Skip to content

Commit 10fb0d1

Browse files
committed
Fix Typos
1 parent ace05cb commit 10fb0d1

File tree

3 files changed

+5
-5
lines changed

3 files changed

+5
-5
lines changed

pyAudioProcessing/extract_features.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -71,7 +71,7 @@ def get_features(folder_path, feature_names):
7171

7272
if __name__ == "__main__":
7373
ARGS = PARSER.parse_args()
74-
# dict with stucture
74+
# dict with structure
7575
# {
7676
# <folder name inside ARGS.folder>: {
7777
# <file name> :{

pyAudioProcessing/features/audioFeatureExtraction.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -252,7 +252,7 @@ def dirsWavFeatureExtraction(dirNames, mt_win, mt_step, st_win, st_step, feats,
252252
'audioData/classSegmentsRec/brush-teeth','audioData/classSegmentsRec/shower'], 1, 1, 0.02, 0.02);
253253
254254
It can be used during the training process of a classification model ,
255-
in order to get feature matrices from various audio classes (each stored in a seperate path)
255+
in order to get feature matrices from various audio classes (each stored in a separate path)
256256
'''
257257

258258
# feature extraction for each class:

pyAudioProcessing/trainer/audioTrainTest.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ def trainLogisticRegression(features, Cparam):
4646
Train a multi-class probabilitistic Logistic Regression classifier.
4747
Note: This function is simply a wrapper to the sklearn functionality for logistic regression training
4848
ARGUMENTS:
49-
- features: a list ([numOfClasses x 1]) whose elements containt numpy matrices of features
49+
- features: a list ([numOfClasses x 1]) whose elements contain numpy matrices of features
5050
each matrix features[i] of class i is [n_samples x numOfDimensions]
5151
- Cparam: Logistic Regression parameter C (Inverse of regularization strength)
5252
RETURNS:
@@ -65,7 +65,7 @@ def trainLogisticRegression(features, Cparam):
6565
def evaluateclassifier(features, class_names, n_exp, classifier_name, Params, parameterMode, perTrain=0.90):
6666
'''
6767
ARGUMENTS:
68-
features: a list ([numOfClasses x 1]) whose elements containt numpy matrices of features.
68+
features: a list ([numOfClasses x 1]) whose elements contain numpy matrices of features.
6969
each matrix features[i] of class i is [n_samples x numOfDimensions]
7070
class_names: list of class names (strings)
7171
n_exp: number of cross-validation experiments
@@ -239,7 +239,7 @@ def featureAndTrain(list_of_dirs, mt_win, mt_step, st_win, st_step,
239239
'''
240240
This function is used as a wrapper to segment-based audio feature extraction and classifier training.
241241
ARGUMENTS:
242-
list_of_dirs: list of paths of directories. Each directory contains a signle audio class whose samples are stored in seperate WAV files.
242+
list_of_dirs: list of paths of directories. Each directory contains a signle audio class whose samples are stored in separate WAV files.
243243
mt_win, mt_step: mid-term window length and step
244244
st_win, st_step: short-term window and step
245245
classifier_type: "svm" or "knn" or "randomforest" or "gradientboosting" or "extratrees"

0 commit comments

Comments
 (0)