@@ -46,7 +46,7 @@ def trainLogisticRegression(features, Cparam):
4646 Train a multi-class probabilitistic Logistic Regression classifier.
4747 Note: This function is simply a wrapper to the sklearn functionality for logistic regression training
4848 ARGUMENTS:
49- - features: a list ([numOfClasses x 1]) whose elements containt numpy matrices of features
49+ - features: a list ([numOfClasses x 1]) whose elements contain numpy matrices of features
5050 each matrix features[i] of class i is [n_samples x numOfDimensions]
5151 - Cparam: Logistic Regression parameter C (Inverse of regularization strength)
5252 RETURNS:
@@ -65,7 +65,7 @@ def trainLogisticRegression(features, Cparam):
6565def evaluateclassifier (features , class_names , n_exp , classifier_name , Params , parameterMode , perTrain = 0.90 ):
6666 '''
6767 ARGUMENTS:
68- features: a list ([numOfClasses x 1]) whose elements containt numpy matrices of features.
68+ features: a list ([numOfClasses x 1]) whose elements contain numpy matrices of features.
6969 each matrix features[i] of class i is [n_samples x numOfDimensions]
7070 class_names: list of class names (strings)
7171 n_exp: number of cross-validation experiments
@@ -239,7 +239,7 @@ def featureAndTrain(list_of_dirs, mt_win, mt_step, st_win, st_step,
239239 '''
240240 This function is used as a wrapper to segment-based audio feature extraction and classifier training.
241241 ARGUMENTS:
242- list_of_dirs: list of paths of directories. Each directory contains a signle audio class whose samples are stored in seperate WAV files.
242+ list_of_dirs: list of paths of directories. Each directory contains a signle audio class whose samples are stored in separate WAV files.
243243 mt_win, mt_step: mid-term window length and step
244244 st_win, st_step: short-term window and step
245245 classifier_type: "svm" or "knn" or "randomforest" or "gradientboosting" or "extratrees"
0 commit comments