diff --git a/README.md b/README.md index a09966d..159deac 100644 --- a/README.md +++ b/README.md @@ -1,5 +1,5 @@ # ImageSegmentation With Vnet -> This is an example of the prostate in transversal T2-weighted MR images Segment from MICCAI Grand Challenge:Prostate MR Image Segmentation 2012 +> This is an example of the prostate in transversal T2-weighted MR images Segment from MICCAI Grand Challenge: Prostate MR Image Segmentation 2012 ![](promise12_header.png) ## Prerequisities @@ -13,18 +13,19 @@ The following dependencies are needed: ## How to Use -**1、download trained data,download dataset:https://promise12.grand-challenge.org/download/** +**1. download trained data, download dataset:https://promise12.grand-challenge.org/download/** -**2、the file of PROMISE2012Image.csv,is like this format: +**2. the file of PROMISE2012Image.csv, is like this format:** +``` D:\Data\PROMISE2012\Augmentation\Image/0_1.bmp D:\Data\PROMISE2012\Augmentation\Image/0_10.bmp D:\Data\PROMISE2012\Augmentation\Image/0_2.bmp - ...... -if you Augmentation trained data path is not D:\Data\PROMISE2012\,you should change the csv file path just like this:using C:\Data\ replace D:\Data\PROMISE2012\.** +``` +**if your Augmentation trained data path is not D:\Data\PROMISE2012\, you should change the csv file path just like this: using C:\Data\ replace D:\Data\PROMISE2012\.** -**3、when data is prepared,just run the vnet_train_predict.py** +**3. when data is prepared, just run the vnet_train_predict.py** -**4、training the model on the GTX1080,it take 20 hours,and i also attach the trained model in the project,you also just use the vnet_train_predict.py file to predict,and get the segmentation result.** +**4. training the model on the GTX1080, it take 20 hours, and I also attach the trained model in the project, you also just use the vnet_train_predict.py file to predict,and get the segmentation result.** **5、download trained model:https://pan.baidu.com/s/19E9q6HIUeRB8jpuNhvE2Zg, passworld:obwu**