The library lets the user extract aggregated data features calculated per audio file. Unique feature extractions such as Mel Frequency Cepstral Coefficients (MFCC) [@6921394], Gammatone Frequency Cepstral Coefficients (GFCC) [@inbook], spectral coefficients, chroma features and others are available to extract and use in combination with different backend classifiers. While MFCC features find use in most commonly encountered audio processing tasks such as audio type classification, speech classification, GFCC features have been found to have application in speaker identification or speaker diarization. Many such applications, comparisons and uses can be found in this IEEE paper [@6639061]. All these features are also helpful for a variety of other audio classification tasks.
0 commit comments