-
Notifications
You must be signed in to change notification settings - Fork 0
Open
Description
Summary
We need a robust system for automatically generating technical summaries from EmacsConf talk transcripts, with quality validation and structured output.
Timeline of Development
gantt
title Development Timeline
dateFormat HH:mm
axisFormat %H:%M
section Initial Attempt
Basic script implementation :20:00, 15m
Initial failures with model :20:15, 10m
section Improvements
Added structured terms :20:25, 15m
Implemented org tables :20:40, 10m
section Quality
Added review system :20:50, 15m
Enhanced error handling :21:05, 10m
Process Flow
sequenceDiagram
participant User
participant Script
participant Phi3
participant Llama3.2
participant Filesystem
User->>Script: Run with VTT files
loop Each VTT File
Script->>Filesystem: Read VTT
Script->>Phi3: Generate Summary
Phi3-->>Script: Summary Content
Script->>Llama3.2: Review Summary
Llama3.2-->>Script: Quality Assessment
Script->>Filesystem: Write .org file
end
Script->>User: Report Results
Control Flow
flowchart TD
A[Start] --> B{VTT Files Exist?}
B -- Yes --> C[Process Next File]
B -- No --> Z[End]
C --> D[Extract Text]
D --> E{Text Extracted?}
E -- Yes --> F[Generate Summary]
E -- No --> Y[Log Error]
F --> G{Summary Generated?}
G -- Yes --> H[Review Summary]
G -- No --> I[Retry Logic]
I --> F
H --> J{Review Complete?}
J -- Yes --> K[Write Output]
J -- No --> L[Use Default Review]
K --> M{More Files?}
M -- Yes --> C
M -- No --> Z
Y --> M
L --> K
Issues Encountered
-
Model Overload
- Initial attempts failed due to context length
- Solution: Added chunking and retry logic
-
Output Quality
- Initial summaries lacked technical depth
- Solution: Enhanced prompting and added review system
-
Formatting Consistency
- Raw text output was hard to parse
- Solution: Structured org-mode tables and properties
Current Requirements
Core Requirements
-
Input Processing
- VTT file parsing
- Text extraction
- Audio duration extraction
- Speaker identification
-
Summary Generation
- Key points extraction
- Technical term identification
- Context preservation
- Code snippet handling
-
Quality Control
- Automated review
- Manual review interface
- Quality metrics tracking
- Historical comparison
-
Output Format
- Org-mode structure
- Term tables
- LaTeX export
- HTML export
Optional Enhancements
-
Content Analysis
- Topic clustering across talks
- Technical term network analysis
- Speaker expertise mapping
-
Search & Discovery
- Full-text search interface
- Technical term index
- Cross-reference system
-
Integration
- GitHub Actions workflow
- Pre-commit hooks
- CI/CD pipeline
-
User Interface
- Web interface for review
- CLI improvements
- Progress visualization
Technical Implementation Options
Model Selection
-
Current: Phi3 + Llama3.2
- Pros:
- Local execution
- No API costs
- Good performance
- Cons:
- Resource intensive
- Occasional timeout issues
- Limited context window
- Pros:
-
Alternative: GPT-4 + Claude
- Pros:
- Larger context window
- More consistent output
- Better technical understanding
- Cons:
- API costs
- External dependencies
- Rate limiting
- Pros:
-
Hybrid Approach:
- Use local models for initial processing
- Fall back to API models for complex cases
- Cache responses for efficiency
Architecture Options
- Current Script-based:
flowchart LR
A[VTT Files] --> B[Python Script]
B --> C[Local Models]
C --> D[Org Files]
- Proposed Service-based:
flowchart LR
A[VTT Files] --> B[API Server]
B --> C[Model Pool]
C --> D[Database]
D --> E[Export Service]
E --> F[Multiple Formats]
Next Steps
Immediate Priorities
- Improve error handling and recovery
- Add comprehensive logging
- Implement quality metrics
- Add cross-reference support
Long-term Goals
- Build web interface
- Create analysis dashboard
- Implement search functionality
- Develop plugin system
Questions for Stakeholders
- What additional metadata would be valuable to extract?
- Should we prioritize batch processing or interactive use?
- What integration points are most important?
- How should we handle manual corrections?
Open Issues
-
Model Reliability
- Need better timeout handling
- Consider caching mechanism
- Implement fallback chain
-
Quality Metrics
- Define objective measures
- Set quality thresholds
- Implement feedback loop
-
Resource Usage
- Optimize memory usage
- Consider distributed processing
- Implement rate limiting
Appendix A: Example Configurations
models:
primary:
name: phi3
timeout: 30
retries: 3
review:
name: llama3.2
timeout: 20
retries: 2
output:
format: org
structure:
- title
- properties
- key_points
- technical_terms
- review
- meta
quality:
minimum_terms: 3
minimum_points: 5
review_required: trueMetadata
Metadata
Assignees
Labels
No labels