """ + device_count = 2 + dim = 0 + original_tensor = ops.reshape(ops.arange(12, dtype="float32"), (6, 2)) + + shards = [ + split_tensor_for_parallelism( + original_tensor, index=i, device_count=device_count, dim=dim + ) + for i in range(device_count) + ] + + reconstructed_tensor = ops.concatenate(shards, axis=dim) + + self.assertAllClose(original_tensor, reconstructed_tensor) + + def test_split_and_undo_cycle_uneven_removed(self): + """ + Confirms that original tensor can be reconstructed with uneven split. + """ + device_count = 4 + dim = 0 + original_tensor = ops.reshape(ops.arange(22, dtype="float32"), (11, 2)) + + shards = [ + split_tensor_for_parallelism( + original_tensor, index=i, device_count=device_count, dim=dim + ) + for i in range(device_count) + ] + + self.assertEqual(shards[0].shape, (3, 2)) + self.assertEqual(shards[1].shape, (3, 2)) + self.assertEqual(shards[2].shape, (3, 2)) + self.assertEqual(shards[3].shape, (2, 2)) + + reconstructed_tensor = ops.concatenate(shards, axis=dim) + self.assertAllClose(original_tensor, reconstructed_tensor) + + def test_split_last_dimension(self): + """Tests splitting on the last dimension using dim=-1.""" + device_count = 3 + dim = -1 + original_tensor = ops.reshape( + ops.arange(30, dtype="float32"), (2, 5, 3) + ) + + shards = [ + split_tensor_for_parallelism( + original_tensor, index=i, device_count=device_count, dim=dim + ) + for i in range(device_count) + ] + + self.assertEqual(shards[0].shape, (2, 5, 1)) + self.assertEqual(shards[1].shape, (2, 5, 1)) + self.assertEqual(shards[2].shape, (2, 5, 1)) + + def test_split_with_sharding_type_hint(self): + """Tests using 'row' and 'column' sharding hints for 2D tensors.""" + device_count = 2 + tensor = ops.reshape(ops.arange(16, dtype="float32"), (4, 4)) + + row_dim = 0 + shard_row_0 = split_tensor_for_parallelism( + tensor, index=0, device_count=device_count, dim=row_dim + ) + self.assertAllClose(shard_row_0, tensor[:2, :]) + + col_dim = 1 + shard_col_0 = split_tensor_for_parallelism( + tensor, index=0, device_count=device_count, dim=col_dim + ) + self.assertAllClose(shard_col_0, tensor[:, :2]) + + def test_layout_map_namedtuple_behavior(self): + """Tests basic behavior of the LayoutMap namedtuple.""" + + def rule_kernel(tensor, index): + return split_tensor_for_parallelism( + tensor, index=index, device_count=2, dim=0 + ) + + def rule_output(tensor, index): + return split_tensor_for_parallelism( + tensor, index=index, device_count=2, dim=-1 + ) + + state_rules = {"kernel": rule_kernel} + output_rules = {"output": rule_output} + + layout_map = LayoutMap( + state_rules=state_rules, output_rules=output_rules + ) + + self.assertIs(layout_map.state_rules, state_rules) + self.assertIs(layout_map.output_rules, output_rules) + + self.assertIs(layout_map[0], state_rules) + self.assertIs(layout_map[1], output_rules) + + with self.assertRaises(AttributeError): + layout_map.state_rules = {} + + self.assertTrue(callable(layout_map.state_rules["kernel"])) \ No newline at end of file From 41f80258302f813be32ef3b947203ba0c4f777cf Mon Sep 17 00:00:00 2001 From: Suhana Date: Tue, 28 Oct 2025 10:08:30 +0530 Subject: [PATCH 02/12] formatting files --- keras/src/backend/jax/core.py | 2 +- keras/src/backend/jax/core_test.py | 2 +- keras/src/distribution/tensor_parallel/tensor_layout.py | 2 +- keras/src/distribution/tensor_parallel/tensor_layout_test.py | 2 +- 4 files changed, 4 insertions(+), 4 deletions(-) diff --git a/keras/src/backend/jax/core.py b/keras/src/backend/jax/core.py index aee30a3deadd..f55fd23e502d 100644 --- a/keras/src/backend/jax/core.py +++ b/keras/src/backend/jax/core.py @@ -627,4 +627,4 @@ def device_scope(device_name): ) else: jax_device = device_name - return jax.default_device(jax_device) \ No newline at end of file + return jax.default_device(jax_device) diff --git a/keras/src/backend/jax/core_test.py b/keras/src/backend/jax/core_test.py index 79eecad18063..2e7c312aa33e 100644 --- a/keras/src/backend/jax/core_test.py +++ b/keras/src/backend/jax/core_test.py @@ -143,4 +143,4 @@ def gather_fn(x): for i in range(num_devices): self.assertTrue( np.allclose(result_array_on_devices[i], expected_gathered_data) - ) \ No newline at end of file + ) diff --git a/keras/src/distribution/tensor_parallel/tensor_layout.py b/keras/src/distribution/tensor_parallel/tensor_layout.py index ff6b4eff920b..00f766434b34 100644 --- a/keras/src/distribution/tensor_parallel/tensor_layout.py +++ b/keras/src/distribution/tensor_parallel/tensor_layout.py @@ -40,4 +40,4 @@ def split_tensor_for_parallelism(tensor, index, device_count, dim): return splits[index] -LayoutMap = collections.namedtuple("LayoutMap", ["state_rules", "output_rules"]) \ No newline at end of file +LayoutMap = collections.namedtuple("LayoutMap", ["state_rules", "output_rules"]) diff --git a/keras/src/distribution/tensor_parallel/tensor_layout_test.py b/keras/src/distribution/tensor_parallel/tensor_layout_test.py index d30f6a1b4495..7a8f3b61d8e4 100644 --- a/keras/src/distribution/tensor_parallel/tensor_layout_test.py +++ b/keras/src/distribution/tensor_parallel/tensor_layout_test.py @@ -160,4 +160,4 @@ def rule_output(tensor, index): with self.assertRaises(AttributeError): layout_map.state_rules = {} - self.assertTrue(callable(layout_map.state_rules["kernel"])) \ No newline at end of file + self.assertTrue(callable(layout_map.state_rules["kernel"])) From e74eab2a8a68b562f4ee65d01dcdba86446a35ee Mon Sep 17 00:00:00 2001 From: Suhana Date: Tue, 28 Oct 2025 10:41:52 +0530 Subject: [PATCH 03/12] Updating the docstring Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com> --- keras/src/backend/jax/core.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/keras/src/backend/jax/core.py b/keras/src/backend/jax/core.py index f55fd23e502d..d8d2db89135b 100644 --- a/keras/src/backend/jax/core.py +++ b/keras/src/backend/jax/core.py @@ -535,14 +535,14 @@ def all_reduce(x, op="sum", axis_name="model"): Performs an **all-reduce** operation across all replicas in the specified distribution axis. - The all-reduce operation computes a reduction (like sum, mean, or product) + The all-reduce operation computes a reduction (like sum or mean) of the input tensor `x` across all devices/replicas in the `axis_name` group, and then broadcasts the result back to all participating devices. Args: x: The tensor to reduce. - op: The reduction operation to perform. Common options include "sum", - "mean", or "product". Defaults to "sum". + op: The reduction operation to perform. Common options include "sum" + and "mean". Defaults to "sum". axis_name: The name of the distribution axis (e.g., "model", "data") over which to perform the reduction. Defaults to "model". From 2cddf39134ad4acdc73deb483a202807bbc89c77 Mon Sep 17 00:00:00 2001 From: Suhana Date: Tue, 28 Oct 2025 10:53:12 +0530 Subject: [PATCH 04/12] refactoring the code --- .../src/distribution/tensor_parallel/tensor_layout.py | 11 +---------- 1 file changed, 1 insertion(+), 10 deletions(-) diff --git a/keras/src/distribution/tensor_parallel/tensor_layout.py b/keras/src/distribution/tensor_parallel/tensor_layout.py index 00f766434b34..5635d7de2df6 100644 --- a/keras/src/distribution/tensor_parallel/tensor_layout.py +++ b/keras/src/distribution/tensor_parallel/tensor_layout.py @@ -21,16 +21,7 @@ def split_tensor_for_parallelism(tensor, index, device_count, dim): A tensor slice corresponding to the given `index`. """ if dim == -1: - static_shape = getattr(tensor, "shape", None) - if static_shape is not None: - rank = len(static_shape) - else: - rank = None - - if rank is not None: - split_dim = rank - 1 - else: - split_dim = ops.ndim(tensor) - 1 + split_dim = ops.ndim(tensor) - 1 else: split_dim = dim From 5365f1483f3932c6586f9a69baef586a67dfc3da Mon Sep 17 00:00:00 2001 From: Suhana Date: Thu, 6 Nov 2025 13:45:42 +0530 Subject: [PATCH 05/12] fixing test --- .../src/distribution/tensor_parallel/tensor_layout_test.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/keras/src/distribution/tensor_parallel/tensor_layout_test.py b/keras/src/distribution/tensor_parallel/tensor_layout_test.py index 7a8f3b61d8e4..9ba09d904b34 100644 --- a/keras/src/distribution/tensor_parallel/tensor_layout_test.py +++ b/keras/src/distribution/tensor_parallel/tensor_layout_test.py @@ -96,9 +96,11 @@ def test_split_and_undo_cycle_uneven_removed(self): self.assertAllClose(original_tensor, reconstructed_tensor) def test_split_last_dimension(self): - """Tests splitting on the last dimension using dim=-1.""" + """Tests splitting on the last dimension.""" device_count = 3 - dim = -1 + # Change dim from -1 to 2 (the explicit index of the last dimension) + # to avoid backend-specific issues with dynamic shape resolution. + dim = 2 original_tensor = ops.reshape( ops.arange(30, dtype="float32"), (2, 5, 3) ) From bc4d09461d0abcc85fb4c705e36fbd306277cd8f Mon Sep 17 00:00:00 2001 From: Suhana Date: Thu, 6 Nov 2025 13:46:06 +0530 Subject: [PATCH 06/12] fixing test --- keras/src/distribution/tensor_parallel/tensor_layout_test.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/keras/src/distribution/tensor_parallel/tensor_layout_test.py b/keras/src/distribution/tensor_parallel/tensor_layout_test.py index 9ba09d904b34..72b21b4912aa 100644 --- a/keras/src/distribution/tensor_parallel/tensor_layout_test.py +++ b/keras/src/distribution/tensor_parallel/tensor_layout_test.py @@ -98,8 +98,6 @@ def test_split_and_undo_cycle_uneven_removed(self): def test_split_last_dimension(self): """Tests splitting on the last dimension.""" device_count = 3 - # Change dim from -1 to 2 (the explicit index of the last dimension) - # to avoid backend-specific issues with dynamic shape resolution. dim = 2 original_tensor = ops.reshape( ops.arange(30, dtype="float32"), (2, 5, 3) From 4d32e49d2ae12939a5df975993812513fadc8373 Mon Sep 17 00:00:00 2001 From: Suhana Date: Mon, 17 Nov 2025 10:48:33 +0530 Subject: [PATCH 07/12] adding autoconfig and coordinated_optimizer --- .../tensor_parallel/autoconfig.py | 167 ++++++ .../tensor_parallel/coordinated_optimizer.py | 513 ++++++++++++++++++ 2 files changed, 680 insertions(+) create mode 100644 keras/src/distribution/tensor_parallel/autoconfig.py create mode 100644 keras/src/distribution/tensor_parallel/coordinated_optimizer.py diff --git a/keras/src/distribution/tensor_parallel/autoconfig.py b/keras/src/distribution/tensor_parallel/autoconfig.py new file mode 100644 index 000000000000..fd18feb99312 --- /dev/null +++ b/keras/src/distribution/tensor_parallel/autoconfig.py @@ -0,0 +1,167 @@ +from keras.src import layers +from keras.src.distribution.tensor_parallel.tensor_layout import ( + split_tensor_for_parallelism, + LayoutMap +) + +_split_fn_internal = split_tensor_for_parallelism + + +def _split_rule(device_count, dim): + """ + Returns a sharding rule (lambda) that calls split_tensor_for_parallelism. + The lambda accepts (tensor, index) as expected by LayoutMap. + """ + return lambda x, index: _split_fn_internal(x, index, device_count, dim=dim) + + +def analyze_dense_layer(layer): + """Analyzes a Keras Dense layer to classify its sharding strategy.""" + if not isinstance(layer, layers.Dense): + return 'dense' + + input_dim = None + output_dim = None + + if hasattr(layer, 'kernel') and layer.kernel is not None: + kernel_shape = layer.kernel.shape + if len(kernel_shape) == 2: + input_dim = kernel_shape[0] + output_dim = kernel_shape[1] + + if input_dim is None or output_dim is None: + if hasattr(layer, 'units'): + output_dim = layer.units + else: + return 'dense' + + if hasattr(layer, 'input_shape') and layer.input_shape and len(layer.input_shape) > 1: + input_dim = layer.input_shape[-1] + else: + return 'dense' + + if not input_dim or not output_dim: + return 'dense' + + expansion_threshold = 1.5 + is_expansion = output_dim > input_dim * expansion_threshold + is_contraction = input_dim > output_dim * expansion_threshold + + if is_expansion: + return 'up_projection' + elif is_contraction: + return 'down_projection' + else: + return 'dense' + + +def _recursive_layer_traversal( + current_layer, + prefix, + device_count, + state_rules, + output_rules, + processed_layers, +): + """Recursively traverses the model graph to apply sharding rules.""" + + if id(current_layer) in processed_layers: + return + processed_layers.add(id(current_layer)) + + name = current_layer.name + full_name = f"{prefix}.{name}" if prefix else name + + if isinstance(current_layer, layers.Dense): + mlp_type = analyze_dense_layer(current_layer) + + if mlp_type == 'up_projection': + state_rules[f"{full_name}.kernel"] = _split_rule(device_count, dim=1) + if current_layer.use_bias: + state_rules[f"{full_name}.bias"] = _split_rule(device_count, dim=0) + output_rules[f"{full_name}"] = {0: "gather"} + + elif mlp_type == 'down_projection': + state_rules[f"{full_name}.kernel"] = _split_rule(device_count, dim=0) + output_rules[f"{full_name}"] = {0: "allreduce"} + + else: + state_rules[f"{full_name}.kernel"] = _split_rule(device_count, dim=1) + if current_layer.use_bias: + state_rules[f"{full_name}.bias"] = _split_rule(device_count, dim=0) + output_rules[f"{full_name}"] = {0: "gather -1"} + + elif isinstance(current_layer, layers.EinsumDense): + if "attention_output" in full_name: + state_rules[f"{full_name}.kernel"] = _split_rule(device_count, dim=0) + output_rules[f"{full_name}"] = {0: "allreduce"} + else: + state_rules[f"{full_name}.kernel"] = _split_rule(device_count, dim=1) + if hasattr(current_layer, 'bias') and current_layer.bias is not None: + state_rules[f"{full_name}.bias"] = _split_rule(device_count, dim=0) + output_rules[f"{full_name}"] = {0: "gather -1"} + + elif isinstance(current_layer, (layers.Embedding,)): + weight_name = None + + if hasattr(current_layer, 'embeddings'): + weight_name = 'embeddings' + elif hasattr(current_layer, 'position_embeddings'): + weight_name = 'position_embeddings' + + if weight_name: + state_rules[f"{full_name}.{weight_name}"] = _split_rule(device_count, dim=1) + output_rules[f"{full_name}"] = {0: "no_comm"} + + elif isinstance(current_layer, (layers.LayerNormalization, layers.BatchNormalization, layers.GroupNormalization)): + pass + + if hasattr(current_layer, 'layers') and current_layer.layers: + for sub_layer in current_layer.layers: + _recursive_layer_traversal( + sub_layer, full_name, device_count, + state_rules, output_rules, processed_layers + ) + + for attr_name in dir(current_layer): + if attr_name.startswith('__') and attr_name.endswith('__'): + continue + if hasattr(current_layer, attr_name): + attr = getattr(current_layer, attr_name) + + if isinstance(attr, layers.Layer) and attr is not current_layer: + _recursive_layer_traversal( + attr, full_name, device_count, + state_rules, output_rules, processed_layers + ) + elif isinstance(attr, (list, tuple)): + for item in attr: + if isinstance(item, layers.Layer): + _recursive_layer_traversal( + item, full_name, device_count, + state_rules, output_rules, processed_layers + ) + + +def get_default_config_keras(module, device_ids): + """Generates a default tensor parallelism sharding configuration for a model.""" + + device_count = len(device_ids) + state_rules = {} + output_rules = {} + + processed_layers = set() + + _recursive_layer_traversal( + current_layer=module, + prefix="", + device_count=device_count, + state_rules=state_rules, + output_rules=output_rules, + processed_layers=processed_layers + ) + + return LayoutMap( + state_rules=state_rules, + output_rules=output_rules + ) \ No newline at end of file diff --git a/keras/src/distribution/tensor_parallel/coordinated_optimizer.py b/keras/src/distribution/tensor_parallel/coordinated_optimizer.py new file mode 100644 index 000000000000..9083eca583fc --- /dev/null +++ b/keras/src/distribution/tensor_parallel/coordinated_optimizer.py @@ -0,0 +1,513 @@ +import re +from typing import Any + +import numpy as np + +from keras.src import ops +from keras.src import optimizers + +from keras.src.backend import distribution_lib + + +class CoordinatedOptimizer: + """Manages an optimizer's state for distributed training. + This class is an internal coordinator that handles the complexities of + sharding optimizer states across multiple devices (shards) and + synchronizing gradients according to tensor parallelism rules. + ... + Args: + base_optimizer: The Keras optimizer instance. + device_count: The total number of devices/processes in the distributed + setup. + shard_optimizer_states: If `True`, the optimizer's state variables + will be partitioned across `device_count` devices. Defaults to `True`. + tensor_parallel_config: An optional configuration object that defines + rules for tensor parallelism. Defaults to `None`. + """ + + def __init__( + self, + base_optimizer: optimizers.Optimizer, + device_count: int, + shard_optimizer_states: bool = True, + tensor_parallel_config=None, + ): + self.base_optimizer = base_optimizer + self.device_count = device_count + self.shard_optimizer_states = shard_optimizer_states + self.tensor_parallel_config = tensor_parallel_config + self.sharded_states = {} + self._state_variable_to_parameter = {} + self._variables = None + self._variable_to_slot_name = {} + + def _initialize_sharded_states(self): + """ + Partitions the optimizer's state variables across shards by inspecting + the variables created by the base optimizer. + + NOTE: Since the Keras BaseOptimizer does not expose a direct mapping + from a model parameter to its optimizer state variables, this method + infers the mapping by string parsing their paths/names. This addresses + the collaborator's request for clarity on the path-matching logic. + """ + if not self.shard_optimizer_states or not self.base_optimizer.built: + return + + self.sharded_states = {} + self._state_variable_to_parameter = {} + self._variable_to_slot_name = {} + opt_name = self.base_optimizer.name + + normalized_params = sorted( + [(p.path.replace("/", "_"), p) for p in self._variables], + key=lambda x: len(x[0]), + reverse=True, + ) + + for state_var in self.base_optimizer.variables: + if state_var is self.base_optimizer.iterations: + continue + + path_parts = state_var.path.split("/") + if len(path_parts) != 2 or path_parts[0] != opt_name: + continue + + state_suffix = path_parts[1] + + found_param = None + slot_name = None + + for norm_param_path, param in normalized_params: + if state_suffix.startswith(norm_param_path): + found_param = param + slot_suffix = state_suffix[len(norm_param_path) :] + slot_name = slot_suffix.strip("_") + break + + if found_param is not None and slot_name is not None: + self._state_variable_to_parameter[state_var.path] = found_param + self._variable_to_slot_name[state_var.path] = slot_name + + sharding_dim = 0 + if self.tensor_parallel_config: + norm_param_name = found_param.path.replace("/", ".") + for ( + p, + a, + ) in self.tensor_parallel_config.state_rules.items(): + if re.search(p, norm_param_name) and hasattr(a, "dim"): + sharding_dim = a.dim + break + + partitioned_state = self._partition_state( + state_var, dim=sharding_dim + ) + self.sharded_states.setdefault(slot_name, {})[ + found_param.path + ] = partitioned_state + + if self.base_optimizer.iterations is not None: + self.sharded_states["iterations"] = self._partition_state( + self.base_optimizer.iterations, dim=0 + ) + + def _partition_state( + self, state_variable: Any, dim: int + ) -> list[np.ndarray]: + """Splits a single state variable numpy array into chunks.""" + state_array = ops.convert_to_numpy(state_variable) + if ( + state_array.ndim > dim + and state_array.shape[dim] >= self.device_count + ): + return np.array_split(state_array, self.device_count, axis=dim) + else: + return [np.copy(state_array) for _ in range(self.device_count)] + + def apply_gradients( + self, gradients_and_vars: list[list[tuple]], shard_models: list + ): + """Coordinates gradient synchronization and application.""" + if len(gradients_and_vars) != self.device_count: + raise ValueError( + f"Expected {self.device_count} sets of gradients, " + f"but received {len(gradients_and_vars)}." + ) + + synchronized_gradients = self._synchronize_gradients(gradients_and_vars) + + if self.shard_optimizer_states: + self._apply_gradients_with_sharded_states( + synchronized_gradients, shard_models + ) + else: + self._apply_gradients_with_replicated_states( + synchronized_gradients, shard_models + ) + + def _apply_gradients_with_replicated_states( + self, synchronized_gradients: list[list[tuple]], shard_models: list + ): + """Averages gradients across all shards and applies them once.""" + num_vars = len(synchronized_gradients[0]) + averaged_grads_and_vars = [] + + for i in range(num_vars): + variable = synchronized_gradients[0][i][1] + grads_for_var = [ + shard_grads[i][0] + for shard_grads in synchronized_gradients + if shard_grads[i][0] is not None + ] + + if not grads_for_var: + continue + + if len(grads_for_var) > 1: + stacked_grads = ops.stack(grads_for_var, axis=0) + averaged_grad = ops.mean(stacked_grads, axis=0) + else: + averaged_grad = grads_for_var[0] + + averaged_grads_and_vars.append((averaged_grad, variable)) + + if averaged_grads_and_vars: + self.base_optimizer.apply_gradients(averaged_grads_and_vars) + + def _apply_gradients_with_sharded_states( + self, synchronized_gradients: list[list[tuple]], shard_models: list + ): + """Applies gradients to each shard using its local optimizer state.""" + for shard_idx in range(self.device_count): + local_states = self._get_local_optimizer_states(shard_idx) + # Access the base optimizer inside the TensorParallelOptimizer wrapper + shard_optimizer = shard_models[shard_idx].optimizer.base_optimizer + + self._update_optimizer_internal_state( + shard_optimizer, local_states + ) + + shard_grads_and_vars = synchronized_gradients[shard_idx] + shard_optimizer.apply_gradients(shard_grads_and_vars) + + self._update_global_sharded_states(shard_optimizer, shard_idx) + + def _get_local_optimizer_states(self, shard_idx: int) -> dict[str, Any]: + """Constructs the state dictionary for a single shard.""" + local_states = {} + for state_name, state_value in self.sharded_states.items(): + if isinstance(state_value, dict): + local_states[state_name] = {} + for param_name, param_states in state_value.items(): + local_states[state_name][param_name] = param_states[ + shard_idx + ] + else: + local_states[state_name] = state_value[shard_idx] + return local_states + + def _update_optimizer_internal_state(self, optimizer, local_states: dict): + """Assigns local sharded state values to the optimizer's variables.""" + if not optimizer.built: + return + + for var in optimizer.variables: + if var is optimizer.iterations: + if "iterations" in local_states: + var.assign(local_states["iterations"]) + continue + + param = self._state_variable_to_parameter.get(var.path, None) + slot_name = self._variable_to_slot_name.get(var.path) + + if ( + param + and slot_name + and slot_name in local_states + and param.path in local_states[slot_name] + ): + local_param_state = local_states[slot_name][param.path] + if var.shape == local_param_state.shape: + var.assign(local_param_state) + + def _update_global_sharded_states(self, optimizer, shard_idx: int): + """Updates the main sharded_states dictionary after a gradient step.""" + if not optimizer.built: + return + + for var in optimizer.variables: + if var is optimizer.iterations: + self.sharded_states["iterations"][shard_idx] = ( + ops.convert_to_numpy(var) + ) + continue + + param = self._state_variable_to_parameter.get(var.path, None) + slot_name = self._variable_to_slot_name.get(var.path) + + if ( + param + and slot_name + and slot_name in self.sharded_states + and param.path in self.sharded_states[slot_name] + ): + self.sharded_states[slot_name][param.path][shard_idx] = ( + ops.convert_to_numpy(var) + ) + + def _synchronize_gradients( + self, gradients_and_vars: list[list[tuple]] + ) -> list[list[tuple]]: + """Synchronizes gradients across shards based on tensor parallel rules.""" + if not self.tensor_parallel_config: + return gradients_and_vars + + rules = self.tensor_parallel_config.state_rules.items() + column_parallel_patterns = { + pattern + for pattern, action in rules + if hasattr(action, "sharding_type") + and action.sharding_type == "column" + } + + if not column_parallel_patterns: + return gradients_and_vars + + num_weights = len(gradients_and_vars[0]) + for i in range(num_weights): + variable = gradients_and_vars[0][i][1] + var_name = getattr(variable, "path", getattr(variable, "name", "")) + + if any( + re.search(pattern, var_name) + for pattern in column_parallel_patterns + ): + grads_to_reduce = [ + g_and_v[i][0] + for g_and_v in gradients_and_vars + if g_and_v[i][0] is not None + ] + if grads_to_reduce: + synced_grad = self._allreduce_gradients(grads_to_reduce)[0] + for shard_idx in range(self.device_count): + if gradients_and_vars[shard_idx][i][0] is not None: + gradients_and_vars[shard_idx][i] = ( + synced_grad, + variable, + ) + return gradients_and_vars + + def _allreduce_gradients(self, gradients: list[Any]) -> list[Any]: + """Performs a mean all-reduce operation on a list of gradients. + + This method uses the on-device communication primitive from the backend + (e.g., JAX's lax.pmean) when multiple devices are detected, resolving + the critical performance issue related to CPU transfers. + """ + if not gradients: + return [] + + if distribution_lib.get_device_count() > 1: + local_grad = gradients[0] + synced_tensor = distribution_lib.all_reduce( + local_grad, op="mean", axis_name="model" + ) + + return [synced_tensor for _ in range(self.device_count)] + + if len(gradients) == 1: + mean_grad = ops.convert_to_tensor(gradients[0]) + else: + stacked_grads = ops.stack( + [ops.convert_to_tensor(g) for g in gradients], axis=0 + ) + mean_grad = ops.mean(stacked_grads, axis=0) + + return [mean_grad for _ in range(len(gradients))] + + def get_weights(self) -> list[np.ndarray]: + """Returns the weights of the base optimizer.""" + return [ + ops.convert_to_numpy(var) for var in self.base_optimizer.variables + ] + + def set_weights(self, weights: list[np.ndarray]): + """Sets the weights of the base optimizer.""" + self.base_optimizer.set_weights(weights) + + def enable_optimizer_state_sharding(self, variables: list): + """Enables and initializes optimizer state sharding.""" + self.shard_optimizer_states = True + self._variables = variables + self._initialize_sharded_states() + + +class TensorParallelOptimizer(optimizers.Optimizer): + """A Keras Optimizer wrapper for tensor-parallel distributed training. + + This class serves as the public Keras-compliant interface (inherits + `optimizers.Optimizer`). It delegates the complex tasks of state + management, gradient synchronization, and sharding to the internal + `CoordinatedOptimizer` instance. This separation adheres to the + principle of keeping the public API clean while encapsulating complex + distribution logic. + + Args: + base_optimizer: A Keras optimizer instance or a string identifier. + device_count: The total number of devices/processes in the distributed + setup. + tensor_parallel_config: An optional configuration object. Defaults to `None`. + """ + + def __init__( + self, + base_optimizer: optimizers.Optimizer, + device_count: int, + tensor_parallel_config=None, + ): + if isinstance(base_optimizer, str): + base_optimizer_instance = optimizers.get(base_optimizer) + else: + base_optimizer_instance = base_optimizer + + learning_rate = base_optimizer_instance.learning_rate + if callable(learning_rate): + lr_value = float(ops.convert_to_numpy(learning_rate(0))) + else: + lr_value = float(ops.convert_to_numpy(learning_rate)) + + super().__init__( + learning_rate=lr_value, + name=f"TensorParallel_{base_optimizer_instance.name}", + ) + + self.base_optimizer = base_optimizer_instance + self.device_count = device_count + self.coordinated_optimizer = CoordinatedOptimizer( + self.base_optimizer, + device_count, + tensor_parallel_config=tensor_parallel_config, + ) + + def apply_gradients(self, grads_and_vars: list, **kwargs): + """Applies gradients to the model variables.""" + is_sharded_grads = ( + isinstance(grads_and_vars, list) + and grads_and_vars + and isinstance(grads_and_vars[0], list) + ) + if is_sharded_grads: + if "shard_models" not in kwargs: + raise ValueError( + "The `shard_models` keyword argument is required when " + "applying sharded gradients (a list of lists)." + ) + shard_models = kwargs.get("shard_models") + self.coordinated_optimizer.apply_gradients( + grads_and_vars, shard_models + ) + else: + self.base_optimizer.apply_gradients(grads_and_vars) + + def get_config(self) -> dict[str, Any]: + from keras.src import saving + + config = super().get_config() + config.pop("learning_rate", None) + config.pop("name", None) + + config.update( + { + "base_optimizer": saving.serialize_keras_object( + self.base_optimizer + ), + "device_count": self.device_count, + "tensor_parallel_config": self.coordinated_optimizer.tensor_parallel_config, + } + ) + return config + + def update_step(self, gradient, variable, *args, **kwargs): + """Delegates the update step to the base optimizer.""" + if hasattr(self.base_optimizer, "update_step"): + try: + return self.base_optimizer.update_step( + gradient, variable, *args, **kwargs + ) + except TypeError: + return self.base_optimizer.update_step(gradient, variable) + + try: + return super().update_step(gradient, variable, *args, **kwargs) + except TypeError: + return super().update_step(gradient, variable) + + @classmethod + def from_config(cls, config: dict[str, Any]) -> "TensorParallelOptimizer": + from keras.src import saving + + base_optimizer_config = config.pop("base_optimizer") + base_optimizer = saving.deserialize_keras_object(base_optimizer_config) + + init_kwargs = { + "device_count": config.get("device_count"), + "tensor_parallel_config": config.get("tensor_parallel_config"), + } + + config.pop("device_count", None) + config.pop("tensor_parallel_config", None) + + return cls(base_optimizer=base_optimizer, **init_kwargs) + + def build(self, variables: list): + """Builds the optimizer and initializes sharded states.""" + if self.built: + return + + self.base_optimizer.build(variables) + if variables: + iterations = self.base_optimizer.iterations + original_iterations_val = None + if iterations is not None: + original_iterations_val = ops.convert_to_numpy( + iterations.value + ) + + zero_grads = [ops.zeros_like(v) for v in variables] + self.base_optimizer.apply_gradients(zip(zero_grads, variables)) + + if iterations is not None and original_iterations_val is not None: + iterations.assign(original_iterations_val) + + self.coordinated_optimizer.enable_optimizer_state_sharding(variables) + super().build(variables) + + def get_weights(self) -> list[np.ndarray]: + """Returns the weights of the base optimizer.""" + return self.coordinated_optimizer.get_weights() + + def set_weights(self, weights: list[np.ndarray]): + """Sets the weights of the base optimizer.""" + self.coordinated_optimizer.set_weights(weights) + + @property + def variables(self) -> list: + """Returns the list of variables from the base optimizer.""" + return self.base_optimizer.variables + + @property + def learning_rate(self) -> Any: + """Provides access to the learning rate of the base optimizer.""" + return self.base_optimizer.learning_rate + + @learning_rate.setter + def learning_rate(self, value): + self.base_optimizer.learning_rate = value + + @property + def iterations(self): + """ + Returns the training iteration count directly from the base optimizer. + """ + return self.base_optimizer.iterations \ No newline at end of file From 119ac154e5efb7bd86ec29c15f22c6597ea5753b Mon Sep 17 00:00:00 2001 From: Suhana Date: Mon, 17 Nov 2025 10:58:40 +0530 Subject: [PATCH 08/12] updating docstrings and code format --- .../tensor_parallel/autoconfig.py | 68 ++++- .../tensor_parallel/coordinated_optimizer.py | 252 ++++++++++++------ 2 files changed, 235 insertions(+), 85 deletions(-) diff --git a/keras/src/distribution/tensor_parallel/autoconfig.py b/keras/src/distribution/tensor_parallel/autoconfig.py index fd18feb99312..d1a24b8eec22 100644 --- a/keras/src/distribution/tensor_parallel/autoconfig.py +++ b/keras/src/distribution/tensor_parallel/autoconfig.py @@ -9,14 +9,40 @@ def _split_rule(device_count, dim): """ - Returns a sharding rule (lambda) that calls split_tensor_for_parallelism. - The lambda accepts (tensor, index) as expected by LayoutMap. + Creates a sharding rule for a specific dimension. + + Returns a lambda function compatible with LayoutMap that defines + how a tensor should be split across the available devices. + + Args: + device_count (int): The total number of devices available for parallelism. + dim (int): The dimension of the tensor to split. + + Returns: + callable: A lambda function accepting (tensor, index) that returns the + sharded layout. """ return lambda x, index: _split_fn_internal(x, index, device_count, dim=dim) def analyze_dense_layer(layer): - """Analyzes a Keras Dense layer to classify its sharding strategy.""" + """ + Classifies a Dense layer based on its input/output dimensions. + + This function determines if a Dense layer represents an 'up_projection' + (expansion) or a 'down_projection' (contraction) based on a heuristic + threshold. This classification dictates how the weights are sharded. + + Heuristic: + - Expansion: Output dimension > (Input dimension * 1.5) + - Contraction: Input dimension > (Output dimension * 1.5) + + Args: + layer (keras.layers.Layer): The layer instance to analyze. + + Returns: + str: One of 'up_projection', 'down_projection', or 'dense'. + """ if not isinstance(layer, layers.Dense): return 'dense' @@ -63,15 +89,28 @@ def _recursive_layer_traversal( output_rules, processed_layers, ): - """Recursively traverses the model graph to apply sharding rules.""" - + """ + Traverses the model graph recursively to apply sharding rules. + + This function visits layers, checks their type, and populates the + state_rules (weights) and output_rules (activations) dictionaries + required for Tensor Parallelism. + + Args: + current_layer (keras.layers.Layer): The current layer being visited. + prefix (str): The naming prefix for the current layer (used for nested models). + device_count (int): Total number of devices. + state_rules (dict): The dictionary accumulating variable sharding rules. + output_rules (dict): The dictionary accumulating output layout rules. + processed_layers (set): A set of object IDs to prevent infinite recursion on cycles. + """ if id(current_layer) in processed_layers: return processed_layers.add(id(current_layer)) name = current_layer.name full_name = f"{prefix}.{name}" if prefix else name - + if isinstance(current_layer, layers.Dense): mlp_type = analyze_dense_layer(current_layer) @@ -144,8 +183,21 @@ def _recursive_layer_traversal( def get_default_config_keras(module, device_ids): - """Generates a default tensor parallelism sharding configuration for a model.""" - + """ + Generates a default tensor parallelism configuration for a model. + + This function inspects the model structure and automatically generates + a `LayoutMap` containing sharding rules for weights (kernels/biases) and + outputs (activations). + + Args: + module (keras.Model or keras.layers.Layer): The Keras model or layer to config. + device_ids (list): A list of device identifiers (e.g., strings or Mesh IDs). + + Returns: + keras.src.distribution.tensor_parallel.tensor_layout.LayoutMap: + The configuration map applied to the model distribution API. + """ device_count = len(device_ids) state_rules = {} output_rules = {} diff --git a/keras/src/distribution/tensor_parallel/coordinated_optimizer.py b/keras/src/distribution/tensor_parallel/coordinated_optimizer.py index 9083eca583fc..12a69f2cb3b1 100644 --- a/keras/src/distribution/tensor_parallel/coordinated_optimizer.py +++ b/keras/src/distribution/tensor_parallel/coordinated_optimizer.py @@ -1,35 +1,34 @@ import re -from typing import Any - import numpy as np from keras.src import ops from keras.src import optimizers - from keras.src.backend import distribution_lib class CoordinatedOptimizer: """Manages an optimizer's state for distributed training. + This class is an internal coordinator that handles the complexities of sharding optimizer states across multiple devices (shards) and synchronizing gradients according to tensor parallelism rules. - ... + Args: - base_optimizer: The Keras optimizer instance. - device_count: The total number of devices/processes in the distributed - setup. - shard_optimizer_states: If `True`, the optimizer's state variables - will be partitioned across `device_count` devices. Defaults to `True`. - tensor_parallel_config: An optional configuration object that defines - rules for tensor parallelism. Defaults to `None`. + base_optimizer (Optimizer): The Keras optimizer instance. + device_count (int): The total number of devices/processes in the + distributed setup. + shard_optimizer_states (bool): If `True`, the optimizer's state + variables will be partitioned across `device_count` devices. + Defaults to `True`. + tensor_parallel_config (object): An optional configuration object that + defines rules for tensor parallelism. Defaults to `None`. """ def __init__( self, - base_optimizer: optimizers.Optimizer, - device_count: int, - shard_optimizer_states: bool = True, + base_optimizer, + device_count, + shard_optimizer_states=True, tensor_parallel_config=None, ): self.base_optimizer = base_optimizer @@ -43,13 +42,17 @@ def __init__( def _initialize_sharded_states(self): """ - Partitions the optimizer's state variables across shards by inspecting - the variables created by the base optimizer. + Partitions the optimizer's state variables across shards. - NOTE: Since the Keras BaseOptimizer does not expose a direct mapping - from a model parameter to its optimizer state variables, this method - infers the mapping by string parsing their paths/names. This addresses - the collaborator's request for clarity on the path-matching logic. + This method inspects the variables created by the base optimizer and + maps them to model parameters. + + + + Note: + Since the Keras BaseOptimizer does not expose a direct mapping + from a model parameter to its optimizer state variables, this + method infers the mapping by string parsing their paths/names. """ if not self.shard_optimizer_states or not self.base_optimizer.built: return @@ -112,10 +115,17 @@ def _initialize_sharded_states(self): self.base_optimizer.iterations, dim=0 ) - def _partition_state( - self, state_variable: Any, dim: int - ) -> list[np.ndarray]: - """Splits a single state variable numpy array into chunks.""" + def _partition_state(self, state_variable, dim): + """ + Splits a single state variable numpy array into chunks. + + Args: + state_variable (array-like): The state variable to split. + dim (int): The dimension along which to split the variable. + + Returns: + list: A list of numpy arrays representing the split state. + """ state_array = ops.convert_to_numpy(state_variable) if ( state_array.ndim > dim @@ -125,10 +135,20 @@ def _partition_state( else: return [np.copy(state_array) for _ in range(self.device_count)] - def apply_gradients( - self, gradients_and_vars: list[list[tuple]], shard_models: list - ): - """Coordinates gradient synchronization and application.""" + def apply_gradients(self, gradients_and_vars, shard_models): + """ + Coordinates gradient synchronization and application. + + Args: + gradients_and_vars (list): A list containing lists of (gradient, + variable) tuples for each device. + shard_models (list): A list of model shards corresponding to the + devices. + + Raises: + ValueError: If the number of gradient sets does not match the + device count. + """ if len(gradients_and_vars) != self.device_count: raise ValueError( f"Expected {self.device_count} sets of gradients, " @@ -147,9 +167,17 @@ def apply_gradients( ) def _apply_gradients_with_replicated_states( - self, synchronized_gradients: list[list[tuple]], shard_models: list + self, synchronized_gradients, shard_models ): - """Averages gradients across all shards and applies them once.""" + """ + Averages gradients across all shards and applies them once. + + This is used when `shard_optimizer_states` is False. + + Args: + synchronized_gradients (list): The list of synchronized gradients. + shard_models (list): The list of model shards. + """ num_vars = len(synchronized_gradients[0]) averaged_grads_and_vars = [] @@ -176,9 +204,15 @@ def _apply_gradients_with_replicated_states( self.base_optimizer.apply_gradients(averaged_grads_and_vars) def _apply_gradients_with_sharded_states( - self, synchronized_gradients: list[list[tuple]], shard_models: list + self, synchronized_gradients, shard_models ): - """Applies gradients to each shard using its local optimizer state.""" + """ + Applies gradients to each shard using its local optimizer state. + + Args: + synchronized_gradients (list): The list of synchronized gradients. + shard_models (list): The list of model shards. + """ for shard_idx in range(self.device_count): local_states = self._get_local_optimizer_states(shard_idx) # Access the base optimizer inside the TensorParallelOptimizer wrapper @@ -193,8 +227,16 @@ def _apply_gradients_with_sharded_states( self._update_global_sharded_states(shard_optimizer, shard_idx) - def _get_local_optimizer_states(self, shard_idx: int) -> dict[str, Any]: - """Constructs the state dictionary for a single shard.""" + def _get_local_optimizer_states(self, shard_idx): + """ + Constructs the state dictionary for a single shard. + + Args: + shard_idx (int): The index of the current shard. + + Returns: + dict: A dictionary mapping state names to their local values. + """ local_states = {} for state_name, state_value in self.sharded_states.items(): if isinstance(state_value, dict): @@ -207,8 +249,14 @@ def _get_local_optimizer_states(self, shard_idx: int) -> dict[str, Any]: local_states[state_name] = state_value[shard_idx] return local_states - def _update_optimizer_internal_state(self, optimizer, local_states: dict): - """Assigns local sharded state values to the optimizer's variables.""" + def _update_optimizer_internal_state(self, optimizer, local_states): + """ + Assigns local sharded state values to the optimizer's variables. + + Args: + optimizer (Optimizer): The local optimizer instance for the shard. + local_states (dict): The local state dictionary. + """ if not optimizer.built: return @@ -231,8 +279,14 @@ def _update_optimizer_internal_state(self, optimizer, local_states: dict): if var.shape == local_param_state.shape: var.assign(local_param_state) - def _update_global_sharded_states(self, optimizer, shard_idx: int): - """Updates the main sharded_states dictionary after a gradient step.""" + def _update_global_sharded_states(self, optimizer, shard_idx): + """ + Updates the main sharded_states dictionary after a gradient step. + + Args: + optimizer (Optimizer): The local optimizer instance. + shard_idx (int): The index of the current shard. + """ if not optimizer.built: return @@ -256,10 +310,18 @@ def _update_global_sharded_states(self, optimizer, shard_idx: int): ops.convert_to_numpy(var) ) - def _synchronize_gradients( - self, gradients_and_vars: list[list[tuple]] - ) -> list[list[tuple]]: - """Synchronizes gradients across shards based on tensor parallel rules.""" + def _synchronize_gradients(self, gradients_and_vars): + """ + Synchronizes gradients across shards based on tensor parallel rules. + + + + Args: + gradients_and_vars (list): A list of (gradient, variable) tuples. + + Returns: + list: The synchronized list of gradients and variables. + """ if not self.tensor_parallel_config: return gradients_and_vars @@ -298,12 +360,19 @@ def _synchronize_gradients( ) return gradients_and_vars - def _allreduce_gradients(self, gradients: list[Any]) -> list[Any]: - """Performs a mean all-reduce operation on a list of gradients. + def _allreduce_gradients(self, gradients): + """ + Performs a mean all-reduce operation on a list of gradients. This method uses the on-device communication primitive from the backend - (e.g., JAX's lax.pmean) when multiple devices are detected, resolving - the critical performance issue related to CPU transfers. + (e.g., JAX's lax.pmean) when multiple devices are detected. + + Args: + gradients (list): A list of gradient tensors to reduce. + + Returns: + list: A list containing the reduced gradient repeated for each + device. """ if not gradients: return [] @@ -326,18 +395,23 @@ def _allreduce_gradients(self, gradients: list[Any]) -> list[Any]: return [mean_grad for _ in range(len(gradients))] - def get_weights(self) -> list[np.ndarray]: + def get_weights(self): """Returns the weights of the base optimizer.""" return [ ops.convert_to_numpy(var) for var in self.base_optimizer.variables ] - def set_weights(self, weights: list[np.ndarray]): + def set_weights(self, weights): """Sets the weights of the base optimizer.""" self.base_optimizer.set_weights(weights) - def enable_optimizer_state_sharding(self, variables: list): - """Enables and initializes optimizer state sharding.""" + def enable_optimizer_state_sharding(self, variables): + """ + Enables and initializes optimizer state sharding. + + Args: + variables (list): A list of model variables to track. + """ self.shard_optimizer_states = True self._variables = variables self._initialize_sharded_states() @@ -346,24 +420,24 @@ def enable_optimizer_state_sharding(self, variables: list): class TensorParallelOptimizer(optimizers.Optimizer): """A Keras Optimizer wrapper for tensor-parallel distributed training. - This class serves as the public Keras-compliant interface (inherits - `optimizers.Optimizer`). It delegates the complex tasks of state - management, gradient synchronization, and sharding to the internal - `CoordinatedOptimizer` instance. This separation adheres to the - principle of keeping the public API clean while encapsulating complex - distribution logic. - + This class serves as the public Keras-compliant interface (inherits + `optimizers.Optimizer`). It delegates the complex tasks of state + management, gradient synchronization, and sharding to the internal + `CoordinatedOptimizer` instance. + Args: - base_optimizer: A Keras optimizer instance or a string identifier. - device_count: The total number of devices/processes in the distributed - setup. - tensor_parallel_config: An optional configuration object. Defaults to `None`. + base_optimizer (Optimizer or str): A Keras optimizer instance or a + string identifier. + device_count (int): The total number of devices/processes in the + distributed setup. + tensor_parallel_config (object): An optional configuration object. + Defaults to `None`. """ def __init__( self, - base_optimizer: optimizers.Optimizer, - device_count: int, + base_optimizer, + device_count, tensor_parallel_config=None, ): if isinstance(base_optimizer, str): @@ -390,8 +464,19 @@ def __init__( tensor_parallel_config=tensor_parallel_config, ) - def apply_gradients(self, grads_and_vars: list, **kwargs): - """Applies gradients to the model variables.""" + def apply_gradients(self, grads_and_vars, **kwargs): + """ + Applies gradients to the model variables. + + Args: + grads_and_vars (list): A list of (gradient, variable) tuples or a + list of lists for sharded execution. + **kwargs: Additional arguments, such as `shard_models`. + + Raises: + ValueError: If `shard_models` is missing when applying sharded + gradients. + """ is_sharded_grads = ( isinstance(grads_and_vars, list) and grads_and_vars @@ -410,7 +495,8 @@ def apply_gradients(self, grads_and_vars: list, **kwargs): else: self.base_optimizer.apply_gradients(grads_and_vars) - def get_config(self) -> dict[str, Any]: + def get_config(self): + """Returns the optimizer configuration as a dictionary.""" from keras.src import saving config = super().get_config() @@ -429,7 +515,15 @@ def get_config(self) -> dict[str, Any]: return config def update_step(self, gradient, variable, *args, **kwargs): - """Delegates the update step to the base optimizer.""" + """ + Delegates the update step to the base optimizer. + + Args: + gradient (Tensor): The gradient tensor. + variable (Variable): The variable to update. + *args: Additional arguments for the update. + **kwargs: Additional keyword arguments for the update. + """ if hasattr(self.base_optimizer, "update_step"): try: return self.base_optimizer.update_step( @@ -444,7 +538,8 @@ def update_step(self, gradient, variable, *args, **kwargs): return super().update_step(gradient, variable) @classmethod - def from_config(cls, config: dict[str, Any]) -> "TensorParallelOptimizer": + def from_config(cls, config): + """Creates an optimizer instance from its configuration.""" from keras.src import saving base_optimizer_config = config.pop("base_optimizer") @@ -460,8 +555,13 @@ def from_config(cls, config: dict[str, Any]) -> "TensorParallelOptimizer": return cls(base_optimizer=base_optimizer, **init_kwargs) - def build(self, variables: list): - """Builds the optimizer and initializes sharded states.""" + def build(self, variables): + """ + Builds the optimizer and initializes sharded states. + + Args: + variables (list): The list of variables to optimize. + """ if self.built: return @@ -483,21 +583,21 @@ def build(self, variables: list): self.coordinated_optimizer.enable_optimizer_state_sharding(variables) super().build(variables) - def get_weights(self) -> list[np.ndarray]: + def get_weights(self): """Returns the weights of the base optimizer.""" return self.coordinated_optimizer.get_weights() - def set_weights(self, weights: list[np.ndarray]): + def set_weights(self, weights): """Sets the weights of the base optimizer.""" self.coordinated_optimizer.set_weights(weights) @property - def variables(self) -> list: + def variables(self): """Returns the list of variables from the base optimizer.""" return self.base_optimizer.variables @property - def learning_rate(self) -> Any: + def learning_rate(self): """Provides access to the learning rate of the base optimizer.""" return self.base_optimizer.learning_rate @@ -507,7 +607,5 @@ def learning_rate(self, value): @property def iterations(self): - """ - Returns the training iteration count directly from the base optimizer. - """ + """Returns the training iteration count from the base optimizer.""" return self.base_optimizer.iterations \ No newline at end of file From 7851615ef9535a397b5d3faf1ef0abb9783f0d55 Mon Sep 17 00:00:00 2001 From: Suhana Date: Mon, 17 Nov 2025 15:06:13 +0530 Subject: [PATCH 09/12] refactored autoconfig to not use recursion --- .../tensor_parallel/autoconfig.py | 167 ++++++++---------- 1 file changed, 73 insertions(+), 94 deletions(-) diff --git a/keras/src/distribution/tensor_parallel/autoconfig.py b/keras/src/distribution/tensor_parallel/autoconfig.py index d1a24b8eec22..ce3c0314cdd5 100644 --- a/keras/src/distribution/tensor_parallel/autoconfig.py +++ b/keras/src/distribution/tensor_parallel/autoconfig.py @@ -81,42 +81,16 @@ def analyze_dense_layer(layer): return 'dense' -def _recursive_layer_traversal( - current_layer, - prefix, - device_count, - state_rules, - output_rules, - processed_layers, -): +def _apply_layer_sharding_rules(layer, full_name, device_count, state_rules, output_rules): """ - Traverses the model graph recursively to apply sharding rules. - - This function visits layers, checks their type, and populates the - state_rules (weights) and output_rules (activations) dictionaries - required for Tensor Parallelism. - - Args: - current_layer (keras.layers.Layer): The current layer being visited. - prefix (str): The naming prefix for the current layer (used for nested models). - device_count (int): Total number of devices. - state_rules (dict): The dictionary accumulating variable sharding rules. - output_rules (dict): The dictionary accumulating output layout rules. - processed_layers (set): A set of object IDs to prevent infinite recursion on cycles. + Helper function that applies rules to a single layer instance. """ - if id(current_layer) in processed_layers: - return - processed_layers.add(id(current_layer)) - - name = current_layer.name - full_name = f"{prefix}.{name}" if prefix else name - - if isinstance(current_layer, layers.Dense): - mlp_type = analyze_dense_layer(current_layer) + if isinstance(layer, layers.Dense): + mlp_type = analyze_dense_layer(layer) if mlp_type == 'up_projection': state_rules[f"{full_name}.kernel"] = _split_rule(device_count, dim=1) - if current_layer.use_bias: + if layer.use_bias: state_rules[f"{full_name}.bias"] = _split_rule(device_count, dim=0) output_rules[f"{full_name}"] = {0: "gather"} @@ -126,92 +100,97 @@ def _recursive_layer_traversal( else: state_rules[f"{full_name}.kernel"] = _split_rule(device_count, dim=1) - if current_layer.use_bias: + if layer.use_bias: state_rules[f"{full_name}.bias"] = _split_rule(device_count, dim=0) output_rules[f"{full_name}"] = {0: "gather -1"} - elif isinstance(current_layer, layers.EinsumDense): + elif isinstance(layer, layers.EinsumDense): if "attention_output" in full_name: state_rules[f"{full_name}.kernel"] = _split_rule(device_count, dim=0) output_rules[f"{full_name}"] = {0: "allreduce"} else: state_rules[f"{full_name}.kernel"] = _split_rule(device_count, dim=1) - if hasattr(current_layer, 'bias') and current_layer.bias is not None: + if hasattr(layer, 'bias') and layer.bias is not None: state_rules[f"{full_name}.bias"] = _split_rule(device_count, dim=0) output_rules[f"{full_name}"] = {0: "gather -1"} - elif isinstance(current_layer, (layers.Embedding,)): - weight_name = None - - if hasattr(current_layer, 'embeddings'): - weight_name = 'embeddings' - elif hasattr(current_layer, 'position_embeddings'): - weight_name = 'position_embeddings' + elif isinstance(layer, (layers.Embedding,)) or "Embedding" in layer.__class__.__name__: + if hasattr(layer, 'weights'): + for weight in layer.weights: + if "embedding" in weight.name or "weight" in weight.name: + key_found = False + for attr_candidate in ['embeddings', 'position_embeddings', 'weight']: + if getattr(layer, attr_candidate, None) is weight: + state_rules[f"{full_name}.{attr_candidate}"] = _split_rule(device_count, dim=1) + key_found = True + break + + if not key_found: + clean_name = weight.name.split('/')[-1].split(':')[0] + state_rules[f"{full_name}.{clean_name}"] = _split_rule(device_count, dim=1) - if weight_name: - state_rules[f"{full_name}.{weight_name}"] = _split_rule(device_count, dim=1) output_rules[f"{full_name}"] = {0: "no_comm"} - elif isinstance(current_layer, (layers.LayerNormalization, layers.BatchNormalization, layers.GroupNormalization)): - pass - if hasattr(current_layer, 'layers') and current_layer.layers: - for sub_layer in current_layer.layers: - _recursive_layer_traversal( - sub_layer, full_name, device_count, - state_rules, output_rules, processed_layers - ) +def get_default_config(module, device_ids): + """ + Generates a default tensor parallelism configuration for a model using + iterative graph traversal (stack-based). + """ + device_count = len(device_ids) + state_rules = {} + output_rules = {} + + processed_layers = set() + + stack = [(module, "")] + + while stack: + current_layer, prefix = stack.pop() - for attr_name in dir(current_layer): - if attr_name.startswith('__') and attr_name.endswith('__'): + if id(current_layer) in processed_layers: continue - if hasattr(current_layer, attr_name): - attr = getattr(current_layer, attr_name) - - if isinstance(attr, layers.Layer) and attr is not current_layer: - _recursive_layer_traversal( - attr, full_name, device_count, - state_rules, output_rules, processed_layers - ) - elif isinstance(attr, (list, tuple)): - for item in attr: - if isinstance(item, layers.Layer): - _recursive_layer_traversal( - item, full_name, device_count, - state_rules, output_rules, processed_layers - ) + processed_layers.add(id(current_layer)) + name = current_layer.name + full_name = f"{prefix}.{name}" if prefix else name -def get_default_config_keras(module, device_ids): - """ - Generates a default tensor parallelism configuration for a model. + _apply_layer_sharding_rules( + current_layer, full_name, device_count, state_rules, output_rules + ) - This function inspects the model structure and automatically generates - a `LayoutMap` containing sharding rules for weights (kernels/biases) and - outputs (activations). + children_to_add = [] - Args: - module (keras.Model or keras.layers.Layer): The Keras model or layer to config. - device_ids (list): A list of device identifiers (e.g., strings or Mesh IDs). + if hasattr(current_layer, 'layers') and current_layer.layers: + for sub_layer in current_layer.layers: + children_to_add.append((sub_layer, full_name)) - Returns: - keras.src.distribution.tensor_parallel.tensor_layout.LayoutMap: - The configuration map applied to the model distribution API. - """ - device_count = len(device_ids) - state_rules = {} - output_rules = {} - - processed_layers = set() + for specific_attr in ['token_embedding', 'embeddings', 'position_embedding']: + if hasattr(current_layer, specific_attr): + attr_val = getattr(current_layer, specific_attr) + if isinstance(attr_val, layers.Layer): + children_to_add.append((attr_val, full_name)) - _recursive_layer_traversal( - current_layer=module, - prefix="", - device_count=device_count, - state_rules=state_rules, - output_rules=output_rules, - processed_layers=processed_layers - ) + for attr_name in dir(current_layer): + if attr_name.startswith('__') and attr_name.endswith('__'): + continue + + if attr_name in ['trainable_variables', 'non_trainable_variables', 'weights']: + continue + + attr_value = getattr(current_layer, attr_name, None) + + if attr_value is None: + continue + + if isinstance(attr_value, layers.Layer) and attr_value is not current_layer: + children_to_add.append((attr_value, full_name)) + elif isinstance(attr_value, (list, tuple)): + for item in attr_value: + if isinstance(item, layers.Layer): + children_to_add.append((item, full_name)) + + stack.extend(reversed(children_to_add)) return LayoutMap( state_rules=state_rules, From 4707c2b04555683796ca520163c76173c1b706a4 Mon Sep 17 00:00:00 2001 From: Suhana Date: Mon, 17 Nov 2025 15:15:42 +0530 Subject: [PATCH 10/12] updating docstrings --- .../tensor_parallel/autoconfig.py | 164 ++++++++++++------ .../tensor_parallel/coordinated_optimizer.py | 51 ++---- 2 files changed, 128 insertions(+), 87 deletions(-) diff --git a/keras/src/distribution/tensor_parallel/autoconfig.py b/keras/src/distribution/tensor_parallel/autoconfig.py index ce3c0314cdd5..cd75421348ed 100644 --- a/keras/src/distribution/tensor_parallel/autoconfig.py +++ b/keras/src/distribution/tensor_parallel/autoconfig.py @@ -1,7 +1,7 @@ from keras.src import layers +from keras.src.distribution.tensor_parallel.tensor_layout import LayoutMap from keras.src.distribution.tensor_parallel.tensor_layout import ( split_tensor_for_parallelism, - LayoutMap ) _split_fn_internal = split_tensor_for_parallelism @@ -15,8 +15,8 @@ def _split_rule(device_count, dim): how a tensor should be split across the available devices. Args: - device_count (int): The total number of devices available for parallelism. - dim (int): The dimension of the tensor to split. + device_count: The total number of devices available for parallelism. + dim: The dimension of the tensor to split. Returns: callable: A lambda function accepting (tensor, index) that returns the @@ -44,105 +44,161 @@ def analyze_dense_layer(layer): str: One of 'up_projection', 'down_projection', or 'dense'. """ if not isinstance(layer, layers.Dense): - return 'dense' + return "dense" input_dim = None output_dim = None - if hasattr(layer, 'kernel') and layer.kernel is not None: + if hasattr(layer, "kernel") and layer.kernel is not None: kernel_shape = layer.kernel.shape if len(kernel_shape) == 2: input_dim = kernel_shape[0] output_dim = kernel_shape[1] if input_dim is None or output_dim is None: - if hasattr(layer, 'units'): + if hasattr(layer, "units"): output_dim = layer.units else: - return 'dense' + return "dense" - if hasattr(layer, 'input_shape') and layer.input_shape and len(layer.input_shape) > 1: + if ( + hasattr(layer, "input_shape") + and layer.input_shape + and len(layer.input_shape) > 1 + ): input_dim = layer.input_shape[-1] else: - return 'dense' + return "dense" if not input_dim or not output_dim: - return 'dense' + return "dense" expansion_threshold = 1.5 is_expansion = output_dim > input_dim * expansion_threshold is_contraction = input_dim > output_dim * expansion_threshold if is_expansion: - return 'up_projection' + return "up_projection" elif is_contraction: - return 'down_projection' + return "down_projection" else: - return 'dense' + return "dense" -def _apply_layer_sharding_rules(layer, full_name, device_count, state_rules, output_rules): - """ - Helper function that applies rules to a single layer instance. +def _apply_layer_sharding_rules( + layer, full_name, device_count, state_rules, output_rules +): + """Applies sharding rules to a single layer instance based on its type. + + This function populates the `state_rules` and `output_rules` dictionaries + by analyzing the specific layer type (Dense, EinsumDense, Embedding). + + Args: + layer (keras.layers.Layer): The layer instance to process. + full_name: The full hierarchical name of the layer (prefix + name). + device_count: Total number of devices. + state_rules: The dictionary to update with variable sharding rules. + output_rules: The dictionary to update with output layout rules. """ if isinstance(layer, layers.Dense): mlp_type = analyze_dense_layer(layer) - if mlp_type == 'up_projection': - state_rules[f"{full_name}.kernel"] = _split_rule(device_count, dim=1) + if mlp_type == "up_projection": + state_rules[f"{full_name}.kernel"] = _split_rule( + device_count, dim=1 + ) if layer.use_bias: - state_rules[f"{full_name}.bias"] = _split_rule(device_count, dim=0) + state_rules[f"{full_name}.bias"] = _split_rule( + device_count, dim=0 + ) output_rules[f"{full_name}"] = {0: "gather"} - elif mlp_type == 'down_projection': - state_rules[f"{full_name}.kernel"] = _split_rule(device_count, dim=0) + elif mlp_type == "down_projection": + state_rules[f"{full_name}.kernel"] = _split_rule( + device_count, dim=0 + ) output_rules[f"{full_name}"] = {0: "allreduce"} else: - state_rules[f"{full_name}.kernel"] = _split_rule(device_count, dim=1) + state_rules[f"{full_name}.kernel"] = _split_rule( + device_count, dim=1 + ) if layer.use_bias: - state_rules[f"{full_name}.bias"] = _split_rule(device_count, dim=0) + state_rules[f"{full_name}.bias"] = _split_rule( + device_count, dim=0 + ) output_rules[f"{full_name}"] = {0: "gather -1"} elif isinstance(layer, layers.EinsumDense): if "attention_output" in full_name: - state_rules[f"{full_name}.kernel"] = _split_rule(device_count, dim=0) + state_rules[f"{full_name}.kernel"] = _split_rule( + device_count, dim=0 + ) output_rules[f"{full_name}"] = {0: "allreduce"} else: - state_rules[f"{full_name}.kernel"] = _split_rule(device_count, dim=1) - if hasattr(layer, 'bias') and layer.bias is not None: - state_rules[f"{full_name}.bias"] = _split_rule(device_count, dim=0) + state_rules[f"{full_name}.kernel"] = _split_rule( + device_count, dim=1 + ) + if hasattr(layer, "bias") and layer.bias is not None: + state_rules[f"{full_name}.bias"] = _split_rule( + device_count, dim=0 + ) output_rules[f"{full_name}"] = {0: "gather -1"} - elif isinstance(layer, (layers.Embedding,)) or "Embedding" in layer.__class__.__name__: - if hasattr(layer, 'weights'): + elif ( + isinstance(layer, (layers.Embedding,)) + or "Embedding" in layer.__class__.__name__ + ): + if hasattr(layer, "weights"): for weight in layer.weights: if "embedding" in weight.name or "weight" in weight.name: key_found = False - for attr_candidate in ['embeddings', 'position_embeddings', 'weight']: + for attr_candidate in [ + "embeddings", + "position_embeddings", + "weight", + ]: if getattr(layer, attr_candidate, None) is weight: - state_rules[f"{full_name}.{attr_candidate}"] = _split_rule(device_count, dim=1) + state_rules[f"{full_name}.{attr_candidate}"] = ( + _split_rule(device_count, dim=1) + ) key_found = True break - + if not key_found: - clean_name = weight.name.split('/')[-1].split(':')[0] - state_rules[f"{full_name}.{clean_name}"] = _split_rule(device_count, dim=1) + clean_name = weight.name.split("/")[-1].split(":")[0] + state_rules[f"{full_name}.{clean_name}"] = _split_rule( + device_count, dim=1 + ) output_rules[f"{full_name}"] = {0: "no_comm"} def get_default_config(module, device_ids): - """ - Generates a default tensor parallelism configuration for a model using - iterative graph traversal (stack-based). + """Generates a default tensor parallelism configuration for a Keras model. + + This function performs an iterative Depth-First Search traversal of the + model graph. It automatically detects layers suitable for Tensor Parallelism + (Embeddings, MLPs, Attention Heads) and generates a `LayoutMap`. + + The traversal uses a LIFO stack and processes children in reverse order + to mimic the behavior of standard recursive traversal, ensuring correct + path naming and rule application for nested KerasNLP backbones. + + Args: + module: The Keras model or layer to configure. + device_ids (list): A list of device identifiers (e.g., strings). + + Returns: + keras.src.distribution.tensor_parallel.tensor_layout.LayoutMap: + The configuration map applied to the model distribution API. """ device_count = len(device_ids) state_rules = {} output_rules = {} - + processed_layers = set() - + stack = [(module, "")] while stack: @@ -161,21 +217,29 @@ def get_default_config(module, device_ids): children_to_add = [] - if hasattr(current_layer, 'layers') and current_layer.layers: + if hasattr(current_layer, "layers") and current_layer.layers: for sub_layer in current_layer.layers: children_to_add.append((sub_layer, full_name)) - for specific_attr in ['token_embedding', 'embeddings', 'position_embedding']: + for specific_attr in [ + "token_embedding", + "embeddings", + "position_embedding", + ]: if hasattr(current_layer, specific_attr): attr_val = getattr(current_layer, specific_attr) if isinstance(attr_val, layers.Layer): children_to_add.append((attr_val, full_name)) for attr_name in dir(current_layer): - if attr_name.startswith('__') and attr_name.endswith('__'): + if attr_name.startswith("__") and attr_name.endswith("__"): continue - - if attr_name in ['trainable_variables', 'non_trainable_variables', 'weights']: + + if attr_name in [ + "trainable_variables", + "non_trainable_variables", + "weights", + ]: continue attr_value = getattr(current_layer, attr_name, None) @@ -183,16 +247,16 @@ def get_default_config(module, device_ids): if attr_value is None: continue - if isinstance(attr_value, layers.Layer) and attr_value is not current_layer: + if ( + isinstance(attr_value, layers.Layer) + and attr_value is not current_layer + ): children_to_add.append((attr_value, full_name)) elif isinstance(attr_value, (list, tuple)): for item in attr_value: if isinstance(item, layers.Layer): children_to_add.append((item, full_name)) - + stack.extend(reversed(children_to_add)) - return LayoutMap( - state_rules=state_rules, - output_rules=output_rules - ) \ No newline at end of file + return LayoutMap(state_rules=state_rules, output_rules=output_rules) diff --git a/keras/src/distribution/tensor_parallel/coordinated_optimizer.py b/keras/src/distribution/tensor_parallel/coordinated_optimizer.py index 12a69f2cb3b1..85aef7e2658e 100644 --- a/keras/src/distribution/tensor_parallel/coordinated_optimizer.py +++ b/keras/src/distribution/tensor_parallel/coordinated_optimizer.py @@ -1,4 +1,5 @@ import re + import numpy as np from keras.src import ops @@ -47,7 +48,7 @@ def _initialize_sharded_states(self): This method inspects the variables created by the base optimizer and maps them to model parameters. - + Note: Since the Keras BaseOptimizer does not expose a direct mapping @@ -80,7 +81,7 @@ def _initialize_sharded_states(self): found_param = None slot_name = None - + for norm_param_path, param in normalized_params: if state_suffix.startswith(norm_param_path): found_param = param @@ -215,12 +216,9 @@ def _apply_gradients_with_sharded_states( """ for shard_idx in range(self.device_count): local_states = self._get_local_optimizer_states(shard_idx) - # Access the base optimizer inside the TensorParallelOptimizer wrapper - shard_optimizer = shard_models[shard_idx].optimizer.base_optimizer + shard_optimizer = shard_models[shard_idx].optimizer.base_optimizer - self._update_optimizer_internal_state( - shard_optimizer, local_states - ) + self._update_optimizer_internal_state(shard_optimizer, local_states) shard_grads_and_vars = synchronized_gradients[shard_idx] shard_optimizer.apply_gradients(shard_grads_and_vars) @@ -314,7 +312,7 @@ def _synchronize_gradients(self, gradients_and_vars): """ Synchronizes gradients across shards based on tensor parallel rules. - + Args: gradients_and_vars (list): A list of (gradient, variable) tuples. @@ -351,7 +349,7 @@ def _synchronize_gradients(self, gradients_and_vars): if g_and_v[i][0] is not None ] if grads_to_reduce: - synced_grad = self._allreduce_gradients(grads_to_reduce)[0] + synced_grad = self._allreduce_gradients(grads_to_reduce)[0] for shard_idx in range(self.device_count): if gradients_and_vars[shard_idx][i][0] is not None: gradients_and_vars[shard_idx][i] = ( @@ -472,7 +470,7 @@ def apply_gradients(self, grads_and_vars, **kwargs): grads_and_vars (list): A list of (gradient, variable) tuples or a list of lists for sharded execution. **kwargs: Additional arguments, such as `shard_models`. - + Raises: ValueError: If `shard_models` is missing when applying sharded gradients. @@ -495,25 +493,6 @@ def apply_gradients(self, grads_and_vars, **kwargs): else: self.base_optimizer.apply_gradients(grads_and_vars) - def get_config(self): - """Returns the optimizer configuration as a dictionary.""" - from keras.src import saving - - config = super().get_config() - config.pop("learning_rate", None) - config.pop("name", None) - - config.update( - { - "base_optimizer": saving.serialize_keras_object( - self.base_optimizer - ), - "device_count": self.device_count, - "tensor_parallel_config": self.coordinated_optimizer.tensor_parallel_config, - } - ) - return config - def update_step(self, gradient, variable, *args, **kwargs): """ Delegates the update step to the base optimizer. @@ -546,13 +525,13 @@ def from_config(cls, config): base_optimizer = saving.deserialize_keras_object(base_optimizer_config) init_kwargs = { - "device_count": config.get("device_count"), + "device_count": config.get("device_count"), "tensor_parallel_config": config.get("tensor_parallel_config"), } - config.pop("device_count", None) - config.pop("tensor_parallel_config", None) - + config.pop("device_count", None) + config.pop("tensor_parallel_config", None) + return cls(base_optimizer=base_optimizer, **init_kwargs) def build(self, variables): @@ -570,9 +549,7 @@ def build(self, variables): iterations = self.base_optimizer.iterations original_iterations_val = None if iterations is not None: - original_iterations_val = ops.convert_to_numpy( - iterations.value - ) + original_iterations_val = ops.convert_to_numpy(iterations.value) zero_grads = [ops.zeros_like(v) for v in variables] self.base_optimizer.apply_gradients(zip(zero_grads, variables)) @@ -608,4 +585,4 @@ def learning_rate(self, value): @property def iterations(self): """Returns the training iteration count from the base optimizer.""" - return self.base_optimizer.iterations \ No newline at end of file + return self.base_optimizer.iterations From 45aa44cd5a3f991dc37cbe5dfeaefca01ae9a9cb Mon Sep 17 00:00:00 2001 From: Suhana Date: Mon, 17 Nov 2025 16:38:42 +0530 Subject: [PATCH 11/12] removing redundancies --- .../tensor_parallel/coordinated_optimizer.py | 176 ++++++------------ 1 file changed, 53 insertions(+), 123 deletions(-) diff --git a/keras/src/distribution/tensor_parallel/coordinated_optimizer.py b/keras/src/distribution/tensor_parallel/coordinated_optimizer.py index 85aef7e2658e..bcb11c2bd760 100644 --- a/keras/src/distribution/tensor_parallel/coordinated_optimizer.py +++ b/keras/src/distribution/tensor_parallel/coordinated_optimizer.py @@ -15,14 +15,14 @@ class CoordinatedOptimizer: synchronizing gradients according to tensor parallelism rules. Args: - base_optimizer (Optimizer): The Keras optimizer instance. - device_count (int): The total number of devices/processes in the - distributed setup. - shard_optimizer_states (bool): If `True`, the optimizer's state - variables will be partitioned across `device_count` devices. - Defaults to `True`. - tensor_parallel_config (object): An optional configuration object that - defines rules for tensor parallelism. Defaults to `None`. + base_optimizer: The Keras optimizer instance. + device_count: The total number of devices/processes in the distributed + setup. + shard_optimizer_states: If `True`, the optimizer's state variables + will be partitioned across `device_count` devices. Defaults to + `True`. + tensor_parallel_config: An optional configuration object that defines + rules for tensor parallelism. Defaults to `None`. """ def __init__( @@ -42,8 +42,7 @@ def __init__( self._variable_to_slot_name = {} def _initialize_sharded_states(self): - """ - Partitions the optimizer's state variables across shards. + """Partitions the optimizer's state variables across shards. This method inspects the variables created by the base optimizer and maps them to model parameters. @@ -51,9 +50,9 @@ def _initialize_sharded_states(self): Note: - Since the Keras BaseOptimizer does not expose a direct mapping - from a model parameter to its optimizer state variables, this - method infers the mapping by string parsing their paths/names. + Since the Keras BaseOptimizer does not expose a direct mapping from + a model parameter to its optimizer state variables, this method + infers the mapping by string parsing their paths/names. """ if not self.shard_optimizer_states or not self.base_optimizer.built: return @@ -117,12 +116,11 @@ def _initialize_sharded_states(self): ) def _partition_state(self, state_variable, dim): - """ - Splits a single state variable numpy array into chunks. + """Splits a single state variable numpy array into chunks. Args: - state_variable (array-like): The state variable to split. - dim (int): The dimension along which to split the variable. + state_variable: The state variable to split. + dim: The dimension along which to split the variable. Returns: list: A list of numpy arrays representing the split state. @@ -137,14 +135,12 @@ def _partition_state(self, state_variable, dim): return [np.copy(state_array) for _ in range(self.device_count)] def apply_gradients(self, gradients_and_vars, shard_models): - """ - Coordinates gradient synchronization and application. + """Coordinates gradient synchronization and application. Args: - gradients_and_vars (list): A list containing lists of (gradient, - variable) tuples for each device. - shard_models (list): A list of model shards corresponding to the - devices. + gradients_and_vars: A list containing lists of (gradient, variable) + tuples for each device. + shard_models: A list of model shards corresponding to the devices. Raises: ValueError: If the number of gradient sets does not match the @@ -170,14 +166,13 @@ def apply_gradients(self, gradients_and_vars, shard_models): def _apply_gradients_with_replicated_states( self, synchronized_gradients, shard_models ): - """ - Averages gradients across all shards and applies them once. + """Averages gradients across all shards and applies them once. This is used when `shard_optimizer_states` is False. Args: - synchronized_gradients (list): The list of synchronized gradients. - shard_models (list): The list of model shards. + synchronized_gradients: The list of synchronized gradients. + shard_models: The list of model shards. """ num_vars = len(synchronized_gradients[0]) averaged_grads_and_vars = [] @@ -207,12 +202,11 @@ def _apply_gradients_with_replicated_states( def _apply_gradients_with_sharded_states( self, synchronized_gradients, shard_models ): - """ - Applies gradients to each shard using its local optimizer state. + """Applies gradients to each shard using its local optimizer state. Args: - synchronized_gradients (list): The list of synchronized gradients. - shard_models (list): The list of model shards. + synchronized_gradients: The list of synchronized gradients. + shard_models: The list of model shards. """ for shard_idx in range(self.device_count): local_states = self._get_local_optimizer_states(shard_idx) @@ -226,11 +220,10 @@ def _apply_gradients_with_sharded_states( self._update_global_sharded_states(shard_optimizer, shard_idx) def _get_local_optimizer_states(self, shard_idx): - """ - Constructs the state dictionary for a single shard. + """Constructs the state dictionary for a single shard. Args: - shard_idx (int): The index of the current shard. + shard_idx: The index of the current shard. Returns: dict: A dictionary mapping state names to their local values. @@ -248,12 +241,11 @@ def _get_local_optimizer_states(self, shard_idx): return local_states def _update_optimizer_internal_state(self, optimizer, local_states): - """ - Assigns local sharded state values to the optimizer's variables. + """Assigns local sharded state values to the optimizer's variables. Args: - optimizer (Optimizer): The local optimizer instance for the shard. - local_states (dict): The local state dictionary. + optimizer: The local optimizer instance for the shard. + local_states: The local state dictionary. """ if not optimizer.built: return @@ -278,12 +270,11 @@ def _update_optimizer_internal_state(self, optimizer, local_states): var.assign(local_param_state) def _update_global_sharded_states(self, optimizer, shard_idx): - """ - Updates the main sharded_states dictionary after a gradient step. + """Updates the main sharded_states dictionary after a gradient step. Args: - optimizer (Optimizer): The local optimizer instance. - shard_idx (int): The index of the current shard. + optimizer: The local optimizer instance. + shard_idx: The index of the current shard. """ if not optimizer.built: return @@ -309,13 +300,12 @@ def _update_global_sharded_states(self, optimizer, shard_idx): ) def _synchronize_gradients(self, gradients_and_vars): - """ - Synchronizes gradients across shards based on tensor parallel rules. + """Synchronizes gradients across shards using tensor parallel rules. Args: - gradients_and_vars (list): A list of (gradient, variable) tuples. + gradients_and_vars: A list of (gradient, variable) tuples. Returns: list: The synchronized list of gradients and variables. @@ -359,14 +349,13 @@ def _synchronize_gradients(self, gradients_and_vars): return gradients_and_vars def _allreduce_gradients(self, gradients): - """ - Performs a mean all-reduce operation on a list of gradients. + """Performs a mean all-reduce operation on a list of gradients. This method uses the on-device communication primitive from the backend (e.g., JAX's lax.pmean) when multiple devices are detected. Args: - gradients (list): A list of gradient tensors to reduce. + gradients: A list of gradient tensors to reduce. Returns: list: A list containing the reduced gradient repeated for each @@ -404,11 +393,10 @@ def set_weights(self, weights): self.base_optimizer.set_weights(weights) def enable_optimizer_state_sharding(self, variables): - """ - Enables and initializes optimizer state sharding. + """Enables and initializes optimizer state sharding. Args: - variables (list): A list of model variables to track. + variables: A list of model variables to track. """ self.shard_optimizer_states = True self._variables = variables @@ -424,12 +412,11 @@ class TensorParallelOptimizer(optimizers.Optimizer): `CoordinatedOptimizer` instance. Args: - base_optimizer (Optimizer or str): A Keras optimizer instance or a - string identifier. - device_count (int): The total number of devices/processes in the - distributed setup. - tensor_parallel_config (object): An optional configuration object. - Defaults to `None`. + base_optimizer: A Keras optimizer instance or a string identifier. + device_count: The total number of devices/processes in the distributed + setup. + tensor_parallel_config: An optional configuration object. Defaults to + `None`. """ def __init__( @@ -462,84 +449,27 @@ def __init__( tensor_parallel_config=tensor_parallel_config, ) - def apply_gradients(self, grads_and_vars, **kwargs): - """ - Applies gradients to the model variables. - - Args: - grads_and_vars (list): A list of (gradient, variable) tuples or a - list of lists for sharded execution. - **kwargs: Additional arguments, such as `shard_models`. - - Raises: - ValueError: If `shard_models` is missing when applying sharded - gradients. - """ - is_sharded_grads = ( - isinstance(grads_and_vars, list) - and grads_and_vars - and isinstance(grads_and_vars[0], list) - ) - if is_sharded_grads: - if "shard_models" not in kwargs: - raise ValueError( - "The `shard_models` keyword argument is required when " - "applying sharded gradients (a list of lists)." - ) - shard_models = kwargs.get("shard_models") - self.coordinated_optimizer.apply_gradients( - grads_and_vars, shard_models - ) - else: - self.base_optimizer.apply_gradients(grads_and_vars) - def update_step(self, gradient, variable, *args, **kwargs): - """ - Delegates the update step to the base optimizer. + """Delegates the update step to the base optimizer. Args: - gradient (Tensor): The gradient tensor. - variable (Variable): The variable to update. + gradient: The gradient tensor. + variable: The variable to update. *args: Additional arguments for the update. **kwargs: Additional keyword arguments for the update. """ if hasattr(self.base_optimizer, "update_step"): - try: - return self.base_optimizer.update_step( - gradient, variable, *args, **kwargs - ) - except TypeError: - return self.base_optimizer.update_step(gradient, variable) - - try: - return super().update_step(gradient, variable, *args, **kwargs) - except TypeError: - return super().update_step(gradient, variable) - - @classmethod - def from_config(cls, config): - """Creates an optimizer instance from its configuration.""" - from keras.src import saving - - base_optimizer_config = config.pop("base_optimizer") - base_optimizer = saving.deserialize_keras_object(base_optimizer_config) - - init_kwargs = { - "device_count": config.get("device_count"), - "tensor_parallel_config": config.get("tensor_parallel_config"), - } - - config.pop("device_count", None) - config.pop("tensor_parallel_config", None) + return self.base_optimizer.update_step( + gradient, variable, *args, **kwargs + ) - return cls(base_optimizer=base_optimizer, **init_kwargs) + return super().update_step(gradient, variable, *args, **kwargs) def build(self, variables): - """ - Builds the optimizer and initializes sharded states. + """Builds the optimizer and initializes sharded states. Args: - variables (list): The list of variables to optimize. + variables: The list of variables to optimize. """ if self.built: return From 8bb39f6c894d93ed03e633deb6e57a4a86f01343 Mon Sep 17 00:00:00 2001 From: Suhana Date: Tue, 18 Nov 2025 09:11:42 +0530 Subject: [PATCH 12/12] added tests for autoconfig and coordinated optimizer --- .../tensor_parallel/autoconfig_test.py | 159 +++++++++++++++ .../coordinated_optimizer_test.py | 183 ++++++++++++++++++ 2 files changed, 342 insertions(+) create mode 100644 keras/src/distribution/tensor_parallel/autoconfig_test.py create mode 100644 keras/src/distribution/tensor_parallel/coordinated_optimizer_test.py diff --git a/keras/src/distribution/tensor_parallel/autoconfig_test.py b/keras/src/distribution/tensor_parallel/autoconfig_test.py new file mode 100644 index 000000000000..f10aefd58d12 --- /dev/null +++ b/keras/src/distribution/tensor_parallel/autoconfig_test.py @@ -0,0 +1,159 @@ +from unittest.mock import patch + +from autoconfig import analyze_dense_layer +from autoconfig import get_default_config + +import keras +from keras.src import layers +from keras.src import testing + + +class AutoConfigTest(testing.TestCase): + def check_rule(self, rule, expected_device_count, expected_dim): + """ + Helper to verify a rule lambda. + Since the rule is a lambda, we mock the internal function it calls + to verify it captured the correct device_count and dim. + """ + self.assertTrue(callable(rule), "Rule must be a callable (lambda)") + + # Patch the internal function imported in autoconfig + with patch("autoconfig._split_fn_internal") as mock_split: + # Call the rule with dummy arguments + rule(keras.ops.zeros((2, 2)), 0) + + # Verify _split_fn_internal was called + self.assertTrue(mock_split.called) + + # Inspect arguments: (tensor, index, device_count, dim=dim) + args, kwargs = mock_split.call_args + + # device_count is the 3rd positional argument (index 2) + self.assertEqual(args[2], expected_device_count) + + # dim is passed as a keyword argument + self.assertEqual(kwargs["dim"], expected_dim) + + def test_analyze_dense_layer_directly(self): + """Tests the heuristic for classifying Dense layers.""" + + up_proj_layer = layers.Dense(64, name="up") + up_proj_layer.build(input_shape=(None, 16)) + self.assertEqual(analyze_dense_layer(up_proj_layer), "up_projection") + down_proj_layer = layers.Dense(16, name="down") + down_proj_layer.build(input_shape=(None, 64)) + self.assertEqual( + analyze_dense_layer(down_proj_layer), + "down_projection", + ) + generic_layer = layers.Dense(32, name="generic") + generic_layer.build(input_shape=(None, 28)) + self.assertEqual(analyze_dense_layer(generic_layer), "dense") + non_dense_layer = layers.LayerNormalization() + self.assertEqual(analyze_dense_layer(non_dense_layer), "dense") + + def test_simple_mlp_model(self): + """Tests rule generation for a standard MLP block.""" + device_count = 2 + devices = [f"gpu:{i}" for i in range(device_count)] + + model = keras.Sequential( + [ + keras.Input(shape=(32,)), + layers.Dense(128, name="mlp_up"), # Up-projection + layers.Dense(32, name="mlp_down"), # Down-projection + ], + name="mlp_block", + ) + + layout_map = get_default_config(model, devices) + state_rules = layout_map.state_rules + output_rules = layout_map.output_rules + + # Assertions for State (Weight) Sharding Rules + up_kernel_key = "mlp_block.mlp_up.kernel" + self.assertIn(up_kernel_key, state_rules) + # Verify Up Projection (split on dim 1) + self.check_rule(state_rules[up_kernel_key], device_count, 1) + + down_kernel_key = "mlp_block.mlp_down.kernel" + self.assertIn(down_kernel_key, state_rules) + # Verify Down Projection (split on dim 0) + self.check_rule(state_rules[down_kernel_key], device_count, 0) + + # Assertions for Output Communication Rules + self.assertEqual(output_rules["mlp_block.mlp_up"], {0: "gather"}) + self.assertEqual(output_rules["mlp_block.mlp_down"], {0: "allreduce"}) + + def test_model_with_embedding_and_einsumdense(self): + """Tests rule generation for Embedding and EinsumDense layers.""" + device_count = 4 + devices = [f"gpu:{i}" for i in range(device_count)] + + class SimpleTransformer(layers.Layer): + def __init__(self, **kwargs): + super().__init__(**kwargs) + self.embedding = layers.Embedding( + input_dim=1000, output_dim=64, name="embedding" + ) + self.qkv_proj = layers.EinsumDense( + "abc,cde->abde", + output_shape=(None, 3, 128), + bias_axes="de", + name="qkv_proj", + ) + self.attention_output = layers.EinsumDense( + "abde,cde->abc", + output_shape=(None, 64), + bias_axes="c", + name="attention_output", + ) + + def call(self, inputs): + x = self.embedding(inputs) + x = self.qkv_proj(x) + x = self.attention_output(x) + return x + + model = SimpleTransformer(name="transformer") + model(keras.ops.zeros((1, 10))) + + layout_map = get_default_config(model, devices) + state_rules = layout_map.state_rules + + # Check Embedding + expected_key = "transformer.embedding.embeddings" + self.assertIn(expected_key, state_rules) + self.check_rule(state_rules[expected_key], device_count, 1) + + # Check QKV Projection + qkv_key = "transformer.qkv_proj.kernel" + self.assertIn(qkv_key, state_rules) + self.check_rule(state_rules[qkv_key], device_count, 1) + + # Check Attention Output + attn_out_key = "transformer.attention_output.kernel" + self.assertIn(attn_out_key, state_rules) + self.check_rule(state_rules[attn_out_key], device_count, 0) + + def test_nested_model(self): + """Tests that the recursive traversal finds layers in nested models.""" + device_count = 2 + devices = [f"gpu:{i}" for i in range(device_count)] + inner_model = keras.Sequential( + [layers.Dense(64, name="inner_dense")], name="inner_block" + ) + outer_model = keras.Sequential( + [ + keras.Input(shape=(32,)), + layers.Dense(32, name="outer_dense_1"), + inner_model, + ], + name="outer_block", + ) + layout_map = get_default_config(outer_model, devices) + state_rules = layout_map.state_rules + + expected_key = "outer_block.inner_block.inner_dense.kernel" + self.assertIn(expected_key, state_rules) + self.check_rule(state_rules[expected_key], device_count, 1) diff --git a/keras/src/distribution/tensor_parallel/coordinated_optimizer_test.py b/keras/src/distribution/tensor_parallel/coordinated_optimizer_test.py new file mode 100644 index 000000000000..073441d14815 --- /dev/null +++ b/keras/src/distribution/tensor_parallel/coordinated_optimizer_test.py @@ -0,0 +1,183 @@ +import numpy as np +import pytest + +# Assuming the implementation code is saved in coordinated_optimizer.py +from coordinated_optimizer import CoordinatedOptimizer +from coordinated_optimizer import TensorParallelOptimizer + +import keras +from keras import ops +from keras.src import backend +from keras.src import optimizers +from keras.src import testing + + +@pytest.mark.skipif( + backend.backend() != "jax", + reason="This test is for the JAX backend only.", +) +class CoordinatedOptimizerTest(testing.TestCase): + def _get_simple_model(self): + """Creates a simple, uncompiled Keras model.""" + inputs = keras.Input(shape=(10,)) + x = keras.layers.Dense(20, name="dense_1")(inputs) + outputs = keras.layers.Dense(5, name="dense_2")(x) + return keras.Model(inputs, outputs) + + def _get_mock_gradients_and_vars(self, model, device_count): + """Generates mock gradients and variables for N shards.""" + model.build(input_shape=(None, 10)) + variables = model.trainable_variables + grads_and_vars_per_shard = [] + for i in range(device_count): + multiplier = float(i + 1) + gradients = [ + ops.convert_to_tensor( + np.ones_like(v.numpy()) * multiplier, dtype="float32" + ) + for v in variables + ] + grads_and_vars_per_shard.append(list(zip(gradients, variables))) + return grads_and_vars_per_shard + + def test_initialization(self): + """Tests that the optimizer initializes with the correct defaults.""" + base_optimizer = optimizers.Adam() + coord = CoordinatedOptimizer(base_optimizer, device_count=4) + self.assertEqual(coord.base_optimizer, base_optimizer) + self.assertTrue(coord.shard_optimizer_states) + self.assertEqual(coord.sharded_states, {}) + + def test_apply_gradients_with_replicated_states(self): + """Tests that replicated gradients are averaged and applied once.""" + + class AdamWithCallCounter(optimizers.Adam): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.apply_gradients_call_count = 0 + self.received_grads = [] + + def apply_gradients(self, grads_and_vars, *args, **kwargs): + self.apply_gradients_call_count += 1 + self.received_grads = [g for g, v in grads_and_vars] + super().apply_gradients(grads_and_vars, *args, **kwargs) + + device_count = 4 + model = self._get_simple_model() + optimizer = AdamWithCallCounter() + model.build((None, 10)) + mock_grads = self._get_mock_gradients_and_vars(model, device_count) + + coord = CoordinatedOptimizer( + optimizer, + device_count, + shard_optimizer_states=False, + ) + coord.apply_gradients(mock_grads, shard_models=[]) + + self.assertEqual(optimizer.apply_gradients_call_count, 1) + grad_numpy = ops.convert_to_numpy(optimizer.received_grads[0]) + self.assertAllClose( + grad_numpy, + np.ones_like(grad_numpy) * 2.5, + ) + + def test_init_from_string(self): + optimizer = TensorParallelOptimizer("adam", device_count=4) + self.assertIsInstance(optimizer.base_optimizer, optimizers.Adam) + + def test_apply_gradients_delegation(self): + """Tests that apply_gradients correctly delegates.""" + device_count = 4 + base_opt = optimizers.Adam() + optimizer = TensorParallelOptimizer(base_opt, device_count) + model = self._get_simple_model() + mock_grads = self._get_mock_gradients_and_vars(model, device_count) + + coord_apply_tracker = {"called": False} + + def coord_apply_mock(*args, **kwargs): + coord_apply_tracker["called"] = True + + optimizer.coordinated_optimizer.apply_gradients = coord_apply_mock + + base_apply_tracker = {"called": False} + + def base_apply_mock(*args, **kwargs): + base_apply_tracker["called"] = True + + optimizer.base_optimizer.apply_gradients = base_apply_mock + + optimizer.coordinated_optimizer.apply_gradients( + mock_grads, shard_models=[] + ) + self.assertTrue(coord_apply_tracker["called"]) + + coord_apply_tracker["called"] = False + unsharded_grads = mock_grads[0] + optimizer.base_optimizer.apply_gradients(unsharded_grads) + self.assertTrue(base_apply_tracker["called"]) + self.assertFalse(coord_apply_tracker["called"]) + + def test_build_and_state_sharding(self): + """Tests that the build method correctly initializes sharded states.""" + optimizer = TensorParallelOptimizer(optimizers.Adam(), device_count=4) + model = self._get_simple_model() + model.build(input_shape=(None, 10)) + + self.assertEqual(optimizer.coordinated_optimizer.sharded_states, {}) + optimizer.build(model.trainable_variables) + self.assertTrue(optimizer.built) + + sharded_states = optimizer.coordinated_optimizer.sharded_states + # Check for either 'momentum' or 'm' (Adam standard names) + self.assertTrue("momentum" in sharded_states or "m" in sharded_states) + self.assertTrue("velocity" in sharded_states or "v" in sharded_states) + self.assertIn("iterations", sharded_states) + + mom_key = "momentum" if "momentum" in sharded_states else "m" + dense_1_kernel_path = model.get_layer("dense_1").kernel.path + self.assertIn(dense_1_kernel_path, sharded_states[mom_key]) + self.assertEqual(len(sharded_states[mom_key][dense_1_kernel_path]), 4) + + def test_serialization(self): + """Tests manual reconstruction via from_config.""" + device_count = 4 + base_opt = optimizers.Adam(learning_rate=0.1) + config = { + "base_optimizer": base_opt, + "device_count": device_count, + } + + recreated = TensorParallelOptimizer.from_config(config) + + self.assertEqual(recreated.device_count, device_count) + self.assertIsInstance(recreated.base_optimizer, optimizers.Adam) + self.assertAllClose(recreated.base_optimizer.learning_rate, 0.1) + + def test_sharding_with_prefixed_variable_names(self): + """Tests that state is correctly mapped with prefixed variable names.""" + inputs = keras.Input(shape=(10,)) + x = keras.layers.Dense(4, name="dense")(inputs) + outputs = keras.layers.Dense(2, name="dense_output")(x) + model = keras.Model(inputs, outputs) + model.build(input_shape=(None, 10)) + + optimizer = TensorParallelOptimizer(optimizers.Adam(), device_count=2) + optimizer.build(model.trainable_variables) + + state_to_param = ( + optimizer.coordinated_optimizer._state_variable_to_parameter + ) + self.assertGreater(len(state_to_param), 0) + + dense_output_kernel = model.get_layer("dense_output").kernel + + found_key = None + for key, param in state_to_param.items(): + if param is dense_output_kernel: + found_key = key + break + + self.assertIsNotNone(found_key) + self.assertIs(state_to_param[found_key], dense_output_kernel)